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Non-technical summary

Research Question

Observed long-term bond yields can be decomposed into two hypothetical components:
Average expected future short-term interest rates and premiums for the risk that short-
term interest rates do not develop as expected. However, it is empirically difficult to
decompose yields into these two components. In particular, it is challenging to identify
the volatility of the two components well. The problem intensifies if there is only a
short history of interest rate data. This paper discusses how one can obtain a robust
decomposition of bond yields from a short sample of data.

Contribution

Previous work approached the problem by imposing the constraint that model-implied
interest rate expectations should be close to interest rate expectations known from sur-
veys. I propose to restrict only the volatility of model-implied expectations to that of
survey expectations. Unlike other models using survey information, other characteristics
of model-implied interest rate expectations remain unrestricted. The method provides
an alternative way of reconciling model-implied interest rate expectations with survey
information.

Results

The method provides a tool to analyze interest data with a short data history. It allows
plausible yield decompositions in such a case. Without the restriction method, the model
would imply that average expected future short-term interest rates have hardly changed
over the last few years. However, my application also indicates that there is actually no
need to correct the yield decomposition if it is estimated from a long sample of data.
More generally, the paper thus contributes to the understanding of reasons for diverging
interest rate expectations in term structure models and surveys.



Nichttechnische Zusammenfassung

Fragestellung

Die beobachteten langfristigen Anleiherenditen lassen sich in zwei hypothetische Kom-
ponenten zerlegen - in die durchschnittlich erwarteten kurzfristigen Zinsen und in die
Prämien für das Risiko, dass sich die kurzfristigen Zinsen entgegen den Erwartungen
entwickeln. Aus empirischer Sicht stellt diese Zerlegung allerdings eine große Heraus-
forderung dar. So ist es schwierig, die Volatilität der beiden Komponenten genau zu
ermitteln. Dieses Problem verschärft sich noch, wenn nur ein geringer Bestand an his-
torischen Daten vorliegt. In diesem Beitrag wird erörtert, wie sich auch mit einer kurzen
Datenreihe eine robuste Zerlegung von Anleiherenditen erreichen lässt.

Beitrag

Die bisherigen Forschungsarbeiten näherten sich dem Problem mithilfe der Restriktion,
dass die modellimpliziten Zinserwartungen nahezu den in Umfragen ermittelten Zinser-
wartungen entsprechen sollen. In diesem Beitrag wird nun vorgeschlagen, die Restrik-
tion lediglich für die Volatilität der modellimpliziten und umfragebasierten Erwartun-
gen vorzunehmen. Anders als in anderen Modellen, die Informationen aus Umfragen
verwenden, bleiben die übrigen Eigenschaften der modellimpliziten Zinserwartungen un-
restringiert. Mithilfe dieser methodischen Alternative lassen sich modellimplizite und
umfragebasierte Zinserwartungen miteinander in Einklang bringen.

Ergebnisse

Mit der hier vorgeschlagenen Methode können Zinssätze analysiert werden, für die keine
umfangreichen historischen Daten verfügbar sind. Dadurch ist eine plausible Zerlegung
der entsprechenden Renditen möglich. Ohne die Restriktionsmethode würde das Modell
unterstellen, dass sich die durchschnittlich erwarteten kurzfristigen Zinsen in den let-
zten Jahren kaum verändert hätten. Ferner wird gezeigt, dass sich eine Korrektur der
Renditezerlegung erübrigt, wenn die Schätzungen auf Grundlage einer langen Datenreihe
erfolgen. Allgemeiner betrachtet leistet die vorliegende Arbeit einen Beitrag zur Klärung
der Frage, weshalb sich die aus Zinsstrukturmodellen abgeleiteten Zinserwartungen anders
als die Erwartungen entwickeln können, die aus Umfragen ermittelt werden.
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1 Introduction

Affine term structure models are widely used for pricing the cross-section of bond yields
and decomposing yields into term premiums and average expected future short rates.1

The decomposition, however, can be impaired by the limited availability of information
about the dynamics under the physical probability measure. The lack of sufficient infor-
mation may come from an estimation sample that is too short and/or a model framework
with too many parameters that need to be identified (see, e.g., Kim and Orphanides,
2012; Wright, 2014). Consequently, the literature suggests additional restrictions or the
incorporation of additional information as a way of improving the decomposition of the
yield curve. Furthermore, Bauer, Rudebusch, and Wu (2012) suggest cleansing estimated
model coefficients of short sample bias using sampling methods. Jardet, Monfort, and
Pegoraro (2013) propose another statistical approach to obtain a reliable yield curve de-
composition, namely the application of an averaging estimator.

Restrictions on the market prices of risk are of particular importance for yield curve
decompositions. In order to avoid overidentification, Ang and Piazzesi (2003) propose
zero restrictions for some elements of the market price of risk matrix from the outset.
Furthermore, they impose zero restrictions on those elements of this matrix that are
statistically not different from zero. Similarly, Joslin, Priebsch, and Singleton (2014)
apply model selection criteria to reduce the number of free parameters in the market
price of risk matrix. They find that imposing such zero restrictions leads to a higher
persistence under the physical measure that governs the dynamics of average expected
future short rates. Further, they propose an eigenvalue restriction which addresses the
problem of excess stability more directly. According to this method, the persistence of
the estimated autoregressive process of the state variables under the physical probability
measure is made to equal that under the pricing measure.

Among others, Joslin et al. (2014) describe excessively low persistence of the risk
factors under the physical measure as a key problem in term structure estimations: Es-
pecially if estimated from short samples, interest rate expectations are implausibly stable
under this measure. Kim and Orphanides (2012) argue that small samples provide too
little information for a precise characterization of the speed of mean reversion. This leads
to an upward bias in the speed of mean reversion of interest rate expectations under the
physical measure, and, consequently, to a downward bias in the model-implied persistence.

As an alternative approach to the small sample problem, Kim and Orphanides (2012)
propose to incorporate survey data on interest rate expectations into the model estimation.
Their model delivers plausible model-implied average expected future short rates from
a relatively short data sample. Technically, the survey data are incorporated into the
observation equation of a Kalman filter-based maximum likelihood estimation. Effectively,
this allows the model-implied average expected future short rates to be restricted so that
they are close to short rate expectations from surveys. Crump, Eusepi, and Moench (2016)
avoid small sample problems completely by using survey information more extensively.
They skip the estimation of a statistical model and calculate term premiums simply by
subtracting survey-based expected average short rates from observed yields. They compile

1See, e.g., Piazzesi (2010) for a survey of affine term structure models. Rudebusch (2010), Gurkaynak
and Wright (2012) and Duffee (2013) provide an overview of term structure models with a macro-financial
focus.
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an extensive data set of US interest rate surveys from various sources for this purpose.
In this paper, I propose an alternative method for restricting the stability of short rate

expectations under the physical measure. Technically, I restrict the variance of changes in
model-implied short rate expectations under the physical measure to match the variance of
changes in survey expectations. Instead of binding the model-implied expectations under
the physical measure to match the survey data closely, I thus only take into account how
fast and how strongly survey participants change their expectations about future interest
rates. The level remains unrestricted and effectively remains almost unchanged. The
survey information therefore has a less comprehensive influence on model-implied average
future expected short rates than it has in the model of Kim and Orphanides (2012) or
Kim and Wright (2005). These models also do not take surveys too literally, though, and
allow for a measurement error. Among other potential shortcomings of surveys, Kim and
Orphanides (2012) warn that the average value of survey expectations may not coincide
with the expectations of the marginal investor. Further, the survey participants do not
have a financial incentive to reveal their true expectations.

I incorporate the variance restriction into the linear regression model of Adrian et al.
(2013). All pricing factors are assumed to be observed without measurement error in this
model, including in particular those which are extracted as principal components from
yields. In such a model without filtered state variables, the restriction on the variance
of differences provides a novel mechanism to incorporate survey information into the
model estimation. Malik and Meldrum (2016) also incorporate survey information into
the Adrian et al. (2013) model. They add it directly to the vector of pricing factors.

I discuss the model restriction mainly based on an application to German Bund yields
in a sample from 1991 to 2019. To illustrate the importance of the sample length, I com-
pare model results derived from this full set of data with those derived from a truncated
sample (2008-2019). I also show results for an application to US data in order to com-
pare the main results to those from an alternative data set. Three principal components
are assumed as state variables under the pricing measure (spanned). Two additional
(unspanned) macro factors move yields under the physical measure, thus affecting the
decomposition of yields into short rate expectations and term premiums. Modelling these
factors as unspanned reflects the finding that they may be relevant for forecasting future
interest rates, although they are not relevant for pricing the term structure contempora-
neously.2

The results show that the restriction method is useful for alleviating small sample
problems. That is, restricted average future expected short rates from a truncated sample
of 12 years are more volatile than unrestricted estimates. They feature further desired
properties which are not already imposed by construction, though: First, they exhibit
a sensible cyclical pattern. Second, they develop relatively similarly to those estimated
from a long sample which covers the time period of the truncated sample. Third, they are
relatively similar to average future expected short rates derived from alternative restricted
models from the literature. In particular, I obtain similar results with the bias-corrected
method of Bauer, Rudebusch, and Wu (2014) and with an eigenvalue restriction à la Joslin
et al. (2014).

2See Wright (2011) for references to papers rationalizing this assumption. Bauer and Rudebusch (2017)
find strong statistical evidence for spanned models, though. Duffee (2013) also reviews the spanning
property.
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However, my model results are hardly affected by the restriction when it is imple-
mented with the full sample of data covering 29 years. This follows directly from the
calibration of the restriction according to interest rate expectations from surveys. There
is only limited information available on long-term survey expectations. The surveys on
hand suggest that interest rate expectations are similarly stable to those from the un-
restricted model, if it is estimated with fairly long time series. This observation thus
makes a case for unrestricted estimations if they are based on a data set with a typical
sample length in macro finance. Similarly, the eigenvalue restriction affects the decom-
position only modestly. The bias correction, however, implies pronounced adjustments of
unrestricted estimates also in the full sample estimation.

The following section describes the modelling framework. It contains a short overview
of the unrestricted model (Adrian et al., 2013). The section further describes the restric-
tion method and the data used for the empirical implementation. Section 3 is focused
on the main empirical results, namely on how the restriction affects the persistence of
average future short rate expectations. Section 4 adds details on the risk pricing of the
model. An application of the model to US data in Section 5 reviews the implications of
the restriction in another data set. Section 6 concludes.

2 Empirical implementation and model approach

2.1 The unrestricted model: Adrian et al. (2013)

I apply the model of Adrian et al. (2013, ACM) with unspanned macroeconomic factors
for German Bund yields on a monthly frequency.3 Overall, there are five factors. The first
three principal components of bond yields enter the model as spanned factors (Xs

t , ks = 3).
Two macroeconomic indicators for the Euro Area, namely harmonized consumer price
inflation and deviation of industrial production from trend, are assumed to be unspanned
factors (Xu

t , ku = 2). Yields load only under the physical measure on these macroeconomic
factors.

I consider two different samples, one rather short sample for the period from January
2008 to December 2019 and another sample from January 1991 to December 2019. The
full sample estimation serves as a benchmark against which I compare the results from
the truncated sample. The full sample contains 348 observations and is thus still small
in an econometric sense. Therefore, estimates from this sample may also be biased (see
Appendix A for a simulation exercise). Nevertheless, the full sample has a typical length
for a term structure analysis with macroeconomic factors: Joslin et al. (2014) apply
their model to a sample of 276 monthly observations. They also add an estimation
on an extended sample including 434 months. Kim and Orphanides (2012) discuss their
approach to handling the small sample bias on a sample of 168 monthly observations. The
length of their sample is thus similar to my truncated sample (144 observations). Duffee
(2013) uses a sample of only 235 observations. However, his data sample of quarterly
data covers a longer period of time, and hence also includes more business cycles than the
other papers.

3German Bund yields and parameters by the method of Svensson (1994) are avail-
able on the Bundesbank’s website: https://www.bundesbank.de/dynamic/action/en/statistics/

time-series-databases/time-series-databases/759784/759784?listId=www_skms_it03c.
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I will now briefly outline the modelling framework of Adrian et al. (2013). For details
on their model and the estimation method, I refer to the original paper. The ACM
model is not a shadow/lower bound model. That means that it neither states a level
below which interest rates cannot fall, nor does it allow for volatility compression of
interest rates approximating a lower bound.4 Such model characteristics would generally
fit well to an analysis of German Bund yields, which have hovered at very low levels in
recent years. The discussion of my approach in the unchanged ACM model allows me to
concentrate on the effects of the Var(∆)-restriction, though, because the underlying model
is thoroughly documented in the original paper. However, one could also incorporate a
Var(∆)-restriction into shadow/lower bound models.

In the ACM model, the factors Xt = [Xs
t , X

u
t ] are assumed to follow an autoregressive

process:

Xt = µ+ Φ ·Xt−1 + νt (1)

The residuals νt are Gaussian distributed, with variance-covariance matrix Σ and mean
zero. The term structure of interest rates is calculated from the state variables and the
factor loadings,

y
(n)
t = − 1

n
ln(P

(n)
t )

= − 1

n
(An +B′n ·Xt + u

(n)
t ), (2)

where P
(n)
t is the price of a bond with maturity n at time t, and u

(n)
t is the corresponding

log yield pricing error. The factor loadings are recursively calculated from the model
parameters for maturities n = 1, . . . , N , starting from A0 = 0 and B′0 = 0:

An = An−1 +B′n−1(µ− λ0) +
1

2
(B′n−1ΣBn−1 + σ2)− δ0 (3)

B′n = B′n−1(Φ− λ1)− δ′1, (4)

where σ2 is the variance of the residuals from the excess return regressions, and λ = [λ0, λ1]
the market price of risk. Equations (2) to (4) describe bond pricing under the historical
pricing measure (Q). Under the physical measure (P), the market price of risk does not
enter recursions (3) and (4). In other words, ΦQ = (Φ− λ1) and µQ = (µ− λ0).

Defining A1 = −δ0 and B1 = −δ1, one can write the affine equation for the short rate
also as

rt = δ0 + δ′1Xt + u
(1)
t . (5)

4For a detailed discussion of shadow/lower bound models and a review of the literature, see Krippner
(2015). For an analysis of a shadow rate model for the euro area, see, for example, Lemke and Vladu
(2016) or Geiger and Schupp (2018).
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Average future short rates over the horizon h = 1, . . . , H are given by

rt,h =
1

h
(rt, . . . , rt+h−1), (6)

and model-implied expected average future short rates at time t are then denoted as:

Et(rt,h) = δ0 +
1

h
δ′1Et(Xt + · · ·+Xt+h−1)

= δ0 + δ′1

h−1∑
i=1

ΦiXt. (7)

Rewriting the geometric finite series generated by Φ, this equation becomes

Et(rt,h) = δ0 +
1

h
δ′1(I − Φh)(I − Φ)−1 ·Xt. (8)

2.2 Restricted model

In the following, I show how I restrict the ACM model by incorporating information
from interest rate surveys. The Var(∆)-restriction aims at binding the persistence of
model-implied short rate expectations over long horizons to the persistence of those from
surveys.

For most countries, interest rate survey data are only available for a limited history.
Consensus Economics offers a relatively long history of a survey of six-to-ten year ahead
expectations for US short rates. They are available as of 1998 on a semi-annual frequency.5

Surveys for long-term European short rate expectations start later. For the three-month
euro interbank rate, Consensus Economics only provides information as of 2016. While
the European data history is far too short, the modelling approach in this paper generally
leaves some room for maneuver with respect to limited survey data availability: This
is because I only use a specific piece of information from the survey data and do not
incorporate an entire time series of observations directly. In contrast to other contributions
to the literature, the modelling approach thus does not incorporate the mean of survey
expectations, for example, nor does it require filtering of survey data.

For restricting the model to semi-annual survey information, expressions have to be
derived for the first two moments of the model-implied short rate process which match
this frequency. Analogously to Equation (8), the first moment of the short rate process
is given by:6

Et−6(rt−6,h) = δ0 +
1

h
δ′1(I − Φh)(I − Φ)−1 ·Xt−6 (9)

5Since 2014, long-term survey expectations have been published on a quarterly frequency. For the
sake of parsimony, I discard those additional observations and take only semi-annual information into
account.

6Kim and Orphanides (2012) apply a Kalman filter in which missing observations obtain zero weight in
the observation vector. Their approach can therefore also cope more easily with a change in the frequency
of survey observations.
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The six-month change in this model-implied expected value is then:

∆(6)Et(rt,h) = Et(rt,h)− Et(rt−6,h)

=
1

h
δ′1(I − Φh)(I − Φ)−1 · (Xt −Xt−6) (10)

Furthermore, for restricting model-implied forward rates to long-term survey informa-
tion, expectations of average short rates that will prevail between six years and ten years
have to be derived:

Et(rt+61,60) = Et(Et+61(rt+61,60))

= Et(δ0 +
1

60
δ′1(I − Φ60)(I − Φ)−1 ·Xt+61)

= δ0 +
1

60
δ′1(I − Φ60)(I − Φ)−1 · Et(Xt+61)

= δ0 +
1

60
δ′1(I − Φ60)(I − Φ)−1 · Φ60Xt (11)

The six-month change in this model-implied forecast is then:

∆(6)Et(rt+61,60) = Et(rt+61,60)− Et−6(rt+61−6,60)

=
1

60
δ′1(I − Φ60)(I − Φ)−1Φ60(Xt −Xt−6) (12)

The variance of differences in forward short rate expectations can then be calculated
directly from that:

V art(∆
(6)rt+61,60) = ∆(6)Et(rt+61,60) ·∆(6)Et(rt+61,60)′

=
1

602
δ′1(I − Φ60)(I − Φ)−1Φ60V ar(Xt −Xt−6) · . . .

((I − Φ60)(I − Φ)−1)′δ1 (13)

For ease of notation, I will refer to this forward rate variance as V ar(∆fwdPt ) in
the figures and tables of this paper. I incorporate the survey information into the term
structure model by restricting the vector autoregression under the physical measure in
the following way: Φ is estimated under the restriction that the model-implied variance
of differences in forward short rate expectations is equal to the variance of differences
in long-term short rate expectations from surveys, σ2

∆restr. Specifically, the constraint is
implemented by setting the variance expression in Equation (13) equal to σ2

∆restr.
I obtain estimates for the restricted coefficients Φr by minimizing the sum of squared

residuals of the vector autoregression under the physical measure. Specifically, I optimize
the criterion function

min
Φ
Q(Φ, Xt) = g(Φ, Xt) ·W · g(Φ, Xt)

′ (14)
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s.t. V ar(∆fwdPt ) = σ2
∆restr,

where

g(Φ, Xt) =
1

T − 1

T∑
t=2

(Φ ·Xt−1 −Xt). (15)

The optimization method is similar to the generalized method of moments (GMM)
approach, but I impose equal weighting by W = I. Equal weighting turned out to be
most robust in this analysis compared to opimal weighting, particularly for the short
sample applications discussed below. For consistency, all results discussed in this paper
are based on an optimization with equal weighting. For completeness, however, I add the
calculation of the GMM weighting matrix in my setting. The description is based on the
detailed discussion of the procedure in Hamilton (1994). In the GMM estimation, W is a
positive-definite weighting matrix,

W =
1

T − 1

T∑
t=2

(Φ ·Xt−1 −Xt) · (Φ ·Xt−1 −Xt)
′. (16)

W is initialized according to this equation with the unconstrained OLS estimate of Φ.
During the optimization iterations, it is repeatedly updated.7

The constrained optimization of Φ is carried out after the unrestricted three-step
estimation described by ACM (see section 2.2 in their paper). Specifically, the three-
step estimation of ACM provides first estimates of Σ, Φ, λ0 and λ1. Yields under the
pricing measure are also determined according to this three-step estimation. Then, δ0

and δ1 are obtained by regressing the short rate on an intercept and the state variables.
The restricted optimization described in Equations (14)-(15) is carried out afterwards to
obtain the restricted Φr (Σ, Φ, δ0, δ1). The risk parameters λ0 and λ1 are updated for
the restricted Φr, λ1 = Φr − ΦQ and λ0 = µr − µQ.

3 Results

3.1 Comparing unrestricted model results to survey information

Standard estimations of term structure models tend to imply long-term expected short-
term rates that are too stable compared to survey information. This is particularly the
case for short sample estimations (Kim and Orphanides, 2012; Wright, 2014). To better
understand what surveys actually reveal about the stability of interest rate expectations,
I start by considering descriptive statistics of survey data for different markets. I then
compare the statistics to estimates from an unrestricted model.

At this stage, I do not estimate the persistence of surveys in a vector autoregression.
Instead, I consider descriptive statistics of the data that provide information about the
stability of surveys expectations, but are independent of modelling assumptions.

7To implement the optimization, I use the estimation routine fmincon in Matlab for any choice of the
weighting matrix. The constrained optimization takes about seven seconds on an ordinary laptop.
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Table 1 contains information about long-term expectations (six-to-ten years ahead) for
different markets and two different time samples: US short rates, ten-year US Treasury
yields, and ten-year German Bund yields. It shows that not only the interest rate data,
but also the survey data trended downwards over the last decades. This causes an obvious
commonality in the properties of the surveys: The downward trend increased the variance
of the series, relative to the variance of those series in first differences. The variances are
thus higher than the variances of the data in first differences.

2008-2019 1991-2019

US 3m US 10y DE 10y ACM US 3m* US 10y DE 10y ACM

Var 0.36 0.50 0.58 0.02 0.55 1.05 2.49 1.57
Var(∆) 0.04 0.04 0.08 0.00 0.06 0.09 0.09 0.08

Table 1: Empirical variance of six-to-ten years ahead interest rate expectations from
surveys of Consensus Economics and the unrestricted model of Adrian et al. (2013) for
the sample from 1991 to 2019 and from 2008 to 2019 with German Bund yields, rounded
to the two nearest basis points. Survey data for US short rates are only available as of
April 1998 (*).

The variance of differences is relatively similar across markets. This is particularly
the case for the long sample starting in 1991. The similarity is somewhat surprising given
that the surveys refer to interest rates of very different maturities and from different
jurisdictions. The variance of differences thus appears to provide a relatively solid piece
of information about the stability of interest rate expectations from surveys. Therefore,
I will calibrate the restriction on these values.

As mentioned above, Consensus Economics has provided quarterly updates of its sur-
vey of long-term expectations only since July 2014. I do not take the additional ob-
servations into account, because this would complicate the matching of the frequencies.
Quantitatively, the impact of this simplification appears to be small, because the vari-
ance of the survey data series with and without the additional observations is relatively
similar. A thorough assessment of the impact is difficult, however, given that the greater
frequency has made only ten additional observations more available on top of the semi-
annual observations after July 2014.

The table also contains information about the stability of the long-term average of
future short-term rates implied by an unrestricted term structure model (Adrian et al.,
2013). The six-to-ten years ahead forward short rate expectations refer to the same
forecast horizon as the long-term survey expectations. However, as already discussed
above, there is no survey for German or Euro Area long-term short rate expectations
with which one could compare the model-implied values.

However, judging from the survey data available from the US, it is not obvious that
the stability of model-implied short rate expectations diverges materially from that from
surveys. Considering the full sample starting in 1991, the model-implied values actually
appear to be in line with the surveys: The variance of differences of model-implied German
average expected future short rates is 0.08. This is a bit higher than what surveys report
for US short rate expectations (0.06), and slightly lower than what surveys report for
German and US ten-year government bond yield expectations (0.09).
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The picture is different when considering the truncated sample. All surveys do indicate
that the interest rate expectation are more stable in recent years. In the unrestricted
model estimates, however, almost no variation can be detected. The variance of the
forward short rate expectations is as low as 0.02, and the variance of differences is even
nil. The comparison with survey information thus clearly corroborates the results in
the literature: Unrestricted average expected future short rates are excessively stable if
estimated from a small sample.

In the optimization, I calibrate the model restriction with information about the vari-
ance of US short rates (i.e. σ2

∆restr = 0.06 in the full sample estimation and σ2
∆restr = 0.04

in the truncated sample estimation). The implementation with US data is not an indis-
putable choice for an estimation of the German term structure. However, apart from the
obvious lack of a sufficiently long history of survey information on European short rate
expectations, there are ex ante a couple of reasons for this choice: I choose this proxy pri-
marily because it provides the longest history of long-term surveys about expectations for
a short rate. Second, the actual value for the variance of differences of the US short rate
survey is the lowest of this metric for the surveys under consideration. Calibrating the
restrictions on this value thus provides a reasonable upper limit for illustrating the effect
of the restriction. Note, further, that I discuss the sensitivity of my results to alternative
choices for σ2

∆restr in greater detail below.

3.2 Results from the restricted model

I begin the discussion of results from the restricted model by considering the model-based
persistence. Table 2 shows the maximal absolute eigenvalues of the VAR coefficients
from various models, again for both the truncated sample and the full sample estimation.
The table also provides the variances of implied forward rates in first differences. This
allows the (imposed) change of the variance of differences to be compared with its effect
on eigenvalues. Additionally, it serves to compare the results with alternative models
below. Note, however, that these variances are actually already reported in Table 1. The
variances of differences from the restricted model coincide with those from the surveys
shown above, because the restriction of matching the survey value is always precisely
achieved.

The table also provides half-life periods, which illustrate the variation in the persis-
tence of all models intuitively. The half-life H.5 describes the number of months it takes
for the average expected future short rates to halve their initial value, given the model-
implied speed of mean reversion and an expected exponential decay of expected short
rates:8

E(rt+H|t) = φHrt.

8Piazzesi (2010) discusses the persistence of yields based on half-life periods of shocks to these yields.
More generally, Dias and Marques (2010) review the characteristics of this metric, its limitations as a
measure for persistence, and alternative measures for persistence.

9



Taking the maximal eigenvalue as the decay constant, the half-life H.5 is given by:

eig(φ)H.5 =
1

2
H.5 · log(eig(φ)) = −log(2)

H.5 = − log(2)

log(eig(φ))
(15)

Additionally to the values of H .5 in the table, Appendix B also contains a figure which
illustrates the functional relationship of Equation (15).

Consider the eigenvalues for the truncated sample first (2008-2019). The eigenvalue
of the unrestricted coefficient matrix under the physical measure, Φ, is relatively low
(eig = 0.9811), indicating a lower persistence of short rate expectations under the physi-
cal measure than under the pricing measure (second panel of Table 2, column ACM). The
persistence from the restricted estimation is materially higher (eig = 0.9967 in column
Var(∆)). It is thus very similar to the persistence under Q which is unaffected by the re-
striction. The higher variance of differences in the restricted model thus corresponds with
a higher model-implied persistence as measured by the eigenvalues. Therefore, imposing
the restriction delivers the desired effect: It prevents implausibly low persistence levels in
short sample estimations. Effectively, it brings the implied persistence under the physical
measure from the truncated sample closer to the value estimated from the full sample.

The variance restriction affects the persistence similarly to the eigenvalue restriction
of Joslin et al. (2014). This can be seen in Table 2 which contains results from an
implementation of an eigenvalue constraint à la Joslin et al. (2014) in the Adrian et al.
(2013) model framework. Actually, their modelling approach is technically very different
to my approach. They set the largest eigenvalue of the transition matrix under the physical
measure equal to the one under the pricing measure straightaway in order to impose a
higher persistence on Φ. This reveals that their approach follows a different motive than
mine: They argue that the persistence of expected short rate dynamics can be assumed to
be the same under both probability measures. My model restriction is instead motivated
by information from survey data. The reason for similar results in both models is that
the survey data support the idea of Joslin et al. (2014) of a similar persistence under
both probability measures. However, the forward rate variance V ar(∆fwdPt ) from an
eigenvalue-constrained model does not turn out to vary as much as survey data suggest.

I turn now to the full sample estimation (1991-2019). The variance of differences of
the unrestricted estimates is similar to that from survey expectations (see upper panel of
Table 2). The restriction criterion therefore requires only a marginal adjustment in the
variance of first differences, and this translates to a small impact on the model-implied
persistence: The eigenvalues are 0.9939 and 0.9930 for the unrestricted and the restricted
model, respectively. The model-implied persistence from the full sample is thus in line
with survey information: This suggests that also the unrestricted model estimates are
not biased. The eigenvalue restriction as in Joslin et al. (2014) causes a stronger, but
still moderate adjustment of the persistence under the physical measure, because this
is not very different from the persistence under the pricing measure (eig = 0.9896).
Consequently, it follows that the forward rate variance V ar(∆fwdPt ) from the eigenvalue-
restricted model is lower than the unrestricted one in the full sample estimation.
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ACM Var(∆) JPS-eig BRW

1991-2019

eig(ΦQ) 0.9896 0.9896 0.9896 0.9947
H.5 eig(ΦQ) 5.5 5.5 5.5 10.9

eig(Φ) 0.9939 0.9930 0.9896 1.0011
H.5(eig(Φ)) 9.4 8.3 5.5 -

Var(∆fwdt-TP) 0.2046 0.2046 0.2569 0.3602
Mean(∆fwdt-TP) 2.04 2.03 2.03 2.16

Var(∆fwdPt ) 0.0785 0.0643 0.0479 0.4677
Mean(∆fwdPt ) 2.49 2.50 2.50 2.39
min(∆fwdPt ) 0.40 0.58 1.07 -2.10
max(∆fwdPt ) 5.27 5.03 4.60 8.59

2008-2019

eig(ΦQ) 0.9956 0.9956 0.9956 0.9981
H.5 eig(ΦQ) 13.1 13.1 13.1 30.4

eig(Φ) 0.9811 0.9967 0.9956 1.0030
H.5(eig(Φ)) 3.0 17.5 13.1 -

Var(∆fwdt-TP) 0.2676 0.1769 0.1842 0.1690
Mean(∆fwdt-TP) 2.21 2.22 2.22 2.28

Var(∆fwdPt ) 0.0023 0.0403 0.0287 0.0520
Mean(∆fwdPt ) 0.15 0.13 0.13 0.14
min(∆fwdPt ) -0.06 -0.74 -0.63 -0.88
max(∆fwdPt ) 0.52 1.55 1.38 1.79

EAPP (91-19)

Var(∆fwdPt ) 0.0126 0.0111 0.0113 0.0503
Mean(∆fwdPt ) 0.69 0.83 1.31 -1.47
min(∆fwdPt ) 0.40 0.58 1.07 -2.10
max(∆fwdPt ) 0.99 1.12 1.57 -1.01

EAPP (08-19)

Var(∆fwdPt ) 0.0006 0.0157 0.0111 0.0201
Mean(∆fwdPt ) 0.01 -0.39 -0.34 -0.48
min(∆fwdPt ) -0.06 -0.74 -0.63 -0.88
max(∆fwdPt ) 0.08 -0.16 -0.14 -0.21

Data Var(∆fwd) Mean(fwd) Min(fwd) Max(fwd)

1991-2019 0.2728 4.54 -0.48 8.34
2008-2019 0.2967 2.41 -0.48 5.14

Table 2: The table shows the absolute values of the largest eigenvalues of the transition
matrices, corresponding half-life periods H.5 in years, and time series properties of six-
to-ten year forward rate expectations under the physical measure and six-to-ten year
forward rate term premiums for the following models: The unrestricted model of Adrian
et al. (2013, ACM column), the model with the Var(∆)-restriction, the ACM model
with an eigenvalue constraint as in Joslin et al. (2014), and the bias-corrected model of
Bauer et al. (2012). The two upper panels describe results from the full sample and the
truncated sample. The two panels below provide time series properties of forward rate
expectations for the low interest rate environment since the start of the EAPP in March
2015, calculated from the results of each of the two estimation samples. The bottom panel
shows descriptive statistics of forward rate data.
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The Var(∆)-restriction and the eigenvalue restriction imply, in line with survey infor-
mation, less persistent average expected future short rates than the unrestricted model.
The literature tends to discuss the opposite case. Besides of the aforementioned reason
of excess stability as a prominent symptom of short sample problems in unrestricted es-
timations, there is another obvious explanation for that: Joslin et al. (2014) discuss their
model based on an application to US data. For US data, I also find that unrestricted
average expected future short rates are less persistent than survey data, even considering
a long sample of data (see Section 5 below). For UK data, however, Malik and Meldrum
(2016) find that the inclusion of survey data makes the physical dynamics less persistent.
My results for German Bund yields thus complement the findings from applications to
US and UK data: For an application with a fairly long sample of data, they describe an
example of an unrestricted estimation in which the model dynamics are more persistent
under the physical measure than under the pricing measure.
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Figure 1: Six-to-ten year forward short rate expectations under the physical measure from

different models, once estimated from a truncated sample (left), and once from the full sample

(right) for German Bund yields. For model references to the mnemonics in the legend, see Table

2.

I also compare the results with Bauer et al. (2012). The last column of Table 2 contains
the results of an application of their bias-corrected regression to Bund yield data. Their
idea of correcting biased estimates using sampling-based methods is technically unrelated
to my approach. The aim of correcting the persistence under the physical measure,
however, is the same. The eigenvalues are overall higher and even slightly above one.
Therefore, I consider these results only with caution. A thorough discussion of the Bauer
et al. (2012) application to these data samples would require implementing the model
with a restriction that prevents such explosive dynamics. The bias correction appears to
have a similar effect on the physical dynamics in both the full sample and the truncated
sample implementation. The variance of forward rate expectations is closer to the level
of survey expectations in the case of the small sample estimation. The equivalent value
from the full sample estimation is remarkably high and may indicate an overcorrection.
This observation may not come as a surprise because of the explosive dynamics under
the physical measure in my application. However, by comparing bias-corrected average
expected future short rates of Bauer et al. (2012) to surveys, Wright (2014) also presumes
an overcorrection of the bias by the method of Bauer et al. (2012), particularly in the
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application to German data. In their application, the largest eigenvalue is lower than one,
though.

Figure 1 shows model-implied forward short rate expectations under the physical mea-
sure over six to ten years from all considered models. It illustrates a high co-movement
of all restricted estimates from the truncated sample (left-hand panel). The unrestricted
indicator is visibly less volatile than the restricted indicators and hardly varies at all in
the last years of the observation period. Specifically, since the Eurosystem launched the
Expanded Asset Purchase Programme (EAPP) in March 2015, the unrestricted indicator
varied only between a minimum of -6 basis points and a maximum of +8 basis points
(bottom panel of Table 2). The Var(∆)-restricted estimates, instead, varied within a
range of 58 basis points in this time period. This is comparable to the widths of the
unrestricted and Var(∆)-restricted indicators from the full sample estimation.

The right-hand panel of Figure 1 shows the results from the full sample. The results
from the estimation with the restriction on the variance of differences almost coincides
with the unrestricted estimates. This is not surprising, given that the unrestricted variance
of differences is very similar to the value on which it is restricted: The restriction simply
does not affect the model results if the information it adds is almost redundant.

The full sample estimates in the right-hand panel are more heterogeneous overall.
The eigenvalue-restricted forward rate expectations are still relatively similar to the unre-
stricted estimates and only deviate moderately from them at the beginning and the end of
the observation period. They are, for example, on average 64 basis points higher in the re-
cent years in which the Eurosystem has been running the EAPP. Bias-corrected estimates
are already reported to be materially more volatile also in this observation period, partly
due to a unit root in the physical dynamics (see Table 1 above). The figure shows that
this volatility is consistent with high deviations from the estimates of the other models.
The bias-correction suggests very low levels of forward rate expectations six to ten years
ahead particularly for the last years. It falls to −2% in 2019 and thus spans a range of
more than 10 percentage points from this minimum to its maximum. This is more than
double the amplitude than in the other models in the full sample estimation.

Figure 2: Comparison of forward rate components estimated from different data samples: Unre-

stricted results are plotted from both sample estimations. To achieve a clearer presentation, the

restricted estimates from the full sample are omitted. They are very similar to the unrestricted

full sample estimates (see Figure 1, right-hand panel).

In the following, I focus on the unrestricted model and the model with the restriction
on the variance of differences. Figure 2 illustrates the key similarities and differences

13



of these two approaches. It contains the six-to-ten year ahead forward rate components
of the two sample estimations. The left-hand panel shows the forward term premium
components. Restricted and unrestricted forward term premiums estimated from the
truncated sample do not appear to differ materially. This is a consequence of the low level
of the complementary forward yield component, i.e. the forward short rate expectations.
Those are shown in the right-hand panel of Figure 2: This panel highlights the strong
co-movement of the unrestricted full sample results and the restricted truncated sample
results. However, forward expectations (forward term premiums) from the truncated
sample are shifted downwards (upwards). Empirically, this mirrors a lower sample mean of
forward rate expectations in the truncated sample and ultimately follows from downward
trending interest rates over the last decades. The sample mean is assumed to be invariant
over time in the model.

The marked difference in the level of forward rate expectations from the two samples,
which is visible in Figure 2, gives rise to the question of whether the level should also
be restricted. In principle, such a second condition could be added to the optimization
approach in Equation (14). One could impose, for example, that the level complies with
that from very long historical samples, as they are provided by the Macrohistory Database
of Jorda, Schularick, and Taylor.9 Alternatively, the level of model-implied forward rate
expectations could also be restricted to that from survey expectations.

To evaluate the potential impact of such a restriction on the level of survey expecta-
tions, I briefly digress from the discussion of long-term forward rates. I check whether
the sample means of model-implied rates are in line with survey information for shorter
forecast horizons. The digression to surveys for shorter forecasting horizons is necessary
because very little survey information on long-term short rate expectations is available
for Germany, as already mentioned earlier. The average of one year ahead three-month
interest rate expectations is 2.86% for 1991 until 2019, according to Consensus Eco-
nomics. For 2008 to 2019, the mean of that survey is 0.73%. Survey expectations show
a decline in short rate expectations of about 2 percentage points for these observation
periods. Model-implied means of forward short rate expectations 12 to 15 months ahead
are almost identical for the unrestricted model and the Var(∆)-restricted model. These
measures are roughly in line with the aforementioned values from surveys (2.56% for the
full sample, 0.15% for the truncated sample).

I now return to the long-term forward rate expectations. Note that the restricted
model overestimates the decrease in forward short rate expectations over the sample
period, at least compared to the restricted full sample estimation. Forward short rate
expectations are 189 basis points lower in December 2019 than in January 2008. According
to the restricted (unrestricted) full sample estimation, they decreased only by 166 basis
points (186 basis points) over the same period.

Three recession periods are marked as shaded areas in the figure. The recession
chronology is taken from the German Council of Economic Experts.10 Methodologically,
the recession identification follows the definition applied by NBER for the US and CEPR
for the Euro Area. The full sample estimates reveal business cycle properties of yield

9See https://www.macrohistory.net/database and Jorda, Schularick, and Taylor (2017).
10See Box 7 in the third chapter of the Annual Report of the German Council of Economic

Experts, https://www.sachverstaendigenrat-wirtschaft.de/en/publications/annual-reports/

previous-annual-reports/annual-report-201718.html
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components, albeit dampened due to the long-term horizon of the forward rates. Forward
term premiums increase during recessions and fall during expansions: The path of future
nominal short rate developments may appear more uncertain in recession periods, and
market participants demand a higher premium for bearing this interest rate exposure af-
filiated with long-term bonds in times of recession. The cyclical pattern of forward rate
expectations is less prominent. They decrease during recessions, but also during most of
the expansions, contributing to the downward trend of yields over the last decades.

There are both theoretical and empirical contributions to the literature about the
cyclicality of risk premiums, and I refer in the following only to a few of these studies
which are of particular relevance for my application. Wachter (2006) develops a theoreti-
cal model in which term premiums are countercyclical. The counter-cyclicality originates
from a preference structure featuring habit persistence and the assumption of risky re-
turns of long-term bonds. The empirical evidence on the cyclicality of term premiums is
rather mixed in the literature. Jardet et al. (2013) find countercyclical term premiums by
applying an averaging estimator. Their averaging estimator helps to mitigate the problem
of highly persistent model factors which I approach with the V ar(∆)-restriction in this
paper. Bauer et al. (2014) also report pronounced countercyclical forward term premiums
for German bond yields from 1990 to 2009. But in contrast to the unrestricted ACM es-
timates and the Var(∆)-restricted estimates considered in this paper, their forward term
premium estimates remain ultimately unchanged over expansion periods, or even increase
slightly. Consequently, the forward term premiums increase over their whole estimation
period from 1990 to 2009. Wright (2011), by contrast, finds a relatively flat development
of term premiums for Germany from 1990 to 2009.

Considering business cycle properties in the truncated sample yields few insights. This
is not only because the truncated sample contains just one recession period in this par-
ticular application. Containing too few ups and downs of a cycle is in fact a determining
element of a small sample bias that drives a wedge between small and long sample es-
timates: Kim and Orphanides (2012) describe a lack of information about the speed of
mean reversion of short rate expectations as responsible for excessively stable short rate
expectations in small sample applications.

The variance of differences is only restricted at one horizon in my model. Its value
is marked as a dash-dotted line in Figure 3. It is calibrated to match the variance of
differences from surveys, which is indicated by the red thick line at the right of each
panel. However, model-implied yield expectations of all horizons are affected by the
restriction, because the restricted transition matrix Φ enters the recursion in Equation
(4) for every maturity. The figure illustrates this effect on the variance of differences of
the entire term structure. Restricted and unrestricted variances of differences exhibit a
similar cross-sectional mapping under the physical measure in both samples.

In the full sample estimation (right-hand panel), these concur surprisingly well with
survey values for shorter forecast horizons which are not incorporated in the model esti-
mation. This confirms the finding from above that the unrestricted model results for the
full sample implementation are also well in line with survey information.

In the truncated sample (left-hand panel), survey values for forecast horizons of 48
months and less are not matched by the restricted nor by the unrestricted model. For
horizons up to four years, the restriction at most allows the stability of average expected
future short rates to move in the direction of survey expectations.
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In applications which solely consider small data samples, it could therefore be worth to
restricting a medium-term horizon instead of - or additionally to - a long-term horizon. I
leave this question for future research. Note, however, that the variances of differences for
shorter forecast horizons differ more across markets. A plot of the variances of differences
of survey expectations for different markets is provided in the Appendix C (Figure 7).
This observation supports the case for applying the restriction to a long-term forward
rate in this application.
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Figure 3: Variance of differences of model-implied yields under the pricing measure and the

physical measure, the latter from the restricted and the unrestricted model. In the restricted

model, the variance of differences in six-to-ten year forward short rate expectations under the

physical measure is required to match the value known from a survey. The thick red line marks

this value calculated from the survey for the six-to-ten year horizon. Red asterisks denote the

values calculated from the survey for other horizons. For consistency, all survey information in

this figure refers to US short rate expectations from Consensus Economics. The cross-sectional

mappings of survey expectations for other markets are of a similar shape, though (Figure 7).

3.3 Robustness of the results

In the following, I review the reliability of the results of the restricted model. First, I
will analyze the sensitivity of results with respect to the restriction level. Second, I will
confront model-implied interest rate expectations with ex post realized short rates. In
Appendix D, I also consider whether the impact of the restriction on the model-implied
persistence depends on the length of the time series.

How sensitive is the model-implied persistence to changes in the Var(∆)-restriction
level? To answer this first question, I run the model for different restriction levels. Specif-
ically, I consider a range from σ2

∆restr = 0.03 to σ2
∆restr = 0.09. All values observed from

surveys fall into this range, as it is reported in Table 1. The result for the model-implied
persistence hardly comes as a surprise: The lower the Var(∆)-restriction level, the lower is
the eigenvalue. The calibration on the highest variance level implies slightly nonstation-
ary dynamics, because the largest eigenvalue is above one. What is remarkable, though,
is the low amplitude of the implied eigenvalues (Table 3). This observation holds for
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Restricted: 1991-2019 Unrestricted 91-19

V ar(∆) = 0.03 V ar(∆) = 0.05 V ar(∆) = 0.09 eig(Φ) eig(ΦQ)

eig(Φ) 0.9897 0.9920 0.9945 0.9939 0.9896

Restricted: 2008-2019 Unrestricted: 08-19

V ar(∆) = 0.03 V ar(∆) = 0.05 V ar(∆) = 0.09 eig(Φ) eig(ΦQ)

eig(Φ) 0.9951 0.9978 1.0001 0.9811 0.9956

Table 3: Absolute values of the largest eigenvalues of the transition matrix under the
physical measure, Φ, for a range of restriction levels and two different samples. For
comparison, the eigenvalues of the unrestricted Φ and ΦQ are included in the right-hand
panel. The unrestricted model-implied value of the variance of difference is V ar(∆) = 0.08
in the full sample and V ar(∆) = 0.00 in the truncated sample.

both the full sample and the truncated sample. If one assumes that the true level of
persistence lays anywhere near to the survey information considered above, then the risk
of mis-calibrating the restriction appears limited.

Second, manipulating Φ by calibrating the implied volatility on exogenously chosen
levels may have consequences for the predictive ability of the model. Therefore, I now
perform a quick forecasting exercise to make sure that the restriction has no unintended
consequences. Such an investigation is particularly warranted in an overidentified model
like the Adrian et al. (2013) model on which my model builds.

Further, and more generally, Bauer et al. (2012) argue that biased parameter estimates
under the physical measure do not provide a correct picture of the speed of mean reversion
of short rate expectations. Given the lack of data on the actual speed of mean reversion,
I test whether investors would eventually be better off by forming their expectations
according to the restricted or the unrestricted model. To answer this question, I will
compare the predictive ability of the restricted and unrestricted model under the physical
measure. I carry out a prediction exercise over a subsample of 17 years (01:1991-01:2008).
Over this period, I calculate a series of realized average short rates, ȳ1

t:t+H|t+H . This series
contains ex post observed realizations to which I compare ex ante expectations from the
restricted or the unrestricted model:

ȳ1
t:t+H|t+H =

1

H

H∑
h=0

y1
t+h

In line with the longest horizon of the surveys, I set H = 120. This limits the latest
point t for a prediction to be ten years before the end of the main estimation sample.

The difference in the prediction accuracy, as measured by root mean squared errors,
is very small overall (see Table 4, left-hand panel). The aim of an in-sample alignment of
the volatility of the physical dynamics to survey expectations thus does not come at the
cost of deteriorating predictions.

As a cross-check of the forecasting performance of the model in general, I also evaluate
the out-of-sample forecasting performance under the pricing measure in the subsample
from January 2001 to December 2019. For that, I compare model-implied yields of all

17



maturities with their ex post realizations. The model has an acceptable forecasting per-
formance, as one can see from the root mean squared errors in the right-hand panel of
Table 4.

Furthermore, the residuals of the estimated restricted vector autoregressive process
are generally not equal to the unrestricted estimates. Consequently, the implied variance-
covariance matrix of the restricted vector autoregression (VAR), Σ, differs from the un-
restricted variance-covariance matrix in this case. However, the in-sample fit of the state
variable VAR deteriorates only negligibly under the restriction. The root mean squared
errors are the same for the restricted and the unrestricted estimations up to several deci-
mal places. This is also true for the estimation in the truncated sample.

P Q
ȳ1 unrestr. ȳ1 restr. 1m 12m 60m 120m

h=3 0.47 0.47 0.29 0.19 0.18 0.14
h=6 0.44 0.44 0.55 0.54 0.47 0.38
h=12 0.58 0.59 1.21 1.31 1.18 1.01

Table 4: H-step ahead root mean squared errors of average short rate expectations under
the physical measure (left-hand panel) and for out-of-sample forecasts under the pricing
measure (right-hand panel).

4 Model inference and risk pricing

Obtaining reasonably persistent estimates of average future short rate expectations is the
main objective of this paper. However, this should not come at the cost of implausible
results elsewhere in the model. I will consider the model fit and the relevance of the state
variables first. The number of state variables is of great relevance for the model fit and
the size of the model. Three latent factors were found to be sufficient for determining the
historical yield dynamics (see, e.g., Litterman and Scheinkman, 1991; Piazzesi, 2010). A
Wald test clearly confirms that all latent factors are indeed spanned, i.e. none of the three
spanned latent factors is redundant. Also with respect to the model fit, three principal
components as spanned factors are enough for pricing the term structure accurately in the
full sample estimation. Table 5 compares the root mean squared errors from the model
containing three spanned factors and two unspanned factors with an alternative approach
using five principal components as spanned factors. Adrian et al. (2013) favor such a setup
with five spanned factors. The better model fit impedes the risk of serially correlated
return pricing errors and consequently excess return predictability. In my application,
however, the root mean squared errors are relatively small, and adding further spanned
factors only marginally improves the model fit in the full sample estimation.

This result does not hold for the implementation with the truncated sample. The
model fit does improve if I replace the two unspanned macro factors with two spanned
principal components, namely by almost 5 basis points. As suggested by Adrian et al.
(2013), I therefore consider the autocorrelation in the return pricing errors, e

(n−1)
t+1 :

e
(n−1)
t+1 = u

(n−1)
t+1 − u(n)

t + u
(1)
t . (16)

18



ks = 5, ku = 0 ks = 3, ku = 2
08-19 91-19 08-19 91-19

RMSE (unrestr.) 0.0227 0.0640 0.0703 0.0659
RMSE (restr.) 0.0233 0.0641 0.0709 0.0660

Autocorrelations
12m 0.3293 0.3221 0.1405 0.2764
120m 0.3082 0.3271 0.1835 0.2871

Table 5: In-sample fit and autocorrelations of return pricing errors for different samples
and factor sets. Autocorrelations of order one are calculated for pricing errors of bond
yields with 12 and 120 months to maturity.

The autocorrelation of the return pricing errors remains relatively small in the trun-
cated sample estimation (see the last two rows of Table 5). The risk of excess return
predictability thus remains limited in both the truncated and the full sample estimation.

Unrestricted
λ0 PC1 PC2 PC3 HICP IP-Gap

PC1 -0.0092 -0.0014 -0.0077 0.0052 -0.0068 0.0024
t-stat -2.3090 -0.2477 -1.7595 1.1935 -1.0981 0.4916
PC2 -0.0080 0.0138 -0.0150 -0.0163 0.0006 -0.0190
t-stat -0.7230 0.9047 -1.2426 -1.3590 0.0377 -1.4909
PC3 0.0521 0.0106 0.0140 -0.0566 0.0739 -0.0281
t-stat 1.6436 0.2519 0.4138 -1-6802 1.7121 -0.8363

Restricted
λ0 PC1 PC2 PC3 HICP IP-Gap

PC1 -0.0092 -0.0020 -0.0076 0.0052 -0.0072 0.0022
t-stat -2.3088 -0.3544 -1.7354 1.2036 -1.1658 0.4474
PC2 -0.0080 0.0140 -0.0150 -0.0163 0.0007 -0.0189
t-stat -0.7230 0.9168 -1.2440 -1.3590 0.0456 -1.4869
PC3 0.0521 0.0107 0.0140 -0.0566 0.0740 -0.0281
t-stat 1.6436 0.2548 0.4131 -1.6805 1.7141 -0.8350

Table 6: Risk premium parameter matrix [λ0, λ1] and t-statistics from the unrestricted
and the restricted estimation. In both applications, two of the coefficients are significant
at a 5% level (bold). Asymptotic properties of the market prices of risk are derived by
Adrian et al. (2013).

I will now consider further aspects of model inference and model-implied risk pricing.
For the sake of brevity, I will only report results from a full sample estimation regarding
the risk pricing. The macroeconomic factors are modelled as unspanned, which keeps the
number of parameters in the pricing equation low. A limited set of pricing factors avoids
the problem of overfitting (Joslin et al., 2014). Implausibly high Sharpe ratios would
hint at an overfitted model (Duffee, 2010), but in this application they turn out to be
reasonably low on average (maximally 0.18 in the full sample estimation). In contrast to
Joslin et al. (2014), I do not impose any zero restrictions on the risk premium parameters.
However, I find a similar influence of the risk prices on expected excess returns as Joslin

19



et al. (2014) for US data: Specifically, the real activity factor affects level risk pro-cyclically
and slope risk counter-cyclically in an unrestricted estimation (Table 6). One important
difference to Joslin et al. (2014) is, however, that inflation risk affects level risk premiums
counter-cyclically. Imposing the variance restriction affects the risk premium parameters
only quantitatively, but not their direction of influence. The diverging cyclicality of
yield components from the two estimation approaches illustrated in Figure 2 thus does
not follow from qualitatively different risk premium estimates. It is instead caused by
quantitative differences in implied risk premiums.

Only a few coefficients related to the first principal component (i.e., level risk) are
significantly different from zero at a 5% level. Nevertheless, slope and curvature risk are
also relevant at hardly less strict significance levels. There are risk premium coefficients
related to these factors that are significant at a 10% level, in both of the two estimation
approaches. The real activity factor also affects slope risk significantly at a 10% level.

5 Application to US data

I also apply the restricted estimation to US data. In this way, I check whether the
implications of the restriction discussed above also appear in an application with another
data set. I consider the US data over the same time periods as the German / Euro Area
data (1991-2019 and 2008-2019). As yield data, I use the US Treasury yield curve data
of Gurkaynak, Sack, and Wright (2007) which can be downloaded from the website of
the Federal Reserve Board.11 I follow a working paper version of Joslin et al. (2014) in
their choice of the macro data, because all these data are freely available for download:
The historical (real-time) data of the Chicago Fed National Activity Index serves as a
measure of real economic activity.12 The measure of price inflation is the first principal
component of the CPI (all items) and the personal consumption deflator, both in log
differences. The CPI data are published by the U.S. Bureau of Labor Statistics, and the
personal consumption deflator by the U.S. Bureau of Economic Analysis. Both can be
downloaded from the FRED economic database of the St. Louis Fed.13 I calibrate the
Var(∆)-restriction on the same level as in the German / Euro Area application (i.e., 0.04
for the truncated sample and 0.06 for the full sample).

That makes the restriction weightier in the US application, because the variance of
differences of unrestricted US forward rates under the physical measure is lower than that
for the German ones, both in the truncated sample and in the full sample. Consequently,
restricted and unrestricted estimates for the US do differ in the full sample implementa-
tion (Figure 4). Also the eigenvalues indicate a stronger effect of the restriction on the
persistence, even in the full sample estimation.

In the short sample, the observed variance of differences is practically zero. The
largest eigenvalues under the two pricing measures from the unrestricted estimation differ
markedly in the truncated sample. Figure 4 illustrates again excessively stable short rate
expectations in a small sample estimation. By contrast, the restricted short rate from the

11See https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
12The data can be downloaded from https://www.chicagofed.org/research/data/cfnai/

historical-data.
13See https://fred.stlouisfed.org/.
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truncated sample displays a similar development to the full sample estimate over the last
years, albeit more volatile.

The restriction thus implies similar effects for the decomposition of both US Treasury
yields and German Bund yields. It is rather the size of the effects which differs between
these two applications.

2008-2019 1991-2019
ACM Var(∆) ACM Var(∆)

eig(ΦQ) 1.0051 1.0051 1.0020 1.0020
eig(Φ) 0.9589 0.9924 0.9839 0.9856

V ar(∆fwdPt ) 0.0005 0.0403 0.0475 0.0643

Table 7: The table reports the absolute values of the largest eigenvalues of the transition
matrices for the unrestricted model of Adrian et al. (2013, ACM column) and the model
with the Var(∆)-restriction for an application with US Treasury yields.

Figure 4: This figure compares US forward rate components estimated from different data
samples (analogously to the illustration of German forward rate components in Figure 2):
Unrestricted results are plotted from both sample estimations.

6 Conclusion

A bias in term structure model estimations from small samples has been repeatedly de-
scribed in the literature: Model-implied average future expected short rates have been
found to be excessively stable. I have also illustrated this effect for German Bund data
in this paper.

Taking into account interest rate expectations from surveys has proven to be useful
for avoiding small sample problems (Kim and Orphanides, 2012). In this paper, I provide
an alternative method for incorporating survey expectations into a term structure model.
The method allows for the inclusion of survey information in term structure models which
are estimated with linear regressions and observed state variables. The method aligns the
persistence of average future expected short rates with that observed in interest rate
surveys and thus avoids the small sample bias.
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Therefore, the restriction method may prove to be particularly useful in applications in
which the data samples are rather short. For example, the data history on inflation-linked
bond yields is rather short in many countries.

In the case of a reasonably long data sample, however, the persistence of unrestricted
model-implied average future expected short rates does not differ much from survey ev-
idence. My results thus also support the application of unrestricted models to term
structure analyses if there is a sufficiently long data history available. From a broader
perspective, the paper thus contributes to the understanding of the actual benefits of
incorporating survey information into term structure model estimations.
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A Small sample bias of OLS estimates: Illustration

OLS estimates can generally be biased when they are derived from small samples. This
is particularly the case if the variables are highly persistent. As a result, model-implied
coefficients are prone to be downward biased (see, for example, Chapter 8.2 of Hamilton,
1994, for details on these small sample properties of OLS). Figure 5 illustrates this effect
for the AR(1) process

xt = ρxt−1 + εt,

where εt ∼ N (0, 1). I assume ρ = .99 and simulate the small sample distribution of
this process using Monte Carlo methods as outlined in Hamilton (1994): I draw 5,000
starting values for xt from a normal distribution, xt ∼ N (0, 1/(1 − ρ2)). From those
starting values, I calculate T − 1 observations for xt with the equation of the AR(1)
process above. I then estimate ρ̂ for each of the generated draws using OLS.

For a sample with T = 144 observations, the size of the truncated sample, the mean of
the simulated AR-coefficient is smaller than its true counterpart, ρ̂ = .9794. For T = 348
observations, the simulated mean of the AR-coefficient ρ̂ = .9849 is closer to the true
value, but still downward biased.

The downward bias of ρ̂ leads directly to a downward bias in model-implied forecasts,
ρ̂hxt. In the given example, where E(ρ̂) = .9794, the five-year ahead forecast would be

xt,h=60 = .979460 · xt = .4061 · xt,

whereas the true forecast would imply

xt,h=60 = .9960 · xt = .5472 · xt.

In addition, the variance of changes of an h-step ahead forecast, V ar(ρh∆xt), is affected
by the estimation bias:

V ar(ρh∆xt) = ρ2h(2V ar(xt)− Cov(xt, xt−1)− Cov(xt−1, xt))

= ρ2h(2V ar(xt)− 2ρV ar(xt))

= 2ρ2h(1− ρ)V ar(xt)

Hence, in the case of the variance in changes of the five-year ahead forecast, V ar(ρh∆xt)
is about 23% higher than V ar(ρ̂h∆xt).

The simulation thus illustrates the sensitivity of the model-implied variance of changes
in forecasts to the small sample bias. This highlights the potential benefits of restricting
the variance of changes in expectations proposed in this paper: If the variance of changes
in survey expectations is a plausible target for the model-implied variance of changes, then
this may improve the estimation of the factor’s persistence in a small sample estimation.

25



Histogram of simulated -values

0.8 0.85 0.9 0.95 1
0

100

200

300

400

500

600

700

800

900

# 
D

ra
w

s 
(o

ut
 o

f 5
00

0)

Figure 5: Histogram of the simulated small sample distribution of ρ̂.
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B Illustration of half-life periods for different eigen-

values
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Figure 6: The figure plots the half-life for a range of eigenvalues (Equation 15). Asterisks
(truncated sample estimates) and circles (full sample estimates) mark half-life values of
the models reported in Table 2. Specifically, from left to right, the marks refer to the
following eigenvalues: The truncated sample ACM estimation under P, the full sample
ACM estimation under Q, the full sample Var(∆)-restricted estimation under P, the full
sample ACM estimation under P, the full sample BRW estimation under Q, the truncated
sample ACM estimation under Q, the truncated sample Var(∆)-restricted estimation
under P, and the truncated sample BRW estimation under Q.
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C Variance of differences in survey expectations
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Figure 7: Variance of differences in surveys from different markets and for different forecast

horizons. Source: Consensus Economics and own calculations.
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D Simulation results

A simulation indicates that the influence of the Var(∆)-restriction on the eigenvalues
would be similar in a longer sample:14 I generate artificial state variables from the
estimated parameter matrices and errors from a multivariate normal distribution, i.e.
ut ∼ N (0,Σ):

Xsim
t = Φ̃ ·Xsim

t−1 + ut, (14)

where Φ̃ is either ΦQ, the unrestricted Φ, or the restricted Φr. I re-calculate the
regression coefficients for the VAR of the simulated states Xsim

t . The persistence of the
simulated parameters is very similar to that from the original model estimates. The left-
hand panel of Table 8 shows that the absolute differences of the largest eigenvalues from
the simulation to the model-implied eigenvalue are very small.

Bund US Treasuries
T = 1000 T = 10000 T = 1000 T = 10000

∆eig(ΦQ) 0.0018 0.0010 0.0006 0.0000
∆eig(Φ) 0.0010 0.0010 0.0061 0.0024

∆eig(Φr)(restr.) 0.0011 0.0011 0.0008 0.0024

Table 8: Differences in the eigenvalues of model-implied parameters and simulated param-
eters, measured by the absolute differences of the largest eigenvalues. I have simulated
T = 1000 or T = 10000 observations for the state variables from model-implied coef-
ficients and errors drawn from a multivariate normal distribution with zero mean and
model-implied variances.

14For an overview of simulation methods, see e.g. Luetkepohl (2005).
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