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Abstract: Due to recent technical progress, battery energy storages are becoming a viable option in
the power sector. Their optimal operational management focuses on load shift and shaving of price
spikes. However, this requires optimally responding to electricity demand, intermittent generation,
and volatile electricity prices. More importantly, such optimization must take into account the
so-called deep discharge costs, which have a significant impact on battery lifespan. We present a
solution to a class of stochastic optimal control problems associated with these applications. Our
numerical techniques are based on efficient algorithms which deliver a guaranteed accuracy.

Keywords: approximate dynamic programming; energy trading; optimal control; power sector

1. Introduction

In many countries, Battery Energy Storage Systems (BESS) are becoming popular due
to their advantages in managing power dispatch, interconnection, and demand. Their
growing acceptance is due to their ability to smooth out the intermittent and unreliable
nature of Renewable Energy Sources (RES). Although RES penetration has shown an in-
creasing trend, their unreliable energy supply makes it difficult to incorporate RES into a
modern electricity grid. However, in some niche applications, a variety of BESS is already
installed, where they provide operational efficiency and reduce costs by exploiting syner-
gies between storage and renewables (Barton and Infield 2004; Black and Strbac 2007; Kim
and Powell 2011; Teleke et al. 2010). Nonetheless, the implementation of BESS is still not
straightforward from economical and technical perspectives because of BESS costs and their
sensitivity to deep discharge. In this domain, there is a large body of literature with diverse
contributions to economic and technological aspects of BESS management. Furthermore,
we emphasize Yang et al. (2014) and Kempener and Borden (2015), investigating the role
of batteries with respect to RES, and Lu et al. (2014), on the optimal use of BESS for the
so-called peak load shaving.

Let us describe an abstract, but typical framework for BESS application. The traditional
electricity market players satisfy consumers’ energy demand by purchasing electricity in
advance, usually taking positions in the long-term market. Long-term market may stand for
any energy delivery agreements purchased prior to the delivery period (a year, a semester,
a month), depending on the situation. However, this market is typically represented by
the so-called day-ahead market for hourly delivery on the next day. On the contrary, the
imbalances during the delivery period must be compensated, as they occur, at a short-term
market. Such short-term energy balancing can either be achieved through complex over-
the-counter trading or, more realistically, by participating in real-time energy auction, or by
transferring supply from or to electricity grid at the so-called real time grid prices.

Figure 1 provides a simplified illustration of this optimal problem for a producer
endowed with renewable generation capacity. However, in the presence of storage and
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renewable generation facilities, the problem changes. Within this framework, the agent
is now required to simultaneously take long-term positions and setting energy storage
levels, as shown in Figure 2. The decision optimization problem becomes significantly
more complex due to the uncertainty stemming from the future battery levels, electricity
prices, and output of renewable energy.
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Figure 1. Traditional energy dispatch. White arrows represent flows of information, whereas filled
arrows stand for flows of energy. The matching of planned demand with energy supply on the
forward market is not depicted.
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Figure 2. Energy dispatch in the presence of renewable energy and battery storage. White arrows
represent the flows of information, whereas filled arrows stand for flows of energy. The matching of
planned demand with energy supply on the forward market is not depicted.

Typically, renewable energy sources, such as wind and solar, are notoriously intermittent
and unreliable. The potential of energy storages to address the highly intermittent nature
of renewable energy generation Breton and Moe (2009); Dincer (2011) and energy demand
has been discussed in the literature (see Beaudin et al. (2010); Diaz-Gonzalez et al. (2012);
Evans et al. (2012); Kempener and Borden (2015); Yang et al. (2014)). Their incorporation
into a modern energy grid will encourage more environmentally friendly policies that will
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also have a significant impact on investor atittudes towards firms Chan and Walter (2014);
Ramiah et al. (2013); Renneboog et al. (2008). The authors of Lu et al. (2014) studied the
possible usage of battery storage systems to defer costly modifications to the energy grid
by addressing peak loads in the power grid. A recent review of available energy storage
technologies has been given by Luo et al. (2015) and Weitzel and Glock (2018).

While there exist numerous types of energy storage systems, Beaudin et al. (2010)
found that no single storage system consistently outperforms all of the others for all types
of renewable energy sources and applications. Hence, for the sake of simplicity, this paper
will assume that the energy retailer pictured in Figure 2 uses a battery device for storing
energy. However, our methods and results can easily be extended to other types of storage
technologies, or even to the use of multiple types of storage devices. From a real options
analysis viewpoint (applied in this context), the incorporation of energy storages into the
energy grid also poses interesting investment questions. The work Bakke et al. (2016);
Bradbury et al. (2014); Locatelli et al. (2016) examines the profitability of investing (in
energy storage), while Schachter and Mancarella (2016) questions the suitability of the real
options approach, stating that the risk neutrality assumption may not be appropriate.

The integration of electric energy storage systems yields challenging problems of
optimal stochastic control type (see Dokuchaev and Zolotarevich (2020); Kim and Powell
(2011); Oudalov et al. (2007); Teleke et al. (2010), among others). While the traditional
power generation considers a sequence of independent decisions, the opportunity of storing
electricity intertwines actions made at different times: It is obvious that storage facilities
can be charged during the base load low-price hours and discharging during peak load
high-price hours. However, how exactly to do this requires mathematical techniques,
i.e., dynamic programming (AzRISE 2010; Löhndorf and Minner 2010), or the calculus
of variations (Flatley et al. 2016). Apart from rare cases, where a dynamic programming
can be addressed analytically (Bäuerle and Rieder 2011; Pham 2009), these problems are
usually based on numerical techniques and they are addressed by approximate dynamic
programming methods (Powell 2007). Although a huge variety of computational tools has
been developed in this area, real-world problems are too complex for existing solution
techniques, since the number of decision factors is high. The present contribution extends
the state of the art in several aspects.

The first aspect is about modeling a complex financial and economic environment,
which electricity retailers are routinely confronted with. We consider energy trading on
two time scales: a long-term (realized as day-ahead trading, futures, or forward contracts)
and a short-term (designed to adjust unexpected changes in the electricity demand in front
of delivery, which can be realized by the so-called intra-day trading, or by diverse energy
balancing procedures). Such a structure is typical for all energy markets, with differences
in price dynamics, liquidity, and spreads. The distinction between the short-term and the
long-term energy trading is of primary importance to correctly determine the economic
value of a BESS. The present work extends that of Hinz and Yee (2018a), who address BESS
management within an over-simplistic setting, merely considering a battery installation as
a passive buffer, which settles energy imbalance against electricity grid. In difference to
this, our work makes a realistic assumption that the battery levels and energy trading are
simultaneously controlled, placing the costs of deep discharge at the core of investigation.

The second aspect is methodological: we attempt solving a class of battery manage-
ment problems, rather than a specific case. More precisely, here we present a computational
methodology, whose routines implement stochastic switching algorithms (written in the
scientific language Julia.1) Our approach realizes a highly customizable solution. Namely,
the entire source code of our computations (available on Github) comprises several blocks
that serve as place holders and can be tailored to specific situations. For instance, the state
space model for electricity prices (including seasonal and mean-reverting components)
considered in this work is not attempted to describe any typical electricity price pattern,
being a proxy that can be replaced, modified, and adjusted. Such flexibility is ensured
by assumptions on linear state dynamics that encompass any ARMA model combined
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with appropriate seasonal and trend components. The same considerations apply to the
modeling of deep discharge costs. We suggest a simple proxy function penalizing deep
discharge in a fairly general way allowing for the user to tailor such penalization to a
particular battery technology.

The third aspect regards a novel computation technique. In comparison to existing
schemes (for instance, Löhndorf and Minner (2010)), we optimize energy storage using
a combination of primal and dual schemes. More specifically, we apply a sub-gradient
method introduced by Hinz (2014); Hinz and Yap (2015); Hinz and Yee (2018a) to obtain, in
a first step, an approximate solution of our stochastic control problem whose numerical
quality is examined, in the second step, using a dual method (Hinz et al. 2020; Hinz and
Yap 2015). That is, we provide simultaneous optimization of battery control and long-
term trading in presence of the uncertainty that results from RES generation, demand,
and electricity price with guaranteed precision, which contrasts this work from all existing
contributions, to the best of authors knowledge.

The paper is organized, as follows: Section 2 details the model settings. Section 3
briefly reviews the adopted solution technique. Section 4 applies the solution technique
to the present decision problem. Section 5 includes an illustrative case study, while
Section 6 concludes.

2. Model Settings

In the following, we present an abstract, but generic, model for an electricity mar-
ket, where an energy retailer has the obligation to meet the demand of its consumers
using a combination of energy from renewable generation, contractual position from long-
term market (for instance, day-ahead trading), and short-term market (real-time trading,
balancing market) as well as battery storage.

Because, in reality, decisions are made and revised periodically, we propose a dynamic
optimization with discrete-time decision-making. The present framework encompasses all
important features of real-world energy trading in order to illustrate our methodology in
the most general setting. Following this approach, our algorithmic solution can be adjusted
to a specific market architecture.

We assume a given finite-time horizon {0, . . . , T} ⊂ N and agree that the unit time
corresponds to the energy delivery interval, which can measure hours, days, or weeks,
depending on the particular application. At any time t = 0, . . . , T− 1, an energy retailer has
the obligation to satisfy, within [t, t + 1], the unknown electricity demand of its customers,
while the retailer’s renewable energy sources produce a random electricity amount. The
retailer must trade electricity optimally in advance (at time t) and decide how to control
the battery in order to manage the resulting energy imbalance.

The revenue optimization of such retailer is a sequential decision problem under
uncertainty. That is, at any time t = 0, . . . , T − 1, an action must be chosen (that will
encompass both energy trading and BESS control). Such action also influences the transition
to the subsequent state (next battery levels), changing all future revenues, costs, and
decisions. The minimization of control costs in such setting is naturally addressed in terms
of the so-called Markov Decision Theory. In the subsequent paragraphs, we formulate our
optimization problem within this framework, which we customize accordingly to be ably
applying our approximate solution methodology.

Let Dt+1 denote the residual electricity demand after that all renewable generation
has been sold to customers. Here, Dt+1 > 0 stands for shortfall and Dt+1 < 0 for excess
in the delivery period [t, t + 1] beginning at time t. We assume that the random variable
Dt+1 is observed at t + 1 when the delivery period [t, t + 1] ends. Assume that, at each
time t = 0, . . . , T − 1, the producer can take a position Ft in a long-term market to ensure
energy supply from the market to the retailer (if Ft > 0) or outflow from the retailer to the
market (if Ft < 0) within [t, t + 1]. Further consider the variable Bt, which stands for the
decision to use the battery energy |Bt|, where Bt > 0 and Bt < 0 represent the charging
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and discharging actions, respectively. Here, we agree that the BESS control actions must be
decided at time t, before the start of the delivery period.

With these assumptions, the energy to be balanced within [t, t + 1] through the short-
term market that is given by

Ft − Dt+1 − Bt. (1)

Let us introduce the random variables

ψt, t = 0, . . . , T, Ψt+1, Ψt+1, t = 0, . . . , T − 1, (2)

that stand for prices of electricity delivered within the time interval [t, t + 1]. Thereby, we
assume that ψt is the long-term market price (that is observed and paid at t for energy
delivered as within [t, t + 1]), whereas Ψt+1 and Ψt+1 represent the short-term market
prices. Here, Ψt+1 applies for procurement and Ψt+1 for the purchase of energy delivered
as constant flow within [t, t + 1]. Note that both short-term market prices Ψt+1, Ψt+1 are
not observable at the time t and become known at t + 1 at the end of period [t, t + 1].

Remark 1. The relations between prices of electricity, delivered at different time scales and traded
at different market places, has been lively discussed since beginning of energy market deregulation.
Naturally, the connection between long-term (day-ahead) and the short-term (balancing auction,
real-time) prices heavily depends on risk aversion, variable production costs, production capacities,
and delivery commitments of all market participants. For an overview on equilibrium analysis, we
refer an interested reader to Hinz (2003) and the literature cited therein.

Finally let us denote, by Ct, the operational costs that are associated with battery
management, which must be modeled by a random variable, depending on the recent
battery level and on energy delivered/absorbed within [t, t + 1]. This quantity will reflect
the impact of deep discharge on battery life, expressed in monetary units. At the moment,
we postpone the specification of these costs and finalize a one-period revenue from BESS
management, as

Rt = −Ftψt − (Ft − Dt+1 − Bt)
−Ψt+1 + (Ft − Dt+1 − Bt)

+Ψt+1 − Ct

for t = 0, . . . , T − 1. In order to maximize the expectation of the total revenue

R =
T−1

∑
t=0

Rt, (3)

a stochastic control problem must be solved. This problem is dynamical in the sense
that, at any time t, the decision to charge/discharge battery changes the situation at
the next decisions time t + 1, which has a profound effect on the next-period planning.
Typically, such a sequential decision problem admits no closed-form solution, and it can be
computationally challenging.

It is well-known that the demand fluctuations follow a complex seasonal pattern and
they are difficult to model, particularly by Markovian processes required for the state
dynamics. At this point, we suggest a significant simplification: it turns out that, under
generic assumptions, the demand modeling can be split off from the strategy optimization.
We show that merely one-step prediction dt (conditional expectation on the most recent
information) of the energy demand Dt+1 is relevant. That is, the problem that is addressed
in this work separates into two distinct steps:

(i) Establishing a time-series model for the dynamics of the energy demand that serves
at any time t the conditional expectation dt of the demand Dt+1 occurring within
[t, t + 1].
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(ii) Solving the stochastic dynamic control problem, where the demand prediction dt is
not a decision variable at time t, because the optimal long-term position is calculated
as a deviation from the demand prediction.

(iii) Running an optimal policy. For this, the prediction of the demand must be available.

Note that the second step is disentangled in the sense that, for (ii), the dynamics of
the demand prediction is irrelevant. On this account, we only consider (ii) in the reminder
of this work. However, notice that, for strategy implementation in (iii), the demand
prediction must be available at any decision time. However an advantage is that the
user can alter or replace the entire demand prediction model without re-calculating the
sequential decision strategy.

Let us establish such an approach and make some assumptions to obtain a model that
can be solved by our numerical methodology. We suppose that there is finite set A of all
possible actions. At any time, the controller chooses an action via an (optimal) decision
rule that we determine later. The actions can be defined in an abstract way, or they can
be identified by integers (or indexed by integer vectors), and their meaning for control
is merely established by some functions that are defined on actions A. In the literature,
such functions are known as look-up tables. In our case, to model diverse choices of the
trade volume in the long-term market, a function f : A → R is used with the following
interpretation: given the prediction dt of the demand Dt occurring within [t, t + 1], for
the action at ∈ A chosen at time t by the controller, the energy volume that is traded in
advance (long-term market) is

Ft = f (at) + dt. (4)

The quantity | f (at)| is the energy (bought if f (at) > 0, sold if f (at) < 0) on the top of
the predicted demand dt and it will be referred to as a safety margin. The function f must
be chosen in advance by the decision maker and it typically consists of fixing both the
granularity and range for safety margins.

Similarly, the battery management variable Bt is also determined by the action at
chosen at time t (immediately before the start of delivery period [t, t + 1]). Here, we again
use an appropriate function on A, but this time the modeling is more complex, as the energy
absorbed/delivered by the battery must take the current battery level and the physical
constraints into account. To detail this, we suggest discretizing the battery levels by a finite
set P. Having chosen action at ∈ A at time t = 0, . . . , T − 1, we suppose that the current
battery level pt ∈ P transforms to the next level pt+1 = `(pt, at) ∈ P in terms of a pre-
specified level change function ` : P× A→ P representing the technical restrictions of the
battery (total capacity, electrical power). For instance, at 7→ l(pt, at) can have values above
and below pt within a range representing one-period charge/discharge power restrictions,
if pt is in one of the intermediate battery levels. However, if pt is the highest (the lowest)
level, then at 7→ l(pt, at) only take values below (above) pt. Specifying the function l
requires some details of battery technology used, in particular for determining the maximal
charge/discharge intensity along with the highest and lowest (admissible) battery levels.

Notice that, with this convention, the energy amount transformed from/to the storage
is given by Bt = b(pt, at), where

b(pt, at) =

{
`(pt, at)− pt, if `(pt, at)− pt > 0
κ · (`(pt, at)− pt), if `(pt, at)− pt ≤ 0

, (5)

with the constant κ ∈ [0, 1] standing for battery efficiency. With these assumptions, we
express the energy imbalance (1) in terms of action at ∈ A and battery level pt ∈ P while
using prediction error

εt+1 = Dt+1 − dt, t = 0, . . . , T − 1
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as

Ft − Dt+1 − Bt = dt + f (at)− (dt + εt+1)− b(pt, at) (6)

= f (at)− b(pt, at)− εt+1.

That is, an action at ∈ A not only triggers transition in battery level from pt to
pt+1 = `(pt, at), but it also determines the the energy amount that needs to be balanced
against at the short-term market. Having defined the excess and shortage of the imbalance
(6) by

Et+1(at, pt) = ( f (at)− b(pt, at)− εt+1)
−

Et+1(at, pt) = ( f (at)− b(pt, at)− εt+1)
+

the profit/loss from balancing at time t = 0, . . . , T − 1 is modeled by

− Et+1(at, pt)Ψt+1 + Et+1(at, pt)Ψt+1. (7)

Now, using (4), the financial position for action at ∈ A is

Ftψt = dtψt + f (at)ψt (8)

(where Ftψt > 0 is interpreted as the cost to guarantee energy from the long-term market.)
Finally, let us model the storage costs by

Ct = c(pt, at), (9)

reflecting the dependence on action at ∈ A and battery level pt ∈ P. The details of the costs
must be described by an appropriate function

c : P× A→ R

specified in accordance to battery technology.
With the assumptions (7), (8), and (9), the profit/loss that is associated with action

at ∈ A depends on prices ψt, Πt+1, Πt+1, the demand prediction dt, and battery level
pt ∈ P as

Rt = −dtψt − f (at)ψt − Et+1(at, pt)Ψt+1 + Et+1(at, pt)Ψt+1 − c(pt, at).

Observe that the term dtψt depends neither on the action at nor on the battery level
pt. Because this quantity can not be changed by the decision optimization, the action-
dependent part of the reward is modeled in terms of

R̃t = Rt + dtψt

= − f (at)ψt − Et+1(at, pt)Ψt+1 + Et+1(at, pt)Ψt+1 − c(pt, at). (10)

In what follows, we show how to obtain a strategy that simultaneously takes positions
on long-term market and controls a battery level to maximize the expectation of the
demand-adjusted total revenue

R̃ =
T−1

∑
t=0

R̃t. (11)

Remark 2. Note that (11) differs from (3) by a random variable ∑T−1
t=0 dtψt, not depending on

the control policy. On this account, maximizing the expectation of R̃ constitutes a solution to
our problem. As mentioned above, such an approach avoids tedious modelling of energy demand
dynamics. However, notice that the results cannot be used directly: for strategy implementation, the
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one-step demand prediction must be available at any time, thus a demand model is required to run
the policy.

3. Research Methodology and Solution Techniques

This paper utilizes a novel numerical technique for sequential decision optimization,
which requires a number of specific assumptions. To make this technique applicable,
we model the battery storage optimization. In what follows, we present, in detail, our
methodology and elaborate on the assumptions required. However, to give the reader
an orientation, let us highlight some of the most important aspects beforehand. The
technique represents a combination of a dual and a primal approach. Thereby the primal
methodology delivers an approximate numerical solution whose quality is examined
using duality methods. The primal solution is based on a specific function approximation
method requiring convexity. Linear state dynamics is assumed in order to retain convexity
through the backward induction. The dual part is based on solution diagnostics that can be
viewed as Monte Carlo-based backtesting with variance reduction. This technique has been
used extensively for optimal stopping problems and it has been extended to our context.
Because of the combination of primal and a dual methods, the methodology delivers high
performance with guaranteed accuracy.

Sequential decision making is usually encompassed by discrete-time stochastic control
and it is addressed by Markov Decision Processes/Dynamic Programming. This theory provides
a variety of methods. However, approaching analytical solutions may be cumbersome
(Bäuerle and Rieder 2011; Pham 2009; Powell 2007) and numerical approximations may
often be far more practical. This work will utilize an implementation of fast and accurate
algorithms (see Hinz and Yee 2018b) to address specific control problems, assuming a
finite-time horizon, a finite set of actions, convex reward functions, and a state process
following a linear dynamics. Although these assumptions are restrictive, they encompass a
large class of practically important control problems and yield approximate solutions with
excellent precision and numerical performance. Let us briefly describe this approach.

Suppose that the state space P×Rd is a Cartesian product of a finite set P and Rd.
Furthermore, assume that a finite set A represents all possible actions. Given a finite-
time horizon {0, . . . , T} ⊂ N, consider a fully observable controlled Markovian process
(Xt)T

t=0 := (Pt, Zt)T
t=0 that consists of two parts.

Stochastic switching: Referrers to the evolution of the discrete component (Pt)T
t=0, which

is described by a finite-state controlled Markov chain, taking values in a finite set P. This
means that, at any time t = 0, . . . , T − 1, the controller chooses an action a from A in
order to trigger the one-step transition from the mode p ∈ P to the mode p′ ∈ P with
probability αp,p′(a), where (αp,p′(a))p,p′∈P are pre-specified transition probability matrices
for all a ∈ A.

Linear dynamics: referrers to the evolution of the continuous component (Zt)T
t=0, which is

assumed to follow an uncontrolled evolution of such a component in the Euclidean space
Rd. The evolution is modeled by the recursion

Zt+1 = Wt+1Zt, t = 0, . . . , T − 1, (12)

where (Wt)T
t=1 are independent disturbance matrices.

State evolution: that is, the transition kernels Ka
t governing the evolution of our controlled

Markovian process (Pt, Zt)T
t=0 from time t to time t + 1 are given, for each a ∈ A, by

Ka
t v(p, z) = ∑

p′∈P
αp,p′(a)E(v(p′, Wt+1z)), p ∈ P, z ∈ Rd, t = 0, . . . , T − 1,

that acts on each function v : P×Rd → R, where the above expectations are well-defined.

Costs of control: if the system is in the state (p, z), the rewards of applying action a ∈ A at
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time t = 0, . . . , T− 1 are given by rt(p, z, a). Having arrived at time t = T in the state (p, z),
a final scrap value rT(p, z) is collected. Thereby, the reward functions rt : P×Rd × A→ R,
as well as the scrap function rT : P×Rd → R, are exogenously given for t = 0, . . . , T − 1.
At each time t = 0, . . . , T − 1, the decision rule πt is given by a mapping πt : P×Rd → A,
prescribing at t an action πt(p, z) ∈ A in a state (p, z) ∈ P × Rd. Note that, at each
time, the decision rule refers to the recent state of the system, representing a so-called
feedback control.A sequence π = (πt)

T−1
t=0 of decision rules is called a policy. For each policy,

π = (πt)
T−1
t=0 , the policy value vπ

0 (p0, z0) is defined as the total expected reward

vπ
0 (p0, z0) = E(p0,z0),π

[
T−1

∑
t=0

rt(Pt, Zt, πt(Pt, Zt)) + rT(PT , ZT)

]
.

In this formula, E(p0,z0),π stands for the expectation with respect to the probability
distribution of (Pt, Zt)T

t=0 that is defined by Markov transitions from (Pt, Zt) to (Pt+1, Zt+1)

that are induced by the kernels Kπt(Pt ,Zt)
t for t = 0, . . . , T − 1, started at the initial point

(P0, Z0) = (p0, z0).

Optimization goal: a policy π∗ = (π∗t )
T−1
t=0 is called optimal if it maximizes the total

expected reward over all policies π 7→ vπ
0 (p, z). To obtain such a policy, one introduces, for

t = 0, . . . , T − 1, the so-called Bellman operator

Ttv(p, z) = max
a∈A

rt(p, z, a) + ∑
p′∈P

αp,p′(a)E[v(p′, Wt+1z)]

, for (p, z) ∈ P×Rd, (13)

acting on all functions v where the stochastic kernel is well-defined. Consider the Bellman
recursion, which is also referred to as backward induction:

vT = rT , vt = Ttvt+1 for t = T − 1, . . . , 0. (14)

Assuming that the reward functions are convex and globally Lipschitz (in the second
variable) and the disturbance matrices (Wt)T

t=1 are integrable, there exists a solution (v∗t )
T−1
t=0

to the Bellman recursion. Such functions (v∗t )
T−1
t=0 are called value functions, they determine

an optimal policy π∗ = (π∗t )
T−1
t=0 via

π∗t (p, z) = arg max
a∈A

rt(p, z, a) + ∑
p′∈P

αp,p′(a)E[v∗t+1(p′, Wt+1z)]

, (15)

for t = T − 1, . . . , 0 and v∗T = rT .

Remark 3. In applications, sequential decision problems frequently appear in a slightly different
formulation than given above. Usually, the costs of control depend on both the recent and the next
state. That is, instead of a previously introduced reward rt(Pt, Zt, a) for taking action a in the
situation (Pt, Zt), a modeling may naturally suggest r̃t(Pt, Zt, Pt+1, Zt+1, a) where the action a is
taken at time t in the situation (Pt, Zt) but reward is observed and returned at t + 1 with a random
outcome depending on the next-time situation (Pt+1, Zt+1). Fortunately, this context is seamlessly
covered by the formal setting introduced above. It turns out that, since the expectation of reward is
being maximized, a pre-conditioning r̃t(Pt, Zt, Pt+1, Zt+1, a) on the information that is available at
time t can be applied. That is, having determined the control rewards as being next-state dependent

r̃t : P×Rd × P×Rd × A→ R t = 0, . . . , T − 1 (16)
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for each p ∈ P, z ∈ Rd and t = 0, . . . , T − 1 one averages them

rt(p, z, a) = ∑
p′∈P

αp,p′(a)E(r̃t(p, z, p′, Wt+1z, a)), (17)

to obtain the usual reward functions, as introduced in the standard setting (3).

Approximate solution: in order to obtain a numerical solution to the above Markov
Decision problem, one needs to approximate the true value functions (v∗t )

T−1
t=0 and the

corresponding optimal policies π∗ = (π∗t )
T−1
t=0 . Because all reward and scrap functions

are convex in the second variable, the value functions are also convex and they can be
approximated by piecewise linear and convex functions.

Primal solution method: our approach is based on the observation that, for convex switch-
ing systems, the value functions in the backward induction are obtained by applying the
following three operations to convex functions:

composition with linear maps, summation (integration), maximization. (18)

To obtain an efficient (approximative) numerical treatment of these operations, the
concept of the so-called sub-gradient envelopes was suggested in Hinz (2014). A sub-gradient
Og f of a convex function f : Rd → R at a point g ∈ Rd is an affine-linear functional
supporting this point Og f (g) = f (g) from below Og f ≤ f . Given a finite grid G =

{g1, g2, . . . , gm} ⊂ Rd, the sub-gradient envelope SG f of f on G is defined as a maximum
of its sub-gradients

SG f =
∨

g∈G
(Og f ), (19)

which provides a convex approximation of the function f from below SG f ≤ f , and it
enjoys many useful properties. For our purposes, the following observation is crucial:

If the function f results from operations in (18) applied to a (large) number n ∈ N of convex and
piecewise linear argument functions ( fi)

n
i=1, then SG f can be obtained efficiently, unlike the

function f itself.

The reason is that the sub-gradients of f are determined by sub-gradients of argu-
ment functions ( fi)

n
i=1 on grid points only. Thus, all of the operations can be carried

out sub-gradient-wise, namely, observe that the summation can be done on the level
of sub-gradients

SG

n

∑
i=1

fi =
∨

g∈G
(

n

∑
i=1

Og fi). (20)

Furthermore, maximization requires merely sub-gradients of the maximizing function
at each grid point

SG

n∨
i=1

fi =
∨

g∈G
Og fargmaxn

j=1 f j(g). (21)

Finally, the sub-gradient envelope SG fi(W.) of the composition of an argument func-
tion fi with a linear mapping W can be obtained from the composition of all sub-gradients
(Og fi)g∈G participating in SG fi with W as

SG fi(W.) =
∨

g∈G
(Og fi)(W.), i = 1, . . . , n. (22)

The crucial point of our algorithm is a treatment of piecewise linear convex functions
in terms of matrices. To address this aspect, let us agree on the following notation: given a
function f and matrix F, we write f ∼ F whenever f (z) = max(Fz) holds for all z ∈ Rd,
and call F a matrix representative of f . It turns out that the sub-gradient envelope operation
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SG acting on convex piecewise linear functions, corresponds to a certain row-rearrangement
operator ΥG acting on the matrix representatives of these functions, in the sense that

f ∼ F ⇒ SG f ∼ ΥG[F].

Such a row-rearrangement operator ΥG that is associated with the grid

G = {g1, . . . , gm} ⊂ Rd

acts on each matrix F with d columns, as follows:

(ΥG[F])i,· = Fargmax(Fgi), for all i = 1, . . . , m. (23)

Let us explain in what sense the properties (20)–(22) are mirrored on the side of matrix
representatives. Assume that the piecewise linear and convex functions ( fi)

n
i=1 are given in

terms of their matrix representatives (Fi)
n
i=1, such that

fi ∼ Fi, i = 1, . . . , n.

As a direct consequence of (20)–(22) and the definition (23), it holds that

SG(
n

∑
i=1

fi) ∼
n

∑
i=1

ΥG[Fi] (24)

SG(
n∨

i=1

fi) ∼ ΥG[tn
i=1Fi] (25)

SG( fi(W·) ∼ ΥG[FiW] i = 1, . . . , n, (26)

where the operator t denotes binding matrices by rows. Using the sub-gradient envelope
operator, define the double-modified Bellman operator as

T m,n
t v(p, z) = SGm max

a∈A

rt(p, z, a)+ ∑
p′∈P

αp,p′(a)
n

∑
k=1

ν
(k)
t+1v(p′, W(k)

t+1z)

,

where the probability weights (ν(k)t+1)
n
k=1 correspond to the distribution sampling (W(k)

t+1)
n
k=1

of each disturbance matrix Wt+1. The corresponding backward induction

vm,n
T (p, z) = SGm rT(p, z), (27)

vm,n
t (p, z) = T m,n

t vm,n
t+1(p, z), t = T − 1, . . . , 0, (28)

yields the so-called double-modified value functions (vm,n
t )T

t=0. Under appropriate assump-
tions on increasing grid density and disturbance sampling, the double-modified value
functions uniformly converge to the true value functions in (14) on compact sets (see Hinz
2014). Let us present the algorithm from Hinz (2014) for calculating the modified value
functions in terms of their matrix representatives:

Pre-calculations: given a grid Gm = {g1, . . . , gm}, implement the row rearrangement oper-
ator Υ = ΥGm and the row maximization operator ta∈A. Determine a distribution sampling
(W(k)

t )n
k=1 of each disturbance Wt with corresponding weights (ν

(k)
t )n

k=1 for t = 1, . . . , T.
Given reward functions (rt)

T−1
t=0 and scrap value rT , assume that the matrix representatives

of their sub-gradient envelopes are given by

SGm rt(p, ·, a) ∼ Rt(p, a), SGm rT(p, ·) ∼ RT(p)
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for t = 0, . . . , T− 1, p ∈ P and a ∈ A. The matrix representatives of each double-modified
value function

v(m,n)
t (p, ·) ∼ Vt(p) for t = 0, . . . , T, p ∈ P

are obtained via the following matrix-form of the approximate backward induction in (27)
and (28):

Initialization: start with the matrices

VT(p) = RT(p), for all p ∈ P.

Recursion: For t = T − 1, . . . , 0 and for p ∈ P, calculate

VE
t+1(p, a) = ∑

p′∈P
αp,p′(a)

n

∑
k=1

ν
(k)
t+1Υ

[
Vt+1(p′)W(k)

t+1

]
(29)

Vt(p) = ta∈A

(
Rt(p, a) + VE

t+1(p, a)
)

(30)

This algorithm is depicted in the Algorithm 1.

Algorithm 1: Value Function Approximation

for p ∈ P do
VT(p) ∼ SrT(p, .), VT(p)← Υ[VT(p)],
for a ∈ A, t = 0, . . . , T do

Rt(p, a) ∼ Srt(p, ., a), Rt(p, a)← Υ[Rt(p, a)]
end

end
for t ∈ {T − 1, . . . , 0} do

for p ∈ P do
for a ∈ A do

VE
t+1(p, a)← ∑p′∈P αp,p′(a)∑n

k=1 ν
(k)
t+1(k)Υ

[
Vt+1(p′)W(k)

t+1

]
end

end
for p ∈ P do

Vt(p)← ta∈A
(

Rt(p, a) + VE
t+1(p, a)

)
end

end

Having calculated matrix representatives (VE
t )T

t=0, approximations to expected value
functions are obtained as

vE
t+1(p, z, a) = max(VE

t (p, a)z) (31)

vt(p, z) = max(Vt(p)z) (32)

for all z ∈ Rd, t = 0, . . . , T− 1, a ∈ A and p ∈ P. Furthermore, an approximately optimal
strategy (πt)

T−1
t=0 is obtained for t = 0, . . . , T − 1 by

πt(p, z) = argmaxa∈A(rt(p, z, a) + vE
t+1(p, z, a)), (33)

Dual diagnostics method: let us now turn to the diagnostics method following Hinz and
Yee (2016) whose proof is found in Hinz and Yap (2015). Suppose that a candidate (πt)

T−1
t=0

for approximatively optimal policy is given. To estimate its distance-to-optimality, we
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address the performance gap [vπ
0 (p0, z0), vπ∗

0 (p0, z0)] at a given starting point z0 = Z0. For
this, we construct random variables vπ,ϕ

0 (p0, z0), vπ,ϕ
0 (p0, z0) satisfying

E(vπ,ϕ
0 (p0, z0)) = vπ

0 (p0, z0) ≤ vπ∗
0 (p0, z0) ≤ E(v̄π,ϕ

0 (p0, z0)).

The calculation of the expectations E(vπ,ϕ
0 (p0, z0)), and E(v̄π,ϕ

0 (p0, z0)) is realized
through a recursive Monte Carlo scheme with variance reduction, which yields approxima-
tions to E(vπ,ϕ

0 (p0, z0)), and E(v̄π,ϕ
0 (p0, z0)), along with appropriate confidence intervals.

For a practical application of the bound estimation, we assume that an approximate
solution yields a candidate (πt)

T−1
t=0 for an optimal strategy, as in (33), based on approxima-

tions (vt)T
t=0 of the value functions from (32).

Bound estimation:

(1) Chose a path number K and a nesting number I ∈ N to obtain for each k = 1, . . . , K
and i = 0, . . . , I independent realizations (wi,k

t )T
t=0 of the random variables (Wt)T

t=0.
(2) Define, for k = 1, . . . , K, the state trajectories (zk

t )
T
t=0 recursively

zk
0 := z0, zk

t+1 = w0,k
t+1zk

t , t = 0, . . . , T − 1

and determine all of the realizations

ϕk
t+1(p, a) = ∑

p′∈P
αp,p′(a)

(
1
I

I

∑
i=1

vt+1(p′, wi,k
t+1zk

t )− vt+1(p′, zk
t+1)

)
. (34)

for t = 0, . . . , T − 1, k = 1, . . . , K, p ∈ P, a ∈ A.
(3) For each k = 1, . . . , K, initialize the recursion at t = T as

v̄k
T(p) = rT(p, zk

T), vk
T(p) = rT(p, zk

T), p ∈ P

and continue for t = T − 1, . . . , 0, p ∈ P by

v̄k
t (p) = max

a∈A

[
rt(p, zk

t , a) + ϕk
t+1(p, a) + ∑

p′∈P
αp,p′(a)v̄k

t+1(p′)
]
,

ak
t (p) = πt(p, zk

t )

vk
t (p) = rt(p, zk

t , ak
t (p)) + ϕk

t+1(p, ak
t (p)) + ∑

p′∈P
αp,p′(ak

t (p))vk
t+1(p′). (35)

(4) Calculate the sample means

1
K

K

∑
k=1

, v̄k
0(p),

1
K

K

∑
k=1

vk
0(p)

to estimate the performance gap

[vπ
0 (p, z0), vπ∗

0 (p, z0)] (36)

from above and below, possibly using in-sample confidence bounds.

This technique is depicted in the Algorithm 2 and is usually referred to as pathwise
stochastic control and it has gained increasing popularity over the recent decades. We refer
the interested reader to Hinz and Yap (2015) and the literature cited therein for the technical
details. Such a stochastic control exhibits a helpful self-tuning property. The closer the value
function approximations resemble their true unknown counterparts, the tighter the bounds
in (36) and the lower the standard errors of the bound estimates. We provide an application
of this technique to the above battery control problem in what follows.
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Algorithm 2: Solution Diagnostics

for k = 0, . . . , K do
zk

0 ← z0
for t = 1, . . . , T do

for p ∈ P, a ∈ A do
ϕt+1(p, a) = ∑p′∈P αp,p′(a)

(
1
I ∑I

i=1 vt+1(p′, wi,k
t+1zk

t )− vt+1(p′, zk
t+1)

)
end
zk

t+1 = w0,k
t+1zk

t
end

end
for k = 1, . . . , K do

for p ∈ P do
v̄k

T(p)← vk
T(p)← rT(p, zk

T)
end
for t ∈ {T − 1, . . . , 0} do

for p ∈ P do
v̄k

t (p)← maxa∈A
[
rt(p, zk

t , a) + ϕk
t+1(p, a) + ∑p′∈P αp,p′(a)v̄k

t+1(p′)
]

ak
t ← πt(p, zk

t )

vk
t (p)← rt(p, zk

t , ak
t ) + ϕk

t+1(p, ak
t ) + ∑p′∈P αp,p′(ak

t )v
k
t+1(ak

t )

end
end

end
determine estimators 1

K ∑K
k=1 v̄k

0(p) 1
K ∑K

k=1 vk
0(p)

4. BESS as Stochastic Switching with Linear State Dynamics

Let us construct a model that fulfills all of the assumptions of Section 2, such that
the methodology presented in Section 3 becomes applicable. For this, we introduce the
four-dimensional uncontrolled state evolution (Zt)T

t=0

Zt = [ 1, Z(2)
t , Z(3)

t , Z(4)
t , Z(5)

t ]>, t = 0, . . . , T

carrying a constant entry in its first component. This is a minor increase of state dimension,
allowing to encompass a broad class of dynamics while fulfilling linear (12) restriction. Let
us agree that the processes (ψt)T

t=0, (Ψt+1)
T
t=0, (Ψt+1)

T
t=0, and (εt)T

t=0 are functions of the
components of (Zt)T

t=0, as it follows:

ψt = g(2)(t, Z(2)
t ), Ψt+1 = g(3)(t + 1, Z(3)

t+1),

Ψt+1 = g(4)(t + 1, Z(4)
t+1), εt+1 = g(5)(t + 1, Z(5)

t+1),
(37)

where the deterministic affine-linear transformations (g(i)(t, ·))T
t=0, with i = 2, . . . , 5, ap-

propriately describe trends and seasonal patterns.
For a numerical case study, let us more specifically address the above framework. First,

we suggest modeling the long-term price component as a function of an auto-regressive
process. Therefore, consider a sequence (N(2)

t+1)
T
t=0 of independent standard normal random

variables and introduce the auto-regressive state process (Z(2)
t )T

t=0, such that

Z(2)
t+1 = µ + φZ(2)

t + σN(2)
t+1, Z(2)

0 = z(2)0 ∈ R, (38)
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with parameters µ ∈ R, σ ∈ R+, and φ ∈ [0, 1]. To embed the evolution (38) into the state
process (Zt)T

t=0, recall that the first component is equal to one for t = 0, . . . , T, which allows
for the desired linear dynamics[

1
Z(2)

t+1

]
=

[
1 0

µ + σN(2)
t+1 φ

][
1

Z(2)
t

]
t = 0, . . . , T − 1. (39)

Other components can be modeled similarly as time dependent affine-linear func-
tions of auto-regressions. For simplicity, we suggest independent identically distributed
random variables

Z(3)
t+1 = N(3)

t+1, Z(4)
t+1 = N(4)

t+1, Z(5)
t+1 = N(5)

t+1, t = 0, . . . , T − 1, (40)

that yield a linear state dynamics (12) with the following disturbance matrices

Wt+1 =



1 0 0 0 0
µ + σN(2)

t+1 φ 0 0 0

N(3)
t+1 0 0 0 0

N(4)
t+1 0 0 0 0

N(5)
t+1 0 0 0 0

 t = 0, . . . , T − 1.

Here, (Nt = (N(i)
t )5

i=2))
T
t=1 is a sequence of independent multivariate standard nor-

mally distributed random variables. For the dynamics (37), the state variables must be
scaled and shifted appropriately. The seasonality is reflected by functions

g(i)(t, z) = u(i)
t + s(i)t z(i) z(i) ∈ R, t = 0, . . . , T − 1, (41)

with deterministic shift u(i)
t ∈ R and scale st ∈ [0, ∞] coefficients, i = 2, . . . , 5.

To describe the evolution of the controlled part (Pt)T
t=0 of the state dynamics, we

assume that the finite set P includes battery levels, which are equidistantly spaced with
step size ∆ > 0 between levels p = min P and p = max P. Given the level change function
` : P× A→ P, the transitions are not random:

αp,p′(a) =

{
1 if p′ = `(p, a),
0 else,

p ∈ P, a ∈ A. (42)

Having defined the state evolution (Zt, Pt)T
t=0 and the processes (37) via functions

(41) on states, observe that the rewards (10) depend on both the current and the next state,
as in (16):

− f (a)ψt − Et+1(a, p)Ψt+1 + Et+1(a, p)Ψt+1 − c(p, a). (43)

Indeed, due to (37), ψt is a function of Zt, while Et+1(a, p), Ψt+1, Et+1(a, p), and Ψt+1 are
functions of Zt+1. Using (17), we transform (43) to the standard form of the reward:

− f (a)ψt − et(a, p)ψt + et(a, p)ψ
t
− c(p, a). (44)

In this equation, the expected surplus et(a, p) and shortage et(a, p) of the imbalance
are obtained as integrals:

et(p, a) =
∫ ∞

0
xN ( f (a)− b(p, a)− u(5)

t+1, (s(5)t+1)
2)(dx) (45)

and

et(p, a) =
∫ 0

−∞
(−x)N ( f (a)− b(p, a)− u(5)

t+1, (s(5)t+1)
2)(dx), (46)
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respectively, for all p ∈ P and a ∈ A, where N (ξ, ς2) denotes the normal distribution with
mean ξ ∈ R and variance ς2 ∈ R+. Furthermore, ψ

t
and ψt are the expectations of Ψt+1

and Ψt+1 at time t, as given by

ψ
t
= u(3)

t and ψt = u(4)
t , t = 0, . . . , T − 1. (47)

With almost all of the ingredients now in place, we define the reward functions, in
accordance to (10), by

rt(p, (z(1), . . . , z(5)), a) =

− f (a)(u(2)
t + s(2)t z(2))− et(p, a)u(4)

t + et(p, a)u(3)
t − c(pt, at), (48)

for all a ∈ A, p ∈ P, (z(1)t , . . . , z(5)t ) ∈ R5, and t = 0, . . . , T − 1. Finally, let us introduce the
last component—the scrap function. Here, we assume that the entire electricity from the
BESS can be sold in the long-term market at time T:

rT(pT , (z(1), . . . , z(5))) = pψT = p(u(2)
T + s(2)T z(2)), (49)

for p ∈ P, (z(1), . . . , z(5)) ∈ R5. With these definitions, we have formalized the optimal
management of battery energy storage systems as a stochastic control problem and can
address its numerical solution in the next section.

Remark 4. Note that the reward functions (48) and the scrap function (49) only depend on the
second component z(2) of the state variable z = (z(1), . . . , z(5)). That is, modeling the state
evolution using linear dynamics can be reduced to the first two components, as in (39).

5. A Numerical Illustration

Consider a BESS with a total capacity of χ ∈ R+ MWh. We assume that the positions
P ⊂ [0, χ] represent a grid of all feasible battery levels that range from the minimum
level p = min P to the maximum level p = max P. Such a discretization of battery levels
(which are continuous by their physical nature) is a tribute that we have to pay to make
our optimal switching approach applicable. However, our the numerical procedures are
efficient, and the discretization can be realized at a sufficiently fine granularity. Further,
assume that the space of actions is the Cartesian product of two finite sub-spaces:

A = {1, 2, . . . , a(1)} × {1, 2, . . . , a(2)},

with the interpretation that, by taking the action a = (a(1), a(2)) ∈ A, the retailer chooses a
certain safety margin f (1)(a(1)) ∈ R through the first action component a(1) and determines,
at the same time, a potential battery charge/discharge f (2)(a(2)) via the second action
component a(2). In fact, we assume that both sets, that of the safety margins

{ f (1)(a(1)) : (a(1), a(2)) ∈ A}

and that of the charge/discharge

{ f (2)(a(2)) : (a(1), a(2)) ∈ A},

are represented by discrete grids, which range from their minimum values f (1) and f (2) to

their maximum values f
(1)

and f
(2)

, respectively. In this setting, the safety margin function
is given by f (a(1), a(2)) = f (1)(a(1)) and the BESS management variable is defined by

`(p, (a(1), a(2))) = arg min
p′∈P
|p′ − (p + f (2)(a(2)))|,
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for all p ∈ P and (a(1), a(2)) ∈ A. With this variable, the loss due to battery inefficiency is
described as in (5).

The state process (Zt)T
t=0 := (Z(1)

t , Z(2)
t )T

t=0 is modeled as in Section 4 with parameters
µ ∈ R, σ ∈ R+, and φ ∈ [0, 1]. To reflect a trend and a seasonality in the price evolution,
we assume

ψt = g(2)(t, Z(2)
t ) = u(2)

t + s(2)t Z(2)
t , t = 0, . . . , T,

with deterministic coefficients u(2)
t = −1 + cos(2πt/τ) and s(2)t = 1 + sin2(2πt/τ), where

the parameter τ > 0 represents the period length. Figure 3 depicts the state process
(Z(2)

t )T
t=0 and the long-term electricity prices in Euros (g(2)(t, Z(2)

t ))T
t=0 for the parameters

that are listed in Table 1. Further, we obtain the expected short-term prices:

πt = u(3)
t , πt = u(4)

t , t = 0, . . . , T − 1,

where we set u(3)
t = 5 and u(4)

t = 50 for all t = 0, . . . , T − 1.
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Figure 3. The upper and lower plots depict sample paths for the state process (Z(2)
t )T

t=0 and the
corresponding long-term electricity prices (ψt)

T
t=0, respectively.

Table 1. The values of the parameters used in the numerical illustration.

T µ φ σ Z(2)
0 τ κ |P| |A|

48 1 0.9 1 10 24 1 21 13× 9

p p a(1) a(2) f (1) f
(1)

f (2) f
(2)

ζ χ

0 150 13 9 −10 10 −10 10 1 150

Finally, we suggest modeling deep discharge costs by the following function:

c(p, a) = η1(1 + η2 p/χ)−1, p ∈ P, a ∈ A,
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with parameters η1 ≥ 0, η2 > 0. Note that this function depends on the ratio p/χ, which
measures the depth of discharge. Such a function increasingly penalizes the total reward as
the battery level approaches zero. To examine the effect of this penalization, we compare
the optimal battery levels in Figure 4, which depicts level evolutions under the assumption
that the battery starts at the lowest level at time t = 0. The bottom plot shows that, in the
absence of deep discharge costs (η1 = 0), low battery levels are reached routinely. On the
contrary, the upper plot shows that battery levels rarely fall below 30% of the total capacity.
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Figure 4. Forward electricity prices and battery levels based on the parameter values in Table 1, with
η1 = 100, η2 = 15 (upper plot) and with η1 = 0 (lower plot). The price trajectories, taken from the
lower panel of Figure 3, are depicted in the lower part of each panel.

Furthermore, let us illustrate the safety margins in Figure 5. Because there is no
significant difference between both graphs, deep discharge costs seem to have a moderate
impact on safety margins. In both graphs, we merely see a tendency to buy energy through
higher safety margins when electricity prices are low.

Finally, we provide a brief discussion on the value function, which is illustrated in
Table 2 and in Figure 6. Each row of Table 2 corresponds to a discretized battery level. The
columns “Lower interval” and “Upper interval” include the empirical confidence intervals
for the lower and upper estimate of the value function, respectively. This calculation was
based on the assumption that the initial electricity price, ψ0, was equal to 10. The confidence
bounds, obtained by the diagnostic methods in Hinz and Yap (2015) based on a pathwise
dynamic approach, are tight, which certifies the high precision of our solution obtained in
terms of the sub-gradient method described in Section 3. Figure 6 depicts the approximate
value functions delivered by the sub-gradient method for a range of values of the initial
state variable Z(2)

0 (represented on the horizontal axis), with different curves standing for
different initial battery levels p0. Here, we notice that the value function is increasing in the
initial battery level p0 (the energy that is owned at the beginning yields a certain return)
and it interacts with the initial state variable, Z(2)

0 , which is, also, by construction, the initial
electricity price ψ0. Recall that a higher price at the beginning causes subsequent prices to
be high on average (by the increasing trend of the auto-regressive state process). Therefore,
if the battery is well charged at time t = 0, then the retailer can sell electricity (within the
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time horizon) and obtain a substantial profit; if, on the contrary, the initial level of the
battery is low, the retailer must pay more for the initial charge.
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Figure 5. Safety margins based on the parameter values in Table 1, with η1 = 100, η2 = 15 (upper
plot) and with η1 = 0 (lower plot). Contrary to Figure 4, the price trajectories, shown in the lower
panel of Figure 3, are not reported here to avoid a confusing overlapping with the safety margin plots.

Notice that the numerical results for the value function do not allow a direct inter-
pretation in terms of total revenues. The reason is that the rewards of our model, in (10),
do not take the retailer’s income from fixed delivery contracts into account (refer to the
remark after (10)).
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Figure 6. Value functions at t = 0 under optimal policies. Each curve corresponds to a battery level
p0 ∈ P: the lowest curve is associated with the lowest battery level, 0, the second lowest curve is
associated with the second lowest battery level, 8, and so on. Each curve is drawn with respect to

a range of values for the state variable Z(2)
0 . The graphs are drawn with costs of deep discharge

(η1 = 100 and η2 = 15).

Finally, we exemplary elaborate on a typical economic application addressing a styl-
ized investment and capacity allocation problem. In this context, one of the most important
questions is to determine the optimal installed capacity and the type of the battery. Having
assumed zero costs of deep discharge, Figure 7 depicts the value function, starting with
an empty battery, in dependence on storage capacity. Let us refer to this value as the
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initial storage value. In line with intuition, a higher storage yields a higher value that is
represented by a monotonically increasing concave curve. Because the initial investment
in BESS is usually linear in the capacity put in place, this curve could be used to deter-
mine the optimal capacity by equating the marginal value of the storage to that of the
marginal investment.

Table 2. Solution diagnostics based on 50 trajectories (with η1 = 100 and η2 = 15) and ψ0 = 10.

Level p (MWh) Lower Interval Upper Interval

0 [−484.8457, −484.7002] [−484.845728, −484.7002]
8 [−261.5587, −261.4229] [−261.558277, −261.4219]

15 [−82.4095, −82.2604] [−82.409453, −82.2604]
23 [78.0581, 78.2014] [78.058582, 78.2023]
30 [227.8284, 227.9784] [227.828407, 227.9784]
38 [370.0146, 370.1593] [370.015052, 370.1603]
45 [506.2079, 506.3552] [506.207923, 506.3552]
53 [637.4470, 637.6007] [637.447020, 637.6007]
60 [764.6185, 764.7616] [764.620788, 764.7631]
68 [888.3149, 888.4576] [888.314914, 888.4576]
75 [1008.8882, 1009.0220] [1008.890685, 1009.0233]
83 [1126.5152, 1126.6511] [1126.515153, 1126.6511]
90 [1241.4532, 1241.5858] [1241.455821, 1241.5871]
98 [1353.6041, 1353.7311] [1353.604121, 1353.7311]

105 [1463.2317, 1463.3635] [1463.234482, 1463.3646]
113 [1570.0781, 1570.2042] [1570.078093, 1570.2042]
120 [1674.4280, 1674.5548] [1674.428008, 1674.5548]
128 [1775.6500, 1775.7734] [1775.649952, 1775.7734]
135 [1868.0094, 1868.1358] [1868.009369, 1868.1358]
143 [1947.9315, 1948.0580] [1947.931502, 1948.0580]
150 [2023.2787, 2023.4052] [2023.278738, 2023.4052]
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Figure 7. Initial value of an empty battery at ψ0 = 10 and for the efficiency parameter κ = 0.97
(lower line) and κ = 1.0 (upper line).

Our numerical experiments suggest that dealing with twenty to fifty equidistant
levels shall yield sufficiently precise results (i.e., the numerical outcomes do not change
significantly if the granularity becomes finer). However, the discretization of actions (that
only yields a finite number of safety margins and battery controls) is a delicate issue.
Here, it may be advisable to compare numerical outcomes from several models. Still,
our experiments suggest that the optimal strategies are of bang-bang type, meaning that
they apply just few extremal (usually largest and smallest) safety margins and battery
charging/discharging actions. For this reason, we believe that good results are achievable
by small action spaces.
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6. Conclusions

Battery Energy Storage Systems (BESS) have the potential to change the landscape
of future energy generation and trading. However, the existing systems are costly and
sensitive to diverse operational issues (such as deep discharge); therefore, a thorough in-
vestigation of their optimal management is essential. To engage with this development, we
investigate the problem of electricity storage management in the presence of deep discharge
costs within a well defined market structure. In particular, we advance a simultaneous
optimization of BESS management and energy trading in the presence of the uncertainty
resulting from RES generation, demand, and electricity prices. We provide evidence that
charging/discharging decisions nicely anticipate changes in electricity prices and avoid,
at the same time, deep discharging. Despite the obvious mathematical complications of
joining energy trading and BESS management in a stochastic framework, the optimization
problem is successfully solved. To this purpose, we adopt a combination of primal and
dual schemes that provide an approximately optimal solution with guaranteed accuracy.
Our methodology is based on highly time performing computational schemes, whose
routines are publicly available. Our approach is also characterized by flexibility, allowing
for specifications and adaptations to address real-world problems.
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