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Non–technical Summary

In recent years empirical researchers’ demand for releasing business survey data has dy-
namically increased. Statistical offices and offical or private research institutes are asked
to pass on their data for scientific use to the scientific community. German law provides
that individual datafiles are only allowed to pass on for scientific use and if disclosure lim-
itation is guaranteed in effect. In case of personal data, confidentiality is easier to achieve
than it is in that of firm data. Methods to avoid re-identification of individual enterprises
have to be developed, which are simultaneously suitable to preserve as much information
as possible.

Traditional methods to avoid disclosure often destroy the structure of data, i.e., infor-
mation loss is potentially high. Therefore, I discuss an alternative technique of creating
anonymized datasets. The procedure creates datasets - the resample - which should have
the same characteristics as the original survey data and hinder re–identification as they
only consist of synthetic values. Some applications of this method with (a) simulated data
and (b) innovation survey data, the Mannheim Innovation Panel (MIP), are presented in
comparison to a common method of disclosure control, disturbance with multiplicative
error.

The experiments show that univariate distributions can be better reproduced by un-
weighted resampling. Linear regression results can be reproduced quite well if the re-
sampling procedure implements directional information of the data in form of the correla-
tion structure. If multiplicative disturbance is controlled for in the estimation approach,
parameter estimates will also remain. With regard to disclosure avoidance anonymized
data with multiplicative perturbed variables better performs on the average. Even though
resamples consist of synthetic values, confidentiality problems remain.
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Abstract:

A problem statistical offices and research institutes are faced with by releasing micro-data
is the preservation of confidentiality. Traditional methods to avoid disclosure often destroy
the structure of data, i.e., information loss is potentially high. In this paper I discuss an
alternative technique of creating scientific-use-files, which reproduce the characteristics of
the original data quite well. It is based on Fienberg’s (1997 and 1994) [5], [6] idea to
estimate and resample from the empirical multivariate cumulative distribution function of
the data in order to get synthetic data. The procedure creates datasets - the resample -
which have the same characteristics as the original survey data. In this paper I present
some applications of this method with (a) simulated data and (b) innovation survey data,
the Mannheim Innovation Panel (MIP), and compare resampling with a common method
of disclosure control, i.e. disturbance with multiplicative error, concerning confidential-
ity on the one hand and the appropriateness of the disturbed data for different kinds of
analyses on the other. The results show that univariate distributions can be better re-
produced by unweighted resampling. Parameter estimates can be reproduced quite well
if (a) the resampling procedure implements the correlation structure of the original data
as a scale and (b) the data is multiplicative perturbed and a correction term is used.
On average, anonymized data with multiplicative perturbed values better protect against
re–identification as the various resampling methods used.

Keywords: resampling, multiplicative data perturbation, Monte Carlo studies, business
survey data

JEL Classification: C13, C15, C81



1 Introduction

Empirical research in economic and social science requires information about households
and firms, which is collected by statistical offices and public or private research insti-
tutes in form of microdata. As computer capability and availability of statistical software
increased in recent years, empirical analyses and thus demand for microdata have been
advancing dynamically. German law provides that microdata from government statistics
are allowed to be passed on for scientific use only and if disclosure limitation is in effect1

guaranteed. The same holds for survey data assembled by private or public research in-
stitutes, if confidentiality is promised to the respondents. Hence, a problem statistical
offices and research institutes are faced with by releasing micro-data is the preservation
of confidentiality. Even business survey data are at risk because disclosure is more likely
than for personal data as additional information are easier obtainable and population size
is smaller (see e.g. Brand, 2000 [2]). Traditional methods to avoid disclosure often de-
stroy the structure of data, i.e., information loss is potentially high and the potential for
empirical analyses decreases (see Rosemann, 2003 [15]).

In this paper I discuss an alternative technique of creating scientific-use-files2, resampling,
which generates a synthetic microdata file with nearly the same characteristics as the
original survey data. It is based on Fienberg’s (1997 und 1994) [5], [6] idea to estimate
and resample from the empirical multivariate cumulative distribution function of data.
As elements of the resample are only replicates and do not necessarily correspond to any
individuals in the original sample survey, an identification of the true values should not
be possible. Nevertheless one cannot rule out the possibility of disclosure, as synthetic
datasets could be very similar to real characteristics of observations. Especially, extreme
values are at risk.

The paper is structured as follows: in section 2 I describe the idea of resampling and an
easily constructed algorithm to create synthetic data, attributed to Devroye and Györfi
(1985) [4] and Silverman (1986) [18]. Subsequently, applications with simulated data
(Section 3) and business innovation survey data (Section 4, see also Appendix B) point
out the properties of resamples. Confidentiality and applicability are examined. In a
second step I compare resampling in particular with a common method of disclosure
control, i.e. disturbance with multiplicative error (see e.g. Hwang, 1986 [10]), concerning
confidentiality on the one hand and the appropriateness of the disturbed data for different
kinds of analyses on the other.

2 The Idea of Resampling

In order to generate synthetic data with the same characteristics as an original survey data
file, one has to estimate the density function of the variables in the data and then sample
from it. In practice, it will be impossible to achieve this with complete accuracy, as full
information about the true density of data is not available. One could apply a parametric
approach in assuming a theoretical density function with unknown parameters, such as the

1Disclosure should not be possible without unusually high costs and waste of time and energy.
2In contrast to public-use-files, which should be totally anonymized, i.e. disclosure is not possible under

no circumstances. Scientific-use-files guarantee only disclosure limitation in effect (see above), therefore
such files are still exploitable for scientific use.

1



normal distribution. The parameters would have to be estimated with the data, e.g. means
and variances. Then sampling from a theoretical distribution function can be quite easily
done. However, in reality survey data will rarely follow a specific theoretical distribution.

Fienberg (1997) [5] proposes non-parametric and semi-parametric estimation methods,
such as kernel density estimators or a Bayesian approach (see also Fienberg et al., 1996
[7]). The estimated cumulative distribution function will differ to some degree from the real
distribution of the data. Most of the survey data, official statistics as well as surveys from
research institutes, undercover the real population. Therefore, the sample distribution is
merely an estimation of reality. Another source of bias is introduced by measurement er-
rors. Furthermore, techniques to estimate multivariate cumulative distribution functions
have only been used for low-dimensional data yet. Even three–dimensional relations are
difficult to describe and only if the sample size is large enough (e.g. the software package
XploRe, which is described in Härdle et al., 1991 [9]). One possibility to improve the
estimation is to use a Bayesian method: one has to estimate the empirical distribution
function and generate the full posterior distribution (dependent distribution). This ap-
proach takes into account regression-like relationships within the sample. “It provides
a way of formalising the process of learning from data to update beliefs in accord with
recent notions of knowledge synthesis” (Congdon, 2001, 1 [3]). In the following, a sample
is drawn from the posterior distribution. Fienberg et al. (1996) [7] propose to sample
from it using Rubin’s multiple imputation technique (Rubin, 1993 [16] , 1987 [17]), which
includes Bootstrap sampling.

Devroye and Györfi (1985) [4] and Silverman (1986) [18], who deal with nonparametric
density estimation and sampling from density estimates, show how to draw from density
functions without need to estimate it explicitly. The procedure can be used to create
samples that have the underlying characteristics and structure of the real data. However,
spurious details that have arisen from random effects are oppressed. The algorithm for
the univariate case is described in the following: suppose a continuous variable X =
X1, X2, ..., Xn (n observations) and a kernel density function K with bandwidth h. The
bandwidth specifies the halfwidth of the kernel, the width of the density window around
each point.

1. Draw observations XZ of the data file X with replacement.

2. Compute k to have probability density function K.

3. Generate Z = XZ + hk.

The kernel function can be simulated from an Epanechnikov kernel, for example3:

K(x) =
3
4
(1− x2) for |x| ≤ 1 (1)

A simple procedure to simulate from the rescaled Epanechnikov kernel is given by Devroye
and Györfi (1985)[4]:

1. Compute three univariate random numbers ZV1, ZV2, ZV3 within [−1, 1].
3One can also think of the normal density.
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2. Generate k = ZV2, if |ZV3| ≥ |ZV2| and |ZV3| ≥ |ZV1|, otherwise k = ZV3.

The procedure resamples with replacement4 from the data and disturbs the information
in such a manner that the distribution of each variable is retained. The sample size of Z
has to be large enough to approximate the distribution of the original data X.

In the literature the choice of the smoothing parameter, the bandwidth, of the kernel has
been discussed frequently (see e.g. Parzen, 1962 [14], Tapia and Thompson, 1978 [20]).
The appropriate choice for the smoothing parameter will always be influenced by the
purpose for which the density estimate is to be used. An optimal bandwidth minimizes
the mean square error between the real and the estimated kernel density. It unfortunately
depends on the (unknown) density. A meaningful approach is to choose a bandwidth
with reference to a standard family of densities. Hence, Silverman (1986) [18] obtains a
bandwidth which minimizes the mean integrated square error, if the data were Gaussian
and a Gaussian kernel were used, and therefore is not optimal in any global sense:

h =
0.9m

n1/5
(2)

m = min
[√

σ2
x,

quantile(p75)x − quantile(p25)x

1.349

]
.

According to the confidentiality problem, the choice of bandwidth h of the used kernel
function is rather difficult because it influences the goodness of fit to the original distribu-
tion on the one hand and the probability of disclosure on the other. A narrow bandwidth
causes a better approximation of distributions but raises the probability of re-identification
as the resampled values - though synthetic - could be very similar to the original. One
should also consider if a data intruder might be interested in disturbed values.

A higher–dimensional version of the algorithm can be constructed by using directional
information in the data, such as the co–variance–matrix of X. Therefore, the multivariate
distribution can nearly be performed. Hence, Devroye and Györfi (1985) [4] modify the
third step of the algorithm for I-dimensions:

Z = XZ + hκA (3)
V CV −1 = A′A

κ = [k1 k2 . . . kI ].

V CV is the co–variance–matrix of the original variables X1, X2, ..., XI , which is used as
weight of the different kernels κ. To get first and second moment properties the same as
those of the data the procedure can be transformed (Silverman, 1986 [18]):

Z = X̄ + (XZ − X̄ + hk)/(1 + h2σ2
k/σ2

x)1/2, (4)

where X̄ is the sample mean of X and σ2
x and σ2

k the variances of X respectively k. These
corrections prevent an overestimation of variances. In the multivariate case Silverman
(1986) [18] proposes to scale the kernel to have the same variance matrix as the data.

4Resampling with replacement increases confidentiality as some of the initial observations appear several
times in the anonymized data. Hence, extreme values rarely arise.
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Devroye and Györfi (1985) [4] provide some modified versions of the above algorithms for
simulating from density estimations of various kinds, e.g. for variables which concentrate
their masses on an intervall, e.g. positive numbers.

The procedure presented above is only applicable for continuous variables. As most of the
survey data contain discrete variables, too, one has to find additional masking methods
while confidentiality problems concerning these exist. Especially, regional information
and classifications of economic sectors could be meaningfully used for re–identification of
individual firms. Another problem arise when using resamples for analyses. One has to
consider that several calculations are not possible. Non–linear functions of variables cannot
be estimated by their resampled pendants, because f(g(x)) 6= g(f(x)). For example, the
estimated R&D-intensity, the ratio of resampled R&D-expenditure (Z1) and sales (Z2), is
biased in general:

E

[
Z1

Z2

]
= E

[
XZ1 + h1k1

XZ2 + h2k2

]

6= E

[
XZ1

XZ2

]

But data providers are able to compute several combinations or functions of variables,
which data users need for their analyses, before the resampling procedure and add it to
the resample.

3 Simulations

To demonstrate the effects of the resampling procedure Monte Carlo simulations are very
useful as regularities can be revealed (see e.g. Robert and Casella, 2002 [13]). Here, the
simulated data contains 2000 observations, respectively, and the procedure is repeated 100
times.5 Six variables are simulated by drawing from four theoretical distribution functions:
1. normal, 2. the logarithm of 1, 3. exponential and 4. chi-square distribution. The fifth
variable is a linear combination of the first and fourth variable and number six (Y ) is a
linear combination of the 1. (X1), 3. (X2), 4. (X3) and an error term (u). Hence, a linear
regression model is constructed (see below).

In order to find an optimal way of constructing a resample, eight different kinds of resam-
ples are constructed, which differ concerning the bandwidth of the kernel and the usage
of the co–variance- or correlationmatrix of the unmasked data as weights. The interaction
between confidentiality and data quality can be examined.

1. A1: the resample is constructed as described above but step three is replaced by
equation 4 to better reproduce the variances of the variables. Different bandwidths
according to 2 are used for each variable. It is expected that the bandwidth leads
to a good approximation of the kernel density but therefore to a higher disclosure
risk as well. As the chosen bandwidth is only optimal for variables with normal
distributions, the error will increase in the case of that variables in the datasets
which follow different distributions.

5Earlier experiments have shown that results will not remarkably change anymore when the number of
repetitions is raised.
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2. A2: the bandwidth of A1 is multiplied by factor 1.5. When increasing the window
width of the kernel the expected values of the resample get a higher variability.
Though distortion strengthen. Hence, the density estimation will not be as accurate
as in case A1, but confidentiality will increase.

3. B1: is the same as A1, additionally the kernels are weighted with the co–variance–
matrix as shown in equation 4.

4. B2: Is the same as A2, additionally the kernels are weighted with the co–variance–
matrix.

5. C1: A1 is computed but the kernel is scaled to have the same co–variance matrix as
the data (see Appendix A).

6. C2: C1 is generated with the same bandwidth as in A2.

7. D1: is similar to C1 though using the correlation matrix. The idea is to reproduce the
correlation structure of the data (see Appendix A). Hence, improvement of regression
results is expected.

8. D2: D1 is generated with the same bandwidth as in A2.

For comparison, an anonymized version of the data is constructed by multiplying each
variable with random numbers from univarate distribution functions within the intervall
[0.5;1.5]. Hence, means remain the same, but variances and co–variances become biased.

To get a measure of how much confidentiality is provided by the masking techniques one
should consider the situation which a potential data intruder is faced with: The intruder
has additional information about individual firms, the so called additional database, at his
disposal and these data contain several variables which are also included in the anonymized
microdata file (common variables), which he wants to disclose. With the number of com-
mon variables disclosure risk increases (see Spruill, 1983 [19]). To get an upper bound of
re–identification risk the anonymized microdata in these simulations are matched with the
original data. Confidentiality can then be defined as follows (see e.g. Spruill, 1983 [19]):

1. For all elements in the original data, find the observation in the anonymized file that
minimizes the sum of absolute deviations for all common variables (I chose three
variables). The elements in the anonymized file can be matched several times to the
original observations. Therefore, some observations of the resamples can possibly
not be assigned.

2. If the observation that is found in 1. is the same as the one the masked file is based
upon and only differs 20% from the original6, a link is made.

3. The confidentiality criteria is then defined as the percentage of observations for which
such a link cannot be made.

6If the values differ more than 20%, I presume that confidentiality is still satisfied as uncertainty of a
re–identification is too high.
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This proceeding should be distinguished from an estimation of the re–identification prob-
ability, which - in addition to the applied anonymization techniques - should take into
account (a) the probability that observations of the anonymized microdata file are also
involved in the additional database used for disclosure, and (b) the possibility of mea-
surement errors in both data files (see e.g. Brand, 2000 [2] for a discussion of the re–
identification risk of business survey data).

Table 1: Monte Carlo Simulations - Confidentiality Measure (CM)

Resample Resample Resample Resample
A1 A2 B1 B2

CM 73.4% 81.4% 73.4% 80.6%

Resample Resample Resample Resample Multiplicative
C1 C2 D1 D2 Error

CM 96.6% 98.3% 88.3% 93.5% 97.2%

In Table 1 confidentiality measures of the different kinds of resamples and a dataset of
masked variables with multiplicative errors are shown. As expected, confidentiality in-
creases if bandwidths of the kernels are multiplied. The possibility of re-identification is
less than 30% regarding each method. The resampling procedure C2 and data perturba-
tion with multiplicative errors perform the best with shares of identified observations of
only 2 to 3%.

Kernel density estimates of the raw versus anonymized variables are shown in Appendix E
to visualize the effects of the different anonymization procedures. When an Epanechnikov
kernel is used, the normal distribution is reproduced quite well by each resampling method.
In comparison, the perturbed variable norm mp has a smaller variance than the original.
Resampling procedures C and D, where the kernels are scaled to have the same co–variance
or correlation structure as the original data, failed to retain highly skewed distributions
even if the bandwidths were multiplied. In contrast, methods A and B fit fairly precisely.
Altogether, multiplicative perturbations satisfactorily reproduce univariate distributions.

Tables 2 and 3 show the quantitative extent of information loss the different perturbation
procedures add to the data. Deterioration is measured by the average absolute deviation
from the original measuring unit, respectively (see Appendix B). Means are better repro-
duced by multiplicative perturbation but the method distorts the variance of variables
by around 12% - resampling on the average by 7%. The co–variance–matrix is biased if
the variables are multiplied with errors (15%). Resampling seriously distorts co–variances
(about 35-42% bias), even if the kernel–matrix is scaled to have the co–variance–matrix
of the original data. Correlations and rank–correlations of masked data remarkably do
not differ more than 3-4% from the original in most cases, except C1 and C2. Resampling
D1 and D2 best performs the correlation structure. Even a wider window in computing
the kernel-matrix does not additionally destroy multivariate relationships and multivariate
distributions are only little more biased when using a wider kernel-window. In general,
the application of multiplied bandwidths does not worsen performance in a notable way.
Deterioration of variances even decreases.
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Table 2: Monte Carlo Simulations - Average Absolute Deviation in %

Method Means Variances Correlations Rank- Co–variances
Correlations

Resample A1 4.98 7.45 2.94 3.17 36.28

Resample A2 4.99 7.42 3.11 3.65 36.50

Resample B1 4.99 7.42 3.03 3.33 36.23

Resample B2 5.00 7.38 3.39 4.06 36.92

Resample C1 4.72 6.32 4.12 6.89 41.18

Resample C2 4.60 5.58 4.77 8.12 42.05

Resample D1 4.84 7.36 2.85 3.30 35.81

Resample D2 4.79 7.21 2.85 3.80 35.40

Multiplicative 1.28 12.43 3.58 2.79 14.23
Error

Table 3 gives an impression of the effects on econometric parameter estimations produced
by the different kinds of anonymization. The original linear model is constructed as follows:

Y = 0.7 + 0.5X1 + X2 + 0.2X3 + u, u ∼ N(0, 1). (5)

In the simulations, the model–parameters are alternately estimated with OLS-method
using perturbed versions of the orignal variables Y and X1, X2, X3. The expectation
is that estimations with resamples lead to unbiased parameter estimates if multivariate
relationships are retained. In case of multiplicative perturbation, model parameters cannot
be consistently estimated. Hwang (1986) [10] shows how to correct biased estimates to get
consistent results if the distribution of the multiplicative random number is known. The
co–variance–matrix of the errors Ei (i = 1, 2, ..., I, where I is the number of quantitative
variables) can be computed. As they are independently distributed, all co–variances are
zero and V ar(Ei) = 1

12 (i = 1, 2, ..., I). A consistent estimator with a perturbed data
matrix Z and an endogenous variable Yz with weight U = diag[E(E2

i )], E(E2
i ) = V ar(Ei)+

E(Ei)2, can easily be constructed7 8:

β̂ = [(Z ′Z)÷ U ]−1Z ′Yz. (6)

Table 3 shows the results of the Monte Carlo simulations for the different types of resamples
and data with multiplicative perturbation. The last column contains estimated values with
correction term U . Coefficients that do not significantly differ by more than 5% from the
original parameters (see above) are marked with*9.

7See an application with simulated data and with the Mannheim Innovation Panel in manufacturing of
the year 1997 in Gottschalk, 2002 [8].

8A÷B is the Hadamard division of the matrizes A und B, i.e. elementwise division.
9A t-test (100 observations) is computed to reveal significant deviations.
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Table 3: Monte Carlo Simulations - OLS-Regression Results

Variable Resample Resample Resample Resample
A1 A2 B1 B2

X1 0.499* 0.493 0.483 0.457
(t-stat.) (19.98) (17.71) (17.16) (13.54)

X2 0.987 0.974 0.971 0.941
(t-stat.) (65.87) (58.33) (57.55) (46.53)

X3 0.201* 0.198* 0.195* 0.185
(t-stat.) (5.63) (4.99) (4.86) (3.84)

Const. 0.727 0.759 0.779 0.873
(t-stat.) (10.13) (9.50) (9.66) (10.82)

R2 0.90 0.88 0.88 0.83

Variable Resample Resample Resample Resample Multiplicative Error
C1 C2 D1 D2 uncorrected corrected

X1 0.487 0.483 0.503* 0.503* 0.452 0.501*
(t-stat.) (20.42) (20.01) (22.58) (22.53) (14.72) (15.26)

X2 0.998* 0.998* 0.997* 0.997* 0.900 0.997*
(t-stat.) (69.21) (68.34) (74.40) (74.15) (48.72) (50.53)

X3 0.177 0.165 0.203* 0.201* 0.176 0.197*
(t-stat.) (5.19) (4.79) (6.36) (6.31) (4.11) (4.27)

Const. 0.741 0.757 0.702* 0.704* 0.969 0.710*
(t-stat.) (10.82) (10.91) (10.95) (10.95) (10.73) (7.53)

R2 0.91 0.91 0.92 0.92 0.72 0.80

In all cases, coefficients remain significantly unequal to zero and signs do not change.
Resampling procedures D1 and D2 as well as the corrected estimates in the case of multi-
plicative perturbation produce the best results as all coefficients are significantly equal to
the real values. When regression analysis is carried out without a correction term, param-
eter estimates with multiplicated perturbed data slightly differ from the original, goodness
of fit R2 clearly decreases as well. Weighted or scaled resamples with co–variance–matrix
(B– and C–versions) produce some remarkably differing regression coefficients, e.g. the
constant in B and the parameter of X3 in C. A larger bandwidth in the second versions, re-
spectively, worsen parameter estimations. For example, the coefficient of X1 is significant
unequal to 0.5, in contrast to version A1.

To be concise, one can say that univariate distributions can be best reproduced by resam-
ples with unweighted kernels, whereas multivariate structures can be better retained in
using directional information in form of the correlation structure of the data when con-
structing resamples. Multiplicative perturbation re–performs univariate and multivariate
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distribution parameters quite well. However, in linear regression analysis a correction term
should be implemented to retain accurate parameter estimates. Yet, it should be noted
that in comparison, the last method has a lower re–identification risk.

4 Empirical Application - An Example

In a second step, anonymized data are constructed by using real data - the Mannheim
Innovation Panel (MIP)10 in the manufacturing sector from 1999 (see also Appendix C).
Five quantitative variables are chosen: “sales”, “number of employees”, “research and
development (R&D) expenditure per sales” (R&D-intensity), “innovation expenditure”
and the “number of high qualified personnel”. These variables are censured to the left,
i.e. they have only positive values. The resampling procedure here used does not consider
these restrictions. Therefore, a few of the synthetic observations in the resample have
negative signs. Tests have shown that this fact does not matter for a lot of descriptive and
regression analyses. However, variables with a notable number of values that are zero - e.g.
R&D expenditure - are difficult to reproduce due to the fact that the share of zeros cannot
be maintained. Some modifications of the resampling procedure are necessary. This will
be the subject of further work.

Table 4: MIP - Confidentiality Measure (CM)

Resample Resample Resample Resample
A1 A2 B1 B2

CM 61.5% 67.4% 53.6% 53.7%

Resample Resample Resample Resample Multiplicative
C1 C2 D1 D2 Error

CM 99.6% 99.7% 68.8% 74.2% 84.6%

Table 4 lists the share of links that could not be made with the original data. “Sales” and
“number of employees” are chosen as link variables.11 The procedure additionally divides
the data in industry classes (two–digit NACE-level) and East and West German firms.
Hence, a link can only be made within a strata. In contrast to the Monte Carlo simula-
tions above, the anonymized datasets on average involve higher re–identification risks for
the individual firms. Where resampling D best protects the data with a confidentiality
level of nearly 100%, resampling B-versions have re–identification risks of nearly 50%.

10The scientific-use-files of the MIP are freely available for purely non-commercial basic research. Exter-
nal users are informed about anonymization techniques. The applied anonymization methods are described
in Gottschalk, 2002 [8]. In the scientific-use-files of the MIP, firm specific random numbers are used and
only “sales” and “number of employees” are perturbed with multiplicative error, which is an univariate
random number between [0.5;1.5]. Hence, productivity (sales per number of employees) remains constant.
Here, each continuous variable is multiplied by different random numbers and the scenarios in this paper
are not completely transferable to the scientific-use-files of the MIP.

11In a realistic scenario, one would also presume to have “sales” and “number of employees” as common
variables in anonymized microdata and additional data.
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Multiplicative data perturbation preserves confidentiality on a high level (85%) compared
to the average of resampling procedures.

Informational loss due to different anonymization methods is measured as the sum of
variables’ “sales”, “number of employees” and “innovation expediture”12 average absolute
deviation from original statistics (as described in Appendix B). The results are presented
in Table 5. In contrast to the Monte Carlo simulations, resampling - except of versions C
- performs very well in reproducing univariate and multivariate distribution parameters,
whereas similar errors occur in each statistic when applying multiplicative perturbation
to the data. These findings seem to be an indication of dependence between the used
disturbance technique and the data generating process. One should consider that different
results could occur regarding various datasets.

Table 5: MIP - Average Absolute Deviation in %

Method Means Variances Correlations Rank- Co–variances
Correlations

Resample A1 0.02 0.00 0.00 2.98 0.00

Resample A2 0.03 0.00 0.00 5.12 0.01

Resample B1 0.00 0.00 0.00 0.68 0.00

Resample B2 0.00 0.00 0.00 0.67 0.00

Resample C1 7.14 20.72 39.06 18.98 59.00

Resample C2 8.27 20.83 34.06 19.24 54.29

Resample D1 0.05 0.02 0.00 5.52 0.01

Resample D2 0.08 0.03 0.00 7.01 0.03

Multiplicative 6.38 19.95 3.63 2.06 11.15
Error

Table 6 in Appendix D presents the results of parameter estimations (OLS) of an exem-
plary linear model, explaining “R&D-intensity”, defined as “R&D expenditure per sales”,
of innovative firms13. The independent variables are “ln(firm size)” (logarithm of the
“number of employees”) and its square (“ln(firm size)2”), a measure of market concen-
tration within an industry (2-digit NACE level), the Herfindahl index (“herfindahl”)14, a
dummy variable indicating an expected positive growth rate of sales (“demand”), an in-
dicator of East German firms (“East”), the share of highly qualified personnel within the
enterprise (“qualified pers.”), a binary variable, which takes the value one if the firm intro-
duced at least one innovation, which is essentially based on new developments at scientific

12These variables are used because they are highly correlated.
13Innovators are firms that have successfully completed at least one innovative project within a three-year

period.
14I calculate the Herfindahl index from estimated market shares of firms in the Mannheim Enterprise

Panel (MUP), which includes 12,000 firms (see Almus et al., 2000 [1], for more detailed information on the
MUP).
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institutions (“science”), and twelve sector dummies (two-digit NACE level: 10,15,17-36)
to control for heterogeneity. For the sake of simplicity, the latter are not listed in the ta-
ble. All variable combinations are constructed before the anonymization processes. This
is necessary because variables within the resample cannot be combined meaningfully (see
above). Densities of functions of variables in resamples strikingly differ from the original
ones. For comparability, shares of sales are also computed before masking data with mul-
tiplicative error. As mentioned before, only quantitative values are perturbed regarding
both resampling and multiplicative perturbation. All indicator variables and the Herfind-
ahl index (a firm level variable) are maintained.

Regression results do not strikingly differ from the original values in the cases of resamples
D1 and D2. Only the effects of concentration and the share of qualified personal are under-
and overestimated, respectively. This result confirms the conclusions of the Monte Carlo
simulations. The A-versions of resampling also perform quite well. Significance levels and
signs remain in most cases and values do not differ remarkably. Only the coefficients of
the Herfindahl index are not significant anymore. Resamples B and C do not produce
satisfactory results as already seen in the Monte Carlo study. Multiplicative errors under-
estimate the effect of employment–level, even the sign of variable-parameter ln(Firm Size)2

is reversed. This mistake can be eliminated by the correction term, but the coefficient of
ln(Firm size) greatly decreases compared to the original estimation result. In comparison
to the simulation disturbance is even more severe regarding linear regression analyses.
As mentioned above, one should consider that the extent of deterioration is a cumulated
effect of the applied anonymization technique but also of special data characteristics and
model specifications. The effect of anonymization on regression results maybe multiplied
if model specifications are wrong or essential explaining variables are missing.

5 Resume

The Monte Carlo studies and application with real data, the Mannheim Innovation Panel,
show the effects of resampling in comparison to multiplicative data perturbation on dif-
ferent kinds of analyses. Univariate distributions can be best re–performed by resampling
with independent kernels. When using the correlation structure of the original data as
scales by constructing the kernel–matrix, resampling best retains linear regression results
but univariate distributions - especially of skewed variables - are biased. Multiplicative
perturbation reproduces descriptive statistics quite well and in linear regression analysis a
correction term could be implemented in order to retain accurate parameter. Dependent
on the kind of anaylses - univariate or multivariate, the optimal resampling techniques
varies. For econometric calculations versions D are most suitable as shown in the sim-
ulations and the empirical example. But univariate distributions fairly deviate in some
cases, as shown with the help of kernel densitiy estimations in Appendix E. In comparison,
multiplicative perturbation as well as resampling versions A performs better due to the
reproduction of univariate and multivariate distribution parameters and regression results
can be retained fairly.

Though resamples consist of synthetic values, confidentiality problems remain. On aver-
age, anonymized data with multiplicative perturbed values performs better. But confiden-
tiality increases when the kernels are correlated. Though data quality and data protection
is not a contradiction in any case. When involving the correlation structure of the data by

11



constructing the various kernels, confidentiality is relatively high and multivariate relations
are produced quite well. As long as data characteristics are satisfactorily be retained, the
enlargement of the kernel bandwidth can be used to improve confidentiality. The optimal
point on the trade–off between confidentiality and data quality has to be discovered in
further work. Confidentiality measures and estimations of re–identification risks should
be computed in realistic scenarios where additional databases are used for a match with
perturbed microdata sets to finally assess the various anonymization techniques.

It remains to examine effects on non–linear and semi–parametric model estimations as well
as on different kinds of model specifications with the MIP. The latter is quite important as
potential mis–specifications may influence regression analysis and deterioration of regres-
sion results due to anonymization may not be independent of wrong model specifications.
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A Transformation of the Kernel

1. Reform the kernels, generated from equation 1, to be zero correlated:

κ̃ = κAk

V CV −1
k = A′kAk,

where V CV is the co–variance–matrix of the kernels.

2. Transform the kernels to the desired co–variances (C1,C2) or correlations (D1,D2):

κ̂j = κ̃Aj , j = cov ∨ j = corr

V CV = A′covAcov

C = A′corrAcorr,

where V CV and C are the co–variance– and the correlation–matrix of the original
variables X1, X2, ..., XI .

B Measures of Information Loss

For all variables X = (X1, X2, ..., XI) of the original data and Z = (Z1, Z2, ..., ZI) of the
perturbed data the following measures are computed to estimate information loss due to
the different anonymization procedures:

• Average relative absolute deviation of means:

1
I

I∑

i=1

|Z̄i − X̄i|
|X̄i|

• Average relative absolute deviation of variances:

1
I

I∑

i=1

|σ2
zi
− σ2

xi
|

|σ2
xi
|

• Average relative absolute deviation of co–variances:

1
1
2I(I − 1)

I−1∑

i=1

I∑

j>i

|σzij − σxij |
|σxij |

• Average relative absolute deviation of correlations:

1
1
2I(I − 1)

I−1∑

i=1

I∑

j>i

|ρzij − ρxij |
|ρxij |

• Average relative absolute deviation of rank–correlations (Spearman rank correlation
coefficient):

1
1
2I(I − 1)

I−1∑

i=1

I∑

j>i

|szij − sxij |
|sxij |
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C The Mannheim Innovation Panel

The Mannheim Innovation Panel (MIP) was assigned by the German government to con-
duct an innovation survey representative of the German economy leading to internationally
comparable data on the innovation behaviour of German firms. It started in 1993 as a
voluntary mail survey and is constructed as a panel with yearly waves. The population of
the MIP covers legally independent German firms in the sectors mining and manufactur-
ing. In 1995 the survey on innovation activities of distributive and business related service
sector firms (Mannheim Innovation Panel - Services, MIP-S) was additionally initiated.
Up to 2002 the MIP and MIP-S have been running ten times in co-operation with infas
Institute for Applied Social Science. The MIP is strongly based on the recommendations
on innovation surveys manifested in the Oslo-Manual of the OECD and Eurostat (OECD,
1997 [12]). It provides basic information on product and process innovations, innovation
activities and components of innovation expenditure related to these activities (see Janz
et al., 2001 [11]). The data are available in an anonymized version (scientific-use-file) to
external users for non-commercial basic research. Currently, more than 30 researchers
utilize the scientific-use-files.
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E Kernel Density Estimates

Figure 1: Normal Distribution
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Figure 2: Exponential Distribution
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Figure 3: Chi-square Distribution
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Figure 4: Logarithm of Variable 1
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Figure 5: Mixed Distribution 1
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Figure 6: Mixed Distribution 2 - Endogenous Variable y
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