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Frequency-domain information

for active portfolio management∗

Gonçalo Faria† Fabio Verona‡

Abstract

We assess the bene�ts of using frequency-domain information for active portfolio

management. To do so, we forecast the bond risk premium and equity risk premium us-

ing a methodology that isolates frequencies (of the predictors) with the highest predictive

power. The resulting forecasts are more accurate than those of traditional forecasting

methods for both asset classes. When used in the context of active portfolio man-

agement, the forecasts based on frequency-domain information lead to better portfolio

performances than when using the original time series of the predictors. It produces

higher information ratio (0.57 vs 0.45), higher CER gains (1.12% vs 0.81%), and lower

maximum drawdown (19.1% vs 19.6%).

Keywords: equity risk premium, bond risk premium, predictability, multiresolution

analysis, active portfolio management
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1 Introduction

Active portfolio management relies on good return forecasts of asset classes under manage-

ment. It is then of key interest for active asset managers to identify reliable predictors and

good forecasting methods.

There is an extensive literature on the out-of-sample predictability of the equity risk premium

(see the reviews of Rapach and Zhou, 2013 and Harvey, Liu, and Zhu, 2016), but the literature

on the predictability of the bond risk premium is limited (notable contributions include

Ludvigson and Ng, 2009; Thornton and Valente, 2012; Sarno, Schneider, and Wagner, 2016;

and Gargano, Pettenuzzo, and Timmermann, 2019). The literature is dominated by time

series analysis. Frequency domain techniques, like Fourier transformations, are rather new

tools in �nance applications (e.g. Dew-Becker and Giglio, 2016). In the context of forecasting

equity returns, Faria and Verona (2018) and Bandi, Perron, Tamoni, and Tebaldi (2019)

introduce models where equity returns and predictors are linear aggregates of components

operating over di�erent frequencies and predictability is frequency-speci�c.

The �rst contribution of this paper is to compare the performance of alternative predictive

models of the bond risk premium (BRP) and the equity risk premium (ERP). We �rst use

frequency-domain �ltering techniques to expand an initial dataset of predictors to obtain

more predictors for BRP and ERP forecasting. In particular, from each original variable

we extract several time series, each corresponding to a particular frequency of the original

variable and each representing a new predictor. The enlarged dataset has the same amount of

information as the original dataset (we start from the same number of variables), but allows

forecasting the BRP and ERP with more granular information. This allows us i) to tease out

those predictor frequencies with the highest predictive power from others that bring noise to

the exercise, and ii) to infer the relevance of using the frequency-domain information of the

original predictors.
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For both the BRP and the ERP, we �nd that the use of frequency-domain information signif-

icantly improves the statistical performance of forecasts over forecasts that only use original

variables. While this result is not new with regards to ERP forecasting (see Faria and Verona

2017, 2019), it is, to the best of our knowledge, the �rst time frequency-domain information

has been used in BRP forecasting. Furthermore, we �nd that the forecasting gains from using

frequency-domain information are signi�cantly higher when combining di�erent frequencies

from di�erent original predictors than when combining di�erent frequencies from the same

original predictor. This �nding suggests that di�erent frequencies of di�erent variables are

useful predictors of equity and bond returns as they track di�erent frequency components

of the equity and bond risk premium. This result is in line with Fama and French (1989),

who �nd that di�erent �nancial variables track di�erent frequency components of the equity

premium.

The second contribution of this paper is an evaluation of the economic signi�cance of frequency-

domain information for active portfolio management. We adopt the perspective of a power-

utility maximizing investor, whereby the BRP and ERP forecasts from the �rst step are

treated as the investor's active views on stock and bond markets. We consider a mean-

variance optimization framework and, as benchmark, a conventional allocation of 60% to

stocks and 40% to bonds. We �nd that using frequency-domain information leads to better

portfolio performances than when using the original time series of the predictors. It pro-

duces higher information ratio (0.57 vs 0.45), higher CER gains (1.12% vs 0.81%), and lower

maximum drawdown (19.1% vs 19.6%). This �nding is robust towards the consideration

of an alternative portfolio optimization setting (Black-Litterman-type model), alternative

benchmarks, and various portfolio constraint settings.

The rest of the paper is organized as follows. Section 2 sets out the data and methodology.

Section 3 presents the out-of-sample results and performance of the proposed active portfolio

management strategy. Section 4 documents the robustness test results. Section 5 concludes.
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2 Data and methodology

Our focus is on out-of-sample (OOS) predictability of bond and equity risk premiums. The

OOS exercise is relevant in evaluating e�ective return predictability in real time, while avoid-

ing in-sample over-�tting, distortions from small sample size, and look-ahead bias.

Our monthly data extend from January 1973 to December 2018. BRP and ERP of month t

are measured as the di�erence between the return on the 10-year US Treasury bond and the

return on the S&P500 index in month t, respectively, and the one-month T-bill known at the

beginning of month t (lagged-risk free rate). We use twelve variables taken from Goyal and

Welch (2008) as the predictors: log dividend-price ratio (DP), log dividend yield (DY), log

earnings-price ratio (EP), excess stock return volatility (RVOL), book-to-market ratio (BM),

net equity expansion (NTIS), long-term bond yield (LTY), long-term bond return (LTR),

term spread (TMS), default yield spread (DFY), default return spread (DFR), and lagged

in�ation rate (INFL). These predictors are brie�y described in Appendix 1. Table 1 reports

the summary statistics for BRP, ERP and the predictors. Figure 1 provides their time series.

The �rst step of our forecasting methodology is based on a wavelet multiresolution analysis

as described in sub-section 2.1. The OOS procedure is explained in sub-section 2.2. The

asset allocation framework in covered in sub-section 2.3.

2.1 Wavelet multiresolution analysis

Wavelet multiresolution analysis (MRA) allows decomposition of any time series into its

frequency components in a way similar to bandpass �ltering (e.g. Baxter and King, 1999).

Given a time series yt, its wavelet multiresolution representation can be written as

yt =
∑J

j=1 y
Dj
t + ySJt , (1)
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where y
Dj
t are the J wavelet detail components and ySJt is the wavelet smooth component.

Equation (1) shows that the original series yt can be decomposed in several time series com-

ponents, each capturing the �uctuation of the original time series within a speci�c frequency

band. For small j, the j wavelet detail components represent the higher frequency components

of the time series (the short-term dynamics). As j increases, the j wavelet detail compo-

nents represent lower frequencies �uctuations of the series. Finally, the smooth component

captures the lowest frequency component (series trend).

Here, we perform our wavelet decomposition analysis using the Haar wavelet �lter1 and

the maximal overlap discrete wavelet transform (MODWT) MRA. This methodology is not

restricted to a particular sample size and is not sensitive to the choice of starting point for the

examined time series. Moreover, it does not introduce phase shifts in the wavelet coe�cients,

i.e. peaks and troughs of the original time series are perfectly aligned with similar events in

the MODWT MRA.2

Given the length of the data series under analysis, we consider a J=6 level MRA for each

of the original predictors, so that the decomposition delivers seven time-frequency series: six

wavelet detail components (yD1
t to yD6

t ) and a wavelet smooth component (yS6
t ).3 As we use

monthly data, the �rst detail component yD1
t captures oscillations between 2 and 4 months,

while detail components yD2
t , yD3

t , yD4
t , yD5

t and yD6
t capture oscillations with a period of

4-8, 8-16, 16-32, 32-64 and 64-128 months, respectively. Finally, the smooth component yS6
t

1 Besides its simplicity and wide use, the Haar �lter makes a neat connection to temporal aggregation as
the wavelet coe�cients are simply di�erences of moving averages (see Bandi, Perron, Tamoni, and Tebaldi,
2019 and Lubik, Matthes, and Verona, 2019).

2 This section provides a brief description of the theory directly relevant to our empirical analysis. A more
detailed analysis of wavelet methods is provided in Appendix 2 and in Percival and Walden (2000). Recent
papers using the MODWT MRA decomposition are Bekiros and Marcellino (2013), Gallegati and Ramsey
(2013), Barunik and Vacha (2015), Crowley and Hughes Hallett (2015), Berger (2016), and Faria and Verona
(2018), among others. See Verona (2019) for a description of the advantages of wavelet �lters over other
band-pass �ltering techniques.

3 As regards the choice of J, the number of observations dictates the maximum number of frequency bands
that can be used. In particular, if t0 is the number of observations in the in-sample period, then J has to
satisfy the constraint J ≤ log2 t0.
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(re-denoted as yD7
t in our later discussion) captures oscillations with a period longer than 128

months (10.6 years).4

To illustrate the rich set of dynamics aggregated (and therefore hidden) in the original time

series, Figure 2 plots the time series of one of the predictors used (term spread) and its seven

time-frequency series components. As expected, the lower the frequency, the smoother the

resulting �ltered time series. As can be seen, the time-frequency series components exhibit

di�erent time series properties and dynamics, so one can expect that only some are good ERP

and BRP predictors. As Faria and Verona (2019) show, the lowest frequency component of

the term spread (TMSD7) is a strong OOS predictor of the ERP, whereas the other frequency

components of the term spread have much worse forecasting performances.

2.2 Out-of-sample forecasts

The OOS forecasts of the BRP and ERP are generated using a sequence of expanding

windows. We use an initial sample (1973:01 to 1989:12) to make our �rst one-step-ahead

OOS forecast. The sample is then increased by one observation and a new one-step-ahead

OOS forecast is produced. We proceed this way until the end of the sample, ultimately

obtaining a sequence of 348 one-step-ahead OOS forecasts. The full OOS period spans the

period from 1990:01 to 2018:12.

As the MODWT MRA is a two-sided �lter, we recompute the frequency components of

the original predictors recursively at each iteration of the OOS forecasting process using

data from the start of the sample through the month of forecast formation. This important

step ensures that our method does not have a �look-ahead� bias, as the forecasts are made

with current and past information only. The literature suggests several types of boundary

4 In the MODWT, each wavelet �lter at frequency j approximates an ideal high-pass �lter with passband
f ∈

[
1/2j+1 , 1/2j

]
, while the smooth component is associated with frequencies f ∈

[
0 , 1/2j+1

]
. The level

j wavelet components are therefore associated to �uctuations with periodicity
[
2j , 2j+1

]
(months, in our

case).
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treatment rules to deal with boundary e�ects (e.g. periodic rule, re�ection rule, zero padding

rule, and polynomial extension). Here, we use a re�ection rule, whereby the original time

series are extended symmetrically at the right boundary to twice the time series length before

computing the MODWT MRA.

2.2.1 Predictive regression model

Let X be a vector of predictors. The ERP predictive regression model is

ERPt+1 = α + βX t + εt+1 , (2)

and the one-step-ahead OOS forecast of the ERP, ÊRP t+1, is given by:

ÊRP t+1 = α̂t + β̂tX t , (3)

where α̂ and β̂ are the OLS estimates of parameter α and vector of parameters β, respectively.

The same predictive regression model is used to forecast the BRP.

2.2.2 Predictors used

We consider four cases when running model (2)-(3):

• X includes one original predictor, i.e. we run bi-variate regressions using one original

predictor at a time. We denote this model as single_ts.

• X includes all original predictors, i.e. we run multi-variate regressions using several

original predictors. We denote this model as multi_ts.

• X includes the frequencies (obtained with the MODWTMRA) of one original predictor,
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i.e. we run multi-variate regressions using di�erent frequencies of one original predictor

at a time. This model is denoted as single_wav.

• X includes the frequencies (obtained with the MODWT MRA) of the original predic-

tors, i.e. we run multi-variate regressions using several frequencies of di�erent original

predictors. We denote this model as multi_wav.

Comparison of the ts and wav models shows the value of using more granular data from

frequency decomposition of the original predictors. Comparison of the single and multi

models helps identify the usefulness of information from di�erent original predictors.

2.2.3 Forecast evaluation

The forecasting performance of the predictive models are evaluated using the Campbell and

Thompson (2008) R2
OS statistic. As is standard in the literature, the benchmark model is the

prevailing mean forecast rt, i.e. the average ERP or BRP up to time t. The R2
OS statistic

measures the proportional reduction in the mean squared forecast error for the predictive

model (MSFEPRED) relative to the historical mean (MSFEHM) and is given by

R2
OS = 100

(
1− MSFEPRED

MSFEHM

)
= 100

[
1−

∑T−1
t=t0

(rt+1 − r̂t+1)2∑T−1
t=t0

(rt+1 − rt)2

]
,

where r̂t+1 is the ERP (BRP) forecast for t+1 from the predictive model under analysis, and

rt+1 is the realized ERP (BRP) from t to t+1. A positive (negative) R2
OS indicates that the

predictive model outperforms (underperforms) the historical mean (HM) in terms of MSFE.

The statistical signi�cance of the results is evaluated using the Clark and West (2007) statis-

tic, which tests the null hypothesis that the MSFE of the HM model is less than or equal to

the MSFE of the predictive model under analysis against an alternative hypothesis that the
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MSFE of the HM model is greater than the MSFE of the predictive model under analysis

(H0 : R2
OS ≤ 0 against HA : R2

OS > 0).

2.3 Asset allocation

The ultimate objective of our analysis is to evaluate the economic signi�cance of frequency-

domain information for active portfolio management (APM ). The portfolio optimization

framework used in this paper is described in sub-section 2.3.1. The performance measure-

ments of the proposed active strategy are described in section 2.3.2.

2.3.1 The portfolio optimization framework

As it is standard in the literature, we adopt the perspective of a mean-variance investor,

who invests in bonds and equities. The corresponding portfolio weights are $b and $e,

respectively, represented in the vector $ = ($b, $e) . Initial wealth is normalized to 1. The

rebalancing decisions that underlie the APM are assumed to be made on a monthly basis,

making use of the forecasts of bond and equity returns for the next month. The objective

of the portfolio optimization framework is to optimize the trade-o� between risk and return.

The optimization problem is

min
$

[
γΘP ($)−$′R̂

]
, (4)

where γ is the relative risk aversion coe�cient (which we assume to be equal to 2), R̂ =(
R̂b,t+1, R̂e,t+1

)
is the vector of one-step-ahead return forecasts of bonds (R̂b,t+1) and equities

(R̂e,t+1), and ΘP ($) is the portfolio risk function.

The one-step-ahead bond return forecast (R̂b,t+1) corresponds to the one-step-ahead forecast

of the bond risk premium ( ˆBRP t+1) minus the risk-free rate (which is known at the beginning
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of the period). The same procedure applies to the one-step-ahead equity return forecast

(R̂e,t+1). In the context of the mean-variance optimization framework, the portfolio risk

function ΘP ($) is set as ΘP ($) =
√
$′Σ̂$, where Σ̂ is the estimated monthly returns

covariance matrix. We estimate Σ using an exponentially weighted moving average approach,

setting the the decay parameter to 0.97.

To place realistic limits on the possibilities of leveraging the APM portfolio, we introduce

some constraints on the weight vector $. The �rst constraint sets an upper bound to the

sum of the portfolio weights, $′I2 = h, where I2 is a 2-vector of ones and h denotes the

maximum leverage. The second constraint sets a lower bound l to the weight of each asset,

wi ≥ l , with i = b, e (b for bond and e for equity). We set h = 1.5, which means that the

investor cannot borrow more than 50% of total wealth, and l = 0, which excludes short sales.

The APM portfolio return at t+1, Rp, t+1, is then given by:

Rp, t+1 = $̂′
tRt+1 +

(
1− $̂′

tI2

)
rf ,

where R is the vector of realized returns of bonds (Rb) and equities (Re) and rf is the

one-month risk-free rate. Note that if h = 1, the portfolio return is Rp, t+1 = $̂′
tRt+1.

2.3.2 Measuring the performance of the active strategy

We consider the conventional allocation of 60% to stocks and 40% to bonds as the bench-

mark portfolio, using six performance measures: Sharpe ratio, composite annual growth rate

of returns (CAGR), tracking error, information ratio, maximum drawdown, and certainty

equivalent return (CER) gain.

The reported Sharpe ratio is the one-year moving average of the portfolio's annualized Sharpe

ratio. In the context of the mean-variance portfolio optimization framework, the Sharpe

ratio is the traditionally reported performance metric. The tracking error is measured as the
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annualized standard deviation of the APM monthly excess return towards the benchmark.

The information ratio is measured as the annualized average APM monthly excess return

(towards the benchmark) divided by the tracking error. Both the information ratio and

the tracking error are relevant performance metrics for actively managed portfolios, as they

directly inform about the merits of deviating actively from the benchmark. The maximum

drawdown measures the downside risk of the strategy under analysis and gives the maximum

percentage reduction in the portfolio's cumulative return.

Power utility is given by U (x) = x1−γ

1−γ , where x = 1 + Rp and Rp is the portfolio re-

turn. Let U j , j = APM, benchmark denote the average utility of an investor with ac-

cess to the APM and benchmark portfolios, respectively. The CER is given by CERj =[
(1− γ)U j

]1/(1−γ) − 1 , j = APM, benchmark. We report the annualized utility gain, com-

puted as 12 · (CERAPM − CERbenchmark). This can be interpreted as the annual portfolio

management fee that an investor would be willing to pay for access to the APM portfolio

instead of the benchmark portfolio.

3 Results

3.1 Out-of-sample forecasting statistical performance

As described in sub-section 2.2.2, we run four predictive models: (i) regressions using one

original predictor at a time (single_ts); (ii) regressions using several original predictors

(multi_ts); (iii) regressions using di�erent frequencies from one original predictor at a time

(single_wav); and (iv) regressions using di�erent frequencies from di�erent original predic-

tors (multi_wav). For clarity, we only report the result of the best speci�cation for each

model (i)-(iv), i.e. the model speci�cation that maximizes the R2
OS statistic. Results are

11



reported in Table 2.5 We highlight three main results.

First, regardless of the forecasting model considered, predictability of the BRP is higher than

that of the ERP.

Second, there are common patterns across BRP and ERP forecasts. When using the infor-

mation from one original predictor only (single_ts versus single_wav), there are forecasting

gains from using frequency-domain information. The maximum R2
OS using the original time

series of the predictors is 1.70% for the BRP, while it is negative for the ERP. When using

frequency-decomposed predictors, the maximum R2
OS increases to 5.45% for the BRP, and

is positive and statistically signi�cant (1.77%) for the ERP. Likewise, there are forecasting

gains when combining information from di�erent original predictors (single versus multi),

except when forecasting the ERP with the time series (single_ts versus multi_ts). In all

other cases, there is an increase in the maximum R2
OS.

Third, when comparing the single_wav model with the multi_wav model, there are notice-

able forecast improvements by using di�erent frequencies from di�erent original predictors

(multi_wav) instead of using di�erent frequencies of one original predictor (single_wav).

The best R2
OS for the BRP forecast is 7.20%, while the best R2

OS for the ERP forecast is

3.97%.

These results indicate that using frequency-domain information helps make better forecasts

of bond and equity risk premiums. Next, we analyze if these statistical gains translate to

better portfolio performances.

5 Appendix 3 presents the results for the single_ts and the single_wav model for all original predictors.
For computational reasons, we consider at most three frequencies from all possible predictors in model (iv).
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3.2 Active portfolio management performance

We use the BRP and ERP forecasts from the respectivemulti_wav model to feed the vector of

active views R̂ =
(
R̂b,t+1, R̂e,t+1

)
driving the APM strategy. This is denoted as APM_WAV.

As mentioned, the benchmark is the conventional allocation of 60% to stocks and 40% to

bonds (denoted Benchmark60−40 ). For comparison purposes, we also report the performance

of an APM strategy based on the BRP and ERP forecasts obtained with the original time

series of the predictors (multi_ts). We denote this as APM_TS.

Figure 3 presents the APM_WAV, APM_TS, and Benchmark60−40 portfolio weights (solid,

dashed, and dotted lines, respectively). Both active strategies (APM_WAV and APM_TS )

strongly deviate from the 60-40 benchmark throughout the entire sample period. More-

over, the APM_WAV weights seem to oscillate around the trends de�ned by the APM_TS

weights. Interestingly, with the exception of the mid-nineties period, the di�erences be-

tween APM_WAV and APM_TS weights are most evident around and during recessions.

In particular, the APM_WAV has relatively lower exposure to equity immediately before

and during recessions. This suggests an improved equity market timing of the APM_WAV

strategy compared to that of the APM_TS strategy.

In Panel A of Table 3, we report the performance measurements of the strategies. Both APM

strategies outperform the Benchmark60−40, with the APM_WAV strategy outperforming the

APM_TS. Compared with the Benchmark60−40 performance, both APM strategies improve

the average annual return while decreasing the maximum drawdown. This translates to higher

annualized Sharpe ratios. The fact that the active deviations from the 60-40 benchmark

(as illustrated in Figure 3) add value to the active investor is re�ected in the annualized

information ratios of 0.57 (APM_WAV ) and 0.45 (APM_TS ). From an utility perspective,

this also translates to annualized CER gains of 1.12% (APM_WAV ) and 0.81% (APM_TS ).

The fact that the APM_WAV strategy outperforms the APM_TS strategy implies that
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there are economic gains from using frequency-domain information in active portfolio man-

agement. To disentangle the distribution of those gains across the asset classes traded (bonds

and equity), we report the performance metrics for two additional active portfolio manage-

ment strategies in Panel B of Table 3. APM_Equity_WAV is based on the forecast of

the multi_wav (multi_ts) model for equity (bond) return. APM_Bond_WAV is based on

the forecast of the multi_wav (multi_ts) model for bond (equity) return. By comparing

APM_Equity_WAV (APM_Bond_WAV ) with APM_TS, we can assess the gains from

using frequency-domain information in the forecast of equity (bond) return.

We highlight two main results. First, there are gains for both asset classes when using

frequency-domain information in the forecast of their returns. The gains are quite similar in

magnitude. Second, the gains are more expressive when using frequency-domain information

to forecast both the return of bonds and equities.

Figure 4 shows the cumulative wealth of an investor who invests 1$ in January 1990 and

reinvests all proceeds adopting the APM_WAV strategy (solid line), the APM_TS strategy

(dashed line), and the Benchmark60−40 strategy (dotted line). From a cumulative return

perspective, the active strategy APM_WAV clearly outperforms the others. By December

2018, the investor has obtained $38.6 with the APM_WAV strategy, instead of $28.7 with

the APM_TS strategy, or $12.4 with the Benchmark60−40.

The strong performance of the APM_WAV strategy is not without its caveats. In the upper

panel of Figure 5, we report the dynamics of the 3-year moving average information ratio of

the APM_WAV strategy (solid line). The 3-year moving average information ratio is positive

for most of the sample period, but there are periods when it is negative (i.e. generating

utility losses). However, the �gure also shows that the APM_WAV strategy dominates the

APM_TS strategy (dotted line), as its 3-year moving average information ratio is either

higher (for most of the sample) or similar. From the utility perspective, similar conclusions

can be drawn by looking at the dynamics of the 3-year moving average CER gains of the
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APM_WAV and APM_TS strategies (reported in the lower panel of Figure 5).

Overall, these results demonstrate the usefulness of frequency-domain information for active

portfolio management. In the next section, we test the robustness of our �ndings by consid-

ering an alternative portfolio-optimization framework and other changes in the settings used

so far.

4 Robustness

4.1 Alternative portfolio optimization framework

We test the robustness of the results reported so far by using the Black-Litterman model

(BLM ), which is a framework often considered in the context of APM. The objective of the

BLM is to outperform the benchmark portfolio within a certain tracking error.

We use the same BRP and ERP forecasts from previous sections as the active views on

stock and bond markets, treat them as inputs in a version of the BLM (as proposed by

Da Silva, Lee, and Pornrojnangkool, 2009 and Almadi, Rapach, and Suri, 2014 and described

in Appendix 4) to obtain optimal weights across assets.

We consider a power-utility maximizing investor with γ = 2 and Benchmark60−40 as the

benchmark strategy. For simplicity, we assume the investor will neither leverage nor short-

sell available assets (h = 1 and l = 0). The target level of the annualized tracking error of the

investor is assumed to be 5.80%, i.e. the same tracking error of the APM_WAV strategy for

an investor with γ = 2, h = 1 and l = 0. APM_BLMWAV and APM_BLMTS denote the

active portfolio management strategies based on asset return forecasts from multi_wav and

multi_ts methodologies used in the context of a Black-Litterman optimization framework.

The results, which are reported in Panel C of Table 3, are qualitatively similar to those

in the mean-variance setting. Both APM strategies based on the BLM outperform the
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Benchmark60−40, achieving positive information ratios and CER gains. Similarly, using

frequency-domain information in the context of the BLM still improves the performance of

the strategy over the scenario where only the original time series of the predictors are used

(APM_BLMWAV versus APM_BLMTS ). Both the annualized information ratio and the

annualized CER gain are higher (0.44 versus 0.11 and 0.68% versus 0.12%, respectively).

Finally, the portfolio weights (reported in Figure 6) of the strategy using frequency-domain

information are much more stable than those of the strategy using time-series information

only.

4.2 Other robustness tests

In this sub-section, we brie�y comment on additional robustness tests that were imple-

mented.6

4.2.1 Alternative benchmarks

Instead of Benchmark60−40, we consider two alternative benchmarks: a naive diversi�cation

rule 1/N (50% equity and 50% bonds) and an allocation of 40% equity and 60% bonds.

In both cases, the information ratios and CER gains of the APM_WAV and APM_TS

strategies are still positive, and the information ratios and CER gains of the APM_WAV

strategy are higher than those of APM_TS strategy. Qualitatively, these results con�rm

that our �ndings are robust towards alternative benchmarks.

4.2.2 Alternative set of portfolio constraints and investor risk aversion

For a given level of risk aversion of the representative investor, the APM_WAV strategy

outperforms the APM_TS strategy (and the Benchmark60−40) in alternative scenarios with

6 The results are not reported here, but available upon request from the authors.
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(i) no leverage or short-selling possibilities (h = 1 and l = 0), (ii) no leverage possibilities,

but short-selling allowed (h = 1 and l = −0.5) and (iii) both leverage and short-selling

possibilities (h = 1.5 and l = −0.5). The higher is the level of leverage and short-selling

allowed, the higher is the outperformance of the APM_WAV strategy versus the APM_TS

strategy. Finally, the lower is the level of risk aversion of the representative investor, the

higher is the outperformance of the APM_WAV strategy versus the APM_TS strategy

(everything else constant).

5 Concluding remarks

Fama and French (1989) �nd that di�erent �nancial variables can be useful in predicting

equity returns as they track di�erent frequency components of the equity premium. In this

paper, we show that using information from di�erent frequencies of di�erent predictors helps

improve forecasts of bond and equity returns. When used in the context of active portfolio

management, these forecasts lead to superior portfolio performances.

We envision several interesting research avenues related with the use of frequency-domain

information for active portfolio management. Here, we only used twelve variables as possible

predictors of bond and equity returns, but the same methodology can be readily applied to

larger datasets, and even combined with large dimensional statistical models. It could also

be worthwhile to explore the statistical and economic gains from the use of frequency-domain

information in the context of forecasting models with time-varying parameters and stochastic

volatility.
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mean median min max std. dev. AR(1)

BRP (%) 0.30 0.36 -11.2 14.4 3.10 0.05

ERP (%) 0.51 0.85 -22.1 16.1 4.38 0.03

DP -3.64 -3.65 -4.52 -2.75 0.43 0.99

DY -3.64 -3.64 -4.53 -2.75 0.43 0.99

EP -2.84 -2.88 -4.84 -1.90 0.48 0.99

RVOL (ann.) 0.14 0.14 0.05 0.32 0.05 0.96

BM 0.47 0.35 0.12 1.21 0.28 0.99

NTIS 0.01 0.01 -0.06 0.05 0.02 0.98

LTY (%, ann.) 6.77 6.76 1.75 14.8 2.91 0.99

LTR (%) 0.69 0.72 -11.2 15.2 3.10 0.05

TMS (%, ann.) 2.09 2.24 -3.65 4.55 1.46 0.95

DFY (%, ann.) 1.09 0.95 0.55 3.38 0.46 0.96

DFR (%) 0.01 0.05 -9.75 7.37 1.49 -0.04

INFL (%) 0.32 0.30 -1.92 1.81 0.38 0.61

Table 1: Summary statistics

This table reports summary statistics for the bond risk premium (BRP), equity risk premium (ERP),

and the set of predictors. BRP and ERP are measured as the di�erence between the return on the

10-year US Treasury bond and the return on the S&P500 index, respectively, and the return on

a one-month T-bill. BRP, ERP, LTR, DFR, and INFL (LTY, TMS, and DFY) are measured in

percent (annual percent). The set of predictors is described in Appendix 1. The sample period runs

from 1973:01 to 2018:12.
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single_ts multi_ts

R2
OS Predictor R2

OS Predictors

BRP 1.70** TMS 3.40*** DP, DY, TMS

ERP -0.29 LTR -0.29 LTR

single_wav multi_wav

R2
OS Predictor (frequency) R2

OS Predictors (frequency)

BRP 5.45*** BM (D1, D2, D5, D7) 7.20*** BM (D2), NTIS (D1), TMS (D5)

ERP 1.77** INFL (D2, D5) 3.97*** EP (D3), RVOL (D5), TMS (D7)

Table 2: Out-of-sample R-squares (R2
OS)

This table reports the maximum out-of-sample R-squares (in percentage) for the bond risk premium

(BRP) and equity risk premium (ERP) forecasts at monthly frequencies of four predictive models:

regressions using one original predictor at a time (single_ts); regressions using di�erent original

predictors (multi_ts); regressions using the frequencies from one original predictor at a time (sin-

gle_wav); and regressions using frequencies from di�erent original predictors (multi_wav). The

predictor(s) and their frequency(ies) are reported. The out-of-sample R-squares
(
R2
OS

)
measures

the proportional reduction in the mean squared forecast error for the predictive model relative to

the forecast based on the historical mean. The one-month-ahead out-of-sample forecast of the BRP

and the ERP is generated using a sequence of expanding windows. The sample period runs from

1973:01 to 2018:12. The out-of-sample forecasting period extends from 1990:01 to 2018:12 (monthly

frequency). Asterisks denote signi�cance of the out-of-sample MSFE-adjusted statistic of Clark and

West (2007). *** and ** denote signi�cance at the 1% and 5% levels, respectively.
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Average CAGR Sharpe Maximum Tracking Information CER

return ratio drawdown error ratio gain

Panel A: baseline

APM_WAV 14.2% 13.4% 1.28 19.1% 7.4% 0.57 1.12%

APM_TS 13.0% 12.3% 1.18 19.6% 7.2% 0.45 0.81%

Benchmark60−40 9.5% 9.1% 1.13 29.1% - - -

Panel B: di�erent forecasting inputs

APM_Equity_WAV 13.7% 13.0% 1.24 19.3% 7.3% 0.52 0.99%

APM_Bond_WAV 13.5% 12.7% 1.22 19.4% 7.3% 0.49 0.94%

Panel C: di�erent portfolio optimization framework

APM_BLMWAV 12.4% 11.7% 1.23 24.2% 5.8% 0.44 0.68%

APM_BLMTS 10.2% 9.6% 1.05 26.1% 5.8% 0.11 0.12%

Table 3: Portfolio performance statistics

This table reports the performance statistics of di�erent portfolio strategies. The performance statis-

tics are: average return, which is the annualized �rst moment of returns time series; CAGR, which is

the composite annual growth rate of returns time series; Sharpe ratio, measured as the 1-year mov-

ing average of portfolio's annualized Sharpe ratio; maximum drawdown, measured as the maximum

percentage reduction in the portfolio's cumulative return; tracking error, measured as the annualized

standard deviation of the APM monthly excess return (towards the benchmark); the information

ratio, measured as the annualized average APM monthly excess return (towards the benchmark)

divided by the tracking error; CER gain, measured as the annualized increase in certainty equivalent

return that a power-utility maximizing investor with relative risk aversion γ = 2 would have by

having access to the APM portfolio instead of the benchmark portfolio. The benchmark portfolio

is 60% allocation to stocks and 40% to bonds. In Panel A are presented the performance statistics

for the strategies APM_WAV and APM_TS , which are the active portfolio management strategy

based on asset return forecasts from multi_wav and multi_ts methodologies, respectively. In Panel

B are presented the performance statistics for the strategy APM_Equity_WAV , which is an active

portfolio management strategy based on equity (bond) return forecasts from multi_wav (multi_ts)

methodology, and for the strategy APM_Bond_WAV , which is an active portfolio management

strategy based on bond (equity) return forecasts from multi_wav (multi_ts) methodology. In Panel

C are presented the performance statistics for the strategies APM_BLMWAV and APM_BLMTS ,

which are the active portfolio management strategy based on asset return forecasts from multi_wav

and multi_ts methodologies used in the context of a Black-Litterman portfolio-optimization frame-

work, respectively. The sample period is from 1973:01 to 2018:12. The out-of-sample forecasting

period is from 1990:01 to 2018:12, monthly frequency.
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Figure 1: Monthly time series of the BRP, the ERP, and their predictors
This �gure plots the time series of the bond risk premium (BRP), equity risk premium (ERP), and

of each of the predictors. The BRP and ERP are measured as the di�erence between the return on

the 10-year US Treasury bond and the return on the S&P500 index, respectively, and the return on

a one-month T-bill. The set of predictors is described in Appendix 1. The sample period extends

from 1973:01 to 2018:12.
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Figure 2: Term spread time series and wavelet decomposition

This �gure plots the time series of the term spread (TMS ) and the seven frequency components

into which the time series is decomposed. It is applied a J = 6 level wavelet decomposition, which

produces six wavelet details (D1, D2, . . . , D6), each representing higher-frequency characteristics of

the series, as well as a wavelet smooth (D7), which captures the low-frequency dynamics of the

series. The sample period runs from 1973:01 to 2018:12 (monthly frequency).
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Figure 3: APM_WAV, APM_TS, and balanced Benchmark60−40 portfolio weights

This �gure plots the APM_WAV , APM_TS , and balanced Benchmark60−40 portfolio weights

(solid, dashed and dotted lines, respectively), rebalanced on a monthly basis. APM_WAV and

APM_TS stand for the active portfolio management strategy based on asset return forecasts from

multi_wav and multi_ts methodologies, respectively. The sample period is from 1973:01 to 2018:12.

The out-of-sample forecasting period runs from 1990:01 to 2018:12 (monthly frequency). Gray bars

denote NBER-dated recessions.
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Figure 4: Cumulative wealth for APM_WAV, APM_TS, and Benchmark60−40 investors

This �gure represents the cumulative wealth of an investor who begins with $1 and reinvests all

proceeds on a monthly basis, adopting an APM_WAV , APM_TS, and Benchmark60−40 strategy

(solid, dashed, and dotted lines, respectively). The APM_WAV and APM_TS active portfolio man-

agement strategies are based on asset return forecasts from multi_wav and multi_ts methodologies,

respectively. The sample period extends from 1973:01 to 2018:12. The out-of-sample forecasting

period runs from 1990:01 to 2018:12 (monthly frequency). Gray bars denote NBER-dated recessions.
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Figure 5: 3-year moving average information ratios and CER gains

The upper �gure plots the 3-year moving average information ratio for the APM_WAV and

APM_TS strategies relative to the Benchmark60−40. The lower �gure plots the 3-year moving

average annualized CER gain for the APM_WAV and the APM_TS strategies. The sample pe-

riod is from 1973:01 to 2018:12. The out-of-sample forecasting period runs from 1990:01 to 2018:12

(monthly frequency). Gray bars denote NBER-dated recessions.
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Figure 6: APM_BLMWAV, APM_BLMTS, and balanced Benchmark60−40 portfolio weights

This �gure plots the APM_BLMWAV , APM_BLMTS , and balanced Benchmark60−40 portfo-

lio weights (solid, dashed, and dotted lines, respectively), rebalanced on a monthly basis. The

APM_BLMWAV and APM_BLMTS active portfolio management strategies are based on asset re-

turn forecasts from multi_wav and multi_ts methodologies used in the context of a Black-Litterman

portfolio-optimization framework. The sample period extends from 1973:01 to 2018:12. The out-

of-sample forecasting period runs from 1990:01 to 2018:12 (monthly frequency). Gray bars denote

NBER-dated recessions.
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Appendix 1. Predictors of equity and bond risk premiums

• Log dividend-price ratio (DP): di�erence between the log of dividends (12-month mov-

ing sums of dividends paid on S&P 500) and the log of prices (S&P 500 index).

• Log dividend yield (DY): di�erence between the log of dividends (12-month moving

sums of dividends paid on S&P 500) and the log of lagged prices (S&P 500 index).

• Log earnings-price ratio (EP): di�erence between the log of earnings (12-month moving

sums of earnings on S&P 500) and the log of prices (S&P 500 index price).

• Excess stock return volatility (RVOL): calculated using a 12-month moving standard

deviation estimator.

• Book-to-market ratio (BM): ratio of book value to market value for the DJIA.

• Net equity expansion (NTIS): ratio of 12-month moving sums of net equity issues by

NYSE-listed stocks to the total end-of-year NYSE market capitalization.

• Long-term yield (LTY): long-term government bond yield.

• Long-term return (LTR): long-term government bond return.

• Term spread (TMS): di�erence between the long-term government bond yield and the

T-bill.

• Default yield spread (DFY): di�erence between Moody's BAA- and AAA-rated corpo-

rate bond yields.

• Default return spread (DFR): di�erence between long-term corporate bond and long-

term government bond returns.

• In�ation rate (INFL): calculated from the Consumer Price Index (CPI) for all urban

consumers.

30



Appendix 2. Maximal overlap discrete wavelet transform

Discrete wavelet transform (DWT) multiresolution analysis (MRA) allows the decomposition

of a time series into its constituent multiresolution (frequency) components. There are two

types of wavelets: father wavelets (φ), which capture the smooth and low frequency part of

the series, and mother wavelets (ψ), which capture the high frequency components of the

series, where
∫
φ (t) dt = 1 and

∫
ψ (t) dt = 0.

Given a time series yt with a certain number of observations N, its wavelet multiresolution

representation is given by

yt =
∑
k

s
J,k
φ
J,k

(t) +
∑
k

d
J,k
ψ
J,k

(t) +
∑
k

d
J−1,k

ψ
J−1,k

(t) + · · ·+
∑
k

d
1,k
ψ

1,k
(t) , (5)

where J represents the number of multiresolution levels (or frequencies), k de�nes the length

of the �lter, φ
J,k

(t) and ψ
j,k

(t) are the wavelet functions, and s
J,k
, d

J,k
, d

J−1,k
, . . . , d

1,k
are

the wavelet coe�cients.

The wavelet functions are generated from the father and mother wavelets through scaling

and translation as follows

φ
J,k

(t) = 2−J/2φ
(
2−Jt− k

)
ψ
j,k

(t) = 2−j/2ψ
(
2−jt− k

)
,

while the wavelet coe�cients are given by

s
J,k

=

∫
ytφJ,k (t) dt

d
j,k

=

∫
ytψj,k (t) dt ,

where j = 1, 2, ..., J .
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Due to the practical limitations of DWT in empirical applications, we perform wavelet

decomposition analysis here by applying the maximal overlap discrete wavelet transform

(MODWT).
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Appendix 3. Out-of-sample R-squares for all predictors

Predictor
ERP BRP

single_ts single_wav Frequency single_ts single_wav Frequency

DP -1.87 -0.59 D6 -0.75 2.89** D1

DY -1.96 -0.24 D1 -0.42 -0.01 D1

EP -1.05 0.77** D3 -0.60 -0.50 D7

RVOL -0.73 -0.30 D1 -0.26 -0.09 D4

BM -0.53 0.50** D5, D6 -0.15 5.45*** D1, D2, D5, D7

NTIS -3.05 0.15 D1 -3.19 0.53 D1

LTY -0.32 0.08 D6 -1.81 0.76** D4

LTR -0.29 0.85** D7 -0.36 -4.16 D7

TMS -0.76 1.70*** D7 1.70** 1.35** D5

DFY -2.82 -0.86 D6 -1.14 -0.25 D7

DFR -1.84 0.07 D1 -1.13 -0.82 D6

INFL -0.61 1.77** D2, D5 -0.77 -0.44 D1

Table 4: Out-of-sample R-squares (R2
OS)

This table reports the out-of-sample R-squares as percentages for bond risk premium (BRP) and eq-

uity risk premium (ERP) forecasts at monthly frequencies of regressions using one original predictor

at a time (single_ts) and regressions using the frequencies of one original predictor at a time (sin-

gle_wav). The list of predictors is described in Appendix 1. The out-of-sample R-squares
(
R2
OS

)
measures the proportional reduction in the mean squared forecast error for the predictive model

relative to the forecast based on the historical mean (HM). The one-month-ahead out-of-sample

forecast of the BRP and the ERP is generated using a sequence of expanding windows. The sample

period is from 1973:01 to 2018:12. The out-of-sample forecasting period is from 1990:01 to 2018:12,

monthly frequency. Asterisks denote the signi�cance of the out-of-sample MSFE-adjusted statistic

of Clark and West (2007). *** and ** denote signi�cance at the 1% and 5% levels, respectively.
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Appendix 4. Implemented version of the Black-Litterman model

There are N assets and K active investment views (N = K = 2: bonds and stocks). µ is

an N× vector of expected excess returns: BRP and ERP forecasts for bonds and stocks,

respectively. τ is a scaling parameter (which we set to unity as in Almadi, Rapach, and

Suri, 2014), Σ is an N × N covariance matrix, P is a K × N matrix whose elements in

each row represent the weight of each asset in each of the K−view portfolios, Ω is a matrix

representing the con�dence in each view, Q is a K × 1 vector of expected excess returns of

the K−view portfolios, and Π is a N× vector of the equilibrium excess returns of the assets.

The original Black-Litterman model (BLM) of expected excess returns in Black and Litterman

(1992) is given by:

µ =
[
(τΣ)−1 + P ′Ω−1P

]−1 [
(τΣ)−1 Π + P ′Ω−1Q

]
,

which by applying the Matrix Inversion Lemma can be rewritten as follows (Da Silva, Lee,

and Pornrojnangkool, 2009):

µ = Π + ΣP ′
[

Ω

τ
+ PΣP ′

]−1

(Q− PΠ) = Π +G , (6)

where G is the term that captures the deviations of expected excess returns from the equi-

librium due to active investment views. Equation (6) summarizes the key idea behind the

BLM model: the expected excess return will be di�erent from the equilibrium excess return

if and only if investor views di�er from equilibrium views.

The construction of the actively managed portfolios consists in two steps. First, we compute

the posterior expected excess return vector, µt+1, and posterior return covariance matrix,

Σt+1. We start from the selected vector of excess return forecasts (B̂RP t+1 and ÊRP t+1)

obtained from predictive regression models explained in section 2.2. We generate an exponen-
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tially weighted moving average estimate of the monthly return covariance matrix V = Σ̂t+1.

We set the decay parameter to 0.97, which is frequently used for monthly series.

To set matrix Ω, we follow the suggestion of Da Silva, Lee, and Pornrojnangkool (2009) and

use:

Ω

τ
= diag(diag(PV P ′)) .

Adopting the approach of Idzorek (2004), the posterior return covariance matrix is given by:

Σt+1 =
[
(τV )−1 +

(
P ′Ω−1P

)]−1
.

From expression (6) for the expected returns, by setting (i) the vector of the equilibrium

excess returns of assets as Π = 0, as in Da Silva, Lee, and Pornrojnangkool (2009), (ii)

using the vector of BRP and ERP forecasts as matrix Q and (iii) using the posterior return

covariance matrix Σt+1, it is obtained the posterior expected excess return vector, µt+1.

The second step for the construction of the portfolio consists in using µt+1 and Σt+1 to

obtain the portfolio weights. Recall that the objective function of an active asset manager is

to maximize the return of the portfolio with a penalty on the square of tracking error towards

the relevant benchmark:

max ($A +$B)
′
µ− λ$′

AΣ$A (7)

s.t. $
′

A1 = 0

where $A and $B are the vectors of active positions and benchmark portfolio weights,

respectively. The parameter λ is given by λ = 1
2TE

√
Θ′ΣΘ, with TE representing the tracking

error (set to a constant annualized value of 5.80% as explained in section 4.1) and matrix Θ
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is:

Θ = Σ−1

(
I − 1

1′Σ−1

1′Σ−11

)
µ .

The active weights $A are given by $A = Θ
2λ
. Thus, total weights are $ = $A +$B. We

assume the investor will neither leverage nor short-sell available assets (following the notation

in the paper, h = 1 and l = 0). We further assume that the investor rebalances the portfolio

at the same monthly frequency as the forecast horizon.
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