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Abstract: The dynamic choice between individual and social learning is explored for a
population of autonomous agents whose objective is to find solutions to a stream of related
problems. The probability that an agent is in the individual learning mode, as opposed to
the social learning mode, evolves over time through reinforcement learning. Furthermore,
the communication network of an agent is also endogenous. Our main finding is that
when agents are sufficiently effective at social learning, structure emerges in the form of
specialization. Some agents focus on coming up with new ideas while the remainder of the
population focuses on imitating worthwhile ideas.
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“Innovate. That’s what we do.”

—Steve Jobs during his keynote speech for Apple Expo in Paris, 16 September 2003 [1].

“These guys can be taken but the only way we are going to take them is by studying them, know
what they know, do what they do, watch them, watch them, watch them, look for every angle, stay on
their shoulders, clone them, take every one of their good ideas and make it one of our good ideas.”

— Steve Ballmer of Microsoft in pep rally footage in the mid 1990’s [2] .



Adm. Sci. 2013, 3 54

1. Introduction

As a firm’s competitors alter their products and consumers’ preferences evolve, it may become
necessary for the firm to introduce new products or update a product design. This often involves
discovering consumer preferences for various product attributes as they evolve over time. Such a
discovery process may involve an individualistic learning mechanism such as innovation or a social
and interactive one such as imitation. The academic community is no different from the marketplace
in this regard. A scientist’s search for the solution to a major scientific problem is driven by both the
individual and social learning processes in which progress is made through exploration by oneself and
exploitation of discoveries made by others:

Sometimes scientists modify their cognitive states as results of asocial interactions,
sometimes they change their minds through social exchanges. The obvious exemplars for
the former are the solitary experimentalist at work with apparatus and samples and the lone
field observer attending to the organisms—although I shall also take encounters with nature
to cover those occasions on which scientists reflect, constructing chains of reasoning that
modify their commitments. Paradigm cases of conversations with peers are those episodes
in which one scientist is told something by another (and believe it) or when a change in
commitment is caused by the reading of a text. The point of the distinction is evidently
to separate those episodes that (very roughly) consist in finding things out for oneself from
those in which one relies on others. (Kitcher [3]:60)

Whether the participants in the search process are motivated by profits or the recognition of the peers,
the specific learning mechanisms used by the individuals and how these mechanisms mutually interact
with one another can influence the growth in the stock of knowledge that is available for all participants.
Our objective in this paper is to investigate how the individual choices of learning mechanisms coevolve
in such a setting where the social aspect of the learning process is a prominent feature.

We employ a computational model which entails a population of autonomous agents whose objective
is to find solutions to a stream of possibly related problems arriving over time. An individual’s search
for solutions is driven by her choice of a learning mechanism each period. We consider two distinct
learning mechanisms—individual learning (innovation) and social learning (imitation). The choice
between the two learning modes is probabilistic, where the probability of choosing a given mode is
adjusted over time by each agent on the basis of reinforcement learning. The agents are homogeneous
in terms of their innate abilities to engage in the two modes of learning. They also operate in identical
environments and face the same series of problems: The population may be most usefully considered as
that of the members of a single organization who work toward a common goal in a shared environment.
In this setting, we examine the long-run time paths of the endogenous probabilities with which the agents
choose the two learning mechanisms.

Individual learning entails the solitary act of exploration, through which an agent comes upon a
serendipitous discovery of her own without any external influence. In contrast, social learning relies
strictly on the agent’s social network, whereby another agent in the network is selected for observation
and an idea of hers is considered for direct copying. The structure of each agent’s social network—in
terms of the probabilities with which a given agent observes all other agents—evolves over time on
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the basis of how effective it has been in facilitating the search for the solution. The coevolving social
networks of all agents in the population then determine the relative benefits to individual agents of using
one or the other of the two alternative learning mechanisms, which, in turn, guide the evolution of the
choice probabilities through reinforcement learning.

In that the model of this paper is closely related to the one in Chang and Harrington [4], let us
summarize that paper so as to better convey the contribution of this paper. The objective of Chang
and Harrington [4] was to characterize network structure and population performance and explore
their dependence on the reliability of the communications technology, as well as the innovativeness of
agents. When the communications technology is poor, it was found, not surprisingly, that technological
improvements enhance performance. What was surprising is that if the communications technology is
sufficiently effective, further improvements are detrimental. Better communications allows more social
learning among agents and this endogenously results in a more structured network as each agent is able
to identify those agents from which she can learn. (As agents faced different environments, an agent
wants to connect with those agents who face similar environments and thus are likely to have applicable
solutions.) This, however, has the unfortunate by-product that it results in agents having very similar
solutions and the ensuing lack of diversity within the social network meant that the population of agents
is ill-equipped to adapt to a changing environment. Thus, a better communications technology can lead
to too structured a network from the perspective of promoting innovation.

The contribution of the current paper concerns a different facet to structure. The focus is not on
the network but rather the different roles that agents play in the population. In contrast to Chang and
Harrington [4], all agents are assumed to face the same environment but, as in that paper, agents are
equally skilled. Thus, in all respects, agents are ex ante identical. [Variants of this model when agents
have heterogeneous skills with respect to individual learning and social learning are analyzed in Chang
and Harrington [5] and Chang [6].] The main result in this paper is that, in spite of the homogeneity of
agents, behavioral diversity arises and persists over time. As the efficacy of social learning rises relative
to that of individual learning, we naturally find that agents engage in relatively more social learning.
What is striking is that structure to the population emerges as there is a move towards specialization;
some agents focus more on individual learning and others focus more on social learning. This emergent
structure is also found to be stronger when agents are more skilled (in both social and individual learning)
and when the environment is more stable. This finding leads to an alternative interpretation of an
empirical observation. If one were to observe some agents in the population generating more new ideas,
it need not be due to those agents being more original and insightful but rather that they have decided to
devote more effort to individual learning.

The next section describes the model in detail. In Section 3, we describe the design of the
computational experiments as well as the parameter values used in these experiments. Results are
derived for small populations—two or three agents—in Section 4. Section 5 considers larger populations
and shows that the findings for small populations are robust. Section 6 concludes.
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2. The Model

2.1. Agents, Tasks, Goal and Performance

The population consists of L individuals. Each individual i ∈ {1, 2, . . . , L} engages in an operation
(solving of a problem) which can be broken down into H separate tasks. There are several different
methods which can be used to perform each task. The method chosen by an agent for a given task is
represented by a sequence of d bits (0 or 1) such that there are 2d possible methods available for each task.
In any period t, an individual i is then fully characterized by a binary vector of H · d dimensions, which
can be interpreted as his “approach” to solving an existing problem. Denote it by zi(t) ∈ {0, 1}Hd so
that zi(t) ≡ (z1i (t), ..., z

H
i (t)) and zhi (t) ≡ (zh,1i (t), ..., zh,di (t)) ∈ {0, 1}d is individual i’s chosen method

in task h ∈ {1, ..., H}.
The degree of heterogeneity between two methods vectors, zi and zj , is measured using “Hamming

distance” which is defined as the number of positions for which the corresponding bits differ:

D(zi, zj) ≡
H∑
h=1

d∑
k=1

∣∣∣zh,ki − zh,kj ∣∣∣ (1)

In period t, the population faces a common goal vector, ẑ(t) ∈ {0, 1}Hd. The goal vector is uniquely
specified for the problem the population is faced with in period t and represents the approach which is
optimal for solving it. It may be useful to recall Kuhn’s [7] treatment of “normal science as puzzle-
solving” in which a scientific theory is an instrument for discovering and solving puzzles. The “goal”
vector in our model is the method (instrument) best suited for solving the problem in hand. The perpetual
search for such a goal is what gives rise to scientific progress in our framework. Our perspective is then
consistent with Kuhn’s notion of scientific progress as elaborated in his Postscript written in 1969: “I do
not doubt, for example, that Newton’s mechanics improves on Aristotle’s and that Einstein’s improves
on Newton’s as instruments for puzzle-solving.” (Kuhn [7]: 206)

In our model, the population faces a stream of related problems, one for each period, such that
the optimal approach for solving the problem can change from one period to the next. The degree of
turbulence in the problem environment is then captured by intertemporal variability in ẑ(t), the details
of which are to be explained in 2.4.

The individuals are uninformed about ẑ(t) ex ante, but engage in “search” to get as close to it as
possible. Given H tasks with d bits in each task and the goal vector ẑ(t), the period-t performance of
individual i is then measured by πi(t), where

πi(t) = H · d−D(zi(t), ẑ(t)) (2)

2.2. Modeling Individual and Social Learning

In a given period, an individual’s search for the current optimum is carried out through two distinct
modes, individual learning and social learning. Individual learning is when an individual independently
discovers and considers for implementation a random method for a randomly chosen task. Social



Adm. Sci. 2013, 3 57

learning is when an individual selects someone and then observes and considers implementing the
method currently deployed by that agent for one randomly chosen task.

Although each act of individual or social learning is assumed to be of a single task, this is without
loss of generality: If we choose to define a task as including d′ dimensions, the case of a single act of
individual or social learning involving two tasks can be handled by setting d = 2d′. [There is a restriction
in that an agent only has the option of adopting all d dimensions or none.] In essence, what we are calling
a “task” is defined as the unit of discovery or observation. The actual substantive condition is instead the
relationship between d and H , as an agent’s individual or social learning involves a smaller part of the
possible solution when d/H is smaller.

Whether obtained through individual or social learning, an experimental method is actually adopted if
and only if its adoption brings the agent closer to the goal by decreasing the Hamming distance between
the agent’s new methods vector and the goal vector.

2.3. Endogenizing Choices for Individual and Social Learning

We assume that in each period an individual may engage in either individual learning or social
learning by using the network. How exactly does an individual choose between these learning modes
and, if he chooses to engage in social learning, how does he decide from whom to learn? We model this
as a two-stage stochastic decision process with reinforcement learning. The description of the model in
this section is identical to that in Chang and Harrington [4].

Figure 1. Decision sequence of individual i in period t.
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Figure 1:  Decision Sequence of Individual i in period t 
Figure 1 describes the timing of decisions in our model. In stage 1 of period t, individual i is in

possession of the current methods vector, zi(t), and chooses individual learning with probability qi(t) and
social learning with probability 1− qi(t). If he chooses individual learning then, with probability µIi , he
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generates an idea which is a randomly chosen task h ∈ {1, . . . , H} and a randomly chosen method, zh′i ,
for that task such that the experimental method vector is z′i(t) ≡ (z1i (t), . . . , z

h−1
i , zh′i , z

h+1
i , . . . , zHi (t)).

µIi is a parameter that controls the inherent ability of an agent to engage in individual learning.
This experimental vector is adopted by i if and only if its adoption decreases the Hamming distance
between the agent and the current goal vector, ẑ(t). Otherwise, it is discarded:

zi(t+ 1) =

{
z′i(t), if D(z′i(t), ẑ(t)) < D(zi(t), ẑ(t))

zi(t), if D(z′i(t), ẑ(t)) ≥ D(zi(t), ẑ(t))
(3)

Alternatively, with probability 1 − µIi the individual fails to generate an idea, in which case
zi(t+ 1) = zi(t).

Now suppose individual i chooses to engage in social learning in stage 1. Given that he decides to
learn from someone else, he taps into the network to make an observation. Tapping into the network
is also a probabilistic event, in which with probability µSi the agent is connected to the network, while
with probability 1 − µSi the agent fails to connect. Hence, µSi measures the ability of the agent to
communicate with others in the population. An agent that is connected then enters stage 2 of the
decision process in which he must select another agent to observe. Let pji (t) be the probability with
which i observes j in period t so

∑
j 6=i p

j
i (t) = 1 for all i. If agent i observes another agent l, that

observation involves a randomly chosen task h and the current method used by agent l in that task, zhl (t).
Let z′′i (t) = (z1i (t), . . . , z

h−1
i (t), zhl (t), z

h+1
i (t), . . . , zHi (t)) be the experimental vector. Adoption or

rejection of the observed method is based on the Hamming distance criterion:

zi(t+ 1) =

{
z′′i (t), if D(z′′i (t), ẑ(t)) < D(zi(t), ẑ(t))

zi(t), if D(z′′i (t), ẑi(t)) ≥ D(z(t), ẑ(t))
(4)

If the agent fails to connect to the network, which occurs with probability 1− µSi , zi(t+ 1) = zi(t).
The probabilities, qi(t) and {p1i (t), . . . , pi−1i (t), pi+1

i (t), . . . , pLi (t)}, are adjusted over time by
individual agents according to a reinforcement learning rule. We adopt a version of the
Experience-Weighted Attraction (EWA) learning rule as described in Camerer and Ho [8]. Using this
rule, qi(t) is adjusted each period on the basis of evolving attraction measures, AIi (t) for individual
learning and ASi (t) for social learning. The evolution of AIi (t) and ASi (t) follow the process below:

AIi (t+ 1) =

{
φAIi (t) + 1, if i adopted a method through individual learning in t
φAIi (t), otherwise;

(5)

ASi (t+ 1) =

{
φASi (t) + 1, if i adopted a method through social learning in t
φASi (t), otherwise;

(6)

where φ ∈ (0, 1]. Hence, if the agent chose to pursue individual learning and discovered and then
adopted his new idea, the attraction measure for individual learning increases by 1 after allowing for
the decay factor of φ on the previous attraction level. If the agent chose individual learning but was
unsuccessful (either because he failed to generate an idea, or because the idea he generated was not
useful) or if he instead chose social learning, then his attraction measure for individual learning is simply
the attraction level from the previous period decayed by the factor φ. Similarly, a success or failure in
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social learning at t has the identical influence on ASi (t + 1). Given AIi (t) and ASi (t), one derives the
choice probability of individual learning in period t as follows:

qi(t) =

(
AIi (t)

)λ
(AIi (t))

λ
+ (ASi (t))

λ
(7)

where λ > 0. A high value of λ means that a single success has more of an impact on the likelihood
of repeating that activity (individual or social learning). The probability of pursuing social learning is,
of course, 1 − qi(t). The expression in (7) says that a favorable experience through individual learning
(social learning) raises the probability that an agent will choose individual learning (social learning)
again in the future. In sum, a positive outcome realized from a course of action reinforces the likelihood
of that same action being chosen again. For analytical simplicity, we assume φ and λ to be common to
all individuals in the population.

The stage-2 attractions and the probabilities are derived similarly. Let Bj
i (t) be agent i’s attraction to

another agent j in period t. It evolves according to the rule below:

Bj
i (t+ 1) =

{
φBj

i (t) + 1, if i successfully learned from j in t
φBj

i (t), otherwise
(8)

∀j 6= i. The probability that agent i observes agent j in period t is adjusted each period on the basis of
the attraction measures, {Bj

i (t)}j 6=i:

pji (t) =

(
Bj
i (t)
)λ∑

h6=i
(
Bh
i (t)

)λ (9)

∀j 6= i,∀i, where λ > 0.
There are two distinct sets of probabilities in our model. One set of probabilities, qi(t) and {pji (t)}j 6=i,

are endogenously derived and evolve over time in response to the personal experiences of agent i.
Another set of probabilities, µIi and µSi , are exogenously specified and are imposed on the model as
parameters. They control the capabilities of individual agents to independently learn or to learn from
someone else in the population via social learning. It is particularly interesting to understand how
these parameters influence the evolution of the probabilities with which the agents choose a given
learning mechanism.

2.4. Modeling Turbulence in Task Environment

Central to the performance of a population is how it responds to an evolving environment or, if we
cast this in the context of problem-solving, an evolving set of problems to be solved. It is such change
that makes individual learning and the spread through a social network of what was learned so essential.
Change or turbulence is specified in our model by first assigning an initial goal vector, ẑ(0), to the
population and then specifying a dynamic process by which it shifts over time.
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Letting s ∈ {0, 1}Hd, define δ(s, κ) ⊂ {0, 1}Hd as the set of points that are exactly Hamming distance
κ away from s. The set of points within Hamming distance κ of s is defined as

∆(s, κ) ≡
κ⋃
i=0

δ(s, i) (10)

Hence, ∆(s, κ) is a set whose “center” is s.
In period t, all agents in the population have the common goal vector of ẑ(t). In period t+1, the goal

stays the same with probability σ and changes with probability (1 − σ). The shift dynamic of the goal
vector is guided by the following stochastic process. The goal in t+ 1, if different from ẑ(t), is then an
iid selection from the set of points that lie within the Hamming distance ρ of ẑ(t). Defining Λ(ẑ(t), ρ)

as the set of points from which the goal in t+ 1 is chosen, we have

Λ(ẑ(t), ρ) ≡ ∆(ẑ(t), ρ) \ ẑ(t) (11)

Hence, Λ(ẑ(t), ρ) includes all points in ∆(ẑ(t), ρ) except for ẑ(t). Consequently,{
ẑ(t+ 1) = ẑ(t) with probability σ
ẑ(t+ 1) ∈ Λ(ẑ(t), ρ) with probability 1− σ

(12)

The goal vector for the population then stochastically fluctuates while remaining within Hamming
distance ρ of the current goal. This allows us to control the possible size of the inter-temporal change.
The lower is σ and the greater is ρ, the more frequent and variable is the change, respectively, in the
population’s goal vector.

3. Design of Computational Experiments

The underlying simulation model specifies H = 24 and d = 4, so that there are 96 total bits in a
methods vector and over 7.9× 1028 possibilities in the search space.

We consider a variety of population sizes: L ∈ {2, 3, 5, 10, 20, 50}. While the agents are
homogeneous in their skills for individual and social learning, i.e., (µIi , µ

S
i ) = (µI , µS) ∀i, we are

interested in how the levels of µI and µS affect the endogenous choice probabilities. As such,
we consider various combinations of values for (µI , µS), where µI ∈ {0.1, 0.2, ..., 1} and µS ∈
{0.1, 0.2, ..., 1}.

We assume that the initial practices of the agents are completely homogeneous so that
zi(0) =zj(0) ∀i 6= j. This is to ensure that any social learning occurring over the horizon under
study entails only newly generated knowledge. Otherwise, the initial variation in the information levels
of the agents will induce some social learning, introducing unnecessary random noise into the system.
The common initial methods vector is assumed to be an independent draw from {0, 1}Hd.

The impact of environmental volatility is explored by considering values of σ from {0.5, 0.6, 0.7, 0.8,
0.9} and ρ from {1, 2, 4, 6, 9}.

Additional parameters are φ and λ, which control the evolution of the attraction measures.
For simplicity, we assume that φ = 1 and λ = 1 throughout the paper. Finally, the initial attraction
stocks are set at Bj

i (0) = 1∀i,∀j 6= i, and AIi (0) = ASi (0) = 1∀i. Hence, an individual is initially
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equally attracted to individual and social learning and has no inclination to observe one individual over
another ex ante.

All computational experiments carried out here assume a horizon of 15,000 periods. The time-series
of the performance measures are observed to reach a steady-state by the 2,000th period. We measure
the steady-state performance of individual i, denoted πi, to be the average over the last 5,000 periods of
this horizon such that

πi =
1

5, 000

15,000∑
t=10,001

πi(t) (13)

The mean steady-state performance of the population is then denoted:

π ≡ 1

L

L∑
i=1

πi (14)

Likewise, the endogenous steady-state probability of individual learning, denoted qi, is computed for
each agent as the average over the last 5,000 periods:

qi =
1

5, 000

15,000∑
t=10,001

qi(t) (15)

The steady-state probability of social learning for agent i is then 1− qi.
All of the experiments were based on 100 replications, each using a fresh set of random numbers.

Hence, the model is run for 1.5 million periods for each parameter configuration considered in this
paper. The performance and probability measures reported in the paper are the averages of those
100 replications.

4. Learning in Small Populations

We first consider “small” populations by which is meant those with two or three agents. The reason
for initially focusing on these cases is that the vector of probabilities (of an agent being in the individual
learning mode) can be depicted graphically which quite effectively illustrates what is going on. In the
next section, larger populations are considered and, using different methods for reporting results, we
show that much of the insight of this section extends. Note that, with only two agents, each agent has
only one other agent to observe when she chooses social learning so the structure of the social network
is not an issue. The endogeneity of the network is an issue, however, when there are three agents.
Procedurally, we will first report results for when there are two agents and then show that the same
property holds for when there are three agents.

4.1. Emergence of Specialization

To establish a baseline for comparative analyses, we ran the computational experiment with the
following set of parameter values: µI = µS = 1.0, σ = 0.8, and ρ = 1. Both agents are capable
of generating an idea every period, whether it is through individual learning or through social learning.
There is a probability of 0.8 that the problem environment will be stable from t to t + 1. If the
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environment changes, which occurs with the probability of 0.2, it involves a change in only one randomly
chosen task.

The two agents are initially homogeneous in all aspects. They have identical levels of skills in
individual and social learning so that µI1 = µI2 ≡ µI = 1.0 and µS1 = µS2 ≡ µS = 1.0. They start out
equally likely to choose individual learning and social learning so that q1(0) = q2(0) = 0.5.

Given the baseline parameter configuration, Figure 2 shows the typical time paths of qi(t)s for i ∈
{1, 2} which are generated from two independent replications. The time paths captured in these figures,
which are typical of all replications carried out in this work, clearly indicate that our definition of the
steady-state as the 5,000 period between t = 10, 001 and t = 15, 000 is more than adequate: While there
is a brief initial transient phase in which qi(t)s fluctuate somewhat widely, they tend to stabilize rather
quickly. It is clear that these probabilities exhibit high degrees of persistence. What is more striking,
however, is the way qi(t)s diverge from one another in the long run: the agents tend to concentrate
on distinct learning mechanisms—agent i specializing in individual learning (high value of qi(t)) and
agent j specializing in social learning (low value of qj(t)) and, thus, free-riding on agent i for knowledge
acquisition.

Figure 2. Typical time paths of qi(t)s from two replications (µI = µS = 1.0, σ = 0.8,

and ρ = 1).Figure 2:  Typical Time Paths of qiHtL's from 2 Replications
(mI = mS = 1.0; s = .8; r = 1 )
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To confirm the tendency for the agents to specialize, we ran 100 replications for the baseline set of
parameter values, each replication with a fresh set of random numbers. The steady-state probabilities for
the two agents, q1 and q2, were then computed for each replication, thereby giving us 100 realizations of
the probability pair. In Figure 3, these realizations are plotted in a probability space. Note the strongly
negative correlation between q1 and q2. More intensive individual (social) learning by an agent induces
the other agent to pursue more intensive social (individual) learning. As this property is confirmed by
results reported below for other parameter configurations and when there are three agents, we state:

Property 1 For populations with two or three agents, there emerges a divergence in the choices of
learning modes: When one agent chooses individual learning with a higher probability, the other
agent(s) chooses social learning with a higher probability.
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The implication is that social learners free-ride on an individual learner and an individual learner
accommodates such behavior by concentrating on generating new ideas.

Figure 3. (q1, q2)’s with µI = µS = 1.0 over 100 replications (σ = 0.8, ρ = 1).

Figure 3:  (qêê1, qêê2)'s with mI = mS = 1.0 over 100 replications
(s = .8; r = 1)
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To establish the robustness of this phenomenon of specialization and explore its determinants, the
same exercise was performed for (µI , µS) ∈ {(0.1, 0.9), (0.3, 0.7), (0.6, 0.6), (0.8, 0.2)} and for
both two-agent and three-agent populations. Figure 4(a) plots the 100 realizations of the steady-state
probability pairs for L = 2. Starting with (µI , µS) = (0.8, 0.2)— so that agents are quite effective at
individual learning but inadequate at social learning—we find that there is little social learning as both
agents focus on trying to come up with ideas on their own. As µS is raised and µI is reduced—so
that agents become relatively more proficient at social learning—we naturally find that agents spend
less time in the individual learning mode. This is reflected in the steady-state probabilities shifting in
towards the origin. What is more interesting is that the structure of specialization begins to emerge,
whereby one agent focuses on individual learning and the other focuses on social learning. This is also
shown for a three-agent population in Figure 5 where we have plotted (q1, q2, q3) . To better visualize the
relationship between these values, a two-dimensional plane has been fitted to these points using ordinary
least squares. Analogous to that in Figure 4(a), as the relative productivity of agents in social learning
rises, the fitted plane shifts in and moves toward the unit simplex. Hence, once again, structure emerges
in the form of specialization so that when one agent is heavily focusing on individual learning, the other
agents are largely engaged in social learning.

When µI is relatively low and µS is relatively high, it is clear that it would not be best for all agents to
largely engage in social learning as then there would be few new ideas arising and thus little to imitate.
Though it could so happen that all agents choose to engage in some individual learning—such as with the
replications that end up with (q1, q2, q3) ' (0.33, 0.33, 0.33)—what also emerges in some replications
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is that one agent chooses to largely focus on individual learning. As then there are many new ideas
streaming into the population, the other two agents focus on imitating and end up spreading the ideas
of others. The result is a dramatic divergence in the choice of learning mechanisms, indicating a sharp
division of cognitive labor.

Property 2 For populations with two or three agents, specialization is greater when agents are relatively
more skilled in social learning than in individual learning.

Figure 4. Impact of learning skills (σ = 0.8, ρ = 1).Figure 4:  Impact of Learning Skills (s = .8; r = 1)
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Figure 5. Impact of learning skills (σ = 0.8, ρ = 1).
Figure 5:  Impact of Learning Skills (s = .8; r = 1)
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Figure 6. Impact of µ (σ = 0.8, ρ = 1).
Figure 6:  Impact of m (s = .8; r = 1)
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Figures 4(b) and 6 explore what happens when agents are equally skilled at these two tasks,
µI = µS ≡ µ, and we make them more skilled by raising µ. As µ is progressively raised from 0.1 to 1,
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agents engage in less individual learning and more specialization emerges. When agents are relatively
unskilled, ideas are scarce and furthermore when social learning finally succeeds in finding an idea,
it is apt to be “old” and thus was adopted for an environment distinct from the current one. In contrast,
ideas discovered through individual learning will not suffer from being “old.” As a result, agents largely
engage in individual learning when unskilled. As they become more skilled, social learning proves
more productive—both because other agents are producing more ideas and social learning discovers
them faster—so we observe agents engaging in less individual learning. But what also happens is there
is more specialization as, if one agent is heavily engaged in individual learning, then the other agents
free-ride by focusing on social learning.

Property 3 For populations with two or three agents, specialization is greater when agents are more
skilled in both individual and social learning.

From Figures 4–6, one can conclude that the key parameter is the productivity of agents with respect
to social learning, µS. When it is low - regardless of whether µI is low or high—agents largely engage
in individual learning and little structure emerges. When µS is at least moderately high, specialization
can emerge whether or not agents are relatively effective in individual learning. If agents are effective at
communicating with each other then the environment is ripe for heterogeneous roles to arise in spite of
the homogeneity of agents’ skills.

An interesting comparative static is to assess how the volatility of the environment affects the
emergence of specialization. Recall that σ is the probability with which the goal vector shifts in a
given period, while ρ represents the number of tasks in which change occurs. Figure 7 shows how
making the environment more stable—as reflected in a rise in σ and a fall in ρ—impacts outcomes for
a two-agent population, while analogous results are reported in Figures 8 and 9 for when there are three
agents. These results lead us to the following statement:

Property 4 For populations with two or three agents, specialization is greater when the environment is
more stable.

A more volatile environment calls for a higher rate of adaptation by the agents. Recall that there is
delay associated with the social learning process in that the process entails one agent discovering an
idea that is useful for the current environment and then another agent learning that idea. By the time this
social learning takes place, the environment could have changed which then makes this idea unattractive.
Hence, social learning is relatively less productive when the environment is changing at a faster rate—as
with a lower value for σ—or involves bigger changes—as with a higher value for ρ. It is then only
when there is sufficient persistence in the environment, that social learning becomes effective enough
that some agents choose to specialize in it and learn from an agent who focuses on individual learning.

To provide additional support for the above four properties, note that qi represents the probability with
which agent i chooses individual learning along the steady-state. The likelihood of specialization being
observed in a two-agent population is then represented by ω, where ω = q1(1 − q2) + q2(1 − q1). This
measures the likelihood that exactly one agent engages in individual learning, while the other engages in
social learning along the steady-state. As there are 100 independent trials, we have 100 realizations of
ω for each parameter configuration. Table 1 reports the mean and standard deviation of ωs obtained in
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these replications. As expected, the likelihood of specialization monotonically increases in µS

µI
, µ, and

σ, while it decreases in ρ.

Figure 7. Impact of environmental volatility (µI = µS = 1).Figure 7:  Impact of Environmental Volatility (mI = mS = 1)
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Figure 8. Impact of σ (µI = µS = 1; ρ = 1).
Figure 8:  Impact of s (mI = mS = 1; r = 1)
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Figure 9. Impact of ρ (µI = µS = 1; σ = 0.8).
Figure 9:  Impact of r (mI = mS = 1; s = .8)
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Table 1. Mean and Standard Deviation of ω over 100 Replications.

Parameters ω

µI µS σ ρ Mean Std. Dev.

Impact of (µI , µS) 0.8 0.2 0.8 1 0.0330197 0.0204064
0.6 0.6 0.8 1 0.465696 0.0630542
0.3 0.7 0.8 1 0.568567 0.103349
0.1 0.9 0.8 1 0.622361 0.137291

Impact of µ(= µI = µS) 0.1 0.1 0.8 1 0.279422 0.107147
0.3 0.3 0.8 1 0.395829 0.0891995
0.6 0.6 0.8 1 0.470937 0.0568553
1 1 0.8 1 0.492638 0.0794427

Impact of σ 1 1 0.5 1 0.441256 0.0749621
1 1 0.6 1 0.462514 0.0723325
1 1 0.8 1 0.496672 0.0605297
1 1 0.9 1 0.517676 0.0722354

Impact of ρ 1 1 0.8 1 0.497152 0.0528074
1 1 0.8 2 0.458065 0.0636729
1 1 0.8 4 0.393731 0.0770097
1 1 0.8 9 0.283333 0.0781933

4.2. Social Sub-Optimality of Endogenous Specialization

The previous results characterize agent behavior when they are acting independently and responding
to their own individual performance. How does the resulting allocation between individual learning
and social learning compare with what would maximize aggregate steady-state performance of the
population? Due to computational constraints, this question we addressed only for the case of a two
agent population. 100 trials were performed and, for each trial, we carried out the learning process with
two agents for each of the 121 probability pairs, (q1, q2), where qi ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1}, i = 1, 2. [To perform an analogous exercise for when there are three agents would
require doing this for 1,331 triples of (q1, q2, q3).] The pair, (q1, q2), was constrained to remain fixed for
the entire horizon of 15, 000 periods. For each (q1, q2) pair, the mean steady-state performance for the
population, π, was computed as specified in Equation (14). Comparing among those πs, the socially
optimal probability pair, (q∗1, q

∗
2), was identified for a given trial: Since the population size is fixed at L,

the aggregate steady-state performance of the population is simply L · π and the derivation of (q∗1, q
∗
2)

can be based on the comparisons among πs. Given that there are 100 trials in total, we then have 100
realizations of the socially optimal probability pair.
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Figures 10 and 11 plot these social optima for different parameter configurations (in exactly the same
format as the previous figures). The coordinates of the center of a grey disc represents the occurrence of
that probability pair as the social optimum, while the frequency (among the 100 trials) with which it was
a social optimum is represented by the size of the disc: The larger the disc, the greater is the frequency.
The endogenous probability pairs from Figures 4 and 7 have been superimposed to allow for an easier
comparison. As before, Figure 10 considers the impacts of µI/µS and µ, while Figure 11 examines the
impacts of σ and ρ.

Figure 10. (q1, q2) vs. (q∗1, q
∗
2) given σ = 0.8 and ρ = 1.Figure 10:  (qêê1, qêê2) vs. (q1

*, q2
*) given s = .8 and r = 1
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Figure 11. (q1, q2) vs. (q∗1, q
∗
2) given µI = µS = 1.Figure 11:  (qêê1, qêê2) vs. (q1

*, q2
*) given mI = mS=1
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The central property we observe is that the social optimum, generally, entails more individual
learning by both agents than that which emerges under autonomous choice rules. Left to engaging
in reinforcement learning on their own, agents tend to imitate too much and innovate too little.

Property 5 For a two-agent population, agents engage in excessive social learning. The deviation from
the socially optimal level of social learning tends to: (1) increase in µS relative to µI ; (2) increase
in µ; (3) increase in σ; and (4) decrease in ρ.

Note that the deviation from the social optimum tends to be more severe in those cases where there
exists a greater divergence in the steady-state probabilities. This implies that the circumstances more
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favorable to social learning and, hence, free-riding are also the ones which cause deviations from the
social optimum to a greater extent.

5. Learning in Moderately-Sized Populations

The objective of this section is to determine to what extent the properties identified for small
populations extend to larger populations. In particular, is it still the case that structure emerges in the form
of specialization? For this purpose, the model was re-run for all L ∈ {5, 10, 20, 50}. For each population
size, a vector of steady-state individual learning probabilities, (q1, q2, . . . , qL), was then derived for each
of 100 trials. For brevity, we will only report results for when there are 20 agents; the results for the
other population sizes are similar.

The primary challenge was in effectively reporting the results for those runs. Obviously, we cannot
use the visualization methods deployed in Section 4 as plotting the 100 realizations of (q1, . . . , q20) would
require a 20-dimensional figure! Our approach is instead as follows. First, partition the population into
two equal-sized sets. As L = 20, there are then 10 agents in group I and 10 agents in group II. For each
set, calculate the average propensity for individual learning:

qI =
1

10

10∑
i=1

qi, qII =
1

10

20∑
i=11

qi

Plotting the 100 realizations of (qI , qII) , we can then assess to what extent there is a negative
correlation between them. That is, when one group of agents engages in more individual learning does
the other group of agents free-ride and engage in more social learning. Note that this is a generalization
of the method used when L = 2.

When
(
µI , µS

)
= (0.8, 0.2) , Figure 12(a) shows that there is not much of relationship between the

propensities for individual learning of the two groups. However, as µS is raised and µI is reduced,
structure emerges. The correlation (which is reported at the top of each figure) becomes increasingly
negative and visually qI and qII line up as was found for two-agent populations. Note, however, that the
size of the effect is distinctly smaller. For example, when

(
µI , µS

)
= (0.3, 0.7) , if group I innovates

with probability around 0.16 (which is the maximum value for qI over the 100 trials) then group II
tends to do so with about half the probability at 0.08. In comparison, when there are only two agents,
the extreme values entail one agent almost exclusively engaging in individual learning and the other
agent almost exclusively engaging in social learning. It is important to keep in mind that our measure of
specialization is apt to dilute its effect since it is comparing the average behavior of half the population
with the average behavior of the other half. More importantly, these findings show that the emergence of
specialization is quite general regardless of the population size.

Property 6 When agents are sufficiently more skilled in social learning than in individual learning,
specialization emerges. The extent of specialization is increasing in µS/µI .

In Figures 14 and 15, the specialization that emerges with
(
µI , µS

)
= (0.3, 0.7) is shown to be robust

to the stability of the environment as reflected in various values for σ and ρ. However, we do not find
evidence of Property 4 in that our measure of specialization—the negative correlation between qI and
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qII—is not greater when the environment is more stable. This is very likely due to the lack of sensitivity
of our measure to what a few agents might be doing.

Figure 12. Impact of µI and µS (σ = 0.8, ρ = 1).Figure 12:  Impact of mI and mS (s = .8; r = 1)
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Figure 13. Impact of µ (σ = 0.8, ρ = 1).Figure 13:  Impact of m (s = .8; r = 1)
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Figure 14. Impact of σ (µI = 0.3; µS = 0.7; ρ = 1).Figure 14:  Impact of s (mI = .3; mS = .7; r = 1)
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Figure 15. Impact of ρ (µI = 0.3; µS = 0.7; σ = 0.8).Figure 15:  Impact of r (mI = .3; mS = .7; s = .8)

HaL ρ = 9

0.1 0.125 0.15 0.175 0.2 0.225 0.25
qêê1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

qêê 2

Correlation = -0.47004

HbL ρ = 4

0.1 0.125 0.15 0.175 0.2 0.225 0.25
qêê1

0.1

0.12

0.14

0.16

0.18

0.2

0.22

qêê 2

Correlation = -0.66747

HcL ρ = 2

0.08 0.1 0.12 0.14 0.16 0.18
qêê1

0.08

0.1

0.12

0.14

0.16

0.18

qêê 2

Correlation = -0.66318

HdL ρ = 1

0.08 0.1 0.12 0.14 0.16
qêê1

0.08

0.1

0.12

0.14

0.16

qêê 2

Correlation = -0.66522



Adm. Sci. 2013, 3 75

6. Conclusions

In Chang and Harrington [4], we showed that an improvement in communication technology, which
raises the social learning skills of the population, can induce excessive homogenization of the practices
adopted by the agents. The consequent lack of diversity in the pool of ideas then reduces the potential
for long-term progress. In this paper, we have identified yet another problem that could result from
improved social learning skills of the population—the endogenous bifurcation of the population into
individual learners and social learners and the consequent free-riding which proves socially sub-optimal.
A natural next question, which is left for future research, is what kinds of social and organizational
norms and structures might serve to guide the learning behavior of agents and serve to counteract these
unproductive tendencies.
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