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Abstract: This statistical study refines and updates Sharpe’s empirical paper (1975, Financial An-
alysts Journal) on switching between US common stocks and cash equivalents. According to the
original conclusion, profitable market timing relies on a representative portfolio manager who can
correctly forecast the next year at least 7 times out of 10. Four changes are made to the original
setting. The new data set begins and ends with similar price-earnings ratios; a more accurate ap-
proximation of commissions is given; the rationality of assumptions is examined; a prospective
and basic Monte Carlo analysis is carried out so as to consider the heterogeneous performance of a
number of portfolio managers with the same forecasting accuracy. Although the first three changes
improve retrospectively the odds of profitable market timing, the original conclusion is corroborated
once more.

Keywords: market timing; commission; forecasting accuracy; Monte Carlo analysis

1. Introduction

Since 2008, exchange traded funds have experienced staggering growth, especially in
the US. As concluded by Pedersen (2018), even if the proportion of passive ETFs continues
to grow, actively managed funds are here to stay to make prices more informative and
markets more efficient. Since competition among actively managed funds is likely to be
fierce, it deserves an up-to-date examination.

Active portfolio management is an investment process that includes feedback and
feedforward loops. Its constituent stages are summarised by Damodaran (2012, chp. 1) and
thoroughly presented by Maginn et al. (2007) and Gibson (2008, chp. 13).

A strategic asset allocation is a set of target weights that meets long-term financial
goals; it goes along with a set of feasible deviations. Suppose that only two asset classes are
considered, namely stocks and bonds. By way of example, let each target weight be 50%
and each feasible deviation from a target weight be ±10%. Both tactical asset allocation
and security selection may be performed. Roughly speaking, tactical asset allocation is
constrained market timing in line with short term expectations. According to the distinction
drawn in Henriksson and Merton (1981), successful market timing rests on macroforecast-
ing skills, whereas a successful security selection rests on microforecasting skills.

More generally, the guidelines for a contrarian tactical asset allocation are laid down in
Sharpe et al. (2007). According to the Berkshire Berkshire Hathaway (1991) Annual Report,
the definitive guidelines of John Maynard Keynes on discretionary (rather than systematic)
portfolio management include: balanced concentration rather than diversification, only
fundamentals in a medium/long term perspective, and low (and hence slow) turnover.
Intuitive and systematic approaches are contrasted in Jackson (2003, chp. 11).

The challenge posed by market timing is analyzed in depth by Sharpe’s seminal paper
(1975). A peculiar yet insightful case is considered, where shifting from stocks to cash
equivalents or vice versa can occur once a year at most. Use is made of historical data.
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Stocks outperform cash equivalents in good years, whereas cash equivalents outperform
stocks in bad years. According to the paper’s conclusion, considerable forecasting accuracy
is needed for market timing to be profitable. More precisely, portfolio managers need to
distinguish in advance a good year from a bad one at least 7 times out of 10. A summary of
this paper is given in Section 2 below.

Our study attempts to refine his original analysis so as to update the empirical findings
on the odds of profitable market timing. In view of this:

• As advocated by Bernstein (1997), our data set begins and ends with similar price-
earnings ratios;

• A more accurate approximation of commissions is given;
• A lower bound is placed on forecasting accuracy by examining the rationality of

all assumptions.

These changes imply that much less forecasting accuracy is needed for market timing
to be profitable. However, attention is paid only to the representative portfolio manager,
who is neither consistently luckier nor consistently unluckier than all other managers who
have the same forecasting accuracy. Therefore, a number of managers is also considered, all
having the same forecasting accuracy. Individual performances are heterogeneous, since
there are many different sequences of forecasting errors. A basic yet prospective Monte
Carlo analysis is performed so as to obtain the range of performances that corresponds to
each selected individual’s forecasting accuracy.

Although allowance is made for heterogeneous decision making, the original conclu-
sion is corroborated once more.

The remainder of our study is organized as follows: the relevant literature is reviewed
in Section 2, the data set and conceptual framework are presented in Section 3, statistical
findings are reported in Section 4, and conclusions are provided in Section 5.

2. Literature Review

Damodaran (2012, chp. 12) presents a review of the scientific literature on market
timing that includes both a classification of the main approaches and a summary of the
empirical evidence. According to the classification, market timing approaches can be
based on:

• Several nonfinancial indicators, which may find a link between market performance
and market mood. For instance, the US stock market has displayed a negative correla-
tion with the hemlines on women’s skirts;

• Several technical indicators. For instance, price-earnings ratios and dividend yields
do slowly revert to their means. Remarkably, Shiller (2005, chps. 1 and 10) shows that
cyclically adjusted price-earnings ratios display the same behavior. Moreover, Siegel
(2014, chp. 20) also finds that an investor using a 200-day moving average would
have avoided the 1929 crash. A complementary yet unusual use of moving averages
is considered by Ilomäki et al. (2018), who are concerned only with the Dow Jones
Industrial Average and its constituent stocks;

• Macroeconomic variables, such as short-term interest rates, yields to maturity on
Treasury bonds, and GDP growth rates. For instance, the pioneering work in Harvey
(1993) finds that appropriate spreads between US Treasury yields to maturity may
anticipate the start (and end) of a recession. Harvey (1993) also mentions similar
evidence for several developed countries.

• Relative value models, which make a comparison between two markets. For instance,
Pesaran and Timmermann (1994b) take advantage of mean reversion and determine
profitable investment policies that may switch, either yearly or quarterly, between
either the S&P 500 index or the Dow Jones index and appropriate T-bills. Shen (2003)
considers a heuristic threshold, i.e., the 10th percentile of the spread between the
earnings-price ratio of the S&P 500 index and different interest rates; he obtains a
profitable investment policy that may switch monthly between the S&P 500 index and
a monthly loan.
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If allowance is made for futures on stock indexes, their interplay with futures on
commodities, currencies, and Treasury bonds must be considered. Therefore, reference can
be made to:

• The sentiments of investors and traders. For instance, Wang (2003) examines the
futures on the S&P 500 index by making reference to COT reports, which distinguish
large speculators from large hedgers and small traders. On isolating extreme values
from their sentiments, he finds that combining extremely bullish speculator sentiment
and extremely bearish hedger sentiment results in a price continuation indicator.
Wang (2003) also mentions similar empirical evidence on commodity futures;

• The VIX (futures) term structure. For instance, Fassas and Hourvouliades (2019) find
that a downward slope is a “contrarian market timing indicator”.

Consistent market timing is very hard. Combining forecasts is essential, as found once
by Ambachtsheer and Farrell (1979), and recently by Mascio et al. (2020). According to the
summary of Damodaran (2012):

• There is little empirical evidence that mutual funds have market timing skills;
• There is empirical evidence that hedge funds may time bond and currency markets;
• There is empirical evidence that professional advisers may have market timing skills.

In contrast, mixed empirical evidence on mutual funds is reported by Elton et al.
(2014, chp. 26).

Mutual funds can attempt to time markets by changing their cash balances and their
portfolio beta. According to a parametric test, when portfolio excess returns are regressed
against market excess returns, two different characteristic lines can be obtained by making
use of a dummy variable. One characteristic line matches the periods when the market
does better than the riskless security; another characteristic line matches the periods when
the market does worse than the riskless security. Therefore, two top-down portfolio
betas are estimated. Whenever market timing is successful, positive and statistically
significant parameters can be estimated, with the former portfolio beta being greater than
the latter. Moreover, a positive and statistically significant Jensen’s alpha indicates skillful
stock picking.

Theoretical analysis of this parametric test is performed by Henriksson and Merton
(1981) under the joint null hypothesis that there is no market timing skill and equilib-
rium security returns are consistent with the CAPM. The empirical analysis of Fung
et al. (2002, p. 19) is concerned with global equity-based hedge funds; it finds accord-
ingly that “managers do not show positive market-timing ability but do demonstrate superior
security-selection ability”.

However, bottom-up portfolio betas lead to a better prediction of portfolio perfor-
mance. Therefore, the time pattern of a bottom-up portfolio beta can be compared with
the time pattern of the market. To estimate a bottom-up portfolio beta, security betas are
possibly estimated from security returns, actual weights are retrieved, and a weighted sum
of all relevant security betas is computed. Such a procedure ought to be applied repeatedly
at different points in time.

The odds of profitable market timing are examined by three empirical papers below.
Altogether, it is found that market timing is challenging, with successful performances
being possibly achievable only with suitable forecasting accuracy. According to Pedersen
(2018, p. 29), “Naturally, large institutional investors can better afford to spend resources on a
manager selection team. So, it is not a surprise that institutional investors have been more successful
in their active management than smaller investors”.

More specifically, Sharpe (1975) focuses on the link between forecasting accuracy and
superior performance. His data set spans the historical period of 1929–1972; it includes
the total returns of two asset classes: either prime bankers’ acceptances (until 1942) or US
Treasury bills (after 1942), as well as the Standard and Poor’s Composite index.

Years can be either good or bad; stocks outperform cash equivalents in good years,
whereas cash equivalents outperform stocks in bad years. Markets can be timed only
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at the beginning of each year; every shift from stocks to cash equivalents or vice versa
brings about commissions, which amount to 2% of portfolio value. Profitable market
timing follows from a suitable forecasting accuracy, i.e., a suitable proportion of right
forecasts. The same accuracy is assumed when forecasting a good or bad year; stocks or
cash equivalents are held accordingly.

Each asset class is represented by two pairs (arithmetic mean return, standard devi-
ation); a pair is attached to good years, another pair to bad years. The timing policy is
compared with two different policies, either buy and hold, or constant mix. The former
invests only in stocks, whereas the latter requires yearly rebalancing to restore the weights
of stocks and cash equivalents. Since cash equivalents are less volatile than stocks, the
timing policy has a lower standard deviation than the buy and hold one. By construction,
the timing policy has roughly the same standard deviation as the constant mix one. All
policies are compared in terms of their mean returns. According to the original findings,
the timing policy has a greater geometric mean than the buy and hold policy whenever
the proportion of right forecasts is 83% or more; in contrast, it has a greater arithmetic
mean than the constant mix policy whenever the proportion of right forecasts is 74% or
more. This explains the conclusion that a portfolio manager should not try to time the stock
market unless he/she can correctly forecast the next year at least 7 times out of 10.

However, the conclusion applies only to the average manager, who is neither consis-
tently luckier nor consistently unluckier than all other managers with the same forecasting
accuracy. Unfortunately, overall performance is heterogeneous, since each manager with
the same forecasting accuracy makes his/her own peculiar sequence of decisions on as-
set allocation.

Such an original conclusion is corroborated by Chua et al. (1987), who apply a Monte
Carlo analysis to Canadian common stocks and Treasury bills under the assumption
that their logarithmic returns have a bivariate normal distribution. Moreover, a different
accuracy is used when forecasting good or bad years. On realizing whether a year is good
or bad, a random number is drawn from a (0,1) uniform distribution so as to check whether
the attendant forecast is right or wrong.

According to Monte Carlo simulations, profitable market timing relies on a portfolio
manager who can correctly forecast good years at least eight times out of ten, and bad years
at least 6 times out of 10. However, each simulated policy is compared only with a buy
and hold one. Use is made of the win/loss ratio, i.e., the ratio of right switches to wrong
switches. Unfortunately, its financial implications are unclear when both a 1% commission
and high forecasting accuracies are considered. According to the resulting win/loss ratio,
perfect timing is matched by a modest chance of outperforming a buy and hold policy.

Additional references on market timing are available in Hallerbach (2014), where a
Monte Carlo analysis is performed under the assumptions that the probability density
function of monthly excess returns has fat tails and volatility varies over time in accor-
dance with a set EWMA. Neither Chua et al. (1987) nor Hallerbach (2014) deal with the
heterogeneous performance of portfolio managers.

Our study refines the choice of data as well as the treatment of commissions and
heterogeneity so as to fill a gap in the scientific literature on the odds of profitable mar-
ket timing.

3. Historical Data and Conceptual Framework
3.1. Historical Data

Use is made of annual total returns. The data set includes two major US asset classes:

• Cash equivalents with a maturity of 1 year1;
• The S&P Composite.

Original data were downloaded in spring 2021 from the webpage of Professor Robert
Shiller, Yale University. Our data set spans the historical period of 1929–2018. As advocated
by Bernstein (1997), the data set begins and ends with similar price-earnings ratios. The
whole historical period is divided into the subperiods of 1929–1972 and 1973–2018, which
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begin and end with similar price-earnings ratios2. The two subperiods are made up of
44 and 46 years, respectively, whereas the key subperiod of 1934–1972 in Sharpe (1975) is
made up of 39 years.

The sample moments of the two major US asset classes are reported in Table 1; annual
rates are considered. Table 1 allows us to compare the subperiods of 1929–1972 and
1973–2018.

Table 1. Sample Moments of Two Major US Asset Classes: Annual Rates.

1929–2018

Cash Equivalents S&P Composite Inflation

Arithmetic mean 4.18% 10.92% 3.11%
Standard deviation 3.47% 18.64% 4.04%

Worst rate 0.29% −43.12% −10.06%
Best rate 17.63% 54.87% 18.13%

1929–1972

Cash Equivalents S&P Composite Inflation

Arithmetic mean 2.85% 10.40% 2.20%
Standard deviation 2.20% 20.35% 4.68%

Worst rate 0.53% −43.12% −10.06%
Best rate 9.11% 54.87% 18.13%

1973–2018

Cash Equivalents S&P Composite Inflation

Arithmetic mean 5.45% 11.42% 3.98%
Standard deviation 3.96% 16.83% 3.08%

Worst rate 0.29% −35.19% −0.09%
Best rate 17.63% 38.56% 13.91%

Raw data downloaded from www.econ.yale.edu/~shiller/data.htm (accessed on 20 May 2021).

Notice that in the former subperiod:

• Inflation had a lower mean but a higher standard deviation and a wider range;
• Cash equivalents had a lower mean, a lower standard deviation, and a narrower range;
• The S&P Composite had a lower mean, a higher standard deviation, and a wider range.

As recalled in Section 2, years can be either good or bad; stocks outperform cash
equivalents in good years, whereas cash equivalents outperform stocks in bad years.

The breakdown into good and bad years is reported in Table 2, which allows us to
compare good and bad years. Notice that in the good years of each historical period the
S&P Composite had a higher mean by assumption. However, it had a lower standard
deviation only in the subperiod 1973–2018.

In Section 4.1, all arithmetic means and standard deviations as well as all geometric
means are determined by assuming that population moments are the same as the available
historical moments.

The best possible performance in our setting is ideal, since it requires perfect timing.
In other words, the proportion of right forecasts is 100% so that only the asset class with
the higher total return is held each year.

The sample moments of perfect timing are reported in Table 3, assuming that:

• Either no commission is charged;
• Or a commission is charged on transaction value.

www.econ.yale.edu/~shiller/data.htm
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Table 2. Sample Moments of Two Major US Asset Classes: Annual Rates in Good and Bad Years.

1929–2018 1929–1972 1973–2018

Proportion of good
years 68.89% 70.45% 67.39%

Cash equivalents in good years

Arithmetic mean 4.11% 2.89% 5.33%
Standard deviation 3.42% 2.12% 3.99%

Cash equivalents in bad years

Arithmetic mean 4.33% 2.76% 5.70%
Standard deviation 3.57% 2.37% 3.87%

S&P Composite in good years

Arithmetic mean 20.73% 20.36% 21.10%
Standard deviation 11.82% 14.11% 8.96%

S&P Composite in bad years

Arithmetic mean −10.80% −13.36% −8.58%
Standard deviation 11.09% 11.25% 10.47%

Raw data downloaded from www.econ.yale.edu/~shiller/data.htm (accessed on 20 May 2021).

Table 3. Sample Moments of Perfect Timing: Annual Rates.

1929–2018

S&P Composite Perfect Timing
No Commission

Perfect Timing
1% Commission

Arithmetic mean 10.92% 15.63% 14.89%
Standard deviation 18.64% 12.56% 12.86%

Worst rate −43.12% 0.53% −1.47%
Best rate 54.87% 54.87% 53.87%

1929–1972

S&P Composite Perfect Timing
No Commission

Perfect Timing
1% Commission

Arithmetic mean 10.40% 15.16% 14.48%
Standard deviation 20.35% 14.36% 14.64%

Worst rate −43.12% 0.53% −1.47%
Best rate 54.87% 54.87% 53.87%

1973–2018

S&P Composite Perfect Timing
No Commission

Perfect Timing
1% Commission

Arithmetic mean 11.42% 16.08% 15.29%
Standard deviation 16.83% 10.54% 10.86%

Worst rate −35.19% 0.86% −1.14%
Best rate 38.56% 38.56% 37.56%

Raw data downloaded from www.econ.yale.edu/~shiller/data.htm (accessed on 20 May 2021).

More precisely, a commission c = 1% is paid whenever stocks are bought or sold and
whenever cash equivalents are bought; no commission is paid when cash equivalents
expire. Table 3 allows us to compare perfect timing (with and without commissions) with a
buy and hold policy.

Take the payment of commissions into consideration and notice that:

• Perfect timing always has a greater arithmetic mean than the S&P Composite. The
difference is large and ranges from 3.87% to 4.08%;

• The S&P Composite always has a greater standard deviation than perfect timing. The
difference is large and ranges from 5.71% to 5.97%;

www.econ.yale.edu/~shiller/data.htm
www.econ.yale.edu/~shiller/data.htm
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• Perfect timing always has a much better worst rate than the S&P Composite by as-
sumption.

3.2. Conceptual Framework: Expected Commissions

The aim of this statistical study is to investigate market timing when portfolio man-
agers have different forecasting accuracies. First, we consider a sufficiently large population
of homogeneous managers and analyze the properties of their representative portfolio by
using the historical mean returns and standard deviations reported in Section 3.1. Next,
we move to a sufficiently large population of heterogeneous managers and carry out a
basic Monte Carlo analysis of the effects exerted by individual forecasting errors on the
related portfolios.

Financial markets are represented by a Bernoulli random variable r such that r = 1
(or r = 0) when a year is good (or bad). Roughly speaking, stocks are expected to perform
sufficiently better than cash equivalents in a good year, whereas cash equivalents are
expected to perform sufficiently better than stocks in a bad year. Forecasts are represented
by a Bernoulli random variable w such that w = 1 (or w = 0) when the next year is called
good (or bad) and stocks (or cash equivalents) are held accordingly by an operator who is
a price taker.

The table below represents the joint probability distribution

r = 1 r = 0

w = 1 pρ (1− p)(1− ρ)
w = 0 p(1− ρ) (1− p)ρ

where p is the marginal probability of a good year, (1 − p) is the marginal probability of
a bad year, and ρ is the proportion of right forecasts. More precisely, ρ is a conditional
probability: it is the probability of forecasting a good year when a good year is coming,
as well as the probability of forecasting a bad year when a bad year is coming; the same
accuracy is thus assumed when forecasting good or bad years. Notice that w = 1 is matched
by a correct prediction for r = 1 and an incorrect prediction for r = 0.

It can be readily ascertained that:

• 1− p− (1− 2p)ρ is the marginal probability of holding stocks, whereas p + (1− 2p)ρ
is the marginal probability of holding cash equivalents. For any given p > 0.5, the
marginal probability of holding stocks increases linearly with ρ, whereas the marginal
probability of holding cash equivalents decreases linearly with ρ. Both probabilities
come in useful when determining the probability of incurring commissions;

• Summing the probabilities on the main diagonal gives ρ, which is the probability of a
right call. In other words, the higher ρ, the higher is the forecasting accuracy;

• The covariance between r and w is

p(1− p)(2ρ− 1)

• For ρ = 0.5, forecasting is like flipping a coin so that the Bernoulli random variables r
and w are independent. As explained in Section 3.3, no rational operator can do so.
The marginal probabilities of holding stocks and cash equivalents are the same;

• For ρ = 1, the Bernoulli random variables r and w are perfectly correlated; in other
words, forecasting is clairvoyant. The marginal probability of holding stocks is equal
to p, whereas the marginal probability of holding cash equivalents is equal to 1− p;

• For any given p and 0.5 ≤ ρ ≤ 1, Pearson’s correlation coefficient ϕ ranges between
0 and 1, being higher the higher ρ is. Indeed, the variance p(1− p) is constant. In
contrast, the variance (1− p− ρ + 2pρ)(p + ρ− 2pρ) decreases with ρ for p 6= 0.5,
whereas it is equal to 0.25 for p = 0.5.

Let c be the commission charged on a transaction that is worth $1. Expected commis-
sions depend on the four different events that can take place at the end of each year:
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• If stocks are held for two years in a row, no commissions are paid. The probability is
(1− p− ρ + 2pρ)2;

• If stocks are replaced with cash equivalents, commissions are paid twice. The proba-
bility is (1− p− ρ + 2pρ)(p + ρ− 2pρ);

• If cash equivalents are replaced with stocks, commissions are paid once. The probabil-
ity is (p + ρ− 2pρ)(1− p− ρ + 2pρ);

• If cash equivalents are held for two years in a row, commissions are paid once. The
probability is (p + ρ− 2pρ)2.

As a consequence, expected commissions per unit of capital amount to

3c(1− p− ρ + 2pρ)(p + ρ− 2pρ) + c(p + ρ− 2pρ)2 (1)

Remarkably, expected commissions per unit of capital take a different form in Sharpe
(1975):

4c(1− p− ρ + 2pρ)(p + ρ− 2pρ) (2)

since only switches are considered and commissions are always paid twice. It can be readily
ascertained that:

• For any given p > 0.5 and ρ = 0.5, both expected values are equal to c;
• For any given p > 0.5 and 0.5 < ρ ≤ 1, the expected value (1) is lower than the

expected value (2).

3.3. Conceptual Framework: Rational Behaviour

Since operators don’t know the marginal probability of a good year p, rationality requires

ρµSG + (1− ρ)µSB > ρ µCG + (1− ρ)µCB (3)

(1− ρ)µCG + ρµCB > (1− ρ) µSG + ρµSB (4)

provided that operators are risk-neutral. The right-hand side of (3) is the expected rate of
return conditional on w = 1; since stocks are held, cash equivalents are considered in the
left-hand side of (3). The right-hand side of (4) is the expected rate of return conditional on
w = 0; since cash equivalents are held, stocks are considered in the left-hand side of (4).

The inequalities (3) and (4) respectively imply that

ρ > ρ =
µCB − µSB

µSG − µSB + µCB − µCG

ρ > 1− ρ =
µSG − µCG

µSG − µSB + µCB − µCG

where 0 < ρ < 1. Since we need that

ρ > max(ρ, 1− ρ) ≥ 0.5

We have
ρ > max(ρ, 1− ρ) = 0.5201 i.e., ϕ > 0.08

> max(ρ, 1− ρ) = 0.5248 i.e., ϕ > 0.02

in the subperiod of 1929–1972 and in the subperiod of 1973–2018, respectively. Therefore,
the lowest feasible value of the forecasting accuracy is slightly larger than 0.5, whereas the
lowest feasible value of Pearson’s correlation coefficient ϕ is slightly larger than 0.
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4. Statistical Findings on Profitable Market Timing
4.1. Retrospective Approach: The Representative Portfolio

Both the dichotomous classification of Section 3.2 and the historical returns of Section 3.1
come in useful when focusing on the representative portfolio, in order to assess the requi-
sites for profitable market timing. More precisely, we assume that:

• The forecasting accuracy ρ is homogeneous;
• The historical moments in Table 2 are the relevant parameters of the investment process;
• A commission c = 1% is charged on transaction value so that Table 3 above, as well

as Tables 4 and 5 below, can be contrasted with the scientific works mentioned in
Section 2.

Table 4. Market-Timing Performance versus Forecasting Accuracy, 1929–1972.

Market Timing Policy Buy and Hold
Policy Constant Mix Policy

Forecasting
Accuracy

Gross
Arithmetic

Mean
Return

Standard
Deviation

Net
Arithmetic

Mean
Return

Net
Geometric

Mean
Return

Difference in
Net Geometric
Mean Returns

Net
Arithmetic

Mean
Return

Difference in
Net

Arithmetic
Mean Returns

ρ µ σ ¯
µ g g−^

g
=
µ

¯
µ−=

µ

0.50 0.0662 0.1496 0.0562 0.0457 −0.0383 0.0781 −0.0219
0.55 0.0748 0.1512 0.0650 0.0543 −0.0297 0.0788 −0.0138
0.60 0.0833 0.1523 0.0737 0.0630 −0.0210 0.0792 −0.0055
0.65 0.0918 0.1529 0.0825 0.0718 −0.0122 0.0795 0.0030
0.70 0.1004 0.1531 0.0913 0.0806 −0.0034 0.0795 0.0118
0.75 0.1089 0.1527 0.1001 0.0896 0.0056 0.0794 0.0207
0.80 0.1174 0.1519 0.1090 0.0986 0.0146 0.0791 0.0299
0.85 0.1260 0.1506 0.1178 0.1077 0.0237 0.0785 0.0393
0.90 0.1345 0.1488 0.1267 0.1169 0.0329 0.0778 0.0489
0.95 0.1430 0.1465 0.1356 0.1262 0.0422 0.0768 0.0587
1.00 0.1516 0.1436 0.1445 0.1355 0.0515 0.0757 0.0688

Table 5. Market Timing Performance versus Forecasting Accuracy, 1973–2018.

Market Timing Policy Buy and Hold
Policy Constant Mix Policy

Forecasting
Accuracy

Gross
Arithmetic

Mean
Return

Standard
Deviation

Net
Arithmetic

Mean
Return

Net
Geometric

Mean
Return

Difference in
Net Geometric
Mean Returns

Net
Arithmetic

Mean
Return

Difference in
Net

Arithmetic
Mean Returns

ρ µ σ ¯
µ g g−^

g
=
µ

¯
µ−=

µ

0.50 0.0843 0.1259 0.0743 0.0670 −0.0170 0.0947 −0.0204
0.55 0.0920 0.1261 0.0822 0.0748 −0.0092 0.0948 −0.0126
0.60 0.0996 0.1258 0.0900 0.0828 −0.0012 0.0947 −0.0047
0.65 0.1073 0.1251 0.0978 0.0907 0.0067 0.0943 0.0035
0.70 0.1149 0.1239 0.1057 0.0988 0.0148 0.0938 0.0119
0.75 0.1226 0.1222 0.1136 0.1069 0.0229 0.0930 0.0205
0.80 0.1302 0.1200 0.1215 0.1151 0.0311 0.0920 0.0294
0.85 0.1378 0.1173 0.1293 0.1233 0.0393 0.0908 0.0386
0.90 0.1455 0.1140 0.1373 0.1316 0.0476 0.0893 0.0480
0.95 0.1531 0.1100 0.1452 0.1399 0.0559 0.0874 0.0577
1.00 0.1608 0.1054 0.1531 0.1483 0.0643 0.0853 0.0678

The dichotomous classification can go along with a contingency table; if forecasts
are observable, the latter may be used to validate a specific timing policy. Notice that the
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attendant nonparametric tests do not depend on any assumption about the distribution
of portfolio returns. This is the case of Shen (2003), mentioned above in Section 2. This is
also the case of Brown et al. (1998), where both nonparametric and bootstrapping tests
are performed. The nonparametric test of Henriksson and Merton (1981) is extended by
Cumby and Modest (1987). As remarked by Pesaran and Timmermann (1994a, p. 1),
the former test “is asymptotically equal to the χ2 test of independence in the context of a 2 × 2
contingency table”.

Our statistical findings are reported in Tables 4 and 5, which are based on the historical
periods of 1929–1972 and 1973–2018, respectively. Use is made of linear rates of return
so that approximate geometric means are computed. Outcomes include the difference
between two net geometric means as well as the difference between two net arithmetic
means. The geometric means belong to either the timing policy or the buy and hold one,
whereas the arithmetic means belong to either the timing policy or the constant mix one.

First, the above-mentioned market timing policy is examined; its arithmetic means
µ and standard deviations σ are displayed in column 2 and column 3 of Tables 4 and 5.
Arithmetic means are computed in accordance with the equation

µ = pρµSG + (1− p)(1− ρ)µSB + p(1− ρ)µCG + (1− p)ρµCB (5)

with ρ taking the values in column 1 of Tables 4 and 5. Moreover, µSG and µSB are the
arithmetic means of stocks in good and bad years, respectively, whereas µCG and µCB are
the arithmetic means of cash equivalents in good and bad years, respectively. Both p and
all historical arithmetic means are the entries from Table 2.

Standard deviations are computed in accordance with the equation

σ2 = pρσ2
SG + (1− p)(1− ρ)σ2

SB + p(1− ρ)σ2
CG + (1− p)ρσ2

CB + pρ(µSG − µ)2

+(1− p)(1− ρ)(µSB − µ)2 + p(1− ρ)(µCG − µ)2 + (1− p)ρ(µCB − µ)2 (6)

where σ2
SG and σ2

SB are the historical variances of stocks in good and bad years, respectively,
whereas σ2

CG and σ2
CB are the historical variances of cash equivalents in good and bad years,

respectively. All attendant standard deviations are the entries from Table 2.
When a commission is charged on transaction value, net arithmetic means µ and net

geometric means g are computed and displayed in column 43 and in column 5 of Tables 4
and 54.

Next, a buy and hold policy is examined and its net geometric mean ĝ is computed5.
The timing policy and the buy and hold policy are compared in column 6 of Tables 4 and 5,
where the differences g− ĝ between their net geometric means are shown.

Finally, a constant mix policy is considered and its net arithmetic mean is computed6.
Each attendant portfolio is matched by a specific and constant mix of stocks and cash so
that its specific volatility is the same as the volatility σ of the timing policy in the same row7.
The timing policy and the constant mix policy are contrasted in column 8 of Tables 4 and 5,
where the differences between their net arithmetic means µ− =

µ are displayed.
According to Tables 4 and 5:

• The higher the forecasting accuracy ρ, the greater is the difference g− ĝ between net
geometric means. Therefore, the timing policy outperforms the buy and hold one
for ρ ≥ 71% in the subperiod of 1929–1972, and for ρ ≥ 61% in the subperiod of
1973–2018;

• The higher the forecasting accuracy ρ, the greater is the difference µ− =
µ between net

arithmetic means. Therefore, the timing policy outperforms the constant mix one for
ρ ≥ 63% in both subperiods.

All thresholds are strikingly lower than in Sharpe (1975), especially in the latter
subperiod. Keep in mind that his Table 5 is based on the subperiod of 1934–1972 which
doesn’t begin and end with similar price-earnings ratios; moreover, his approximations are
different from ours, as regards commissions (see notes 3 and 6).
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4.2. Prospective Approach: The Distribution of Individual Portfolios

The representative portfolio of Section 4.1 is attached to the average manager, who is
neither consistently luckier nor consistently unluckier than all other managers who have
the same forecasting accuracy ρ. Only the performance of the average manager is matched
by the net arithmetic mean µ and the net geometric mean g, respectively, given in notes 5
and 6.

However, overall performance is heterogeneous, since each manager with the same
forecasting accuracy ρ makes his/her own peculiar sequence of decisions on asset allocation.
Therefore, there are many different sequences of decisions and forecasting errors as well as
many different accumulation patterns. Accordingly, we consider a number of managers
who are price takers and have the same forecasting accuracy ρ. Each year, each manager
acts in accordance with his/her forecast so that individual forecasting errors result in a
range of net arithmetic means.

For each selected forecasting accuracy ρ, a Monte Carlo analysis is carried out in order
to obtain a 90% confidence interval for net arithmetic means. Whatever the selected value
of ρ, 10,000 portfolio managers are considered. Each individual performance is at first
represented by a sequence of 90 forecasting attempts and then turned into a sequence of
90 net annual rates of return. For simplicity’s sake, use is made of the annual rates of return
on cash equivalents and the S&P Composite that span the historical period of 1929–2018.
Forecasting errors are assumed to be independent and identically distributed Bernoulli
random variables. When no forecasting error is made, the right asset class is held; when
a forecasting error is made, the wrong asset class is held. A 1% commission is taken into
account.

Figure 1 displays the 90% confidence interval for net medians; forecasting accuracy ρ
varies from 0.5 to 1. For each selected value of ρ, the cross-sectional median as well as the
5th and 95th percentiles are plotted. Remarkably, the net arithmetic mean turns out to be
hardly distinguishable from the net median. Notice that:

• The higher the forecasting accuracy ρ, the narrower is the cross-sectional range, i.e., the
lower is the heterogeneity of managers’ net annual return;

• For ρ = 1, the cross-sectional range includes a single point. Therefore, if forecasting is
clairvoyant, all investors are like the average portfolio manager of Tables 4 and 5.

J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 1. Net Annual Return from Heterogeneous Market Timing. Note: For each specific forecasting accuracy ρ, 10,000 
simulations are run, which result in the net annual returns of 10,000 different portfolios. 

 
Figure 2. Net Annual Advantage from Market Timing over Constant Mix. Note: For each specific forecasting accuracy ρ, 
10,000 simulations are run, which eventually result in the annual advantages of 10,000 different portfolios, each net annual 
advantage being the difference between a net annual return of Figure 1 and the same net arithmetic mean of the constant 
mix policy. 

5. Conclusions 
This statistical study corroborates once more the original conclusion of Sharpe (1975), 

whereby profitable market timing depends on a portfolio manager who can correctly fore-
cast the next year at least 7 times out of 10. 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.
50

0.
52

0.
54

0.
56

0.
58

0.
60

0.
62

0.
64

0.
66

0.
68

0.
70

0.
72

0.
74

0.
76

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

ne
t a

nn
ua

l r
et

ur
ns

 

forecasting accuracy ρ

median 5th %tle 95th %tle

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

tim
in

g 
po

lic
y 

vs
 co

ns
ta

nt
 m

ix 
po

lic
y 

forecasting accuracy ρ

median 5th %tile 95th %tile

Figure 1. Net Annual Return from Heterogeneous Market Timing. Note: For each specific forecasting accuracy ρ, 10,000 sim-
ulations are run, which result in the net annual returns of 10,000 different portfolios.



J. Risk Financial Manag. 2021, 14, 250 12 of 14

Figure 2 compares the heterogeneous timing policies with a constant mix policy;
forecasting accuracy ρ varies from 0.5 to 1. For each selected value of ρ, the same net
arithmetic mean

=
µ is taken away from the cross-sectional values plotted in Figure 1; the

resulting cross-sectional median as well as the resulting 5th and 95th percentiles are plotted.
Notice that:

• The cross-sectional median of all timing policies is greater than 0 for ρ ≥ 63%;
• All timing policies outperform the constant mix one for ρ ≥ 72%.
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Figure 2. Net Annual Advantage from Market Timing over Constant Mix. Note: For each specific forecasting accuracy ρ,
10,000 simulations are run, which eventually result in the annual advantages of 10,000 different portfolios, each net annual
advantage being the difference between a net annual return of Figure 1 and the same net arithmetic mean of the constant
mix policy.

The former threshold is the same as in Tables 4 and 5 above, whereas it is much lower
than in Sharpe (1975). In contrast, the latter threshold is like Sharpe’s. However, if the
subperiods of 1929–1972 and 1973–2018 are separately considered, a Monte Carlo analysis
arrives at two slightly larger thresholds; the difference from ρ = 72% is smaller in the latter
subperiod. Altogether, the seminal findings of Sharpe (1975) are corroborated8.

5. Conclusions

This statistical study corroborates once more the original conclusion of Sharpe (1975),
whereby profitable market timing depends on a portfolio manager who can correctly
forecast the next year at least 7 times out of 10.

The conclusion of Damodaran (2012, p. 523) is slightly different: “To be a successful
market timer, you have to be right about two thirds of the time”. However, as recalled in
Section 2, he remarks that hedge funds may time bond and currency markets rather than
equity markets. His conclusion is also drawn from successful fund managers; for instance,
Sir John Templeton (1912–2008) claimed that even the best investors cannot outperform a
market more than 2 times out of 3.
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It can be readily realized that Hallerbach (2014) is likely to reach a similar conclusion,
since his Monte Carlo analysis is carried out under the tacit assumption that no commission
is paid on transaction value.

As usual, our approach has limitations:

• Two different percent commissions could have been used, a lower one for cash equiv-
alents and a higher one for stocks;

• Two different forecasting accuracies could have been used as in the Monte Carlo
analysis of Chua et al. (1987);

• A better use could have been made of historical returns. Expanding on Hallerbach
(2014), we could have computed the relative return of stocks versus cash equivalents
and examined its statistical properties. Next, we could have checked whether the
Bernoulli random variables r of Section 4 are independent and identically distributed.

• Risk-aversion has been disregarded, although it also depends on a country’s cultural
heritage, as found by Arosa et al. (2014) when considering the corporate decisions on
capital structure. Needless to say, the stronger the risk-aversion, the larger are both
gaps ρ−max(ρ, 1− ρ).
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Notes
1 One-year interest rates are available at www.econ.yale.edu/~shiller/data.htm (accessed on 20 May 2021). Reference is made

to the 6-month commercial paper until 1997, the 6-month Certificate of Deposit (secondary market) from 1997 to 2010, and the
2-month commercial paper from 2011 to 2018. Needless to say, periodic rates were turned into an annual yield.

2 As reported in Shiller’s dataset, price-earnings ratios at the end of 1928, 1972 and 2018 were 17.77, 18.09 and 19.60, respectively.
2019 and 2020 were disregarded owing to a sharp increase in the P/E ratio.

3 Net arithmetic means are provided by the approximation where expected commissions are taken away from arithmetic means.
Roughly speaking, a similar and small error is made when computing a real rate of return as the difference between a nominal rate
of return and an inflation rate. Although commissions affect both means and standard deviations, the latter effect is disregarded
because it is less important.

4 Net geometric means are provided by the approximation that depends on net arithmetic means (5) and the variance (6). As shown
by Booth and Fama (1992), the approximation above can be derived from a Taylor expansion truncated at 2nd order.

5 The net geometric mean of the buy and hold policy is historical and exact. It is worth ĝ = 8.40% in the subperiod of 1929–1972
and ĝ = 10.02% in the subperiod of 1973–2018.

6 Owing to annual rebalancing, an appropriate amount of stocks are sold at the end of good years, whereas an appropriate amount
are bought at the end of bad years. Moreover, new cash equivalents are subscribed at the end of each year. Consequently, net
expected commissions per unit of capital are worth approximately.

7 The proper weight of stocks is numerically determined; it ranges from 67.9% to 73.4% in the subperiod of 1929–1972, and from
60.3% to 73.7% in the subperiod of 1973–2018.

8 As explained by Rutterford (2012), analytical and prospective appraisal methods based on DCFs came into use in the 1980s and
1990s among US corporate finance analysts.
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