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Abstract: This paper studies multiscale stochastic volatility models of financial asset returns. It speci-
fies two components in the log-volatility process and allows for leverage/asymmetric effects from
both components while return innovation terms follow a heavy/fat tailed Student t distribution.
The two components are shown to be important in capturing persistent dependence in return
volatility, which is often absent in applications of stochastic volatility models which incorporate
leverage/asymmetric effects. The models are applied to asset returns from a foreign currency market
and an equity market. The model fits are assessed, and the proposed models are shown to compare
favorably to the one-component asymmetric stochastic volatility models with Gaussian and Student
t distributed innovation terms.

Keywords: Bayesian inference; MCMC; slice sampler

1. Introduction

There is a large volume of studies on the volatility of financial asset returns in which
the volatility of the returns is assumed to be governed by a stochastic process. Since the
initial work of Taylor (1986), stochastic volatility (SV) models have been subjected to much
research in financial econometrics. The main feature of a canonical SV model is that the
logarithm of the conditional volatility of asset returns is generated by a latent/unobserved
autoregressive (AR) process. Its noise/innovation terms are drawn from a univariate
Gaussian distribution, and the innovation terms of the asset return process themselves are
also drawn from a standard Gaussian distribution. To incorporate a heavy/fat tail property
of the marginal distribution of the asset returns in the model, a Student t distribution is
often assumed for the innovation terms of the asset return equation.

As the SV models have a hierarchical structure, parameter estimation of the models has
been found to be challenging. The general method of moments (GMM), the simulated method
of moments (SMM), the efficient method of moments (EMM), the empirical characteristic
functions (ECF), and important sampling methods, among others, have been introduced in
the literature to circumvent this difficulty. Bayesian Monte Carlo, in particular Markov chain
Monte Carlo (MCMC), has also been proposed in the literature as an estimation approach
for the SV models. In addition to offering computational flexibility, the MCMC method
also allows investigators to incorporate prior information about the parameters of a model
formally. This additional component of the MCMC method has proven to be quite attractive
to investigators working with more complex SV models. For a further review of this approach,
see, for instance, Chib et al. (2009) and Lopes and Polson (2010). Since then, various univariate
extensions of the SV models within the MCMC framework have been explored, for instance,
as in Men et al. (2016, 2016), and more recently in Men and Wirjanto (2018).

In the meantime, extensions of the SV models also took shape on another front with
the introduction of multivariate SV (MSV) models, starting with Harvey et al. (1994) and
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subsequently followed by a number of studies, which include Lopes and Polson (2010);
Aguilar and West (2000); Chib et al. (2002).

Still another direction of the extension of the SV models emerged with the introduction
of multifactor models which incorporate multiscaling features. The principal idea of this
approach is that univariate series are driven by several factors that vary at different time
scales, as in the studies by LeBaron (2001); Alizadeh et al. (2002); Chernov (2003). Within
this stream of the literature, Molina et al. (2010) proposed a multiscale SV (MSSV) model
to capture different scales of the logarithm of the conditional volatilities of asset returns.
In this model, the conditional volatility is driven by equally weighted factors where each
factor is driven by a first-order autoregressive (AR(1)) process. The innovation of the return
process and the component latent AR(1) processes are assumed to be uncorrelated and
follow a univariate Gaussian distribution.

Interestingly, LeBaron (2001) argued that two-factor stochastic volatility models exhibit
heavy-/fat-tailed return distribution, which are the empirical features of many asset returns.
Given this observation and given that the marginal distributions of asset returns often
appear to have heavy/fat tails, we extend the MSSV model by assuming a Student t
distribution for the innovation of the mean equation from which the heavy/fat tail of the
asset returns can be adequately captured. We coin this extended multiscale volatility model
as an asymmetric MSSV (MSASV) model. This represents the first contribution of the paper
to the literature.

Our second contribution to the literature is to assume that the innovation terms of
the mean equation of the model are correlated nontrivially with the innovation terms of
the latent/unobserved volatility factor process. In this paper, the correlation structure is
introduced specifically to accommodate the asymmetric/leverage effect that have been
observed to be present between asset returns and future volatilities.1

The third contribution of this paper to the literature consists of developing suit-
able MCMC algorithms for the inference of the MSASV models. It is also worth point-
ing out that the MCMC method developed in this paper is different from that used in
Molina et al. (2010), where the authors utilized the method advocated in Harvey and Shep-
hard (1996) by taking the logarithm of the squared measurement equation. In this paper, we
specify a posterior distribution of the latent states directly, and the states are then simulated
via a Metropolis–Hastings (MH) method where the proposed distribution is simulated by
a method known as a slice sampler.

Lastly, our fourth contribution to the literature lies in the use of an auxiliary particle
filter (APF) for the purpose of carrying out both a one-step-ahead in-sample (or training-
sample-based) volatility prediction and an out-of-sample (or test-sample-based) volatility
prediction for the fitted MSASV models.

The remaining parts of the paper are organized as follows. Section 2 reviews the SV
model and presents the MSSV and MSASV models. The MSASV model is extended to
incorporate the heavy/fat tails of the marginal distribution of the returns. Specifically,
we assume that the innovations of the return time series has a Student t distribution.
In addition, we also introduce a nontrivial correlation structure between the innovation
terms of the mean equation and the innovation terms of the latent/unobserved factor (i.e.,
volatility) process in the model. Section 3 presents novel MCMC algorithms for model
inference. Simulation studies are conducted in Section 4 to show the ability of the proposed
MCMC algorithms to recover the true parameters of the model. Empirical applications are
then provided in Section 5 to illustrate the performance of our model and algorithms based
on the asset return data sets from both the foreign currency market and the equity markets,
and Section 6 concludes the paper.

2. The MSASV Model
2.1. The SV Model

A canonical SV model studied in the literature is a one-component (or factor) SV model,
where the conditional volatility of the asset returns is assumed to have been generated by a
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latent/unobserved AR(1) process. The multiscale SV (MSSV) model proposed by Molina
et al. (2010) is a direct extension of this one-component SV model. For this reason we first
review the one-component SV model briefly.

As mentioned earlier the SV model was proposed by Taylor (1986) to incorporate
time-varying volatility of the returns. Define by yt the asset return at time t. Then the
dynamics of yt is given by:

yt = eht/2εt; εt
i.i.d∼ N(0, δ2), t = 1, ..., T, (1)

ht+1 = φht + σηt+1, t = 1, ..., T − 1, (2)

h0 ∼ N(0, σ2/(1− φ2)), (3)

where ηt is statistically independent random noise terms, such that ηt ∼ N (0, 1). It is
also assumed that εt is statistically independent with a common univariate Gaussian
distribution N (0, δ2), and the innovation terms, εt and ηt, are statistically independent of
each other. In addition we also impose the condition that |φ| < 1 in order to ensure that
the latent/unobserved AR(1) process is second-order stationary,

As the SV model is hierarchical and the mean equation defined in (1) is highly non-
linear, its likelihood function does not possess a closed-form representation, and it is highly
intractable to integrate out the T latent/unobserved volatility processes from this likelihood
function. Faced with this difficulty MCMC methods have been proposed to estimate the
parameters of the SV models.

2.2. The MSSV and MSASV Models

The MSSV model, proposed by Molina et al. (2010), is a direct extension of the one-
component SV model. In this model, the yt process is determined by multiple additive
latent/unobserved volatilities as factors. The model is defined as:

yt = e(1
′
ht/2)εt, t = 1, 2, ..., T, (4)

ht+1 = Φht + Σ1/2ηt+1, t = 1, ..., T − 1, (5)

h0 ∼ N(0, Ω), (6)

where the innovation terms, εt and ηt+1, t = 1, 2, . . . , are assumed to be statistically
independent of each other, ηt = (η1,t, ..., ηK,t)

′
is a vector of multivariate Gaussian variates

such that ηt+1 ∼ N(0, IK), where 0 is a k-dimensional vector of zeros, IK is a K× K identity
matrix, and εt’s are statistically independent of each other with a common univariate
Gaussian distribution, denoted as N(0, δ2). In (4)–(6) ht = (h1,t, ..., hK,t)

′
is a vector of

K latent/unobserved volatility states at time t, and 1 denotes a K-dimensional vector of
ones. The innovation terms of the latent/unobserved volatility process ht, t = 1, 2, . . . ,
are also statistically independent of each other; that is, Σ is a K× K diagonal matrix with
the k-th diagonal element being given by σ2

k , with σ2
k > 0, and Φ is a K × K diagonal

matrix containing the mean reversion parameters, such that |φk| < 1, for k = 1, . . . , K.
The covariance matrix of the initial latent/unobserved volatility vector h0 is given by
the implied second-order stationary, marginal covariance matrix Ω of the latent volatility
process, which, in turn, satisfies the condition that Ω = ΦΩΦ + Σ. Note that in (4)–(6),
if we set φi = 0 for some i, the implied model will reduce to a model which contains a
permanent (log-normal) source of independent jumps in the volatility series, as the hi,t
would be (temporally statistically independent) Gaussian processes which is added to the
(log)variance process driving the return series.

As pointed out by Molina et al. (2010), the model in (4)–(6) can be motivated as a
discrete-time approximation to the underlying continuous-time SV models, where the
volatility is an exponential function of a sum of multiple Ornstein–Uhlenbeck processes
with the mean reverting processes varying on well-separated time scales. Its model repre-
sentation and the ensuing discussion of the model are relegated to Appendix A. Alterna-
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tively the model stated in (4)–(6) can also be viewed as arising from the fact that the SV
models allow for superposition of latent volatilities where total volatilities is the sum of
individual component volatilities. See, inter alia, Roberts et al. (2004) and Griffin and Steel
(2010) for this particular set up. For this reason the model in (4)–(6) are sometimes also
referred to as a multi-component (or multi-factor) SV model.

Following Molina et al. (2010) we impose the condition that φ1 > ... > φK in order to
ensure that the MSSV model is identifiable. Under this restriction, all of the components of
the latent/unobserved process in (5) are ensured to evolve on different time scales. Note
also that we exclude a location parameter from this process as the innovation terms, εt, in
the model possess a non-unit variance.

The original MSSV model studied in Molina et al. (2010) does not allow for correlation
between the innovation terms, εt and ηt+1. In the equity markets asset returns have been
shown to have a negative correlation with their logarithms of conditional volatilities. In
this paper we incorporate a nontrivial correlation structure between the innovation terms
of the mean equation and the innovation terms of the latent volatility component processes.
In principle we can also allow for a correlation structure among the innovation terms of the
latent/unobserved AR(1) processes. However, in order to maintain a reasonable simplifica-
tion of the development of the MCMC algorithm, and also to ensure identifiability of the
model, we do not entertain this possibility in this paper. Another important observation
pertaining to the asset returns is the heavy/fat tail property of the marginal distribution of
the returns, which is often captured by assuming that the innovation terms of the mean
equation follow a Student t distribution. Accordingly we assume that εt ∼ t(v) with v
degrees of freedom. The MSASV model with the Student t distributional assumption for
the innovation terms of the mean equation is called an MSASV-t model.2

To simplify the derivation for the proposed MCMC algorithm we reparametrize the
latent/unobserved AR(1) process of the MSASV model as

hk,t+1 = φkhk,t + ψkyte−
1
2 ∑K

k=1 hk,t + τkek,t+1, k = 1, ..., K, (7)

where ek,t, k = 1, ..., K, are independent univariate standard normal noises, ψk = σkρk and

τk = σk

√
1− ρ2

k , k = 1, ..., K. This reparametrized form highlights the nontrivial correlation
structure we have introduced in the model between the innovation terms of the mean
equation and the innovation terms of the latent factor processes, as conventionally defined
in the one-component SV literature and interpreted it as a leverage/asymmetric effect.
However, as mentioned earlier, in this paper we do not allow for a non-trivial correlation
structure among the latent innovation terms for reason of computational tractability and
to ensure model identifiability. Given (7), instead of sampling ρk and σk, k = 1, ..., K, we
sample ψk and τk, k = 1, ..., K, and then proceed backwards to obtain samples of ρk and σk.

2.3. MCMC

In the remaining parts of the paper we focus our analyses on the MSASV and the
MSASV-t models with two components, that is, we pre-set K = 2, for reasons of com-
putational tractability.3 Define θ = (φ1, φ2, σ1, σ2, ρ1, ρ2, δ)

′
as the vector of parameters

for the MSASV model, θt = (φ1, φ2, σ1, σ2, ρ1, ρ2, v)
′

as the vector of parameters of the
MSASV-t model, and h = {h1, ..., hT} as the set of the corresponding latent/unobserved
volatility states.

We complete the specification of the MSASV and the MSASV-t models by incorpo-
rating explicit prior distributions for the models’ parameters. For simplicity we assume
that all prior distributions of the parameters of both multiscale SV models are statisti-
cally independent of each other. To impose a second-order stationary condition on the
latent/unobserved volatility processes we specify the prior distributions for φ1 and φ2 to
be N(0, 10), which is truncated in the interval (−1, 1). These prior distributions give rise to
relatively flat densities over their support regions. In the MCMC algorithm we sample σ2

i
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instead of σi, i = 1, 2, by using an inverse Gamma distribution IG(5, 0.05). As to the prior
distributions of v we adopt a half-Cauchy prior with the density function given by

p(v) ∝
1

1 + v2 , v > 0. (8)

As part of the implementation of the MCMC algorithm, we augment the latent/unobserved
volatility states h with a vector of parameters and estimate them as a by-product of the
process.

2.4. Estimation of the MSASV Model

We first present an outline of the MCMC algorithm in Table 1.

Table 1. MCMC algorithm for the MSASV model.

Step 0. Initialize h, φk, σk, k = 1, 2, and δ.
Step 1. Sample hk,t, k = 1, 2, t = 1, ..., T.
Step 2. Sample φ1 and φ2.
Step 3. Sample ψ1 and ψ2.
Step 4. Sample τ2

1 and τ2
2 .

Step 5. Sample δ2.
Step 6. Go to Step 1.

Then we provide an additional explanation for this algorithm as follows.
Step 0. Initialize φk, ψk, σk, k = 1, 2, and δ by using the relevant prior distributions.

To determine the initial value of the vector h we set the parameters of the latent volatility
process as φk = 0.5, σk = 0.12, k = 1, 2, v = 0.5 and γ = 0.5. Then we generate the initial
value of h by using the definition (5) and (6) of the process.

Step 1. Sample h. We carry out the simulation by adopting a single-move acceptance-
rejection algorithm.

We only state the full conditionals of ht, t = 2, ..., T− 1. The full conditionals of h1 and
hT can be relatively straightforward to derive and therefore they are not presented here.

The full conditional of h1,t is:

f (h1,t|yt−1, yt, ht−1, ht+1, θ)

= c1t f (yt|ht) f (h1,t|ht−1, yt−1, θ) f (h1,t|ht+1, yt, θ)

= c2t exp(−h1,t/2)× exp
{
− (y2

t exp(−h1,t − h2,t)

2δ2

}

× exp
{
−
[
(h1,t − φh1,t−1 − ψ1yt−1 exp(−h1,t−1/2− h2,t−1/2)

]2
2τ2

1

}

× exp
{
−
[
h1,t+1 − φh1,t − ψ1yt exp(−h1,t/2− h2,t/2)

]2
2τ2

1

}

× exp
{
−
[
h2,t+1 − φh2,t − ψ2yt exp(−h1,t/2− h2,t/2)

]2
2τ2

2

}
(9)

< c2t exp(−h1,t/2)× exp
{
− (y2

t exp(−h1,t − h2,t)

2δ2

}

× exp
{
−
[
(h1,t − φh1,t−1 − ψ1yt−1 exp(−h1,t−1/2− h2,t−1/2)

]2
2τ2

1

}
(10)

where c1t and c2t represent two normalizing constants. The reason that the inequality
sign in (10) holds true is because the last two parts of the right-hand side of the Equation
in (9) is constrained to be less than unity. It is also worth pointing out that both the full
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conditional distribution (9) and the dominant distribution in (10) are unknown; as a result
we are unable to simulate them directly. Instead we use the MH method to sample the full
conditional distribution (9). We note that the proposal distribution of the MH algorithm
is critically important for the performance of the simulation outcome. Notably Chib and
Greenberg (1995) laments that choosing a good proposal density likes searching for a
proverbial needle in a haystack. In general a proposal density can be obtained by means of
an approximation of the underlying full conditional (see Jacquier et al. (1994, 2004)) or by
selecting a standard Gaussian density (see Kim et al. (1998) and Zhang and King (2008)).
As is well-known in the literature, the critical aspect of MCMC in fitting a SV model is the
sampling quality of the full conditionals of the augmented parameters, which are the log
volatilities, h. The contribution of this paper to the literature lies in the development of the
MH method to sample the full conditional distribution (9), where the proposal distribution
is the dominant distribution in (10), which can be sampled by the method of slice sampler
proposed by Neal (2003). The efficiency of the slice sampler method has been studied by
authors such as Roberts and Rosenthal (1999) and Mira and Tierney (2002). In particular
Roberts and Rosenthal (1999) show that, under certain sufficient conditions, the slice
algorithm is quite robust and has geometric ergodicity properties. Mira and Tierney (2002)
point out that the slice sampler has a smaller second-largest eigenvalue, which allows for a
faster convergence to the underlying distribution.

Algorithm of the slice sampler for h1,t
It is straightforward to show that the right-hand side of (10) can be: expressed as

g(h1,t) ∝ exp
{
− (y2

t exp(−h1,t − h2,t)

2δ2

}
exp

{
− (h1,t − µ1,t)

2

2τ2
1

}
,

where µ1,t = −
τ2

1
2 + φ1h1,t−1 + ψ1yt−1 exp(−h1,t−1/2− h2,t−1/2).

1. Draw u1 uniformly from the (0, 1) interval. Let u2 = u1 exp
{
−y2

t
2δ2 exp(−h1,t−h2,t)

}
.

If yt 6= 0, then we have:

h1,t ≥ − log
(
−2δ2 log(u2)

y2
t exp(−h2,t)

)
. (11)

2. Draw u3 uniformly from the (0, 1) interval.

Let u4 = u3 exp
{
− (h1,t−µ1,t)

2

2τ2
1

}
and

u4 < exp
{
− (h1,t − µ1,t)

2

2τ2
1

}
Then we have:

µ1,t −
√
−2τ2

1 log(u4) ≤ h1,t ≤ µ1,t +
√
−2τ2

1 log(u4). (12)

3. If yt 6= 0, draw h1,t uniformly from the interval, which is determined by the
inequalities stated in (11) and (12) as:

h1,t ∼ U
(

max
{
− log

(
−2δ2 log(u2)

y2
t exp(−h2,t)

)
, µ1,t −

√
−2τ2

1 log(u4)
}

, µ1,t +
√
−2τ2

1 log(u4)

)
,

otherwise,

h1,t ∼ U
(

µ1,t −
√
−2τ2

1 log(u4), µ1,t +
√
−2τ2

1 log(u4)

)
.
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We note that the method of the single-move simulation is widely used in the SV
literature; notable examples include Jacquier et al. (1994, 2004); Yu et al. (2006); Zhang
and King (2008) .4 One important advantage of the slice sampler is that each iteration can
give us a point from the underlying distribution; in contrast in the MH algorithm, many
generated points have to be discarded.

Step 2. Sampling φk, k = 1, 2. Given the conjugate prior distribution φk ∼ N(αφk , β2
φk
),

the full conditional of φk is:

f (φk|y, ψk, τk) ∝ p(hk,1|θ−φk )
T−1

∏
t=1

p(hk,t+1|hk,t, θ−φk , yt) exp
{
−

(φk − αφk )
2

2β2
φk

}
∝ N

(
d
c

,
1
c

)
(1− φ2

k)
1
2 ,

where

c =
−h2

k,1

σk
+

∑T−1
t=1 h2

k,t

τ2
k

+
1

β2
φk

,

d =
∑T−1

t=1 hk,t
(
hk,t+1 − ψkyt exp(−h1,t/2− h2,t/2)

)
τ2

k
+

αφk

β2
φk

.

The full conditional is proportional to the product of a univariate Gaussian distribution
and a positive function. As a result we can sample this full conditional by the method of
slice sampler.

Step 3, 4, 5. Sampling parameters ψk and τk, k = 1, 2 and δ. As the priors for these
parameters are conjugate, the full conditionals are Gaussian and inverse Gamma distribu-
tions respectively. We can easily simulate these full conditionals. Therefore, we omit the
presentation of these formulas from the text and, instead, refer readers to Kim et al. (1998)
for a full description of them.

2.5. Estimation of the MSASV-t Model

Sampling the latent/unobserved states hk,t, t = 1, ..., T − 1. The simulation of hk,1 and
hk,T follows similar steps. The full conditional of h1,t, t = 2, ..., T − 1, is:

f (h1,t|y, ht−1, ht+1, θ)

= c3t f (yt|ht) f (h1,t|ht−1, yt−1, θ) f (h1,t|ht+1, yt, θ) (13)

= c3te−h1,t/2
(

1 +
y2

t e−h1,t−h2,t

v

)− v+1
2

(14)

× exp
{
−
[
(h1,t − φh1,t−1 − ψ1yt−1 exp(−h1,t−1/2− h2,t−1/2)

]2
2τ2

1

}

× exp
{
−
[
h1,t+1 − φh1,t − ψ1yt exp(−h1,t/2− h2,t/2)

]2
2τ2

1

}

× exp
{
−
[
h2,t+1 − φh2,t − ψ1yt exp(−h1,t/2− h2,t/2)

]2
2τ2

2

}
(15)

< c4te−h1,t/2
(

1 +
y2

t e−h1,t−h2,t

v

)− v+1
2

(16)

× exp
{
−
[
(h1,t − φh1,t−1 − ψ1yt−1 exp(−h1,t−1/2− h2,t−1/2)

]2
2τ2

1

}
(17)

where c3t and c4t represent two normalizing constants. Note that the right-hand side of the
inequality is a product of three positive functions of h1,t; we can sample these quantities
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conveniently by the method of the slice sampler. The procedure is similar to the procedure
used in the simulation of the latent/unobserved volatility states of the MSASV model,
where the proposal distribution is simulated by the method of the slice sampler.

• Sampling v. The full conditional of v is:

f (v|y, h, µ, φ, σ2) ∝ f (y|h, v) f (v)

= f (v)
T

∏
t=1

vv/2Γ((v + 1)/2)
Γ(v/2)Γ(1/2)

(
v + y2

t exp(−h1,t − h2,t)
)−(v+1)/2, (18)

where f (v) is a prior density of v. In the literature there is a number of ways in which to
specify this prior distribution. Jacquier et al. (2004) propose a discrete prior distribution
U [3, 40] from which the full conditional is sampled directly from a multinomial distribution.
Geweke (1993) suggests α exp(−αv) with α = 0.2 as an alternative, while Zhang and King
(2008) choose a Gaussian distribution v ∼ N (20, 25). Bauwens and Lubrano (1998) use a
Cauchy prior proportional to 1/(1+ v2). In this paper we adopt a Gaussian prior. Since this
full conditional is an unknown distribution, we rely on a random-walk MH algorithm, in
which the proposal density is a standard Gaussian density and the acceptance probability
is computed by using Equation (18).

3. Model Selection and Its Assessment
3.1. Auxiliary Particle Filter

Model comparison of fitted SV models can be carried out by evaluating the model’s
likelihood. However, for the MSASV and the MSASV-t models proposed in this paper,
the likelihood is quite intractable to derive in an analytical form because of its highly
non-linear structure. As a result, to carry out this task, we resort to an auxiliary particle
filter (APF) method introduced by Pitt and Shephard (1999). This is an efficient recursive
algorithm which approximates the filter and the one-step-ahead predictive distributions
of the latent/unobserved states of the model. By successive conditioning steps, we can
express the sample likelihood of the multiscale SV model as:

f (y|θ) = f (y1|θ)
T

∏
t=2

f (yt|It−1, θ), (19)

where It = {yt, ..., y1} represents the information known at time t. The conditional density
of yt+1 given θ and It has the following representation:

f (yt+1|It, θ) =
∫

f (yt+1|ht+1, θ)dF(ht+1|It, θ)

=
∫

f (yt+1|ht+1, θ) f (ht+1|ht, θ)dF(ht|It, θ). (20)

Consider a particle sample {h(i)
t , i = 1, ..., N} from the filtered distribution of (ht|It, θ),

with weights {πit, i = 1, ..., N} such that ∑N
i=1 πit = 1. Given this particle sample, we can

express the one-step-ahead approximation of the predictive density of ht+1 as:

f (ht+1|It, θ) ≈ fA(ht+1|It, θ) :=
N

∑
i=1

πit f (ht+1|h
(i)
t , θ). (21)

If we denote the sample drawn from the distribution of f (ht+1|It, θ) by h(i)
t+1, i = 1, 2, . . . , N,

then the conditional density function (20) can be approximated as:

f (yt+1|It, θ) ≈
N

∑
i=1

πit f (yt+1|h
(i)
t+1, θ), (22)
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However for the approximation (21) to be feasible the predictive density function of
ht+1 must be known to the investigator. Fortunately this condition is met in the con-
text of the models studied in this paper, as the assumed form of the latent/unobserved
volatility process implies that ht+1 conditional on ht has a bivariate Gaussian distribution
given by N

(
Φht, Σ

)
with Φ = diag(φ1, φ2) and Σ = diag(σ2

1 , σ2
2 ). This fact is also used

when we perform the one-step ahead predictions of the volatility. We omit the presenta-
tion of the APF procedure in calculating (20) and (22), and, instead, we refer readers to
Chib et al. (2002, 2006) for this.

3.2. Diagnostics

There is a number of diagnostic tools in Statistics that can be utilized to assess
the goodness-of-fit of the MSASV and MSASV-t models. One of them is known as a
Kolmogorov–Smirnov (KS) test. The KS test is designed to assess whether realized ob-
servation errors of a model actually originate from the assumed distribution. Another
approach is to use the method of probability integral transforms (PITs) introduced by
Diebold et al. (1998).

To discuss the PITs suppose that { f (yt|It−1)}T
t=1 is a sequence of conditional den-

sities of yt given the information It−1 available to the investigator at time t − 1, and
{p(yt|It−1)}T

t=1 is the corresponding sequence of one-step-ahead density forecasts. The
PIT corresponding to an observed value of yt is given by:

u(t) =
∫ yt

−∞
p(z|It−1)dz. (23)

Under the null hypothesis that the sequence {p(yt|It−1)}T
t=1 coincides with { f (yt|It−1)}

T
t=1, the sequence {u(t)}T

t=1 corresponds to independent and identically distributed (i.i.d.)
observations from the uniform distribution on the (0, 1) interval.

3.3. Model Selection

There is also a number of ways in which to carry out selection of fitted models.
The Akaike information criterion (AIC) introduced by Akaike (1987) and the Bayesian
information criterion (BIC) introduced by Schwarz (1978) are two most commonly used
to discriminate different versions of the fitted SV models in the literature. However it is
important to point out that both the AIC and BIC require the knowledge of an exact number
of independent parameters in the fitted model. However this requirement is not satisfied
in the estimation approach adopted currently in this paper, since the latent/unobserved
volatility states are augmented as parameters in the Bayesian framework. Due to the
fact that these states are usually found to be highly correlated with each other, it is not
appropriate to treat them as independent parameters. This represents a serious impediment
to using either the AIC or the BIC for model selection in the context of the fitted MSASV and
MSASV-t models. Motivated by this concern, we consider an alternative criterion for model
comparison, called the deviance information criterion (DIC). The DIC was proposed by
Spiegelhalter et al. (2002) and has proven to be particularly useful for hierarchical models
such as the SV models considered in this paper. Notably Berg et al. (2004) has used this
criterion for model comparison of a number of fitted one-component SV models.

The DIC is defined as:

DIC = D̄ + PD.

The first term D̄ is a Bayesian measure which represents a model fit. It is defined as the
posterior mean of the deviance:

D̄(θ) = Eθ|y[D(θ)], (24)
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where D(θ) = −2 log f (y|θ). Larger values of D̄ signify a deterioration in the fit of the
model. The second term, PD, is defined as

PD = D̄− D(θ̄)

= Eθ|y[D(θ)]− D(Eθ|y[θ]),

where D(θ̄) is the deviance of the posterior mean. It captures the complexity of the model.
In other words PD is the difference between the posterior mean of the deviance and the
deviance under the posterior mean of θ. The larger the value of PD, the easier it is for the
model to fit the data. The term PD is called the effective number of parameters. Since the
likelihood is analytically intractable in the case of the MSASV models, to compute DIC
we resort to numerical methods to evaluate D̄ and D(θ̄) instead. Li et al. (2014) have raise
concerns on the use of DIC in discriminating the one-factor SV models. For this reason,
in this paper, we utilize the MCMC outputs in our calculation of D̄ and D(θ̄). As the true
value of θ is unknown, we instead use the Bayesian estimate θ̄ of θ in our calculation of
the DIC.

4. Simulation Studies

In this section we present and discuss the simulation results for the MSASV model
where the innovation terms of the asset-return equation are assumed to be endowed with
a univariate Gaussian distribution. As the simulation for the MSASV-t models produce
qualitatively very similar results, we do not include them in this section for the sake of brevity.
Once the model has been fitted, we can use the KS test to assess whether the fitted model
agrees well with the simulated asset return series. Specifically, for a given θ, the following
equations are used to generate an asset-return time series y and volatility states h:

hk,t+1 ∼ N
(
φkhk,t + ψkyte−

1
2 ∑K

k=1 hk,t , τ2
k
)
, k = 1, 2, (25)

yt ∼ e(h1,t+h2,t)/2εt, (26)

where hk,0 ∼ N
(
σ2

k /(1− φ2
k)
)
, yt ∼ e(h1,t+h2,t)/2εt and εt ∼ N(0, δ2).

The parameter values used to generate asset returns are presented in the second
column of Table 2. For the results in this table we generate 12,000 observations from the
MSASV model, in which the first 10,000 observations are fitted by the MSASV model
and the remaining 2000 observations are used for comparison with the one-step-ahead
out-of-sample predicted asset volatilities. We iterate the estimation algorithm 200,000 times
and discard the initial 100,000 sampled points as the burn-in before we draw inference
from the results. In Table 2 we present the estimated parameters together with the Bayesian
highest probability density (HPD) intervals and standard deviations.5 We observe from the
table that the estimated parameter values are fairly close to the corresponding true values
for the model.

Table 2. True and estimated parameters of the MSASV model based on simulated asset returns.

Parameter True Est. Std. HPD CI (95%)

φ1 0.95 0.9799 0.0038 (0.9729, 0.9872)
ρ1 −0.20 −0.1538 0.0581 (−0.2632,−0.0334)
σ1 0.20 0.1958 0.0177 (0.1630, 0.2260)
φ2 0.60 0.5504 0.0344 (0.4834, 0.6168)
ρ2 0.20 0.2202 0.0273 (0.1672, 0.2736)
σ2 0.80 0.7852 0.0268 (0.7325, 0.8382)
δ 0.25 0.2828 0.0124 (0.2593, 0.3092)
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Next we assess the overall fit of the model by analyzing the PITs from the fitted
MSASV model. The uniform distribution of u(t) on the (0, 1) interval is on display in
Figure 1 by means of both the scatter plot and the histogram. The two horizontal lines
in the histogram plot represent the 95% Bayesian confidence bands, the detail of which
calculation can be found in Diebold et al. (1998). The KS test statistic is calculated at 0.0091
with a corresponding p-value of 0.3805. Thus we can not reject the null hypothesis that the
PITs are uniformly distributed over the (0, 1) interval at any conventional significance level.
In Figure 2 the empirical cumulative distribution function (CDF) of the PITs is plotted
together with the theoretical CDF of the uniform distribution U(0, 1). The graph reaffirms
our earlier claim that the fitted MSASV model agrees well with the simulated return series.
From the above comparisons and the result of the KS test we can also draw a conclusion
that the proposed MCMC method for the MSASV model fits the simulated return data
remarkably well.
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Figure 1. Analysis of the PITs from the MSASV model based on the simulated return data. The top
panel shows the scatter plot of u(t) while the bottom panel shows the histogram of u(t).
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Figure 2. Comparison between the CDF of the uniform distribution U(0, 1) and the empirical CDF of
the PITs from the MSASV model based on the simulated return data.
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Once the MSASV model has been estimated, we can use the fitted model to perform
both the in-sample and out-of-sample one-step ahead volatility predictions. In Figure 3 we
compare the absolute value of the simulated returns with the estimated and one-step-ahead
in-sample and out-sample predicted volatilities, where the latter is separated by a vertical
dotted line at t = 10, 000. We note that the forecasted volatilities resemble very closely the
true time series of the absolute value of the simulated returns. Moreover the time series of
the estimated two components also compares extremely favorably with the absolute value
of the simulated returns on display in Figure 4.1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000024 Time series of observed returns1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000024 Estimated volatility time series from MCMC1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000024 One−step−ahead forecasted volatility time series

Figure 3. Comparison between the absolute returns and the one-step-ahead forecasted volatilities under the MSASV model
based on the simulated return data.1000 2000 3000 4000 5000 6000 7000 8000 9000 10,0000123 Time series of the absolute simulated asset returns1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000−202 Estimated time series of (h1t+h2t)/21000 2000 3000 4000 5000 6000 7000 8000 9000 10,000−202 Estimated time series of (h1t)/21000 2000 3000 4000 5000 6000 7000 8000 9000 10,000−202 Estimated time series of (h2t)/2
Figure 4. Time series of the absolute returns (first panel). Posterior mean of (h1t + h2t)/2 (second panel). Posterior mean of
slow mean reverting of (h1t)/2 (third panel) and the posterior mean of fast mean reverting of (h2t)/2 (fourth panel) based
on the simulated return data.



J. Risk Financial Manag. 2021, 14, 225 13 of 28

Overall the simulation studies in this section show that the proposed MSASV model
and its MCMC algorithm work very well in terms of parameter estimation of the model
and are able to capture the two components that shape the dynamics of the volatility of the
simulated returns adequately.

5. Empirical Analysis
5.1. The MSASV Model

In this section we apply the proposed MSASV model and its MCMC algorithm to
two classic data sets of asset returns with one originating from the exchange market and
another one from the equity market. The first data set consists of 945 observations on daily
pound/dollar exchange rate from 1 October 1981 to 28 June 1985, called EXC hereafter. The
use of this data set allows us to make comparison of our results with those presented in
Molina et al. (2010), who use returns from the foreign currency markets. This particular
data set from the exchange market has been analyzed in well-known studies such as
Harvey et al. (1994); Shephard and Pitt (1997); Meyer and Yu (2000); Skaug and Yu (2008);
Yu (2011). Since there are not many observations contained in this data set, we fit all of
the available observations by the proposed MSASV model and compare only in-sample
predicted volatilities with the estimated and the absolute observed returns. The second
data set includes the daily returns of the Australian All Ordinaries stock index, called
AUX6. The data set contains 1508 observations from 2 January 2000 to 30 December 2005,
excluding weekends and holidays. For a comparison purpose the first 1400 observations
are fitted by the proposed MSASV model, and the remaining 108 observations are used for
comparison with the estimated and predicted volatilities.

Table 3 lists the estimated parameters of the MSASV model fitted to the EXC data.
Bayesian HPD intervals with standard deviations are also presented in this table. With
relatively small standard errors, the HPD intervals contain the parameter estimates of
the model. It is worth noting that the leverage/asymmetric effect is estimated with an
incorrect expected sign for the second component. Moreover the leverage/asymmetric
effect in both components are estimated very imprecisely. This is broadly consistent with
the previous findings in the literature on the one-component SV models which shows that
the leverage/asymmetric effect is not a prominent feature of the returns in the foreign
currency markets.

Table 3. Estimated parameters of the MSASV model based on the EXC data.

Parameter Est. Std. HPD CI (95%)

φ1 0.9766 0.0126 (0.9529, 0.9987)
ρ1 −0.1237 0.1868 (−0.5034,0.2163)
σ1 0.1623 0.0349 (0.0954, 0.2313)
φ2 0.1477 0.3676 (−0.6060, 0.7778)
ρ2 0.1567 0.1996 (−0.2424, 0.5480)
σ2 0.3162 0.0917 (0.1564, 0.4961)
δ 0.5938 0.0435 (0.5140, 0.6829)

Our estimates of φ1 and φ2 are close to those for the MSSV model reported by Mira
and Tierney (2002), which are 0.988 and 0.149 respectively. Importantly the estimation
result for φ1 and φ2 in Table 3 points to a distinct advantage of the MSASV model vis-a-vis
the one-component ASV model for analyzing return data even when the magnitude of
the second component (0.1477) is relatively small in magnitude. In particular the MSASV
model allows for a better identification of the slower mean-reverting volatility component.
We can see this in the results with a more persistently slow mean-reverting component
(giving the estimate of φ1 as 0.9766, which is very close to 1). This is likely to result in a
nontrivial impact on the volatility predictions.



J. Risk Financial Manag. 2021, 14, 225 14 of 28

The overall model fit can again be assessed by analyzing the PITs from the fitted
MSASV model. The uniform distribution of u(t) on the (0, 1) interval can be visualized in
Figure 5 through both the scatter plot and the histogram. As the sample size of the PITs are
found to be relatively small, the Bayesian confidence bands of the PITs is relatively much
wider as expected. The KS test statistic is recorded at 0.0165 with a p-value of 0.9557. Based
on these values we can not reject the null hypothesis that the PITs are uniformly distributed
over the (0, 1) interval at any conventional significance level. In Figure 6 the empirical
CDF of the PITs is on display together with the theoretical CDF of the U(0, 1). The plotted
graph is broadly consistent with our earlier finding that the fitted MSASV model compares
very favorably with the returns from the foreign currency market. Thus from the above
comparisons and the result of the KS test, we can conclude that the proposed MCMC
method for the MSASV model fits the return series remarkably well.
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Figure 5. Analysis of the PITs from the MSASV model based on EXC data. The top panel shows the
scatter plot of u(t) while the bottom panel shows the histogram of u(t).
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Figure 6. Comparison between the CDF of the uniform distribution U(0, 1) and the empirical CDF of
the PITs from the MSASV model based on the EXC data.

In Figure 7 we compare the absolute value of the observed returns with the estimated
volatilities and the one-step-ahead in-sample predicted volatilities. The fitted and predicted
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volatilities appear to track very closely the true time series of the absolute asset returns.
Once again the time series of the estimated two components compares very favorably with
the absolute value of the observed returns shown in Figure 8.
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Figure 7. Comparison between the absolute returns and the one-step-ahead forecasted volatilities under the MSASV model
based on the EXC data.
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Figure 8. Time series of the absolute returns (first panel). Posterior mean of (h1t + h2t)/2 (second panel). Posterior mean
of slow mean reverting of (h1t)/2 (third panel) and the posterior mean of fast mean reverting of (h2t)/2 (fourth panel)
based on the EXC data.

Next we procedd to carry out the same analysis we had before on the AUX returns
data. Table 4 lists the estimated parameters of the MSASV model fitted to the AUX
data. Bayesian HPD intervals with standard deviations are also provided in this table.
Again with relatively small standard errors, the parameter estimates of the model are
included in the constructed HPD intervals. The leverage/asymmetric effect in both factors
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is estimated this time with a correct expected sign. Moreover its estimate for the first
component is quantitatively large and statistically highly significant, while that, for the
second component, it is quantitatively small and statistically not significant. As with the
EXC data set, even when the estimate of the second component (0.1785) is much smaller in
magnitude than that of the first component (0.9659), the use of the MSASV model allows us
to better identify the slower mean-reverting volatility component. In particular its estimate
is shown to be much more persistent (with the estimate of φ1 being closer to unity) than
the estimate of the second component, and this, in turn, will have a large impact on the
overall volatility predictions.

Table 4. Estimated parameters of the MSASV model based on the AUX data.

Parameter Est. Std. HPD CI (95%)

φ1 0.9659 0.0101 (0.9460, 0.9840)
ρ1 −0.7171 0.0849 (−0.8636, −0.5437)
σ1 0.1707 0.0287 (0.1195, 0.2271)
φ2 0.1785 0.3391 (−0.5074, 0.7824)
ρ2 −0.0633 0.1682 (−0.4046, 0.2766)
σ2 0.3218 0.0829 (0.1581, 0.4756)
v 0.6997 0.0325 (0.6354, 0.7656)

As before the overall model fit can be assessed through the analysis of the PITs from
the fitted MSASV model. The uniform distribution of u(t) on the (0, 1) interval is on display
in Figure 9 via both the scatter plot and the histogram. The KS test statistic is calculated
at 0.0259 with a p-value of 0.2979. Based on these values we cannot not reject the null
hypothesis that the PITs are uniformly distributed over the (0, 1) interval even at the 10%
significance level. In Figure 10 the empirical CDF of the PITs is shown together with the
theoretical CDF of the Uniform (0, 1). The graph supports our earlier claim that the fitted
MSASV model agrees very well with the AUX returns data.
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Figure 9. Analysis of the PITs from the MSASV model based on AUX data. The top panel shows the scatter plot of u(t)
while the bottom panel shows the histogram of u(t).
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Figure 10. Comparison between the CDF of the uniform distribution U(0, 1) and the empirical CDF
of the PITs from the MSASV model based on the AUX data.

Once the MSASV model has been estimated, as before we can use the fitted model to
perform in-sample one-step ahead predictions. In Figure 11 we compare the absolute ob-
served returns with the estimated and one-step-ahead in-sample and out-sample predicted
volatilities, where the latter is separated by a vertical dotted line at t = 1400. The forecasted
volatilities appear to resemble closely the true time series of the absolute value of the
observed returns. Once again the time series of the estimated two components compares
very favorably with the absolute value of the observed returns as shown in Figure 12.
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Figure 11. Comparison between the absolute returns and the one-step-ahead forecasted volatilities under the MSASV model
based on the AUX data.
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Figure 12. Time series of the absolute returns (first panel). Posterior mean of (h1t + h2t)/2 (second panel). Posterior mean
of slow mean reverting of (h1t)/2 (third panel) and the posterior mean of fast mean reverting of (h2t)/2 (fourth panel)
based on the AUX data.

Next we compare the proposed MSASV model with the one-component asymmetric
SV (ASV) model where correlation is permitted between the innovation terms of the asset
returns and the innovation terms of the latent/unobserved volatility process. The two data
sets are also fitted by the one-component ASV model. Table 5 lists the values of D̄, PD
and DIC calculated based on the fitted MSASV and one-component ASV models. Based
on the calculated DIC values, we conclude that the MSASV model fits the two data sets
better and provides evidence of at least two latent/unobserved component volatilities in
the dynamics of the asset return data studied in this paper.7

Table 5. Model selection for the two data sets.

Panel A: MSASV Model
Criterion EXC AUX

D̄ 1712.8 2943.8
PD 76.92 103.67

DIC 1789.7 3047.5

Panel B: ASV Model
Criterion EXC AUX

D̄ 1753.7 3000.3
PD 44.57 58.06

DIC 1798.2 3058.3

5.2. The MSASV-t Model

In this subsection we fit the heavy/fat tailed MSSV models to the two datasets of
the asset returns investigated in Section 5.1. Table 6 includes the estimated parameters
of the MSASV-t model for the EXC data set with the standard deviations and the 95%
Bayesian HPD intervals. Estimates of the leverage/asymmetric effect in both factors are
quantitatively small and statistically not significant. This again reinforces the previous
findings in the literature of the one-component SV models that the leverage/asymmetric
effect is not an important feature of the asset returns in the foreign exchange markets.
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Table 6. Estimated parameters of the MSASV-t model based on the EXC data.

Parameter Est. Std. HPD CI (95%)

φ1 0.9958 0.0030 (0.9900, 0.9999)
ρ1 −0.0254 0.0195 (−0.0619, 0.0141)
σ1 0.1085 0.0267 (0.0639, 0.1624)
φ2 0.2621 0.3540 (−0.3741, 0.8909)
ρ2 0.0498 0.0495 (−0.0495, 0.1437)
σ2 0.2492 0.0847 (0.1113, 0.4137)
v 26.8085 7.5242 (13.8659, 39.9615)

As in the previous case the assessment of the model fit to the data can be determined
by assessing PITs from the fitted MSASV-t model. The uniform distribution of u(t) on the
(0, 1) interval is again visualized in Figure 13 by means of both the scatter plot and the
histogram. The KS test statistic is recorded at 0.0283 with a p-value of 0.4294. Based on
these values, we can not reject the null hypothesis that the PITs are uniformly distributed
over the (0, 1) interval at any conventional significance level. In Figure 14 the empirical
CDF of the PITs is plotted together with the theoretical CDF of the Uniform (0, 1). The
graph again is shown to be consistent with our earlier assessment that the fitted MSASV-t
model compares very favorably with the simulated return data.
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Figure 13. Analysis of the PITs from the MSASV-t model based on EXC data. The top panel shows the scatter plot of u(t)
while the bottom panel shows the histogram of u(t).

In Figure 15 we compare the absolute value of the observed returns with the estimated
and predicted volatilities. The fitted and predicted volatilities appear to track very closely
the absolute values of the observed asset returns. The time series of the estimated two
components also compares quite favorably with the absolute value of the observed returns
as presented in Figure 16.
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Figure 14. Comparison between the CDF of the uniform distribution U(0, 1) and the empirical CDF of the PITs from the
MSASV-t model based on the EXC data.

100 200 300 400 500 600 700 800 900
0

2

4

Time series of observed returns

100 200 300 400 500 600 700 800 900
0

2

4

Estimated volatility time series from MCMC

100 200 300 400 500 600 700 800 900
0

2

4

One−step−ahead forecasted volatility time series

Figure 15. Comparison between the absolute returns and the one-step-ahead forecasted volatilities under the MSASV-t
model based on the EXC data.

For the AUX return data the estimated parameters, their HPD intervals and related
standard deviations are presented in Table 7. The leverage/asymmetric effect in both
components in the MSASV-t model is now estimated with the correct expected sign,
and quantitatively large as well as statistically highly significant. This suggests that the
leverage/asymmetric effect is a distinctly prominent feature of the returns in the equity
markets, much in keeping with the findings in the literature on the one-component SV
models. As in the previous cases the first and second components of the latent volatility
process in this model are estimated significantly at 0.9914 and 0.3320 respectively. As before
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the fact that the first component of the volatility process has been estimated to be so close to
unity gives rise to a better identification of the slow mean-reverting volatility component.
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Figure 16. Time series of the absolute value of asset returns (first panel). Posterior mean of (h1t + h2t)/2 (second panel).
Posterior mean of slow mean reverting of h1t/2 (third panel) and the posterior mean of fast mean reverting of h2t/2 (fourth
panel) based on the MSASV-t model for the EXC data.

Table 7. Estimated parameters of the MSASV-t model based on the AUX data.

Parameter Est. Std. HPD CI (95%)

φ1 0.9914 0.0034 (0.9845, 0.9976)
ρ1 −0.6085 0.0888 (−0.7762, −0.4344)
σ1 0.1220 0.0190 (0.0854, 0.1596)
φ2 0.3320 0.3615 (−0.3887, 0.8987)
ρ2 −0.3162 0.1909 (−0.6933, 0.0468)
σ2 0.2376 0.0759 (0.1057, 0.3859)
v 24.8652 5.9030 (14.5099, 34.9719)

The overall model fit assessment is again conducted by the test of the PITs calculated
from the fitted model. The uniform distribution of u(t) on the (0, 1) interval is on display
in Figure 17 through both the scatter plot and the histogram. The KS test statistic is
calculated at 0.0362 with a p-value of 0.4867. Based on these values we can not reject
the null hypothesis that the PITs are uniformly distributed over the interval (0, 1) at any
conventional significance level. In Figure 18 the empirical CDF of the PITs is plotted
together with the theoretical CDF of the Uniform (0, 1). The graph simply reinforces
our earlier conclusion that the fitted MSASV-t model agrees very strongly with the asset
return data.
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Figure 17. Analysis of the PITs from the MSASV-t model based on AUX data. The top panel shows the scatter plot of u(t)
while the bottom panel shows the histogram of u(t).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CDF comparison

 

 

Theoretical
Empirical

Figure 18. Comparison between the CDF of the uniform distribution U(0, 1) and the empirical CDF of the PITs from the
MSASV-t model based on the AUX data.

Figure 19 compares the absolute value of the observed returns with the estimated
and one-step-ahead in-sample and out-of-sample predicted volatilities. The predicted
volatilities appear again to track very closely the true time series of the absolute returns. In
addition the time series of the estimated two factors also compares very favorably with the
absolute value of observed returns as illustrated in Figure 20.
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Figure 19. Comparison between the absolute returns and the one-step-ahead forecasted volatilities under the MSASV-t
model based on the AUX data.
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Figure 20. Time series of the absolute value of asset returns (first panel). Posterior mean of (h1t + h2t)/2 (second panel).
Posterior mean of slow mean reverting of h1t/2 (third panel) and the posterior mean of fast mean reverting of h2t/2 (fourth
panel) based on the MSASV-t model for the AUX data.
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As we have done previously in Section 5.1, we compare the proposed MSASV-t model
with the heavy-tailed one-factor asymmetric SV (ASV-t) model where the innovation terms
of the asset returns have a Student t distribution and are correlated with the innovation
terms of the latent volatility process. The two data sets are also fitted by the heavy-tailed
one-component ASV-t model, which serves as a benchmark. Table 8 reports the values of D̄,
PD and DIC calculated based on the fitted MSASV-t and one-component ASV-t models. It
is noted that the MSASV-t model fits the EXC data slightly better than the one-component
ASV-t model, while for the AUX data, it fits considerably better than the one-component
ASV-t model.

Table 8. Model selection based on the two data sets.

Panel A: MSASV-t model
Criterion EXC AUX

D̄ 1762.1 3020.9
PD 34.80 43.77

DIC 1796.90 3064.67

Panel B: ASV-t model
Criterion EXC AUX

D̄ 1768.2 2994.1
PD 38.41 82.47

DIC 1806.61 3076.57

6. Conclusions

In this paper we have systematically studied several extended versions of the multi-
scale SV model introduced by Molina et al. (2010) in the modeling of the dynamics of the
volatility of financial asset returns. The logarithm of conditional volatilities of the asset
returns was described by latent/unobserved AR(1) processes with different time scales. In
order for the proposed model to capture the heavy/fat tails in the marginal distribution of
the asset returns, the innovation terms of the asset returns followed a Student t distribu-
tion. Novel MCMC algorithms were developed for the purpose of conducting Bayesian
inference of the models. An auxiliary particle filter was also employed to approximate
the filtering and prediction distributions of the latent/unobserved states of the models
when we calculated the models’ likelihoods and performed volatility predictions. In this
paper, we also allowed for a nontrivial correlation structure between the innovation of the
mean equation and those of the latent factor processes, which can be interpreted as the
leverage/asymmetric effect, much in keeping with the literature on the one-component
SV models. However, we did not allow for a correlation structure to exist among the
innovation terms of latent/unobserved AR(1) processes. This was done for the reason of
computational tractability and to ensure model identifiability. This is a limitation of the
present study and represents an important issue to be considered as future research. We
briefly discuss this issue in Appendix A and show how it may be resolved if we are willing
to impose additional restrictions on the model, in particular on the noise/innovation terms
driving the process of the various volatility components in the model.
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Appendix A. Multiscale Stochastic Volatility Model

In this Appendix we present a continuous-time multiscale SV model, which is also
discussed in Molina et al. (2010), to motivate the model in (4)–(6) in the main text as its
discrete-time approximation.

Let S(t) be an asset price at time t. Let K represent a number of volatility factors driving
the one-dimensional S(t), such that the volatility of S(t) can be specified as an exponential
sum of K volatilities with each component given by an Ornstein–Uhlenbeck process:

dS(t) = κS(t)dt + σ(t)S(t)dW(0)(t)

log(σ2(t)) = F(1)(t) + · · ·+ F(K)(t)

dF(j)(t) = αj + (µj − F(j)(t))dt + β jdW(j)(t), j = 1, · · · , K (A1)

where κ is a time-invariant rate of return, αj is a speed of mean reversion of volatility
of the F(j)(t) factor (or component) toward its respective long-run mean level µj, β j is
volatility of volatility of the F(j)(t) factor, and W(0)(t) and W(j)(t) for j = 1, · · · , K are
possibly mutually correlated Brownian motions. The presence of these correlated Brownian
motions in the model is likely to lead to a complete breakdown of model identifiability.
However this non-identifiability issue may be avoided by imposing the condition that
the same Brownian motion W(j)(t) is driving all the K components of dF(j)(t), which
in effect renders dF(j)(t) a completely degenerate process although allowing them to be
instantaneously correlated with S(t).

Note that 1/αj is a typical time scale of the F(j)(t) factor and they are defined as well
separated, and ordered by imposing the condition that 0 < α1 < α2 for K = 2, so that the
first factor can be interpreted as the longest time scale and the second factor as the shortest
time scale, and so forth.

Given a constant time step (∆), the Euler-Maruyama discretization scheme can be
applied to S(t) and F(j)(t) for j = 1, · · · , K at time point tk = k∆ to yield:

S(tk+1)− S(tk) = κS(tk)∆ + σ(tk)
√

∆ε(tk)

log(σ2(tk)) = F1(tk) + · · ·+ FK(tk)

Fj(tk)− Fj(tk−1) = αj + (µj − Fj(tk))∆ + β j
√

∆ηj(tk), j = 1, · · · , K (A2)

where ε(tk) and ηj(tk) for j = 1, · · · , K are possibly mutually correlated sequences of
i.i,d Gaussian random variables. In the simplest case the sequence of ε(tk)’s is initially

http://www.mysmu.edu/faculty/yujun/
http://www.mysmu.edu/faculty/yujun/
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assumed to be statistically independent of ηj(tk)’s but the ηj(tk)’s are allowed to be pairwise
correlated. However, in the equity markets, market participants operate at different time
scales (and based on different information sets), but not independently, and where the
leverage effect is pronounced.

The above discretely approximated model can be rewritten as:

1√
∆

[
S(tk+1)− S(tk)

S(tk

]
= σ(tk)ε(tk)

log(σ2(tk)) = F1(tk) + · · ·+ FK(tk)

Fj(tk)− µj = (1− αj)(Fj(tk−1)− µj) + β j
√

∆ηj(tk), j = 1, · · · , K (A3)

Next we define the asset returns in the usual way as:

ytk :=
1√
∆

[
S(tk+1)− S(tk)

S(tk
− κ∆

]
and write a discrete-time driving vector of volatilities as h(tk)− F(tk − ¯) , where F(tk) =
(F1(tk), · · · , FK(tk))

′ and ¯ = (µ1, · · · , µK)
′. The autoregressive parameter is denoted as

φj = 1− αj∆, j = 1, · · · , K. Furthermore, we define the standard deviation parameter as
σj,η = β j

√
∆, j = 1, · · · , K. Since the observations are equally spaced, with some abuse

of notation, we can use t instead of tk/∆ for discrete time indices, such that t ∈ 1, 2, ..., T.
This allows us to express a K-dimensional AR(1) process for log-volatilities in a state-space
form as:

yt = exp
(
(1′ht + 1′¯)/2

)
fflt, t = 1, · · · , T

ht+1 = Φht + Σ1/2t+1, t = 1, · · · , T

h0 ∼ N(0, Ω) (A4)

where t = (η1,t, · · · , ηK,t)
′ is the vector of standard random Gaussian variates, 1 is a

K-dimensional vector of ones, Φ is a K-dimensional autoregressive (diagonal) matrix with
typical elements φj, and Σ is the covariance matrix, assumed to be diagonal given that the
correlation parameter between the factors is not identifiable. The original version of the
model assumes that the Brownian motions driving S(t) and F(t) are independent and the
components of F(t) are driven by independent Brownian motions. Our discretized model
is based on an extension of the original model in which the components of F(t) are assumed
to be correlated to the Browning motion driving S(t). That is, the original model assumes
no correlation between the asset return and its volatility, and our discretized model is
based on an extension of the original model which allows for the leverage/asymmetric
effect observable in the equity markets, much in keeping with the assertion made by
Black (1976) and Christie (1982) that a decrease of the stock price implies an increase of the
associated volatility.

In Section 2.2 of the main text we judiciously make precise and explicit the parameter-
ization of the discrete-time MSSV models used in both the simulation and the estimation
process, including the initial state and random variable notation.

Notes
1 Chib et al. (2002) considered Student t innovation terms, as well as jumps in their SV models, while Jensen and

Maheu (2010) estimated a semi-parametric SV model and found tails thicker than those of a Student t distribution.
A non-parametric SV model with leverage effects was also estimated in Jensen and Maheu (2014). However, all of
these studies did not consider how leverage occurs in a multi-component (or multi-factor) SV model.

2 As alluded to earlier there are obvious links between our proposed models and multifactor models in the literature,
such as Alizadeh et al. (2002) and Chernov (2003). This type of model has also been discussed by Kalli and Chib
(2015) who develops methods for processes with an arbitrary number of component processes in the log volatility
process.
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3 As mentioned earlier these two-component SV models specify the latent/unobserved volatilities as a sum of two
AR(1) processes.

4 Kim et al. (1998) point out that a one-at-a-time updating procedure can lead to a poor mixing in the one-component
SV models. Furthermore the introduction of slice sampling can also lead to problems of over-conditioning and
further affect the mixing in the chain.

5 It is worth noting that the HPD intervals are the most credible intervals. Specifically it is a Bayesian analog of classical
confidence intervals, and represents the shortest possible interval enclosing (1-α)% of posterior mass, where α is the
value for tightness of the interval and expresses the amount of probability mass excluded from the interval

6 We thank Professor Xibin Zhang for kindly providing us this data set, which was analyzed in Zhang and King (2008).
7 This results are also consistent with the results presented in Roberts et al. (2004); Griffin and Steel (2010), and in

Molina et al. (2010).
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