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Abstract: Large amounts of e-waste are processed “informally” in lower income countries.
Such processing releases dangerous pollutants, which increase mortality and reduce cognitive
functioning. This paper estimates the social cost of informal e-waste processing in Southern China.
This parameter may be “plugged-in” to cost-benefit analyses that evaluate the economic efficiency
of policies to reduce informal e-waste processing in China or other lower income countries. It may
also be used in the estimation of the social benefits (or costs) of new or proposed e-waste processing
policies in higher income countries. We estimate that the social cost of informal e-waste processing in
Guiyu is about $529 million. This amount is equivalent to about $423 per tonne (in 2018 US dollars)
or $3528 per person, which is over half the gross income per capita of the residents of Guiyu. We also
perform sensitivity analysis that varies the estimated mortality outcomes, the value of a statistical life
and the amount of e-waste processed.

Keywords: social cost; cost-benefit analysis; electronic waste processing; shadow price

1. Introduction

Economists and policy analysts argue that a primary goal of government policies or programs
should be to increase economic efficiency, also called allocative efficiency (Boardman et al. 2018).
Thus, programs should be evaluated in terms of their net social benefits, that is, the net benefit to
society as a whole. Net social benefits equal social benefits minus social costs. Social benefits are based
on individuals’ willingness to pay, while social costs are opportunity costs—basically, the value of
the resources society has to “give up” in order to implement a particular program. For inputs that
are bought and sold in well-functioning markets, the market price is a reasonable measure of the
opportunity cost. However, for many impacts of government programs, there is no market price
for example, for lives saved or for different forms of pollution. For such social impacts, economists
estimate shadow prices, that is, the price that the impact would be in a well-functioning market if
one existed.

Viscusi and Masterman (2017a) analyze many estimates of the value of a statistical life (VSL).
Recently, Vining and Weimer (2019) estimate the social benefit of high school graduation in the United
States. The National Academies of Sciences, Engineering, and Medicine (2017), Marten et al. (2015)
and numerous other researchers have estimated the social cost of carbon dioxide emissions and
other greenhouse gas emissions. Other researchers have estimated shadow prices for other impacts
including: the social cost of injuries and of automobile accidents with different level of severity,
the social cost of crime, the social cost of noise, the value of travel time saved and the value
of recreation (Boardman et al. 2018). Such estimates can be “plugged-in” to cost-benefit analyses
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(Boardman et al. 1997). For example, the shadow price of the VSL can be plugged in to studies
evaluating alternative health and safety programs, and the value of a high school diploma can be
plugged in to studies that directly or indirectly seek to increase the number of students who graduate
from high school. As Vining and Weimer (2019) note, plug-ins not only lower analytic costs, but also
promote consistency.

The research question in this paper is: what is the social cost of informal e-waste processing
(SCIEWP) in Southern China? This is an understudied topic. Indeed, no previous research has
estimated this shadow price. We express the social cost in terms of the total social cost to residents of
Guiyu, in terms of dollars per tonne (1000 kg) of e-waste processed and in terms of dollars per person.
Estimating this shadow price is important because, as we discuss in the next section, the amount of
e-waste is growing rapidly. Furthermore, informal e-waste processing has severe negative impacts
on those who process it and on others in the community.1 This issue requires more government
attention and intervention. A SCIEWP provides an informed indication of the nature and extent of the
problem. This, in turn, can provide a better rationale for government intervention than currently exists.
In particular, the SCIEWP expressed in terms of dollars per tonne provides an estimate of the amount
society should be willing to pay to reduce informal e-waste processing by one tonne. Our shadow price
can be plugged-in to quantitative analyses of alternative government policies that attempt to mitigate
this problem. It is particularly applicable to the evaluation of policies in importing countries pertaining
to the importation of e-waste, changing e-waste processing methods, or the relaxation or tightening of
current environmental policies or regulations. However, it is also important when evaluating the social
benefits (or costs) of environmental policies in higher income countries, for example, those pertaining
to the extent to which producers are responsible for identifying and ensuring the implementation of
end-of-life management policies for their products.

In order to derive the SCIEWP, we focus on e-waste processing in Guiyu, a town in Guangdong
province. At the time of our research, Guiyu and surrounding regions constituted the largest e-waste
processing site in the world. Research by Wu et al. (2010) and Zhuang (2017) suggests that this area
processed approximately 1.25 million tonnes of e-waste annually.

Our methodology follows standard practice in cost-benefit analysis; for more information,
see Chapter 1 in Boardman et al. (2018). In this paper, only the residents of Guiyu have standing.
Impacts on residents of other jurisdictions are not considered. In the conclusion, we discuss the
implications of this assumption. Our analysis consists of three main steps. The first step, which
is discussed in Section 2, identifies the main impacts of informal e-waste processing. We focus on
mortality and lost productivity. The second step, which is discussed in Section 3, estimates the impact
of informal e-waste processing on mortality. The third step, which is discussed in Section 4, is to
estimate the social cost of e-waste processing in Guiyu. We obtain an estimate of the VSL of residents
of Guiyu and, by combining this parameter with our analyses in Section 3, we monetize the mortality
impacts of e-waste processing in Guiyu. Then, we estimate the social cost of lost productivity due to
children’s impaired cognitive abilities and add it to the mortality cost to compute the social cost of
e-waste processing in Guiyu. Finally, we derive our shadow price estimate in terms of dollars per tonne
of e-waste processed and in terms of dollars per person. Section 4 also includes sensitivity analysis
where we vary the estimated mortality outcomes, the VSL, and the amount of e-waste processed in
Guiyu. Section 5 concludes the paper with a review of our results, a discussion of some limitations of
our analysis and potential policy applications.

Our main conclusion is that the social cost of informal e-waste processing in Guiyu is about
$529 million and the SCIEWP in Southern China is about $423 per tonne (in 2018 US dollars). Most of

1 For a graphic illustration of informal e-waste processing see “Ghana: Digital Dumping Ground,” a PBS Frontline/World
documentary, 27 September 2010, produced under the supervision of Peter Klein, available at: http://www.pbs.org/
frontlineworld/stories/ghana804/. And see “ToxiCity: Life at Agbobloshie, the world’s largest e-waste dump in Ghana,”
directed by Artyom Somov, 2016; available at https://www.youtube.com/watch?v=mleQVO1Vd1I.

http://www.pbs.org/frontlineworld/stories/ghana804/
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the information used to compute the excess levels of pollutants in Guiyu date from about 2010. Thus our
estimates of the social cost of e-waste processing and the SCIEWP can be thought of as an estimate
of the costs borne by the cohort of individuals living in Guiyu in 2010. Since that time government
policies in China have changed and, in fact, informal e-waste processing in Guiyu has decreased.
Thus, the social cost of e-waste processing in Southern China is different now. However, our estimate
of the social cost per tonne is still likely to be applicable in the evaluation of policies pertaining to areas
where informal e-waste processing is similar to the conditions that existed in Guiyu in about 2010.
Of course, whenever shadow price estimates are applied to other jurisdictions or time periods, they
must be adapted to the specific circumstances.

2. E-Waste Generation and Processing, and the Resultant Health Impacts

The amount of e-waste generated worldwide is increasing rapidly. Schluep et al. (2009)
estimated that worldwide generation of e-waste in 2009 amounted to over 40 million tonnes. By 2016,
the figure ballooned to 45 million tonnes, or 6.1 kg per inhabitant, an 18 percent increase from 2014
(Baldé et al. 2017). In Europe, e-waste production has grown 16–28 percent every five years, three
times faster than the growth in aggregate municipal waste (UNEP 2007). Baldé et al. (2017) predicts
e-waste generation to increase to 52.2 million tonnes (6.8 kg per inhabitant) by 2021.

E-waste generation is increasing in higher per capita income countries, primarily due to increasing
obsolescence rates of electronic devices. CPU lifespans have decreased from 4–6 years in 1997 to
only two years in 2005 (Needhidasan et al. 2014). As the price of electronic devices continues to
fall, replacements become more cost efficient than repairing, thus the lifespans of electronic devices
continue to decrease (Konoval 2006).

In low income countries, e–waste production is increasing due to the increased use of electronic
devices. In the Asia-Pacific region, personal computer penetration grew at a compounded annual
growth rate of 26 percent in the fifteen years leading up to 2005. Africa, the Middle East, Eastern
Europe and South America have experienced similarly dramatic increases, and the installed base of
computers and electronics in these regions will increase further as incomes rise and technological
advances make electronic devices cheaper.

Some of the e-waste generated in advanced countries is processed in those countries.
However, national e-waste generation rates have outpaced e-waste collection rates. In Canada in 2014,
20 percent of the e-waste generated was processed through recycling programs, while the remaining
80 percent entered landfills or were informally processed overseas (Kumar and Holuszko 2016).
The amount of e-waste processed in lower income countries continues to grow. Lundgren (2012, p. 14)
estimates that exporting e-waste to lower income countries is ten times cheaper than it is to recycle it in
the United States.

E-waste is composed of more than 1000 different substances, including ferrous metals and
non-ferrous metals, plastics, glass, wood and ceramics (UNEP 2007). Some of these substances are
economically valuable, including reusable plastics and glass, and trace amounts of gold, silver and
copper. However, e-waste also contains toxic substances like flame-retardant plastics and heavy metals
like lead, mercury, cadmium and chromium. In Guiyu, the majority of e-waste recycling sites are
small-scale, family-based workshops which use manual disassembly, open burning and acid leaching
(Liu et al. 2011; Guo et al. 2014). This informal processing releases poisons that leach into the soil
and groundwater and emit toxins during incineration. The most serious consequence is premature
mortality and morbidity.

As shown in Table 1, informal e-waste processing is much less safe than best available technologies
(UNFCCC 2012). The unsafe practices used in Guiyu make citizens vulnerable to the excessive pollutant
emissions from many substances. This paper focuses on pollutants that are ubiquitous in the recycling
process and probably have the largest impact on health and mortality: lead, dioxins and furans as well
as particulate matter.
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Table 1. Comparison of E-waste Recycling Processes Using Presently Applied Technologies and Best
Available Technologies.

Presently Applied Technologies Best Available Technologies

1 Functioning components (like cables, power
supplies) are removed for reuse.

E-waste is manually separated into reusable
components and end-of-life parts.

2
Deflection and focusing coils are removed by
breaking off the neck glass.

The e-waste is processed in an enclosed mechanical
system which segregates the materials using a four
step process:
a. E-waste is shredded into small pieces of two
inches in size.
b. The e-waste pieces are placed into a magnetic
separator where ferrous metals are collected.
c. The non-ferrous metals pass through an eddy
current separator where the materials are sorted.
d. The dust generated is collected in a bag filter and
sent to the metallurgical refining unit for processing.

3
The monitor is manually dismantled to
extract steel, aluminum, and copper parts.

The e-waste is now sorted into five types of materials:
glass, plastics, aluminum, ferrous metals and
non-ferrous metals.
a. Ferrous metals are sold directly to steel plants.
b. Aluminum is sold directly to smelters to be reused
for commercial purposes.
c. Plastics are segregated into recyclable and
non-recyclable fractions, and processed accordingly.

4 Cables and other components are incinerated
in the open to recover copper.

Non-ferrous materials are recycled in a controlled
manner (smelting, electronic refining).

5
CRT glass and residues are crushed and
disposed in an uncontrolled manner, without
regard for emissions.

Hazardous materials are removed from the glass and
transferred to external recyclers for proper
processing.

Source: Adapted from UNFCCC (2012).

2.1. The Health Impacts of Lead

Due to its malleability and resistance to corrosion, electronic devices often contain lead. In e-waste,
the primary source of lead is found in monitors of CRTs and the solder of printed wire boards
(Jang and Townsend 2003; Vann et al. 2006). Human exposure to lead is exacerbated through primitive
recycling processes which emit dust and contaminates soil, food or water (Wang and Zhang 2006;
Leung et al. 2006; Liu et al. 2011). Children are frequently involved with e-waste processing and play
with the electronic devices at the worksites (Guo et al. 2014). They are particularly vulnerable because
their bodies absorb lead more readily than adults (Huo et al. 2007). Exposure to lead can lead to a
diverse array of health effects, including an increased risk of cardiovascular disease, cancer, and renal
disease. Elevated blood lead levels affect the physical development of children and may cause adult
osteoporosis (Yang et al. 2013). Liu et al. (2011) also documented alterations to the temperament of
children due to lead exposure.

2.2. The Health Impacts of Dioxins and Furans

Minh et al. (2003) found that open waste dumping sites like those in Guiyu are significant sources
of dioxins (technically, polychlorinated dibenzo-p-dioxins) and furans (technically, polychlorinated
dibenzofurans). These substances are sometimes referred to as polychlorinated dibenzo-p-dioxins
and dibenzofurans (PCDD/F). Dioxins can take many forms, the most toxic of which is
2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). Elevated levels of this pollutant have been found
in workers exposed to e-waste recycling (Leung et al. 2007; Chan et al. 2007). Chan et al. (2007)
provides a comprehensive study of the presence of dioxins and furans in e-waste recycling towns.
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Significantly high levels of these compounds were found in the human milk, placenta and hair
samples of residents living close to the Taizhou e-waste recycling site, which is close to Guiyu. In fact,
the concentrations of PCDD/Fs in the human milk of Taizhou mothers are ranked second highest in
the world.

Dioxins and furans lead to an increased risk of cardiovascular disease, cancer, and diabetes.
Chan et al. (2007) notes that postnatal exposure to dioxins adversely affects infants’ thyroid hormone
systems and immunological functions. Health impacts of 2,3,7,8-TCDD include an elevated risk of
circulatory diseases (Steenland et al. 1999; Flesch-Janys et al. 1995; Bertazzi et al. 1989) and cancer
mortality (Fingerhut et al. 1991).

2.3. The Health Impacts of Particulate Matter (PM)

The presence of particulate matter (PM) has become a major concern in China, especially in large
urban areas like Beijing, Shanghai and Chongqing. The informal recycling process incinerates e-waste,
which leads to the emission of PM, mainly due to the combustion of plastic materials (Gu et al. 2010).

Major health impacts of PM include cardiovascular diseases and respiratory complications, leading
to increase medical expenses and decreased productivity (Matus et al. 2011). China has historically
exhibited above average PM levels. In the 1980s, China’s PM levels ranged between 200 µg/m3 and
317 µg/m3, which is significantly higher than WHO’s standard of 20 µg/m3 (Matus et al. 2011).

3. Estimating the Deaths Due to Informal Processing of E-waste in Guiyu

Estimating the additional deaths in Guiyu due to informal processing of e-waste requires three
steps. Step (1) estimates the excess pollutant levels (also called excess body burden) in Guiyu, that is,
the difference between the typical level of a pollutant in the body of a person living in Guiyu (or in the
air) and what the level would be in the absence of e-waste processing. Step (2) relates the excess body
burden of a pollutant in Guiyu to expected increases in mortality rates. Step (3) multiplies the increase
in the mortality rates by the population of Guiyu to obtain an estimate of the number of deaths in
Guiyu due to increased pollution.

Our data requirements are fairly substantial. Specifically, we require data on the level of a pollutant
in Guiyu, the level of that pollutant in China and the relationship between the excess level of the
pollutant and mortality. We are unable to estimate the mortality effect of a pollutant if data are missing
on any one of these dimensions. As a consequence, our analysis considers only the impact of lead,
dioxins, furans and particulate matter, which are major contributors to mortality.

3.1. Excess Pollutant Levels (Excess Body Burdens) in Guiyu

This section estimates the excess body burdens of various pollutants for residents of Guiyu.
Again, we focus on lead, dioxins, furans and particulate matter. By definition, the body burden
associated with a pollutant is the amount of that pollutant in a human body or, in the case of air
pollution, it is the amount of pollution in the air. Informal e-waste processing causes body burdens
to rise. The effect of e-waste processing on the level of pollution in Guiyu can be measured by the
excess body burden of residents in Guiyu which equals the difference between the body burdens of
residents in Guiyu and the body burdens of residents of China in similar towns but with no e-waste
processing, that is, the base case. In practice, we generally use the average levels for China as the
base case. We argue that if there were no informal e-waste processing in Guiyu, then the body burden
for a typical resident of Guiyu would equal the body burden of the average resident of China and
the excess body burden in Guiyu would equal zero. Positive values of the excess body burden in
Guiyu are caused entirely by informal e-waste processing and not by any other processing industry.
The main justification for this assumption is that 60 to 80 percent of the families in Guiyu have engaged
in informal e-waste processing (Huo et al. 2007). There were no other major processing industries in
Guiyu. A former resident is reported to have said: “Every household was engaged in that business
and we just did it at home and on the street” (Zhuang 2017).
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Lead: The body burden of lead is measured by blood lead levels (BLL) in terms of micrograms of
lead per deciliter of blood (µg/dL). Huo et al. (2007) performed field studies on the blood lead levels in
children in Guiyu. Their high, medium and low estimates of the BLL of children in Guiyu are shown
in the first row in Table 2. No study has measured the BLL of adults in Guiyu. Although adults might
have different BLL to children we have no reason to believe that they would be higher or lower and
therefore we use the Huo et al. (2007) figures as estimates of the average BLL in Guiyu.2 We estimate
the average BLL for people in China by using a composite of three studies: a set of estimates calculated
by the World Health Organization (Chen et al. 2001), and two studies measuring adult BLLs in urban
China (Qu et al. 1988, 1993). These studies indicate an average BLL of 8.39 µg/dL in Chinese adults.
Taking the difference between the midpoint estimate of the BLL in Guiyu (15.30 µg/dL) and the average
for residents of China (8.39 µg/dL), we obtain a midpoint estimate of the excess body burden of lead in
Guiyu equal to 6.91 µg/dL.

Table 2. Excess Body Burdens in Guiyu: Comparison of Body Burdens in Guiyu with the rest of China.

Pollutant Low
Estimate

Best
Estimate

High
Estimate Source

Lead (BLL)
Guiyu 4.4 15.30 32.67 Huo et al. (2007)
China 8.20 Qu et al. (1993)

8.98 Qu et al. (1988)
4 8.00 12 Chen et al. (2001)

Blood levels of lead for China 4 8.39 12
Excess Body Burden of Lead (µg/dL) 0.4 6.91 20.67

Dioxins and Furans (Body Burden)
Guiyu 5.26 Chan et al. (2007)

Guiyu 10.68 Ma et al. (2008) and
Geeraerts et al. (2015)

China 0.75 1.25 1.75 EPA (2002)
China 1.05 Sun et al. (2010)
Body burden for China 1.15
Excess Body Burden of Dioxins and
Furans (TEQ/BW) 4.11 9.53

Particulate Matter
Guiyu 103.50 Deng et al. (2006)
China 86.24 61.48 Pandey et al. (2000)
China 98.00 WHO (2011)
Excess Body Burden of Particulate
Matter Exposure (µg/m3) 5.50 17.26 42.02

Our estimates of the BLL of residents of Guiyu and the average BLL for China, which are used to
compute the excess body burden of lead, come from different studies that were conducted at different
times. Our BLL estimate for Guiyu comes from Huo et al. (2007). We use this study because it is the
only study that measures the BLL in Guiyu. In order to compute the excess body burden (or excess
BLL) it would be preferable to have a study that measured the BLL for China in 2007 or just earlier.
However, we do not know of such a study. Instead, we draw on three studies that were published in
1988, 1993 and 2001, and take the average of their average BLLs. Thus, we conduct a meta-analysis.
In meta-analysis it is common to draw on studies from quite different time periods. The key issue for
our study is whether the average of the average BLLs of these studies is a reasonable estimate of the
average BLL in China in 2007. There are three reasons to suppose it is. First, all of these studies were

2 One might expect adult BLLs to be lower than child BLLs because adults may become more resilient to exposure to lead.
Conversely, adult BLLs could be higher than child BLLs because lead accumulates in an adult over time.
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well-conducted, they were taken from cities representative of China, and appeared in well-respected
journals. Second, the three estimates are quite similar, which enhances the validity of these studies.
Third, there is no compelling reason to believe that the average BLL in China increased or decreased
during the period that all of these studies were conducted.

Dioxins and Furans: The body burden of dioxins and furans can be measured by their toxic
equivalent quantity (TEQ) (in nanograms) per kilogram of body weight (BW), that is, in terms of
TEQ/BW. Since dioxins and furans have different levels of toxicity, TEQ expresses the combined
concentration of dioxins, furans, and PCBs in terms of the most toxic dioxin—the 2,3,7,8-TCDD.

Ma et al. (2008) and Geeraerts et al. (2015) measured exposure to dioxins and furans in Guiyu in a
number of ways. Adding Ma et al.’s (2008) measures of the population’s dietary intake of PCDD/Fs
(0.00053 TEQ/BW per day), Ma et al.’s (2008) measures of air inhalation (0.00254 TEQ/BW per day),
and Geeraerts et al. (2015) measure of soil/dust ingestion and dermal exposure (0.000499 TEQ/BW per
day) gives an estimate of daily exposure to dioxins and furans of 0.00357 TEQ/BW. We convert this
aggregate measure into an estimate of body burden of dioxins and furans using the following formula
from EPA (2002):

Body Burden of dioxins and furans =
Daily Exposure× hal f li f e× f

ln(2)
(1)

where Daily Exposure is the daily exposure to a dioxin or furan, half life is the half life of the compound,
f is the fraction of it absorbed, and ln is the natural logarithm. Using the EPA’s (2002) estimates of the
half-life of 2,3,7,8-TCDD (2593 days) and of the fraction of dose absorbed (0.8), we estimate the body
burden is 10.68 TEQ/BW.

Chan et al. (2007) studied the breast milk of expecting mothers in Taizhou, a similar town to
Guiyu with e-waste recycling activity, although less than in Guiyu. Chan et al.’s (2007) estimates range
between 1.8 TEQ/BW and 8.71 TEQ/BW with an average of 5.26 TEQ/BW. Because e-waste recycling
activity is less common in Taizhou than in Guiyu, the estimates for Guiyu are likely to be low.

To estimate the body burden of dioxin/furan exposure for an average Chinese person, we draw
on EPA (2002) and Sun et al. (2010). EPA (2002) obtained an average estimate of the body burden of
TCDDs in higher income countries of 1.25, with a low of 0.75 and a high of 1.75. Dioxins and furans
are completely man-made and are only produced in processes involving incineration. Therefore, body
burdens in lower income countries track those in higher income countries quite closely (unlike other
pollutants like lead). Sun et al. (2010) estimated that the average TCDD in the breast milk of mothers
in northern China was approximately 1.05. Taking the average of these two estimates yields a body
burden estimate of 1.15 for the average person in China. Thus, our best estimate of body burden of
dioxins/furans in Guiyu is 9.53 TEQ/BW, with a low estimate of 4.11 TEQ/BW.

Particulate Matter: The body burden of air pollution can be measured using the concentration of
particulate matter with diameter 10 microns or less (PM10). Deng et al. (2006) collected air samples
at Guiyu and found 62.1 µg/m3 of PM2.5. We convert PM2.5 levels to PM10 using a factor of 0.6
(Aunan and Pan 2004) to obtain an estimate of 103.50µg/m3 of PM10. To calculate the levels of exposure
to particulate matter for the average Chinese resident, we draw primarily on Pandey et al. (2000),
who developed a model to estimate PM10 levels in Chinese towns and cities with populations greater
than 100,000. A weighted average of these levels in 379 Chinese cities gives an average estimate of the
body burden of particulate matter for China equal to 86.24 µg/m3. Thus, our best estimate of excess
body burden in Guiyu due to particulate matter equals 17.26 µg/m3.

To obtain a high estimate of the excess particulate matter in Guiyu we use a subset of 19 Chinese
towns from Pandey et al. (2000) that had fewer than 200,000 residents. The weighted average of
PM10 levels in these towns was 61.48 µg/m3, which yields a high estimate of excess particulate matter in
Guiyu of 42.02 µg/m3. To obtain a low estimate, we examined the World Health Organization Outdoor
Air Pollution Database, which contains international air pollution data from 2003 to 2010 (WHO 2011).
It shows that the air pollution of a typical Chinese municipality with no e-waste processing activities is
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about 98.0 µg/m3. This figure likely overestimates the air pollution of a typical town with no e-waste
processing activities because it includes the extremely high air pollution levels in megacities like Beijing
and Tianjin. Thus, our low estimate of excess body burden due to particulate matter equals 5.50 µg/m3.

3.2. Increases in Mortality Rates

This section describes how we estimate the increases in mortality rates due to the excess levels of
different pollutants in Guiyu. This process is fairly complicated and requires many steps. To facilitate
understanding, we explain the process and, at the same time, illustrate computation of the increased
mortality level for lead. The application of the various steps is summarized in Table 3. The first
few rows contain the parameters associated with our best estimates of mortality rates, which are
followed by our low estimates of increased mortality rates and finally our high estimates of increased
mortality rates.

In order to calculate the increases in mortality rates, we require an estimate of the risk ratio in
Guiyu. By definition, a risk ratio, RR, equals the ratio of the mortality rate in an area of high pollution
to the mortality rate in some other less polluted area, the base case.3 The increased probability of death
due to higher pollution (expressed as a percentage) equals the RR minus unity times 100.4

No study has estimated the RRs associated with any pollutant in Guiyu. Therefore, we begin
with the RR for a particular pollutant estimated previously in a different setting, which we refer to as a
reference study. In selecting the most appropriate RR (and reference study) we take into account the
quality of the analysis and the similarity between the situation in Guiyu and the particular setting that
was used in the reference study.

Lead: Many studies estimate the RR of various diseases due to lead exposure. Here, we focus
on studies by Schober et al. (2006) and Lustberg and Silbergeld (2002) that provide RRs for all-cause
mortality rather than just one type of disease and that study a population that spans across all ages
and both sexes. Schober et al. (2006) found that individuals with BLLs above 10 µg/dL had a RR of
1.59 compared to those with less than 5 µg/dL. This is our best estimate for the RR because it comes
from a population with BLLs close to those in Guiyu. This estimate is shown in column 2 of Table 3.
For our low and high estimates, we draw on Lustberg and Silbergeld (2002) and Schober et al. (2006)
using their studies’ RRs of 1.46 and 1.24, respectively, as shown in column 2 of Table 3.

If the body burden in the reference study were equal to the body burden in Guiyu, then we
could use the RR in the reference study as an estimate of the RR in Guiyu. The reason is that the
RRs of the pollutants we focus on depend only on the relationship between pollution and human
mortality. This relationship does not vary from one place to another or from one time to another.
However, the level of pollution in Guiyu may differ from the level of pollution in the polluted area
in the reference study or the average level of pollution in China may differ from the pollution in the
base case of the reference study. It is necessary to adjust the RR from the reference studies to account
for these potential differences. For this purpose, we compute the excess body burden ratio (BBR),
which equals the ratio of the excess body burden in Guiyu to the excess body burden in a reference
study, such as Schober et al. (2006). Thus, a RR taken from a reference study in a polluted area with
less (more) higher pollution levels than in Guiyu will be adjusted up (down), holding other factors
constant. Furthermore, if the level of pollutant in the base case (relatively unpolluted areas) of the
reference study is higher (lower) than the average level in China then the RR is adjusted down (up),
holding other factors constant.

3 That is, RR = MR(A)/MR(B), where MR is the mortality rate, A is a place with relatively high pollution, and B is the base place.
4 Probability that a resident of a polluted area is more likely to die than a resident of the base place = (RR – 1) × 100, expressed

as a percentage.
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Table 3. The Number and Social cost of Excess Deaths from e-waste in Guiyu.

Pollutant Initial Risk
Ratio (RR)

Excess Body
Burden in
Reference

Study

Excess Body
Burden in

Guiyu (from
Table 2)

Excess Body
Burden Ratio

(BBR)

Increased
Probability of

Death in
Guiyu

Guiyu
Mortality

Rate

Increased
Mortality

Rate in
Guiyu

Excess
Deaths in

Guiyu

Social Cost of
Excess Deaths

($ millions)

Best Estimates

Lead 1.59 9.20 6.91 0.75 44.29 1.04 0.32 478 311
Dioxins and
Furans 1.15 16.10 9.53 0.59 8.88 0.78 0.06 96 62

Particulate
Matter (acute) 1.00 1.67 17.26 10.36 0.62 0.72 0.00 7 4

Particulate
Matter (chronic) 1.05 16.67 17.26 1.04 5.18 0.76 0.04 56 36

Total 0.42 637 414

Low Estimates

Lead 1.46 19.50 6.91 0.35 16.29 0.84 0.12 176 114
Dioxins and
Furans 1.00 16.10 9.53 0.59 - 0.72 0.00 - 0

Particulate
Matter (acute) 1.00 1.67 17.26 10.36 0.52 0.72 0.00 6 4

Particulate
Matter (chronic) 1.04 16.67 17.26 1.04 4.14 0.75 0.03 45 29

Total 0.15 226 147

High Estimates

Lead 1.24 3.70 6.91 1.87 44.80 1.04 0.32 484 314
Dioxins and
Furans 1.30 16.10 9.53 0.59 17.76 0.85 0.13 192 125

Particulate
Matter (acute) 1.00 1.67 17.26 10.36 0.72 0.73 0.01 8 5

Particulate
Matter (chronic) 1.06 16.67 17.26 1.04 6.21 0.76 0.04 67 44

Total 0.50 751 488
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For our best estimate of the Guiyu mortality rate due to lead, we use Schober et al.’s (2006) estimate
of the RR equal to 1.59. The excess body burden in this reference study is obtained by subtracting the
median BLL of individuals who had BLLs above 10 µg/dL, which was 11.8, from the median BLL of
those with BLL less than 5 µg/dL, which was 2.6, giving an excess BLL of 9.20 µg/dL. This amount is
shown in column 3 of Table 3. For our low estimate we draw on Lustberg and Silbergeld (2002) who
found that individuals with BLLs between 20–29 µg/dL had a RR of 1.46 compared to individuals
with BLLs of below 10 µg/dL, implying an excess body burden of 19.50. The RR associated with our
high estimate comes from Schober et al. (2006) who found that individuals with blood lead levels of
5–9 µg/dL had a RR for all-cause mortality of 1.24 compared to those with less than 5 µg/dL, implying
an excess body burden of 3.70, as shown in column 3 of Table 3.

Given the excess body burden in a reference study, shown in column 3 of Table 3 and our previously
estimated excess body burdens in Guiyu, shown in column 4 of Table 3, we obtain the BBRs by dividing
the latter (column 4) by the former (column 3). Thus, our best estimate of the BBR for lead is 0.75,
which is shown in column 5 of Table 3, with low and high estimates of 0.35 and 1.87, respectively.

Residents are more likely to die in polluted areas. As mentioned above, the probability that a
resident of a polluted area in a reference study is more likely to die than a resident of the base area
equals the RR minus unity times 100. In order to compute the probability that a resident of Guiyu
is more likely to die than the average resident elsewhere in China we multiply this amount by the
BBR.5 Thus, exposure to lead in Guiyu is likely to increase the probability of death by about 44 percent,
as shown in column 6 of Table 3, with a range between 16 and 45 percent.

The mortality rate in Guiyu, taking into account the high levels of lead, is calculated by adding
unity to the increased probability of death (expressed as a rate) and multiplying by the average
mortality rate in China, which equals 0.72 (WHO 2019).6 These amounts are shown in column 7 of
Table 3. Our best estimate of the mortality rate in Guiyu taking into account the excess lead exposure
equals 1.04 with a range of 0.84 to 1.04.

Finally, we estimate the increased mortality rate in Guiyu due to excess lead exposure by computing
the difference between the increased mortality rate in Guiyu (column 7) from the average mortality rate
in China, which is 0.72.7 Our best estimate of the increased mortality rate due to excess lead exposure
for the cohort of Guiyu residents in 2010 is 0.32, as shown in column 8 of Table 3, with a range of
0.12 to 0.32.

Dioxins and Furans: A number of studies estimate RRs for dioxins and furans (Ketchum and
Michalek 2005; Flesch-Janys et al. 1995; Pesatori et al. 1998; Steenland et al. 1999). Out of all these
studies, only Ketchum and Michalek (2005) provide a RR for all causes of death, rather than just a
specific type of disease or condition. This article analyzed the health of more than 1200 U.S. veterans of
the Vietnam War who had skin contact with dioxin-based herbicides. It found that all-cause mortality
increased significantly with a RR of 1.15, and a range between 1.0 and 1.3.

Our mid-point estimate of the excess body burden of dioxins/furans in Guiyu, which we calculated
above, is 9.53 TEQ/BW. The population studied in Ketchum and Michalek (2005) exhibited an excess
body burden of 16.1 TEQ/BW, which results in a BBR of 0.59. Adjusting our initial RR by the BBR
yields an increased probability of death due to exposure to dioxins and furans of 8.88 percent, which
translates into an excess mortality rate of 0.06.

Particulate Matter: Mortality due to exposure to particulate matter can come from acute
or chronic conditions. The RR is much higher for chronic conditions than for acute conditions.

5 The probability a resident of Guiyu is more likely to die than an average resident of some other town in China (expressed as
a percentage), denoted ∆P(DG), equals [(RR – 1) × 100] × BBR.

6 The mortality rate in Guiyu, denoted MRG, equals (1 + ∆P(DG)/100) * MRC, where MRC is the average mortality rate
in China.

7 The increased mortality rate in Guiyu, denoted ∆MRG, equals MRG – MRC. Alternatively, and more directly, one may
compute this increased mortality rate using the formula: ∆MRG = (RR – 1) × BBR ×MRC.
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Therefore, we compute the increased mortality due to particulate matter separately for these
two conditions.

For mortality from acute conditions, we draw on a study by Bickel et al. (2005) who found a
RR of 1.0006 amongst 500,000 adults in metropolitan areas of the United States with a range between
1.0005 and 1.0007. Our estimate of the excess body burden of particulate matter in Guiyu is 17.26 µg/m3,
as calculated above. The population studied in Bickel et al. (2005) was exposed to air with excess
PM10 pollution levels of 1.67 µg/m3, resulting in a BBR of 10.36. We estimate an increased probability
of death due to PM10 exposure from acute conditions in Guiyu of 0.62 percent, resulting in an excess
mortality rate of 0.004.

For chronic mortality, we used a study by Pope et al. (2002) which derives a RR of 1.05, with a
range between 1.04 and 1.06. The population studied in Pope et al. (2002) was exposed to air with
excess PM10 levels of 16.67 µg/m3. Again, using our estimate of excess burden due of particulate
matter in Guiyu, we obtain a BBR estimate of 1.04. We estimate an increased probability of death due
to PM10 exposure from chronic conditions in Guiyu of 5.18 percent, resulting in an excess mortality
rate of 0.04.

3.3. Estimated Deaths Due to Informal E-waste Processing

The expected excess number of deaths in Guiyu due to informal e-waste processing is computed
by multiplying the increases in the expected mortality rates, shown in column 8 of Table 3, by the
population of Guiyu in 2010, which was about 150,000. Consequently, we expect 637 more deaths in
our studied cohort of individuals in Guiyu than would occur without informal e-waste processing.
Most of the deaths were due to lead poisoning.

4. The Social Cost of Informal Processing of E-Waste in Guiyu

This section first discusses the appropriate estimate of the value of a statistical life in Guiyu.
Using this estimate, we then estimate the social cost of the mortality that results from the impacts of on
health of pollutants emitted during informal e-waste processing. Section 2 estimates the effect of lead
poisoning on children on their future earnings. Section 3 contains our estimates of the social cost of
informal e-waste processing and presents our sensitivity analysis.

4.1. The Value of a Statistical Life in Guiyu and the Social Cost of Increased Mortality

Estimation of the social costs associated with increased mortality requires an estimate of the
value of a statistical life (VSL) applicable to the residents of Guiyu. Fortunately, a number of studies
have derived estimates of the VSL in China over the last 20 years. Based on a meta-analysis of these
estimates and some new research, we derive an estimate of the VSL in Guiyu.

One may obtain an estimate of the VSL in two ways. One way is to draw on previous studies that
estimate willingness to pay for reductions in mortality risk using participants in Guiyu or from people
with characteristics similar to residents of Guiyu. These estimates are based on stated preference
methods, such as contingent valuation, or on revealed preference methods, such as a wage-risk study
(Boardman et al. 2018).

A second way uses benefit transfer to adjust estimates of the VSL derived from another
country, usually the United States. This method is sometimes referred to as the scaling approach.
Most importantly, these studies adjust (i.e., scale) for income differences. A key parameter is the income
elasticity of the VSL, EI, which is defined below for small discrete changes in income:

EI =
%∆VSL

%∆I
(2)

where, %∆VSL equals the percentage change in the VSL, and %∆I is the percentage change in income.
If an individual is willing to pay a larger (smaller) proportion of their income for a small reduction in
fatality risk as their income increases, then this elasticity is greater (less) than unity. Assuming that this
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income elasticity is constant, E, and is the same in Guiyu as in the US, and given an estimate of the VSL
in the United States, denoted VSLUS, then the VSL in Guiyu, denoted VSLG, can be estimated thus,
as suggested by Hammitt and Robinson (2011):

VSLG = VSLUS ×

(
IG
IUS

)E

. (3)

Table 4 lists previous estimates of the VSL in China. For some studies, we consulted the original
studies while for other studies, we drew on surveys by the World Bank (2007), Hoffmann et al. (2017)
and Robinson et al. (2019). In order to make the amounts comparable, each estimate has been converted
to 2018 US dollars, the most recent year for which data are available. Amounts initially expressed in
Yuan are first converted into 2018 Yuan using World Bank data on annual inflation rates in China and
then converting these amounts into 2018 US dollars at purchasing power parity.8 The amounts initially
expressed in US dollars are converted to 2018 US dollars using the US CPI-U index from the US Labor
Bureau of Labor Statistics.9

Table 4. VSL estimates for China and Guiyu.

Study Yuan USD USD (2018) Source or Notes

Willingness to Pay Studies:

Zhang (2002) 970,000 409,946 World Bank (2007)
Hammitt and Zhou (2006) 385,000 162,711 World Bank (2007)
Wang and Mullahy (2006) 775,000 322,944 World Bank (2007)
Wang and Mullahy (2006) 150,619 157,585 Hoffmann et al. (2017)
Krupnick et al. (2006) 1,400,000 547,392 World Bank (2007)
Hammitt and Zhou (2006) 10,500 15,826 Robinson et al. (2019)
Hammitt and Zhou (2006) 75,095 78,568 Hoffmann et al. (2017)
Guo et al. (2006) 24,000 32,750 Robinson et al. (2019)
Guo and Hammitt (2009) 184,366 268,890 Robinson et al. (2019)
Guo and Hammitt (2009) 107,789 112,774 Hoffmann et al. (2017)
Qin et al. (2013) 188,000 205,616 Robinson et al. (2019)
Liu and Zhao (2013) 117,186 122,606 Hoffmann et al. (2017)
Ohdoko et al. (2013) 1,464,412 1,532,139 Hoffmann et al. (2017)
Yang et al. (2016) 3,729,492 1,114,620 Hoffmann et al. (2017)
Wang and He (2014) 332,310 347,679 Hoffmann et al. (2017)
Hoffmann et al. (2017) 1,470,000 517,207

Average 371,828

Benefit Transfer Studies:

Viscusi and Masterman (2017b) 1,364,000 1,444,325 E = 1.0.
The current authors 1,534,301 Updated GNI/capita; E = 1.0
The current authors 1,269,740 Updated GNI/capita; E = 1.1
The current authors 857,675 Lower Guiyu income; E=1.1

Based on Anqing, a relatively small city.

The willingness to pay studies in Table 4 are based on a number of different methods including
contingent valuation, dichotomous choice methods and wage-risk studies. In general, more recent
studies obtained higher estimates than earlier studies. The Viscusi and Masterman (2017b) benefit
transfer estimate assumes a VSL of $9.631 million for the US in 2015 dollars, an income elasticity of the

8 Estimates of inflation in China come from: https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG and our estimate of the
Yuan to US dollar exchange rate in 2018 comes from https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm.

9 Available at http://www.usinflationcalculator.com/inflation/consumer-price-index-and-annual-percent-changes-from-1913-
to-2019/.

https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG
https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm
http://www.usinflationcalculator.com/inflation/consumer-price-index-and-annual-percent-changes-from-1913-to-2019/
http://www.usinflationcalculator.com/inflation/consumer-price-index-and-annual-percent-changes-from-1913-to-2019/


Adm. Sci. 2020, 10, 7 13 of 20

VSL of 1.0, and computes the ratio of GNI per capita in China to that in the United States using the
World Bank’s estimates calculated using the Atlas method.10 As shown in Table 4, we re-estimate the
VSL using the same method as Viscusi and Masterman (2017b) but with more recent GNI per capita data.
The estimated VSL rises by almost $100,000. Viscusi and Masterman (2017b) suggest that the income
elasticity of the VSL for lower income countries is in the range of 1.0 to 1.2. Assuming this elasticity
equals 1.1 yields an estimated VSL of just less than $1.27 million for China. This amount is 134 times
the average GNI per capita in China, which is generally regarded as reasonable. Huang et al. (2015)
and Guo et al. (2014) surveyed residents of Guiyu and found that most households are lower middle
to middle income households. Assuming, therefore, that the average income in Guiyu is 70 percent of
the average income in China, then our best estimate of the VSL in Guiyu, using the benefit transfer
method, is about $850,000 as shown in the final row in Table 4.

Almost without exception, the estimates based on willingness to pay are smaller than those based
on benefit transfer, sometimes by a large amount. The main argument in favor of the willingness
to pay estimates is that they are based on the stated preferences or behavior of residents in the
relevant country. However, the estimates can vary considerably depending on how they are
converted to 2018 US$. For example, Hoffmann et al. (2017) and Robinson et al. (2019) provide
different values for the Hammitt and Zhou (2006) study, and the Guo and Hammitt (2009) study.
Viscusi and Masterman (2017b) argue against the willingness to pay studies on the grounds that in
non-US countries they likely suffer from publication selection bias. Considering these factors leads us
to a VSL for Guiyu of $650,000.

Multiplying our estimates of the number of excess deaths due to a pollutant by $650,000 yields
the social cost attributable to each pollutant, which is shown in the tenth column of Table 3. Lead has
the largest social cost, followed by dioxins and furans. Our best estimate of the mortality costs due to
pollution in Guiyu is $414 million with a range between $147 million and $488 million.

4.2. The Impact of E-waste Processing on Cognitive Functioning and Earnings

E-waste processing leads to lead poisoning in children, which has negative impacts on their
cognitive functions and, in turn, decreases their productivity and reduces their earnings (Muennig 2009).
Grosse et al. (2002) suggests that the change in lifetime earnings due to excess BLLs, ∆E, can be
calculated using:

∆E = ∆BLL×
( ∆IQ

∆BLL

)
×

 ∆E
E

∆IQ

× E (4)

where E equals the present value of lifetime earnings, ∆BLL measures the excess blood lead levels,
∆IQ/∆BLL reflects the change in IQ points per unit of excess BLL and (∆E/E)/∆IQ measures the
percentage change in earnings per IQ point change. As discussed earlier, Huo et al. (2007) estimated the
BLL of children in Guiyu was 15.3 µg/dL. The average lead levels of children in China were 9.29 µg/dL
(Wang and Zhang 2006). Therefore the excess BLLs of children in Guiyu were 6.01 µg/dL with a
range from 0.61 µg/dL to 7.25 µg/dL. We use Grosse et al.’s (2002) estimate of both the ∆IQ/∆BLL
ratio, which equals 0.257 IQ points per µg/dL with a range of 0.185 to 0.323, and the percentage
change in earnings per unit change of IQ, which equals 2.00 percent with a range of 1.76 percent to
2.37 percent. The average annual income per capita in Guiyu is about $6514.11 The present value of the

10 https://data.worldbank.org/indicator/NY.GNP.PCAP.CD.
11 The National Bureau of Statistics of China (2018) estimates of the annual per capita incomes for lower middle- to upper

middle-income Chinese in 2018 are 14,130–35,264 Yuan. Guiyu is a rural area within Guangdong. NBSC estimates of
annual per capita incomes in this region range between 16,107–33,688 Yuan in 2018. Taking the average of these four
figures produces an annual per capita income estimate of 22,748 Yuan. This amount is consistent with Guo et al. (2014) and
Huang et al. (2015) who surveyed Guiyu households. Guo et al. (2014) found 42% earned less than 30,000 Yuan annually on
a per capita basis, while Huang et al. (2015) found 75% earned more than 12,000 Yuan. Adjusting our estimate of 22,748 Yuan
for inflation and converting it to US dollars based on purchasing power parity gives an average disposable income equal to
$6514 in 2018 US dollars.

https://data.worldbank.org/indicator/NY.GNP.PCAP.CD
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average income equals $139,108 assuming that the average person works for 40 years and earnings
are discounted at 3.5 percent per annum. By substituting these parameter values into Equation (4),
we obtain an estimate of the lost earnings from lead poisoning of $4297 per child. The proportion of
children (aged under 14) in China is 17.88 percent.12 This suggests that there are about 26,820 (17.88 ×
150,000) children in Guiyu, implying the present value of the cost of their reduced earnings equals
about $115 million, with a range of $73 million to $172 million.

4.3. Social Cost and Sensitivity Analysis

Our best estimate of the social cost of informal e-waste processing for the cohort of Guiyu residents
in 2010, computed by adding the cost of the earnings losses to the mortality costs, is $529 million.
Estimates of the total amount of e-waste processed annually in Guiyu range from 1 million tonnes
(Zhuang 2017) to 1.5 million tonnes (Wu et al. 2010). Taking the average, we estimate approximately
1.25 million tonnes of e-waste were processed in Guiyu in 2010. Dividing the social cost of informal
e-waste processing by this amount gives an estimate of the social cost of informally processing per
tonne of e-waste. Thus, our best estimate of the shadow price of processing e-waste in Southern China
is about $423 per tonne.

Earlier we showed our main the results varying the mortality outcomes, but holding the VSL and
the amount of e-waste processing constant. Table 5 shows our estimates of the shadow price with the
mortality outcomes varying as above, the VSL ranging between $400,000 and $900,000, and the e-waste
processed varying between 1 million and 1.5 million tonnes per year. This analysis yields a range of
estimates of the shadow price of e-waste processing from $109 to $847 per tonne.

Table 5. Sensitivity Analysis: The Shadow Price of Informal E-waste Processing ($/tonne) Varying
Mortality Outcomes, VSL and the Amount of E-Waste Processed.

Mortality Outcomes
VSL

$ 400,000 $ 650,000 $ 900,000

E-waste processed: 1,000,000 tonnes
Best 370 529 688
Low 164 220 277
High 472 659 847

E-waste processed: 1,250,000 tonnes
Best 296 423 551
Low 131 176 221
High 377 528 678

E-waste processed: 1,500,000 tonnes
Best 247 353 459
Low 109 147 184
High 315 440 565

5. Limitations and Conclusions

Electronic waste has become a prevalent issue in the twenty-first century. While unprecedented
developments in technology have contributed to major economic and social developments, the disposal
and processing of its main by-product, namely e-waste, has adversely affected many people.
Informal processing of e-waste results in the emission of various pollutants, which ultimately find their
way into the bodies of local residents and have severe negative consequences. In order to evaluate
policies to deal with this problem in terms of their net social benefits, it is essential to have an estimate
of the shadow price of informal social waste processing.

12 https://data.worldbank.org/indicator/SP.POP.0004.FE.5Y.

https://data.worldbank.org/indicator/SP.POP.0004.FE.5Y
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This study estimates the social cost of the effects of pollutants that are emitted during
informal e-waste processing. We focus on the effects of lead, dioxins and furans and particulate
matter. These pollutants lead to increased incidence of cancer, cardiovascular disease, renal
disease, cerebrovascular disease, cognitive deficits, kidney malfunction, and respiratory infections,
and ultimately increase mortality. We also consider the effect of lead pollution in children and the
resultant impairment of their cognitive development and reductions in their incomes. These impacts
are the most serious.

Our analysis estimates that the social cost of e-waste processing for the cohort of Guiyu residents
in 2010 is $529 million, expressed in 2018 US$. This amount is equivalent to $3528 per person, which is
over half the gross income per capita of the residents of Guiyu. This amount is likely to be higher for
people engaged in e-waste processing than for people who are not. However, those not engaged in
processing still suffer considerably. The overwhelming majority of the total social cost stems from the
increased mortality that results from elevated levels of lead in the blood.

Our best estimate of the shadow price of e-waste processing is $423 per tonne for the cohort
studied. Research by Li et al. (2006) and Baldé et al. (2017) suggests that in 2010, the year of our data,
about 12 million tonnes of e-waste was recycled informally in China. If so, our analysis implies that
the total social cost of informal processing in China was about $5 billion, assuming that other informal
e-waste processing sites in China were similar to those in Guiyu.

Our analysis has a number of limitations. First, we do not measure the social cost of some
impacts on residents of Guiyu. In particular, we do not consider the mortality effects of toxic heavy
metals besides lead, such as cadmium, chromium or copper. Also, we did not consider the effect of
informal e-waste processing on morbidity. This limitation is primarily due to lack of reliable published
data. Thus, our methodology probably underestimates the total social cost of e-waste processing.
Second, only the residents of Guiyu have standing. Therefore, we do not consider the effects of
pollution generated in Guiyu on other jurisdictions. For example, we do not consider the effect of
windborne particulate matter generated in Guiyu on residents of adjacent towns. In fact, it is possible
that some of the particulate matter in Guiyu actually originated elsewhere, and, therefore, these effects
may offset one another. Informal e-waste processing also releases carbon and other greenhouse gasses.
These impacts are not included in our analysis because the amounts of these pollutants released in
Guiyu have a very small effect on the residents of Guiyu. However, they do affect global warming.
If standing were global, then the impacts of carbon and other GHG emissions should also be included.
Third, our estimate assumes that the status quo is maintained over time. In fact, government policy
in Guiyu has changed the levels of emitted pollution since 2010. In 2013, local authorities set up
the National Circular Economy Pilot Industry Park (the Park), which became fully operational in
2015. Since that time, many e-waste processors have been shut down and the remaining workshops
were ordered to move to the Park.13 Many informal processing businesses were consolidated into
29 larger companies. The local government has also remediated heavily polluted land. In 2014 the
Chinese premier declared “War on Pollution” and, near the end of 2017, the Chinese government
banned importation of 24 types of waste, including e-waste. All of these initiatives have reduced the
levels of pollutants in Guiyu. One likely consequence is that exported e-waste (and other waste) is
diverted away from China to other countries with fewer restrictions. Brooks et al. (2018) estimate
that 111 million metric tons of plastic waste will be displaced from China by 2030 as a result of this
new policy.

Despite the limitations of our analysis, our estimate of the social cost of informal e-waste processing
may encourage governments in jurisdictions with informal e-waste processing to adopt and enforce
better (i.e., more economically efficient) environmental policies. As mentioned above, our estimate

13 https://www.unenvironment.org/news-and-stories/story/women-and-rising-tide-environmental-crime. See also https://web.
archive.org/web/20161109021354/http://shantou.gov.cn/cnst/0305/201604/41ef2b4bd6f349c28d1634353915db56.shtml.

https://www.unenvironment.org/news-and-stories/story/women-and-rising-tide-environmental-crime
https://web.archive.org/web/20161109021354/http://shantou.gov.cn/cnst/0305/201604/41ef2b4bd6f349c28d1634353915db56.shtml
https://web.archive.org/web/20161109021354/http://shantou.gov.cn/cnst/0305/201604/41ef2b4bd6f349c28d1634353915db56.shtml
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is based on conditions in Guiyu in about 2010 and therefore it is most relevant to jurisdictions with
similar characteristics. When it is used in other jurisdictions, it should be modified to reflect the
particular circumstances.

Our estimate may also be used to inform the e-waste processors themselves not only of
the dangers they face and the cost to themselves, but also the cost to others of their processing
methods. Educational programs aimed at e-waste processors may encourage adoption of safer
processing methods.

E-waste is a global problem. Waste banned from one country is likely to end up in another country.
To provide a long-term, sustainable solution, e-waste must be reduced from exporting, high income
nations. Our shadow price might influence recycling policies and the implementation of those policies
in such countries. Although Canada, for example, bans the export of e-waste, less than 20 percent
of e-waste is recycled in Canada. Furthermore, better implementation of regulations in high income
countries pertaining to producers’ end-of-life management of their products may have social benefits.
Our estimates may also influence both producers of electronic products and citizens who use them of
the importance of disposing of e-waste in an environmentally responsible way.

Our research makes two other contributions. First, it highlights the negative consequences of
exposure to lead. Major improvements in societal well-being can be achieved by limiting lead exposure.
For example, initiatives to minimize occupational exposure and inhalation of lead through the use of
face masks and better ventilation in e-waste processing workshops could be social welfare improving.
Additionally, investment in education programs that encourage parents to monitor and restrict their
children’s hand-to-mouth behavior could be socially beneficial. Second, it discusses in one place
a broad set of consequences of informal e-waste processing. Previous research has measured the
volumes of e-waste and the levels of dangerous pollutants in informal e-waste processing areas (see,
for example, Baldé et al. 2017; Schluep et al. 2009; Lepawsky and McNabb 2010). Often, though, each
of these studies focuses on only one type of pollutant. Our research considers multiple pollutants.
Thus, it provides a more comprehensive picture of the impacts of e-waste processing.
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