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Abstract: Many actuarial science researchers on stochastic modeling and forecasting of systematic
mortality risk use Cairns-Blake-Dowd (CBD) Model (2006) due to its ability to consider the cohort
effects. A three-factor stochastic mortality model has three parameters that describe the mortality
trends over time when dealing with future behaviors. This study aims to predict the trends of
the model, k(2)t by applying the Recurrent Neural Networks within a Short-Term Long Memory
(an artificial LSTM architecture) compared to traditional statistical ARIMA (p,d,q) models. The
novel deep learning (machine learning) technique helps integrate the CBD model to enhance its
accuracy and predictive capacity for future systematic mortality risk in countries with limited data
availability, such as Kenya. The results show that Long Short-Term Memory network architecture
had higher levels of precision when predicting the future systematic mortality risks than traditional
methods. Ultimately, the results can be implemented by Kenyan insurance firms when modeling and
forecasting systematic mortality risk helpful in the pricing of Annuities and Assurances.

Keywords: systematic mortality risk; deep learning; long short-term memory; CBD; recurrent neural
networks

1. Introduction

Since the start of the 21st century, mortality rates have been decreasing steadily due
to several factors such as improved medical inventions, robotic surgery, better healthcare
systems, and better diets, among many other factors, see (Boo and Choi 2020; Chen 2020;
Kilic 2020; Pourhomayoun and Shakibi 2020). These factors have prompted actuaries,
demographers, and statisticians to think of novel ideas to do mortality modeling and
forecasting for an increased level of precision in the models. While this is a good idea for
the general global population, many governments, life assurance firms, and life pension
companies have substantial financial losses since they cannot make precise estimations
when offering financial services. Correct mortality risk estimation is vital in their financial
survival, especially after the hard times of the global Covid-19 pandemic see (Pourhomay-
oun and Shakibi 2020) that is likely to lead to massive global economic recession affecting
many nations, both first-world and third-world countries.

Today, in the actuarial literature, we have many refined techniques that many actuaries,
statisticians, and demographers use when forecasting future mortality and systematic
longevity risks. We estimate the complete life expectations of those who wish to buy
annuities and life assurance products sold in the market. From (Lee and Carter 1992),
there are many stochastic mortality models currently used when modeling and forecasting
systematic mortality risk. However, these models have different strengths and weaknesses
depending on the data availability and the number of available parameters that need to be
determined or estimated. (Cairns et al. 2006) model improves some of the weaknesses of
the (Lee and Carter 1992) model by incorporating the cohort effects and double parameter
ability. Modeling a systematic mortality risk that is constant over age while preventing
overlapping of the age lines during forecasting leading desirable results as a parsimonious
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model was demonstrated by (Cairns et al. 2011), which leads to high certainty levels and
acceptability in the results.

Many researchers, including (Hainaut 2018) in his paper, proposed a neural network
capable of predicting and simulating future systematic mortality risk. During his research,
the author used a neural analyzer when detecting latent time processes while directly
predicting mortality. The approach did allow for identification and duplication of non-
linearity observed in the changes of logit forces of mortality. In addition, (Deprez et al.
2017) used some machine learning techniques to improve the estimation process of the
logit mortality risk. This work was extended by (Levantesi and Pizzorusso 2019) to the
framework of mortality forecasting as in the [3] model. Furthermore, a recent paper by
(Richman and Wüthrich 2018) proposed multiple-dimensional populations for (Lee and
Carter 1992) model where it estimated the parameters using artificial neural networks.
Many other relevant machine learning uses and applications in an actuarial field are
discussed by (Castellani et al. 2018) and (Gabrielli et al. 2020), especially when looking at
the future of systematic mortality risk modeling methodologies.

In this research study, we use a deep learning technique to improve the predictive
capability of the (Cairns et al. 2006) model. To be more specific, our approach aims at
Integrating the original (Cairns et al. 2006) formulation by the introduction of an artificial
Recurrent Neural Networks with Long Short-Term Memory or LSTM architecture when
forecasting future evolution of the k(2)t parameter thus overcoming the challenges showed
by the traditional ARIMA (p, d, q) time series process. The choice of the CBD model instead
of other standard mortality models is based on the fact that CBD solves the problem
of cohort effect in mortality synonymous with other mortality models. In addition, it
incorporates the effect of cohorts in models compared to others used in modeling of
systematic mortality risk.

Using LSTM allows more coherency when determining mortality forecasts with high
dynamism of observed mortality, especially when dealing with nonlinear mortality trends.
To be more precise, the LTSM network is structured to help elaborate long data sequences
to form a memory capable of preserving the vital relationships between the available
data and every deviation within these sequences. In a similar sense, within the context
of traditional time series, the LSTM gives room for predicting future mortality over time
by considering the substantial influence of the historical systematic mortality risk trends
before adequately reproducing it into the forecasted trend. In addition, the power of LSTM
is by preserving the information over a given period, therefore blocking the older signals
from slowly disappearing during processing.

While the research focuses on forecasting systematic mortality risk trends, parameter
estimation methodology remains similar as for (Lee and Carter 1992). The paper does
introduce a new method to mortality fitting surface as by (Hainaut 2018) that applies the
use of neural networks or deep learning technique for fitting mortality rates as opposed to
the conventional SVD method (Singular Value Decomposition). This study introduces a
novel methodology structure based on the LSTM network when modeling future common
trends of systematic mortality risk.

2. Cairns-Blake-Dowd (CBD) Model

Definition 1. Let the (Cairns et al. 2006) be;

logitµ(x,t) = α
(1)
x k(1)t + α

(2)
x k(2)t + α

(3)
x w(3)

t−x (1)

The cohort effect influence, w(3)
t−x, for any age-specific cohort has been assumed to

reduce to zero with time. α
(3)
x decreases with x as opposed to being a constant i.e., α

(3)
x = c

where c is a constant itself. Therefore, this will give us the model as

logitµ(x,t) = α
(1)
x k(1)t + α

(2)
x k(2)t + α

(3)
x w(3)

t−x (2)
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where α
(1)
x = 1, α

(2)
x = (x − x̄), α

(3)
x = (xc − x). With the replacement of the values,

we have:

logitµ(x,t) = k(1)t + k(2)t (x− x̄) + w(3)
t−x(xc − x) (3)

During the analysis, we have to use the constraint
∞
∑

i=1
w(3)

t−x = 0 to prevent introducing

the identifiability problem during the process of estimation as well as projection. The model
has no problems of identification. In the original (Cairns et al. 2006) model, researchers
often used SVD or singular value decomposition when estimating parameters as per the
2-stage procedure. This is done by applying it to the matrix of logitµ(x,t) as a way of finding

values of k(1)t to thus obtaining values k(2)t and (x− x̄) respectively. Secondly, to ensure

that observed deaths coincide with the estimated deaths, k(2)t is refitted.

Lemma 1. As per the traditional (Cairns et al. 2006) formulation, k(2)t is often modeled using an
Auto-regressive Integrated Moving Average (0, 1, 0) as;

k(2)t = k(2)t−1 + δ + w(3)
t−x (4)

whereas δ is defined drift parameter and w(3)
t−x are the randomness term and w(3)

t−x ∼ N(0,σ2
k ).

3. The Neural Network Model
3.1. Artificial Neural Network Definition

Definition 2. An ANN (Artificial Neural Network) is a series of algorithms that endeavors to
identify underlying relationships in a given data set via a process capable of mimicking how a human
brain works. Artificial neural network architecture includes neurons, the synaptic connections,
which link the neurons, and learning algorithms.

ANN is formed through 3 categories of layers, known as hidden, input, and an output layer
respectively where each one of the layers is made up of several neurons (Hassoun et al. 1995). Every
unit in an artificial network obtains “proportional” information via synaptic links from many
other well connected ones at the same time returning an output through using an artificial activation
function that transforms these proportional totals of the input signals.

3.2. Deep Learning Modeling

Definition 3. Let Q denote a single neuron called perceptron defined by;

Q = Θ(ZTy + c) (5)

where yεR is the input and ZεR is the connected synaptic weight, ψεN are numbers of the
input signals and Θ is the activation function. We represent this term c as the bias that is associated
with the model known as activation verge or threshold. The user must note that the function, Θ,
should have a differential because the learning equations have gradients (Minsky and Papert 2017).

We introduce Multilayer Perceptron ( MLP ) used in nonlinear separable problems
such as Exclusive or (XOR) since ANN with a single layer is always inappropriate, thus
solving the stated problem. In addition, most neurons in MLP are predisposed on a
wide variety of layers, with every unit fully connected to those of the preceding layer, as
illustrated by (Goodfellow et al. 2016). The synapses connect units by defining different
types of available networks in the system. In an ANN classical pattern like feed-forward
ANN, the information moves in a unilateral direction from an input to an output layer at
the same time the Recurrent Neural Networks (commonly known as RNNs) processes the
information cyclically using the extra synapses to ensure that the reprocessed out is as a
result of the entire elaboration process.
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Figure 1 below shows the standard representation of feed-forward ANN. A neuron
is represented in every node, connected from one to the other using arcs representing
all synapses. Additionally, the graph represents the general input, latent, as well as
output variables.

The Schematical view of an artificial neural network (ANN) below has circles repre-
senting neurons with lines representing synapses. The Synapses take the individual inputs
before multiplying them by a “weight” commonly known as input “strength” to determine
the general output. In addition, Neurons are added to these outputs from all available
synapses before applying the activation function.

Figure 1. A Normal representation of feed-forward ANN.

Definition 4. From the output, let QεRkh denote a generic hidden layer having kh neurons
defined as;

Q1 = Θ(ZTy + c) (6)

where ZεRψ∗kh is defined as a weight matrix and cεRkh is called the biases vector. According to
MLP scheme, the hidden layer output becomes the input instrument for the following layer.

Lemma 2. Considering a given problem of regression, where f εN defined as the number hidden
layers, then the output of ŷ εR can be calculated by:

Q1 = Θ1(ZT
1 y + c1)

Q2 = Θ2(ZT
2 Q1 + c2)

Q3 = Θ3(ZT
3 Q2 + c3)

.........

ŷ = Θ f (ZT
f Q f−1 + c f )

where Z1, Z2, Z3, ...Z f denote weight matrix vectors, c1, c2, c3, ...c f denote bias vectors, and Φ1, Φ2,
Φ3, ...Φ f denote activation functions that needs not be different from one another.

It is vital to note that all measurements of the weight matrices and bias vectors do rely
on the unit number within the hidden layers; hence, by enhancing these hidden layers in
numbers, the abstraction levels of the input data also increase significantly.

3.3. Backward Propagation of Errors

Definition 5. Backpropagation is an algorithm used for supervised learning of artificial neural
networks through gradient descent. Provided an artificial neural network (ANN) and an error
function, this method is capable of calculating the error function gradient with respect to the
respective weights of neural networks.
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ANN training involves the use of a given unconstrained optimization problem with the aim of
minimizing a function within the high dimensional space. We start by defining a loss function as:

B =

f
∑

i=1
(vi − v̂)2

2
(7)

This loss function measures the deviations of predicted values v̂ from the observed
ones v i.e., it obtains the absolute error terms between these predicted values of v̂ as well
as observed values of v. The quantity B also relies on the weights of the matrices namely
Z1, Z2, Z3, ...Z f , which ultimately influences the values of predicted v̂. Consequently, the
aim of the method is to find the exact synaptic weight values, which minimizes the value
of quantity B.

While machine learning has many algorithms applied in its application, backpropa-
gation is among the most commonly used feed-forward training ANNs. The algorithm
works by comparing the predicted values versus the expected ones according to modifying
the synaptic weights through back-propagating the loss function’s gradient.

From Figure 1, the procedure continuously alternates forward with backward prop-
agation in the following steps, namely in the forward step, the predicted values of v̂ are
calculated by fixing the respective synaptic weights, and in this backward step, the adjust
weights thus reducing the error B of the network. It is important to note that ANN can
iteratively perform both forward and backward propagation by modifying the weights to
find the combination, which minimizes the overall loss function.

Definition 6. Analytically, backpropagation algorithm updates all weights of Z f in the last layer
by the rule of delta as follows;

∆Z f = −i
∂B

∂Z′f
(8)

where i is called the learning rate. As for other preceding layers, we differentiate using product or
chain rule of differentiation. The other weights matrix Z f−1 are determined as:

∆Z f−1 = −i
∂B

∂Q f−1
∗

∂Q f−1

∂Z f−1
(9)

and the process continuous on to many other layers in the system.

We look into the same idea in a figurative way, just like a gradient or slope descent
similar to a “climbing down a steep hill” so long as it reaches a local minimum or global
limit. However, at every update, the search does move in the gradient’s opposite direction
while the slope of the gradient and learning rate is determined by the Movement amplitude
(Baydin et al. 2017). Moreover, the choice of rate i is a vital element, as a small value
can lead to several iterations simultaneously; larger values might permit convergence,
especially to a global minimum.

We choose from a wide range of architecture, including the hidden layers numbers,
units for every layer, and the hyper-parameter values like learning rate, epochs, and
activation function, which remain another heuristic problem for ANN users. It is important
to note that the choice will always depend on the data type available, which might be
a difficult step or just easy. An initial round of the hyper-parameters tuning, especially
before the testing, might be highly needed. Additional extensive descriptions of ANNs and
back-propagation algorithms are explained well (Alpaydin 2016) and (James et al. 2013).

3.4. Recurrent Neural Network Using a Long Short-Term Memory Architecture

Proposition 1. We incorporate the concept of Deep Learning techniques in stochastic mortality
modelling to increase their predictability and forecasting accuracy.
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Proof. The feedforward ANNs, which always represent a powerful tool for analysis, can
be insufficient when effectively managing time sequences of the available data. However,
the recurrent connections between nodes that have featured the RNNs allow for an active
analysis of the given sequential data. Nevertheless, through applying the given RNN
structure, we often face the massive problem of gradients disappearing and weights change,
before becoming tiny fast to show no effect. Consequently, the network will gradually lose
its capability of learning from the past to become operationally insufficient for the more
prolonged data sequences analysis and thus helping in making excellent predictions. It is
why we say that RNNs possess a short memory only.

As a way of overcoming the stated problem, (Hochreiter and Schmidhuber 1997)
had come up with the Long Short-Term Memory, commonly abbreviated as LSTM. The
LSTM is a version of RNN whose architecture can allow considerate relationships between
the sequence of data, even if it happens in the long run, thus eradicating the vanishing
gradient problem in the process. Similarly, RNNs need both long- and short-memory,
thus managing to generate an extraordinary performance in the analysis of time series.
However, several improvements in the original work, LSTM, have been improved through
a series of studies such as (Bahdanau et al. 2014) and (Cho et al. 2014). Ultimately, one can
define an excellently composed basic structure as vanilla LSTM.

Definition 7. From Figure 2, Let ft = gt, it = rt and ot denote he output that would be important
in RNN analysis. Let output of the auxiliary-output gate be defined as;

gt = v(Z f yt + U f Qt−1 + c f ) (10)

rt = v(Ziyt + UiQt−1 + ci) (11)

ot = v(Zoyt + UoQt−1 + co) (12)

jt = v(Zjyt + UjQt−1 + cj) (13)

The forget gate output gt as defined by Equation (10), illustrates facts from the pre-
ceding cell state as well as the one originating from the present input are mixed within a
nonlinear way through a sigmoid activation function. Afterwards, gt is mixed through
a point-wise product especially within its previous memory state c(t− 1). Its input gate
rt, as defined in Equation (11), uses an active sigmoid activation, which permitting for
decisions when information is received before it is updated. The output gate ot, as defined
in Equation (12), plays the role of preventing non-significant memory content transmission
that is stored information within the other blocks. Its role as a sigmoid function is to
pass appropriate memory information. As a way of regulating processed data flow, the
input gate it does combines with that derived from all linked auxiliary NN jt as defined in
Equation (13).

Definition 8. Let denote the entire input block processing procedure that participates in construc-
tion of the present memory cell state as:

c(t) = c(t− 1)~gt + rt~jt

To get the current output, which is a combination in between the defined function in
above equation;

Q = Φ(c(t)) ∗ ot (14)

From Equation (14), this LSTM architecture offers an outstanding tool when dealing
with forecasting time series, particularly in cases of longer time lag connections, catching
randomness, and management of the noise. Nevertheless, any user of LSTM, just ANNs
in general, must have the face of the classical problems that concern the hyperparame-
ters choices.
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Figure 2. A LSTM Block Structure with Its Internal Information Forward Flow Design.

4. Mathematical Application and Results

In this area, we introduce the LSTM and RNN architectures within the standard
scheme of the CBD model. More distinctly, the study’s objective is to exploit the advantages
and functionalities of the LSTM architecture to improve the CBD model predictive capacity.
For this aim, we design several experiments to test LSTM skills in forecasting future
systematic mortality risk over time before comparing its performance with the results
derived from the model of ARIMA.

Thus, the analysis of the study will concern on the time index k(2)t trend prediction,
bearing in mind the ARIMA (p, d, q) model as the forecasted benchmark, whereas other pa-
rameters k(1)t and (x− x̄) are determined as per the estimation method by (Cairns et al. 2006).

Distinctly, the CBD model that applies a simple random walk process with drift is vital
to calibrate the best ARIMA (p,d,q), as illustrated by (Hyndman and Khandakar 2007). This
procedure checks the time series stationarity in the initial round using a suitable unitary
root test before choosing the differencing order d. The 2nd stage determines the auto-
regressive best values and moving average order, like p and q, respectively, using exact
information criteria for AIC or BIC. In most cases, the implemented algorithm utilizing the
function, which is present in the python package for forecasting (Hyndman and Khandakar
2007); and (Bauer et al. 2020).

Proposition 2. The performance of ARIMA (p,d,q) is compared with that of LSTM. The LSTM
looks like a smooth, natural competitor to ARIMA (p,d,q) because it can capture a long-term
sequence or pattern within sequential data. We start building an LSTM model, which enumerates
the stated function f linking k(2)t to the time lags, as:

k(2)t = f (k(2)t−1, k(2)t−2, k(2)t−3, k(2)t−4, ....k(2)t−j) + w(3)
t−x (15)

where jεN is defined as the number of time lags being considered and w(3)
t−x is the homoschedastic

error or randomness term.

Proof. The LSTM network, just like many other standard machine learning methods,
needs the dataset dividing into testing and training sets. The training set often represents
supervised learning, whereas testing is for the validation of the model. Table 1 shows a
supervised learning dataset, which is helpful for prediction. Upon completion of training,
the network will have learned the input-output functional relationship, thus predicting
future values of k(2)t by using only the input. To be more practical, taking the input as

(m " J) matrix with time lags of k(2)t as well as the output as the (m " 1) vector of best
current values, with mεN is the number as in Table 1.
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Table 1. Supervised Learning DataSet.

Output Input

k(2)t k(2)t−1 k(2)t−2
.... k(2)t−j

k(2)t+1 k(2)t k(2)t−1
.... k(2)t−j+1

k(2)t+2 k(2)t+1 k(2)t .... k(2)t+j−2

k(2)t+3 k(2)t+2 k(2)t+1
.... k(2)t+j−3

.... .... .... .... ....
k(2)t+m k(2)t+m−1 k(2)t+m−2

.... k(2)t+m−j

The predicted k(2)t values, at time m + 1, m + 2, m + 3, ..., m + J, are done recursively.

Generally, the predicted values of k(2)t in a generic time m+ t is determined using the values

of k(2)t with t = (m + λ− 1, m + λ− 2, m + λ− 3, ..., m + λ− J) as input. The values of k(2)t
are determined by the predicted as opposed to observed values. We start by estimating
the CBD model parameters k(1)t , (x − x̄) and k(2)t using the SVD method. The extracted

time series of k(2)t is denoted as the first base for our analysis. The data is then split into
training set and testing set as per 80% training and 20% testing rule. Consequently, we
determine the last year T of observation. We have done the analysis for the U.K. and Kenya
differentiating through gender with one-time lag (j = 1) in Table 2.

Table 2. Testing set years as per Nations.

Nations Number of Years Years of Testing Set

U.K. 1930–2018 1998–2018
Kenya 2010–2020 2010–2020

When selecting the optimum hyperparameters combination for the neural network,
it is essential to carry a preliminary fine-tuning round for all these countries while distin-
guishing them by gender (see Table 3). In this step, we can get combinations, which will be
used during LSTM calibration during the forecasting procedure. On the tuning results, we
have discovered that this architecture having one hidden layer does perfume better than
others on our data and the number of neurons depending on the country. Using a Rectified
Linear Unit (ReLU) as an activation function outperformed many other functions when
testing many other countries. Moreover, there is no clear evidence on the influence of the
performance of hyper-parameters.

Table 3. ARIMA by Nation and Gender.

Nation ARIMA Model (p, d, q)

U.K.
Males ARIMA (1,1,0)

Females ARIMA (1,1,0)

Kenya
Males ARIMA (0,1,3)

Females ARIMA (0,1,3)

After the calibration step, the paper’s analysis will include numerical and graphical
processing and presentation of the goodness of fit. To be specific, the study will follow
the approach of out of sample, which denotes the testing step within the field of machine
learning. The estimation of parameter k(2)t parameter is determined using SVD, as for male
and female respectively. Figure 3 dashed vertical line shows a separation of the forecasted
period compared to one used in training the LSTM network. As for ARIMA models, it
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is shown that the confidence interval within 0.995 level of confidence. In addition to the
graphical check, we can compare the LSTM performance against those of optimum ARIMA
in the testing set before measuring the correctness of the forecasting by calculating the
following measures of statistical goodness of fit; which includes Mean Absolute Error
(MAE) as well as Root Mean Square Error (RMSE):

MAE =

m−T
∑

λ=T+1
|k(2)λ −

ˆ
k(2)λ |

(m− T)
(16)

RMSE =

√√√√√ m−T
∑

λ=T+1
(k(2)λ −

ˆ
k(2)λ )2

(m− T)
(17)

Table 4 illustrates the respective performance of ARIMA and LSTM in terms of their
RMSE and MAE by the individual nation and gender. From the results of measures of
goodness of fit and kt plots, we can see that the LSTM network offer excellent performances
when equated to the traditional ARIMA models.

By analyzing error estimates of MAE and RMSE, Kenya shows the best performance
LSTM concerning the ARIMA model for both tabulated genders. Moreover, by graphical
analysis, the LSTM appears to capture the non-linearity, especially of the future mortality
trends, by showing its good capability of bettering representation by decreasing mortality
dynamics when dealing with the ARIMA model.

Analytically, we have noticed a higher ability of the LSTM when capturing trends
of nonlinear without going in an opposite situation, which is an excessive oscillating
or parabolic trend (as well as the latter observed when compared to traditional ANNs).
Contrary, the analysis is showing that ARIMA (p, d, q) method is not effective. This
evolution of k(2)t as per ARIMA models is sometimes experienced out of reach within the
confidence interval levels, as in the U.K. case for both sexes.

The results obtained have highlighted the ARIMA’s inadequacy to detect the ever-
decreasing mortality dynamics over time. Though many researchers across the globe still
use the ARIMA process when modeling time mortality indexes, because having a fixed
structure at the same time works well as long as data satisfies the assumptions of ARIMA
like constant variance assumption, which has vast importance for integrated models, it has
many flaws when compared to currently existing deep learning techniques. In many cases,
life table data may exhibit unpredictable volatility changes for long time series, which
doesn’t fit the ARIMA assumption well.

Even though ANN is an excellent and outstanding learning algorithm for modeling,
it offers the only point of predictions without indicating any form of their variability. In
addition, the prediction of confidence intervals is a real substantial challenge within the
ANN field. Nevertheless, the LSTM network still demonstrates an excellent candidate
to use when predicting the mortality trend accurately over a long time. Table 4 shows
that LSTM indeed over-performs the traditional ARIMA (p,d,q) model in all stated na-
tions because of its fantastic architecture, which permits learning the vital influence from
historical mortality data and replacing it with high accuracy the future years. The LSTM
network capability is seen easily, particularly for the populations of the two nations where
k(2)t parameter does need to take a protuberant linear trend.
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Table 4. LSTM & ARIMA Performances.

Nation Males Females

U.K. MAE RMSE MAE RMSE
k(2)t LSTM 2.45 3.54 2.34 3.65

k(2)t ARIMA 16.56 22.45 18.45 24.45

Kenya MAE RMSE MAE RMSE
k(2)t LSTM 2.56 3.85 2.85 3.96

k(2)t ARIMA 20.85 24.05 21.56 26.86

One remarkable LSTM aspect concerns the probability of achieving optimal predicting
performance without resorting to a prior selection, especially of the time steps. For example,
we have shown that the determined values of mortality (Figure 3) from logit-mortality
rates, logitµ(x,t) for the Kenyan for males. The ARIMA model offers a trivial forecasted

trend shape when compared to LSTM. The straight line of the future k(2)t values, which
varies over time, produces a fundamental behavior of the predicted shape of mortality. On
the contrary, the CBD integrated model with the LSTM has an insignificant gap between
the real and the forecasted values mortality rates. From the smoothness of the curve, it is
easy to prove the capability of LSTM as a better forecast on accurate and big data compared
to the historical ARIMA (p,d,q) model.

Figure 3. Systematic Mortality Risk Prediction Under ARIMA vs. LSTM.

5. Conclusions

The values of MAE and RMSE from Table 4, under the LSTM approach, are much
lower when compared to those under the traditional ARIMA models for the UK and Kenya.
The accuracy of the model when forecasting the mortality models is much better in terms
of precision compared to those done on the traditional ARIMA models. Deep learning
integrated systematic mortality risk modeling improves the accuracy of the models by
approximately 150 % for the two countries.

In this study, we have done a deep learning CBD integrated model based on an RNN
possessing LSTM architecture used to predict the future index values of the parameter,
k(2)t . This approach has shown very high precision levels when modeling mortality trends
and forecasted values as opposed to canonical ARIMA see in Figure 3. In addition, in
Figure 3, LSTM has excellent features that offer more accurate forecasting while decreasing
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mortality trends over time than the best conventional ARIMA (p,d,q) process. In addition,
its powerful effect is replicated to the trends of complete expectations of life expectancy
and death distribution during a person’s lifetime.

This LSTM has a highly accurate non-linearity behavior, making it easy to determine
the differences between predicted and actual values over time. The model offers a more
optimistic scenario when modeling systematic mortality risk.

6. Recommendations

Using a CBD model, we have demonstrated that deep learning techniques make the
model more accurate when modeling and predicting, thus reducing the challenges associ-
ated with errors. Any government or private company that needs to model a behaviour
study can apply deep learning as opposed to traditional statistical estimations.

However, training on the use of machine learning needs to be done for the profession-
als in these institutions since this will enable them to save huge lots of money when pricing
the financial products based on a prediction and projections. For instance, the valuation of
life assurance products such as assurances and annuities depends on predicted systematic
mortality risk levels, meaning that poor estimation of the risk can lead to the insurance,
pension, and social security firms making substantial financial losses.

On implementing the LSTM method in a policy document by the Kenyan government,
the information should be fed into the input layer before transferred to its hidden layer.
The interconnections of the Neural Networks between the two layers assign proportions or
weights to every input randomly.
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