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Abstract: Since their introduction, quanto options have steadily gained popularity. Matching Black–
Scholes-type pricing models and, more recently, a fat-tailed, normal tempered stable variant have
been established. The objective here is to empirically assess the adequacy of quanto-option pricing
models. The validation of quanto-pricing models has been a challenge so far, due to the lack of
comprehensive data records of exchange-traded quanto transactions. To overcome this, we make use
of exchange-traded structured products. After deriving prices for composite options in the existing
modeling framework, we propose a new calibration procedure, carry out extensive analyses of
parameter stability and assess the goodness of fit for plain vanilla and exotic double-barrier options.

Keywords: normal tempered stable process; Lévy process; quanto options; Nikkei 225; calibration;
parameter stability

1. Introduction

Recent events in Japan, starting with the 2012 general election that made Shinzo Abe
prime minister, brought the country of deflation and economic stagnation back into the
focus of global investors. The main goals of the Abe administration were bringing up
inflation to 2%, weakening the Japanese yen and pushing for more growth. Therefore, it is
only natural to ask how foreign investors can get exposure to the Japanese equity market
in form of, say, its major index, the Nikkei 225. Conventional choices would be to either
directly invest into the index or to pursue a riskier option strategy. Both approaches may,
however, be hampered by the effects of “Abenomics,” namely, that investors may benefit
from rising equity prices but a weakening yen may offset the profits. A possible solution
to this problem is to resort to quanto options, i.e., derivatives where the exchange rate at
maturity has been fixed upfront.

To allow for such features in classical option pricing, not one but two asset prices
need to be modeled, namely, that of the equity index and that of the foreign exchange
(FX) as well the dependence structure between the two. Although quanto derivatives
have gained popularity, results on quanto pricing are rather scarce. Standard approaches,
such as Derman et al. (1990); Baxter and Rennie (1996) or Wilmott (2006), assume two-
dimensional Black–Scholes-type markets, with recent extensions allowing for stochastic
volatility (Dimitroff et al. (2009); Branger and Muck (2012) and Park et al. (2013)) and dy-
namic correlation (Teng et al. (2015)). However, all these models rely on the assumption
that the underlying assets are governed by a multivariate Brownian motion, which fails to
capture the omnipresent heavy-tailedness and asymmetric dependence in asset returns.
Kim et al. (2015) were the first to leave this framework by specifying normal tempered
stable (NTS) processes to drive asset dynamics. These represent a subtype of the rich
Lévy class, which has been in the focus of market modeling since the early work of
Eberlein and Keller (1995) and Eberlein et al. (1998). In particular, NTS processes were
constructed in Barndorff-Nielsen and Levendorskii (2001) by certain time-changed Brown-
ian motions and have since then been investigated especially in the context of portfolio
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analysis and option pricing, cf. Barndorff-Nielsen and Shephard (2001); Kim et al. (2012) or
Fink et al. (2019). In recent work, Ballotta et al. (2015) formulate a general multivariate Lévy
framework for combined equity and FX markets to investigate model-implied correlations
based on futures and plain vanilla options.

Kim et al. (2015) introduced the NTS model to price quanto options but, except from
an illustrative application using synthetic prices, did not provide any empirical valida-
tion. As they point out, exchange-traded quanto options—especially beyond plain-vanilla
contracts—are hard to obtain and price histories of OTC trades are, per definition, not
available. Here, we fill this gap and conduct an extensive empirical investigation of the
NTS quanto model. To do so, we consider two types of exchange-traded warrants, which
are a special class of retail-structured products (RSPs), namely, plain vanilla options and
exotic double-barrier options. For these derivatives, as detailed in Section 3 below, market
makers provide not only constant liquidity but also let us make use of exchange-recorded
daily closing prices to compare different quanto pricing models beyond vanilla calls and
puts. As conjectured in Kim et al. (2015), our results show that the NTS model clearly
dominates the Gaussian framework.

The paper is structured as follows. Section 2 presents the classical Black–Scholes-type
setup and the newly introduced NTS framework of Kim et al. (2015), stating model as-
sumptions and pricing formulas. Furthermore, estimation results using historical return
data are presented and parameter restrictions for the NTS setup are motivated. The data
we use are described in Section 3. Preliminary results from fitting the pricing formulas to
real market prices are presented in Section 4. Although the fits look very much in favor of
the NTS assumption, we will show that parameter identification and stability can be an
issue. To overcome this, we theoretically extend the NTS model in Section 5 and provide
pricing formulas for composite (compo) options on the stock and the FX rate individually.
Using these price representations and combining historical estimation with risk-neutral cal-
ibration, we address stability and identification issues while leaving the main advantages
of the NTS model untouched. A brief summary closes the paper.1

2. The NTS Framework for Quanto Options

Following the theoretical setup of Kim et al. (2015), we model quanto options under
two different assumptions: a two-dimensional NTS framework, the object of interest, and,
for reference purposes, the classical Black–Scholes-type setting. For both setups, we assume
the existence of two riskless rates: Let rd ≥ 0 and r f ≥ 0 be the instantaneous interest
rates for the domestic and foreign currency, respectively. In particular, there is one riskless
(domestic) bank account denoted by

B = {B(t)}t≥0 with B(t) = exp{rdt}, t ≥ 0.

In our empirical study below, the domestic currency shall be the euro (EUR) and the
foreign currency the Japanese yen (JPY).2 Furthermore, we assume the existence of two
tradable risky assets:

V = {V(t)}t≥0

denotes the price process of an equity-type asset in the domestic currency (the Nikkei 225
index converted into EUR), while

exp{r f ·}F = {exp{r f t}F(t)}t≥0

describes the (tradable) exchange rate process from the domestic (EUR) to the foreign
currency (JPY); i.e., at time t ≥ 0, an investor gets for one unit of foreign currency (JPY)

1 All proofs are given in Appendix A. Appendix B identifies all RSPs used in our empirical study.
2 To avoid confusion, we will state the specific asset or currency in question in parentheses.
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F(t) units of the domestic numéraire (EUR). We want to stress the importance of the factor
exp{r f t}: Any investment in the foreign currency would incur an interest rate payment
of r f . So, while F itself shall be the FX spot rate, it can only be traded via the foreign cash
bond exp{r f ·}F. By combining both, we obtain the price process of the equity asset in the
foreign currency (the Nikkei 225 index in JPY), given by

N = {N(t)}t≥0 =

{
V(t)
F(t)

}
t≥0

.

Remark 1 (Model summary). (i) Below, EUR will be our domestic currency as we consider
quanto options traded on the Frankfurt Exchange in EUR. N then denotes the Nikkei 225 in the
foreign currency JPY (from a European investors perspective), although the JPY is actually the local
currency for the Nikkei 225.
(ii) Even though there are two riskless interests rates in our model, rd and r f , there is only one
riskless bank account B which is denoted in the domestic currency. A foreign counterpart would be
subject to exchange-rate risk and return exp{r f ·}F.

Given this general market framework, we first specify the (simpler) Black–Scholes-
type setting making the following assumptions:

Assumption 1 (Black–Scholes setting, see Kim et al. (2015), Section 3.1). Let W = (WX , W̄Y) =
{(WX(t), W̄Y(t))}t≥0 be a two-dimensional standard Brownian motion with independent marginal
processes. To construct straightforwardly tractable, dependent processes for the equity asset, V, and
the FX rate, F, let µX , µY ∈ R, σX , σY > 0 and ρ ∈ [−1, 1]. We specify

WY := ρWX +
√

1− ρ2W̄Y,

so that Corr(WX(t), WY(t)) = ρt for t ≥ 0, and, with V(0) > 0 and F(0) > 0, assume the
following dynamics under the real-world measure P for t ≥ 0

V(t) = V(0) exp{µXt + σXWX(t)} and F(t) = F(0) exp{µYt + σYWY(t)}.

To price quanto options, the above setup needs to be arbitrage-free with the usually
considered class of admissible trading strategies see Delbaen and Schachermayer (1994)
thus allowing the construction of a suitable equivalent martingale measure. Since we have
two tradable assets and two sources of risk, both given by Brownian motions, we have the
following theorem.

Theorem 1 (see Kim et al. (2015), Section 3.1). Let Assumption 1 hold with |ρ| < 1. Then, there
exists a unique equivalent measure Q under which

V(t) = V(0) exp{rdt−
σ2

X
2

t + σXBX(t)},

F(t) = F(0) exp{(rd − r f )t−
σ2

Y
2

t + σYρBX(t) + σY

√
1− ρ2B̄Y(t)},

for t ≥ 0 and where B = (BX, B̄Y) = {(BX(t), B̄Y(t))}t≥0 is a two-dimensional standard
Brownian motion with independent marginal processes. Furthermore, the discounted tradable assets
{exp{−rdt}V(t)}t≥0 and {exp{−(rd − r f )t}F(t)}t≥0 are Q-martingales.

Let T > 0, then the price, Ct(K, T), of a European quanto call option on N(T) with strike
K > 0 at time 0 ≤ t ≤ T is given by

Cquanto
t (K, T) = exp{−rd(T − t)}EQ[Ff ix(N(T)− K)+|Ft]

= Ff ix

(
e(r f−rd+σ2

Y−ρσXσY)(T−t)N(t)Φ(d1)− e−rd(T−t)KΦ(d2)
)

(1)
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where

d1 =
log(N(t)/K) + (r f + σ2

Y − ρσXσY + 1
2 [σ

2
X − 2σXσYρ + σ2

Y])(T − t)√
[σ2

X − 2σXσYρ + σ2
Y]
√

T − t
,

d2 = d1 −
√
[σ2

X − 2σXσYρ + σ2
Y]
√

T − t.

Here (Ft)≥0 is the (augmented) filtration generated by V and F which we can assume to
satisfy the usual conditions of right-continuity and completeness.

Having set up our reference model, we turn to the NTS setting of Kim et al. (2015), the
object of interest in our empirical study.

Assumption 2 (NTS market setting, see Kim et al. (2015), Section 3.2). Let T = {T (t)}t≥0
be a tempered stable subordinator, i.e., an a.s. increasing Lévy process with characteristic function

E
[

exp{iuT (t)}
]
= exp

{
− 2tθ1− α

2

α

[
(θ − iu)

α
2 − θ

α
2

]}
, u ∈ R, t ≥ 0,

with α ∈ (0, 2] and θ > 0. For a two-dimensional standard Brownian motion B = (BX, BY) =
{(BX(t), BY(t))}t≥0 with correlated marginal processes, independent of T , construct a two-
dimensional NTS process (X, Y) = {(X(t), Y(t))}t≥0 by(

X(t)
Y(t)

)
=

(
µX
µY

)
t +
(

βX
βY

)
[T (t)− t] +

(
σX 0
0 σY

)(
BX(T (t))
BY(T (t))

)
(2)

with µX, µY, βX, βY ∈ R, σX, σY > 0 and Corr(BX(t), BY(t)) = ρt, t ≥ 0, ρ ∈ [−1, 1].
We write

(X, Y) ∼ NTS2

(
α, θ,

[
µX
µY

]
,
[

βX
βY

]
,
[

σX
σY

]
,
[

1 ρ
ρ 1

])
.

Furthermore, with V(0) > 0 and F(0) > 0, we assume the following dynamics for our
tradable assets under the real-world measure P for t ≥ 0:

V(t) = V(0) exp{X(t)} and F(t) = F(0) exp{Y(t)}.

It is well known that subordinated Lévy processes are again of the Lévy type. There-
fore, all measure changes under which the Lévy property is invariant basically modify the
deterministic drift and the jump intensity.3 Choosing such a measure change (in particular
one of the Esscher transform type, see Gerber and Shiu (1994) and Eberlein et al. (2009) for
more background) and defining the functions

wX :
(
−∞, θ − βX −

σ2
X
2

)
→ ∞

λ?
X 7→ −βX −

2θ1− α
2

α

[(
θ − βX − λ?

X −
σ2

X
2

) α
2 − θ

α
2

]
and

wY :
(
−∞, θ − βY −

σ2
Y
2

)
→ ∞

λ?
Y 7→ −βY −

2θ1− α
2

α

[(
θ − βY − λ?

Y −
σ2

Y
2

) α
2 − θ

α
2

]
,

Kim et al. (2015) proved the following theorem.

3 See Theorems 33.1 and 33.2 in Sato (1999).
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Theorem 2 (Kim et al. (2015), Section 3.2 and Theorem 3.1). Let Assumption 2 hold with
|ρ| < 1 and suppose that there are

λ?
X < θ − βY −

σ2
Y
2

and λ?
Y < θ − βY −

σ2
Y
2

,

such that

µX − rd + wX(λ
?
X) = 0 and µY − rd + r f + wY(λ

?
Y) = 0.

Then, there exists an equivalent measure Q under which

V(t) = V(0) exp{(rd − wX(λ
?
X))t + X(t)}, F(t) = F(0) exp{(rd − r f − wY(λ

?
Y))t + Y(t)},

for t ≥ 0, with

(X, Y) ∼ NTS2

(
α, θ,

[
λ?

X
λ?

Y

]
,
[

βX + λ?
X

βY + λ?
Y

]
,
[

σX
σY

]
,
[

1 ρ
ρ 1

])
.

The discounted tradable assets {exp{−rdt}V(t)}t≥0 and {exp{−(rd − r f )t}F(t)}t≥0 are
Q-martingales.

Let T > 0, then the price, Ct(K, T), of a European quanto call option on N(T) with strike
K > 0 at time 0 ≤ t ≤ T is given by

Cquanto
t (K, T) = exp{−rd(T − t)}EQ[Ff ix(N(T)− K)+|Ft]

=
e−rd(T−t)Ff ixK1+ζ

2πN(t)ζeζ(r f−wX(λ
?
X)+wY(λ

?
Y))(T−t)

F
( 1

2π
log
( K

N(t)

))
, (3)

where

F(x) =
∫
R

e−2πiux eiu(r f−wX(λ
?
X)+wY(λ

?
Y))(T−t)

(iu− ζ − 1)(iu− ζ)
E
[
e(iu−ζ)Z(T−t)

]
du,

with Z = X−Y and ζ ∈ R, such that the appearing moment generating function exists. Again,
(Ft)≥0 is the augmented filtration generated by V and F and satisfying the usual conditions of
right-continuity and completeness.

As pointed out in Kim et al. (2015), the call-price formula (derived by classical Fourier
pricing methods, see Carr and Madan (1999)) can be efficiently evaluated by the Fast
Fourier Transform.

We close this section by presenting parameter estimates using daily return data as
shown in Figure 1. The data cover the period 4 January 2000 to 15 April 2013.4 The
annualized parameter estimates, obtained by maximum likelihood and based on inversion
of the characteristic functions of the NTS setup, are reported in Table 1.5

For all time series, the goodness of fit, measured in terms of both the log-likelihood
and the model-selection criteria AIC and BIC strongly favor the NTS over the Black–Scholes
model. Note that both market models produce a modest positive correlation. However,
when interpreting this effect, we need to be aware that V describes the Nikkei 225 in EUR
not in JPY. Given that, in the Gaussian case,

Corr
(

log
N(t)

N(t− 1)
, log

F(t)
F(t− 1)

)
=

σXρ− σY√
σ2

X − 2σXσYρ + σ2
Y

, (4)

4 Our option data set starts on 16 April 2013, cf. Section 3.
5 As discussed below, for the maximization procedure we imposed the restrictions α ≥ 1 and θ ∈ [20, 200].
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our parameter estimates imply a correlation of −0.4691 between the log returns of N and
F, i.e., the Nikkei 225 (in JPY) tends to decline when the JPY appreciates, a relationship we
expect given the export-orientation of the Japanese economy.

Figure 1. Top: Nikkei 225 in EUR (left) and its log returns (right). Bottom: JPYEUR levels (left) and log returns (right).
Sample period 4 January 2000 to 15 April 2013.

Table 1. Parameter estimates and bootstrapped 95% confidence intervals (in brackets) using 1000 simulated paths of length
3206 (inline with our historical return data set). For all time series, both the log-likelihood values and the model-selection
criteria AIC and BIC strongly favor the NTS over the Black–Scholes model.

Black–Scholes NTS

Parameters
α 2 − 1.2962 [1.0662, 1.4484]
θ − − 74.6539 [47.1372, 127.7335]

µX −0.0426 [−0.2401, 0.1593] −0.0454 [−0.1625, 0.0732]
βX − − −0.3192 [−0.5694,−0.0824]
σX 0.2434 [0.2341, 0.2525] 0.2477 [0.2396, 0.2559]
µY −0.0147 [−0.1180, 0.0910] −0.0165 [−0.0784, 0.0450]
βY − − 0.2062 [0.0798, 0.3403]
σY 0.1319 [0.1270, 0.1368] 0.1280 [0.1237, 0.1321]
ρ 0.2216 [0.1724, 0.2722] 0.2342 [0.1935, 0.2770]

Nikkei 225 in EUR

log-likelihood 8834 8962
AIC −17, 664 −17, 914
BIC −17, 652 −17, 884

JPYEUR

log-likelihood 10, 800 11, 020
AIC −21, 596 −22, 030
BIC −21, 584 −22, 000

Bivariate Model

log-likelihood 19, 708 20, 154
AIC −39, 406 −40, 288
BIC −39, 376 −40, 233
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The estimate for the tail parameter, α, of 1.30 with 95%-confidence interval [1.07,1.45]
indicates a considerably heavier and distinctly different tail behavior compared to the
Gaussian assumption. Furthermore, the estimated skewness parameters, β, indicate a milde
but significant skewness in the distributions. Figure 2, showing the estimated densities and
log-densities implied by both models for V, F and N, illustrates both phenomena. As will be
discussed in Section 4, the fact that the Black–Scholes model cannot capture the empirically
observed fat-tailedness has serious implications when pricing double-barrier options.

Figure 2. Estimated densities and log-densities based on the estimates reported in Table 1.
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It remains to explain why we impose parameter restrictions to α and θ. Consider
simulated paths of V/F with varying α and θ, shown in Figure 3. (The exact simulation
procedure will be explained in Section 4 below). As we can see, small values for the
tempering parameter θ produce highly unrealistic sample paths with very large jumps.
Furthermore, tail parameters α below one lead to paths with finite variation (see Section 2
of Kim et al. (2015)). Finally, if both are taken too small or if θ is very large, numerical
instabilities can arise.

Figure 3. Simulated NTS price paths of V/F for varying α and θ. Remaining parameters were held fixed (see Table 1).

3. Data on Retail Structured Products

Next, we describe the data used in the empirical investigation. As already pointed out
in Kim et al. (2015), classical quanto options, like calls and puts, are rarely traded on official
exchanges.6 Per definition, OTC trades are not recorded by financial data providers and,
thus, not available for empirical analyses. The data situation differs, however, when turning
to retail structured products (RSPs). Looking just at the German market (being one of the
largest RSP markets in the world), several banks and issuers provide quanto structures to
be tradable at retail exchanges, where issuers are usually committed to continuously quote
bid and offer prices that can be accessed.

Focusing on Nikkei 225 quanto RSPs, Société Générale appears to be the dominating
issuer in Germany in terms of available products.7 For this reason and to avoid possible
differences between issuers (see Remark 2 below), we focus on the French investment
bank’s products.

Our data set consists of 29 quanto call options on the Nikkei 225 (traded in EUR)
and 363 digital knock-out (KO) options with upper and lower barriers also referred to
as inline options or double-barrier options, respectively. The later pay a fixed amount
in EUR (10 EUR in our case) at maturity if the Nikkei 225 (in JPY) based on tick-by-tick
observations has never touched or violated any of the barriers. Therefore, they can basically
be classified as quanto KO options. In addition, we have 18 compo FX options (11 calls,

6 CME options on its Nikkei 225 USD futures being one of the few exceptions.
7 Note, we focus only on simple option types and ignore more complex structures, like bonus-, lookback- or rainbow-certificates, which are left for

future research.
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7 puts) on EURJPY and 20 compo calls on the Nikkei 225, both types with EUR as a base
currency. The sample period we consider ranges from 16 April 2013 (issue date) to 15
September 2014 for the plain vanilla options and from 19 June 2013 to 15 September 2014
for the KO warrants, covering a total period of 17 months—a sample size that is in line with
similar studies (e.g., Guillaume (2013)). After removing trading days where recordings are
missing, we are left with a total of 354 daily closing-price observations (see Figure 4).8

Figure 4. Top: Société Générale’s compo EURJPY options call prices (left) and compo Nikkei 225 call prices together with
the Nikkei 225 tracker prices (right). Bottom left: Société Générale’s quanto call prices and the Nikkei 225 tracker price.
Bottom right: Société Générale’s KO option prices and the Nikkei 225 tracker price. Vanilla (compo & quanto) contracts
covering the period 16 April 2013 to 15 September 2014, KO options 19 June 2013 to 15 September 2015.

Since the Japanese markets are closed at the time the option prices are recorded, we
rely on the price of a quanto Nikkei 225 open-end-tracker issued and priced by Société
Générale. This American product gives the buyer the right to exercise it with a three-month
notice period every year on November 26 and to receive the Nikkei 225 close on this
Japanese trading day (ratio 100:1). The spread of this product is quite tight and one can
expect these kind of RSPs not to contain much margin for the issuer (see Remark 2). As
a direct consequence, its pricing should closely resemble Société Générale’s proprietary
Nikkei 225 indication. As for the EURJPY rate, we compare several issuers’ quanto and
compo Nikkei 225 tracker and implicitly derive the (mean) FX rate.9

Remark 2. As we are looking at RSPs (plain vanilla and double-barrier options) there are some
potential sources for a systemic bias from the ’fair model price’.

(i) Credit risk: All products are basically a type of bearer bonds and, thus, are expected to include
counterparty risk. Therefore, one would assume, considering only this effect, tradable prices to
be somewhat lower than those coming from classical option pricing models as investors would
want to be compensated for taking on default risk.

(ii) Issuer’s PnL: Issuers intend to profit from structuring and pricing RSPs which is reflected in
the overpricing- and the lifecycle-hypothesis. Overpricing means a certain margin is charged
on top of the model price (see Chen and Kensinger (1990) and Chen and Sears (1990) for the
US retail market and Wilkens et al. (2003) for Germany). According to the lifecycle-hypothesis,
this charge tends to decrease over time as the issuer presumably wants to profit from initial
investors selling back later (see Stoimenov and Wilkens (2005)).

8 The data were obtained from the data provider ARIVA.DE AG which also supplies the Frankfurt retail exchange Börse Frankfurt Zertifikate AG.
9 The identifiers (WKNs) of these tracker and the above plain vanilla as well as KO options are provided in Appendix B.
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(iii) Dividends: The Nikkei 225 is a price index and, thus, does not account for dividends.
Therefore, all else being equal, the index would decrease over time through this effect. The
chosen market setups (Black–Scholes and NTS alike) do not account for such dividends.

However, the bias may not be dramatic as these three effects tend to partially offset each other:
Sources (i) and (iii) cause model prices to be higher than the real market prices, while neglecting
(ii) will induce lower model-implied quotes.

4. Naive Model Calibration Using Quanto Options

As stated above, our goal is to empirically compare the NTS assumption with the
classical Gaussian benchmark. The later is known to be deficient, especially when it comes
to more exotic payoffs, as significant risks, like jump or tail risk, might be underpriced. To
assess model adequacy, we conduct two types of empirical comparisons: the in-sample fit,
obtained by calibrating parameters to classical vanilla options, and the out-of-sample fit
via pricing exotic double-barrier derivatives.

We first use vanilla options to calibrate the parameters for each trading day, compare
the models’ in-sample-fit, and then calculate delta-based forecasts to assess parameter
stability by plugging in yesterday’s parameter values into today’s pricing formula.10 We
follow Teng et al. (2015) and minimize the relative mean square error (RelMSE) to calibrate
the models due to the relative large differences in absolute option prices, i.e., we chose
the respective parameters collected in the vector Θ?

t by minimizing11 the daily RelMSE
between market and model prices, i.e.,

Θ?
t = argminΘRelMSE(Θ)t := argminΘ

{
1
nt

nt

∑
i=1

[
Pmodel

t (Ki, Ti|Θ)− Pmarket
t (Ki, Ti)

]2
Pmarket

t (Ki, Ti)

}
,

where nt denotes the number of observed prices on day t. As starting points for the Black–
Scholes pricing we choose the historical volatilities and correlation of the Nikkei 225 in EUR
and the JPYEUR exchange rate obtained by maximum likelihood estimation (see Table 1).
For the NTS calibration, we start with the implied Black–Scholes volatilities and correlation
and set the other initial values additionally to α = 1.5, θ = 25 and µX = µY = βX = βY = 0.
The semi-analytic Formula (3) is approximated by the Fast Fourier Transform algorithm.
To avoid any numerical instabilities for α ≈ 2, we restricted ourselves to α ∈ [1, 1.95] ∪ {2}
and θ ∈ [20, 200] (see the discussion at the end of Section 2).

For the second comparison, we use the obtained daily parameters and assess the
out-of-sample model fit by pricing the KO warrants described in Section 3. This, however,
is not straightforward, since pricing such barrier options amounts to knowing the distribu-
tion of the running minimum and maximum of the underlying price process. For Black–
Scholes-type settings, this problem has been considered by Kunitomo and Ikeda (1992)
and Geman and Yor (1996), so that useful formulas for implementation are available.

For general Lévy markets (as the NTS setup) several solutions are possible12 but
there is no simple analytic formula. Besides classical simulation-based Monte Carlo
methods, which will be used here, other numerical or semi-analytical approaches in-
clude partial integro-differential equations (PIDEs) and Fourier methods.13 As NTS pro-
cesses are partially generated by certain time-changed Brownian motions, the work of
Escobar et al. (2014) is also closely related to our setup, but differs in that our subordinator,
appearing in the NTS definition, is a jump process.

10 The main input factor (apart from time to maturity and interest rates) that changes is the price of the underlying, hence the term delta-based due to
the Black–Scholes Greek delta.

11 The minimization is carried out in MATLAB using the routine fmincon. For this procedure the pricing formulas from Section 2 are invoked.
12 A very good overview and description of the various techniques can be found in Eberlein et al. (2009 2010), or Eberlein and Glau (2014) and

references therein.
13 The latter rely on the so-called Wiener-Hopf factorization, providing approximations of the characteristic functions of the running minimum and

maximum and have been successfully applied to variance-gamma-type Lévy models (see Schoutens and Van Damme (2011)).



J. Risk Financial Manag. 2021, 14, 136 11 of 27

All these studies focus on continuous barriers. In reality, a continuous observation is
impossible. In fact, the considered KO options observe the barrier only when Nikkei 225
prints are available, which is every 15 s during the five-hour trading day. Therefore, when
using PIDE or Fourier methods, some kind of continuity correction would be necessary as
well (see Broadie and Glasserman (1997) for the Gaussian case). To avoid this, we rely on
simulation-based pricing which suffices for our objectives. The general idea is as follows:
For a double-barrier option with maturity T, upper barrier Ku and lower barrier Kl , we
simulate M sample paths, {Ñi(t)}0≤t≤T , i ∈ {1, . . . , N}, under Q and approximate, for
t ≤ T,

KOt(Ku, Kl , T) = exp{−rd(T − t)}EQ[10 EUR× 1{Kl<mint≤T N(t),maxt≤T N(t)<Ku}|Ft]

≈ 10 EUR× exp{−rd(T − t)}
M

M

∑
i=1

1{Kl<mint≤T Ñ(t)}1{maxt≤T Ñ(t)<Ku}

under the restriction that none of the barriers have been touched until t ≥ 0.14 The main
challenge here (besides the computational burden) is to simulate from the NTS distribu-
tion. In the light of (2) and an application of classical Euler–Maruyama schemes, this
basically boils down to obtaining realizations from the driving tempered stable subor-
dinator. Potential solutions include sampling by an infinite series representation, as in
Bianchi et al. (2010), or numerically inverting the cumulative distribution function (which
can itself be obtained by Fourier transformation of the characteristic function). However,
to be inline with our real Nikkei 225 prints, price paths need to be simulated on a rather
fine 15-s grid. From a computational perspective, both approaches are not sensible for such
a thin discretizeation.

A practical solution is provided by an acceptance-rejection scheme, which performs best
for such dense time grids (cf. Baeumer and Meerschaert (2010); Kawai and Masuda (2012)).
Following the notation in Algorithm 3 of Kawai and Masuda (2012), the simulation of T (∆t),
∆t ≥ 0, consists of the following steps:

Step 1: Draw U ∼ Uniform(0, 1), U′ ∼ Uniform(−π/2, π/2) and E ∼ Exponential(1),
with U, U′ and E being independent.

Step 2: Calculate

V =

(
∆t
−2θ1− α

2

αΓ(− α
2 )

) 2
α(2Γ(1− α

2 )

α cos(U′)

) 2
α

sin
(α

2
(U′ + π/2))

) cos
(

U′ − α
2 (U

′ + π/2)
)

E


2−α

α

Step 3: If U ≤ exp{−θV}, return V. Otherwise return to Step 1.

For ∆t→ 0, the acceptance probability converges to 1 (see Baeumer and Meerschaert
(2010) and Kawai and Masuda (2012)) and, therefore, this setup is perfectly suited for
our purposes.

We now turn to the empirical results.15 The daily implied parameters and RelMSE for
the Black–Scholes model are plotted in Figure 5. To facilitate comparisons of the two models,
the graphical summary also includes plots of the implied drift, skewness, tempering, and
tail calibration series, which are constant for the Black–Scholes model and set to 0 and 2,
respectively. The results for the NTS calibration are presented in Figure 6.

Before comparing model adequacy, two points are worth noting. First, the Black–
Scholes correlation seems always to be close to zero and the implied volatilities themselves
are negatively correlated. In fact, various numerical tests show that the calibrated param-
eters are sensitive to the chosen starting values without affecting, however, the RelMSE

14 It should be mentioned that, for tax purposes, even in the case of a knock-out these types of products usually still pay a fixed amount of 0.001 EUR.
For the sake of simplicity, we ignore this feature.

15 For all considerations, riskless rates were taken to be the lending rates from the European Central Bank and the Bank of Japan, respectively, at each
trading day of the observation period.
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itself. This indicates identification problems when just considering quanto options. We
will discuss this in more detail in Section 5. Second, the tail and tempering parameters, α
and θ, in the NTS setting show a high variation and seem to be quite instable over time—
especially α which is in line with the results on artificial quanto prices of Kim et al. (2015).
This fluctuation has a strong impact on the other calibrated parameters. For example, α = 2
implies a Black–Scholes market, where µX, µY, βX, βY, and θ do not at all affect pricing,
whereas their influence becomes stronger for smaller α-values.

Figure 5. Quanto Calls: daily calibrated Black–Scholes parameters and RelMSE. Sample period 16 April 2013 to 15
September 2014.
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Figure 6. Quanto Calls: daily calibrated implied (X, Y) NTS parameters and RelMSE. Sample period 16 April 2013 to 15
September 2014.

Comparing delta-based forecasts and double-barrier option pricing of the two models
in terms of their daily RelMSE Figure 7 reveals the following:

(1) As the Black–Scholes model is contained in the NTS framework, RelMSE differences
are non-negative and positive values support the NTS model. While on some days
both models seem to fit equally well, the NTS setup generally outperforms.

(2) Although parameter stability seems to be an issue for the NTS model, the use of
yesterday’s parameter values still produces more realistic model prices than the
Black–Scholes setup. This is of practical relevance as traders have to resort to readily
available parameter values.

(3) Concerning barrier risk, the NTS model clearly dominates the Gaussian version. The
main reason for this follows from Figure 2. To accommodate fat tails, the Gaussian
setup generally produces distributions that are flatter in the center. However, when the
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barriers of KO warrants are close enough to the current underlying level, significant
overestimation of knock-out risk and, thus, lower prices will result. Moreover, we
may – in some heuristic sense – relate our findings to hedging strategies. Since perfect
delta-hedging is impossible, due to the unremovable jump risk in the NTS setup16,
we can expect prices to be higher.

Figure 7. Quanto calls and KO options. Top: RelMSE-difference for the calibration. Middle: RelMSE-difference of the
delta-based forecasts. Both sample period 16 April 2013 to 15 September 2014. Bottom: RelMSE-difference using the respective
calibrated parameters from 19 June 2013 to 15 September 2014. Calculations were based on 20,000 sample paths simulated
on each considered trading day assuming 5 daily trading hours and sampling every 15 s. Positive values indicate better
performance of the NTS model.

To summarize our empirical findings the NTS model generally performs better than
the classical Black–Scholes setup, although parameter instability might be a concern. We
will address this issue in the next section.

A last remark about stability of our Monte-Carlo pricing scheme: Given the fact that
we work with M = 20, 000 sample paths, one might raise concerns about potential noise in
our simulation-based KO prices. However, as discussed before, the payoff of the considered
barrier options is just binary—either an investor gets paid 0 EUR or 10 EUR, depending
on whether the barriers have been touched/violated or not. In particular, the final level
of the Nikkei 225 does play no role. Therefore one might already presume that not too
many paths are necessary for stable simulation results. Figure 8 further substantiates this
presumption.

16 See the discussion in the concluding section in Kim et al. (2015)
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Figure 8. Visualisation of noise in our chosen Monte-Carlo pricing scheme for two barrier options with different barriers
(11,250/16,500 vs. 8400/18,800) and time to maturity (178 days vs. 548 days) for various numbers M of sample paths. Even
though for maturities farther in the future, the NTS model still seems to miss market prices, its supremacy on the Gaussian
setup is evident. Additionally, this miss does not necessarily present model issues as it could also be interpreted as evidence
that issuer margins are especially high for such long product lifetimes.

5. Compo Options and a New Calibration Algorithm

As discussed in the previous section, given real market prices, the Black–Scholes as
well as the NTS setup are not uniquely identified when using only quanto pricing formulas
to calibrate risk neutral parameters. For the Black–Scholes model, this can be seen directly
from Equation (1), since

σ2
X − 2ρσXσY + σ2

Y = A and σ2
Y − ρσXσY = B,

do not give rise to a unique solution given A and B. The same is true for the NTS assump-
tion as it contains the Black–Scholes model. This problem is also well-known for other
Lévy-based market setups and has led to stepwise calibration algorithms (see, for example,
Guillaume (2013)) or the reduction of the given parameter space by combining historical
estimation and classical calibration (cf. Guillaume and Schoutens (2012) about a similar
discussion for the Heston stochastic volatility model).

To overcome this problem, quanto option practitioners frequently calibrate the Gaus-
sian model via compo options. Based on the market setup in Assumption 1, the implied
FX volatility, σY, can be identified by just using FX options. For compo equity derivatives,
however, the correlation, ρ, and the implied equity volatility, σX, come into play lead-
ing to a similar identification issue as with just using quanto options. As, for example,
Ballotta et al. (2015) point out, traders usually set ρ to the historical market correlation and
then calibrate σY and σX. This has the additional charm that one can adjust ρ for quanto
options to reflect the fact that these derivatives are typically more difficult to hedge. In fact,
Ballotta et al. (2015) show that there are significant differences between the historical and
the quanto implied correlations. Therefore, for the Gaussian case we adopt the following
calibration algorithm:



J. Risk Financial Manag. 2021, 14, 136 16 of 27

Algorithm BS

Step 1: Calibrate σY via compo options on 1/F.

Step 2: Take the historical correlation ρ = 0.2216 (based on the roughly 12-year sample in
Section 2) and calibrate σX via compo options on N.

Step 3: Use the implied volatilities σX and σY obtained in Step 2 and calibrate ρ via quanto
options on N.

Note that this procedure can be compared to that in Brigo and Alfonsi (2005) who
calibrated interest and credit rates separately, as they showed that the correlation impact
on theoretical CDS prices is fairly small. Our argument here is somewhat different, but
leads to a comparably simple and straightforward calibration algorithm. From a theoretical
perspective, we need to extend the presented pricing formulas to compo options. Even
though this is a straightforward calculation, we are not aware of the relevant Black–Scholes
formula in the rather scarce quanto pricing literature.

Therefore, we establish and prove the pricing formula, which also leads to a better
understanding of the mathematical difficulties arising for the NTS model.17

Theorem 3. Given Assumption 1 and Theorem 1 with T > 0, the prices CN,compo
t (K, T) and

CF,compo
t (K, T) of European compo call options on N(T) and 1/F(T) with strike K > 0 at time

0 ≤ t < T can be calculated via

CN,compo
t (K, T) = exp{−rd(T − t)}EQ[F(T)(N(T)− K)+|Ft]

=

{
1√
2π

∫
R

[
V(t)Φ(d1[η])−KF(t)e−r f (T−t)Φ(d2[η])

]
e−

1
2 η2

dη, σYρ 6= σX

V(t)Φ(d0
1)−KF(t)e−r f (T−t)Φ(d0

2), σYρ = σX
(5)

where

d1[η] =
log
(

V(t)
KF(t)

)
+ (r f +

1
2 [σ

2
X + σ2

Y − 2σXσYρ])(T − t)

|σYρ− σX |
√

T − t
−

√
1− ρ2

|ρ− σX/σY|
η,

d2[η] = d1[η]−
(
|σYρ− σX |+

σY(1− ρ2)

|ρ− σX/σY|

)√
T − t

and

d0
1 =

log
(

V(t)
KF(t)

)
+ (r f − 1

2 [σ
2
X − σ2

Y])(T − t)

σY
√

1− ρ2
√

T − t
, d0

2 = d0
1 − σY

√
1− ρ2

√
T − t.

Furthermore, we have

CF,compo
t (K, T) = exp{−rd(T − t)}EQ

 1
F(T) − K

1
F(T)

+∣∣∣∣∣∣Ft


= Φ(−d2)e−rd(T−t) − e−r f (T−t)Φ(−d1)KF(t) (6)

where

d1 =
log(KF(t)) +

(
rd − r f +

σ2
Y
2

)
(T − t)

σY
√

T − t
, d2 = d1 − σY

√
T − t.

17 This and all other proof are presented in Appendix A.
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To date, we only derived prices for compo FX calls. As detailed in Section 3, our
data set also includes puts of that type. However, by invoking the model-free compo FX
call-put-parity

PF,compo
t (K, T) = exp{−r f (T − t)}KF(t)− exp{−rd(T − t)}+ CF,compo

t (K, T)

we can directly specify the necessary put prices.
Figure 9 summarizes the Black–Scholes parameters obtained by the stepwise calibra-

tion algorithm. Note that for equity compo options the historical correlation of 0.2216
is used. As discussed already in Section 2, this positive correlation implies a negative
correlation between the Nikkei 225 in JPY and the JPYEUR exchange rate. In Step 3 of
the above calibration algorithm, the correlation is adjusted on each day to optimize the fit
for Nikkei 225 quanto options. Keeping in mind that we need (4) to interpret this quanto
implied correlation, we realize that even though ρ seems to be lower in absolute terms, on
most days the implied relationship between the Nikkei 225 in JPY and the JPYEUR rate is
even more negative, i.e., stronger.

Furthermore, having calibrated ρ in Step 3, we examine how its value affects the fit of
the compo options. The RelMSEs are compared in the bottom left graph in Figure 9. It turns
out that the optimal parameters for quanto substantially differ from those for the compo
options. This shows that the Black–Scholes model is not able to adequately capture the
increased risk contained in quanto derivatives. Therefore, one could argue that the fitted ρ
values reflect a charge for this additional risk and, thus, we will refer to quanto-adjusted
parameters as quanto charge.

For the NTS model the situation is somewhat more delicate as, especially, the tail
and tempering parameters, α and θ, affect both option types. In addition, as shown in
Section 4, the implied values for these two parameters proved to be quite instable over
time. A potential solution to this problem follows from Theorem 2. The chosen risk-neutral
measure is obtained by just modifying the drift of the two-dimensional Brownian motion
and leaving the tempered stable subordinator untouched. In other words, α and θ do not
change under the measure change from P to Q.

As we are mainly interested in obtaining stable NTS parameters for quanto option
pricing, we propose the following algorithm for the NTS framework:

Algorithm NTS

Step 1: Estimate α and θ using the bivariate log return history of V and F from Section 2.

Step 2: Calibrate the Y-parameters via compo options on 1/F.

Step 3: Calibrate the X-parameters and the correlation ρ via compo options on N.

Step 4: Calibrate the quanto option formula using the Y-parameters obtained in Step 2,
but let the X-parameters and the correlation, ρ, vary under the restriction that the
relative Nikkei compo fit is not worse than that of the Black–Scholes model (see
Algorithm BS).

To apply the algorithm, we need to establish the relevant compo formulas for the NTS
model. At the start of the calibration procedure, α and θ are already fixed. To speed up
computation, it helps to separate these two parameters from the others.
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Figure 9. Quanto and compo options: daily calibrated Black–Scholes parameters and RelMSEs. Sample period 16 April
2013 to 15 September 2014.
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Theorem 4. Given Assumption 2 and Theorem 2 with T > 0, then the prices CN,compo
t (K, T)

and CF,compo
t (K, T) of European compo call options on N(T) and F(T) with strike K > 0 at time

0 ≤ t < T can be calculated via

CN,compo
t (K, T) = exp{−rd(T − t)}EQ[F(T)(N(T)− K)+|Ft]

=
1√
2π

∫
R+

[AT−t(ζ)− KBT−t(ζ)] fT (T−t)(ζ)dζ,

where, for ζ > 0,

fT (T−t)(ζ) =
1

2π

∫
R

e−iuζ exp
{
− 2[T − t]θ1− α

2

α

[
(θ − iu)

α
2 − θ

α
2

]}
du

and

AT−t(ζ) = V(t)e[−wX(λ
?
X)−βX ](T−t)

∫
R

e[βX+λ?
X+

σ2
X
2 (1−ρ2)]ζ+ρσX

√
ζηΦ(d1[η, ζ])e−

1
2 η2

dη,

BT−t(ζ) = F(t)e(−r f−wY(λ
?
Y)−βY)(T−t)

∫
R

e[βY+λ?
Y ]ζ+σY

√
ζηΦ(d2[η, ζ])e−

1
2 η2

dη

with

d1[η, ζ] = d2[η, ζ] + σX

√
1− ρ2

√
ζ

d2[η, ζ] =
log
(

V(t)
KF(t)

)
+ [r f + wY(λ

?
Y)− wX(λ

?
X) + βY − βX ](T − t) + (βX + λ?

X − βY − λ?
Y)ζ

σX
√

1− ρ2
√

ζ

− (σY − ρσX)

σX
√

1− ρ2
η.

For the compo FX call we have

CF,compo
t (K, T) = exp{−rd(T − t)}EQ

 1
F(T) − K

1
F(T)

+∣∣∣∣∣∣Ft


=

∫
R+

[e−rd(T−t)Φ(−d2[ζ])− KDT−t(ζ)] fT (T−t)(ζ)dζ (7)

with

DT−t(ζ) = F(t)e(−r f−wY(λ
?
Y)−βY)(T−t) exp

{
[βY + λ?

Y +
σ2

Y
2
]ζ
}

Φ(−d1[ζ])

where

d1[ζ] =
log(KF(t)) +

(
rd − r f − wY(λ

?
Y)− βY

)
(T − t) + (βY + λ?

Y + σ2
Y)ζ

σY
√

ζ
,

d2[ζ] = d1[ζ]− σY
√

ζ.

The following new representation for the pricing formula in Theorem 2 also helps to
speed up Step 4 of the new calibration algorithm: As we do not need to minimize over
α and θ, we can calculate upfront the subordinator density on a chosen grid and, thus,
improve significantly on the otherwise supreme Fast Fourier Transform Algorithm.
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Theorem 5. Given Assumption 2 and Theorem 2 with T > 0, assume σ2
X + σ2

Y − 2ρσXσY > 0.
Then, for K > 0, Ff ix > 0 and 0 ≤ t < T, we have

Cquanto
t (K, T) = exp{−rd(T − t)}EQ[Ff ix(N(T)− K)+|Ft]

=
∫
R+

[ET−t(ζ)− Ke−rd(T−t)Φ(d2[ζ])] fT (T−t)(ζ)dζ

where for ζ > 0

fT (T−t)(ζ) = (2π)−1
∫
R

e−iuζ exp
{
− 2[T − t]θ1− α

2

α

[
(θ − iu)

α
2 − θ

α
2

]}
du,

ET−t(ζ) = N(t)e[−rd+r f +wY(λ
?
Y)+βY−wX(λ

?
X)−βX ](T−t)

× exp
{
[βX + λ?

X − βY − λ?
Y +

1
2
(σ2

X + σ2
Y − 2ρσXσY)]ζ

}
Φ(d1[ζ])

with

d1[ζ] = d2[ζ] +
√

σ2
X + σ2

Y − 2ρσXσY
√

ζ,

d2[ζ] =
log
(

N(t)
K

)
+
(

r f + wY(λ
?
Y)− wX(λ

?
X) + βY − βX

)
(T − t) + (βX + λ?

X − βY − λ?
Y)ζ√

σ2
X + σ2

Y − 2ρσXσY
√

ζ

The empirical results obtained for the NTS model are illustrated in Figure 10. One
of our main findings is that when fixing α and θ upfront and including compo options,
the calibrated parameters (especially drift and skewness) are much more stable over time
than when just considering quanto options, as was done in Section 4. Even though some
quanto implied parameters (i.e., quanto charges) are quite different from those coming
from the Nikkei compo options, the two RelMSEs (bottom left) do not differ as much as in
the Black–Scholes setting. This is in line with our earlier findings on the KO option fit in
Section 4: The NTS model generally seems to be coping much better with the additional
quanto risk. This is especially evident in the period November 2013 to March 2014.

Finally, as in Section 4, we use the calibrated parameters to calculated delta-based
forecasts for the quanto options and compare the out-of-sample model fit for our double-
barrier option data. The daily RelMSE differences (including those for the calibration fit)
are shown in Figure 11.

Having α and θ fixed at the chosen values, the two models clearly differ and, therefore,
it is not surprising that, on some days, the quanto fit of the Black–Scholes setup can be
better. This can be seen especially for the last months of the sample period, where Figure 6
implied α-values close to 2. However, when considering the complete sample period, the
NTS setup clearly dominates the Gaussian model for quanto and, especially, for FX compo
options. Interestingly, even though the Nikkei compo fit is nearly the same (second row of
Figure 11), the additional quanto charge is lower for the NTS model.

Furthermore, when looking at the delta-based forecasts for quanto options, the NTS
setup implies more stable parameters over time than the Black–Scholes model.

Finally, for the double-barrier options, the NTS framework clearly outperforms the
Black–Scholes setup again even though its advantage is lower than in Section 4. However
this can be explained by the fact that the additional compo options make it harder for
every model.
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Figure 10. Quanto and compo options: daily calibrated (X, Y) NTS parameters and RelMSEs. Sample period 16 April 2013
to 15 September 2014.
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Figure 11. Quanto, compo and KO options. Top three: RelMSE-difference for the quanto Nikkei, compo Nikkei and JPYEUR
options. Bottom two: RelMSE-difference of the delta-based forecasts of quanto Nikkei call prices and RelMSE-difference
for KO options. Sample period for vanilla options 16 April 2013 to 15 September 2014, for KO options 19 June 2013 to 15
September 2014. Positive values indicate better performance of the NTS model.

6. Conclusions

Conducting an extensive empirical study of daily data on quanto retail options we
have compared the adequacy of a classical Black–Scholes-type framework and the newly
proposed NTS model of Kim et al. (2015). However, direct calibration led to problems
with identification and parameter instability. This was overcame by a stepwise procedure
making use of compo options and combining historical estimation and calibration. Our
results indicate that the non-Gaussian NTS model, a member of the general Lévy class,
does not only provide a better in-sample-fit for observed quanto options prices. It also
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provides better forecasts for model parameters as well as out-of-sample accuracy when
pricing exotic double-barrier options.

Given that the stepwise calibration procedure employed in Section 5 favors in some
time periods (e.g. June–September 2014) the Black–Scholes (i.e., α = 2) over the NTS
setup (i.e., α < 2), a time-varying parameter approach, which allows α (and possibly other
parameters) to change over time, might be a promising extension of our analysis.
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Appendix A. Proofs

Proof of Theorem 3. We start with the quanto equity option. Assume σYρ > σX and decom-
pose

CN,compo
t (K, T) = exp{−rd(T − t)}EQ[F(T)(N(T)− K)+|Ft]

= exp{−rd(T − t)}EQ[(V(T)− KF(T))+|Ft]

= exp{−rd(T − t)}
{
EQ[1{V(T)≥KF(T)}V(T)|Ft]︸ ︷︷ ︸

:=(I)

−K EQ[1{V(T)≥KF(T)}F(T)|Ft]︸ ︷︷ ︸
:=(I I)

}

Setting

d?1 =
log
(

V(t)
KF(t)

)
+ (r f − 1

2 [σ
2
X − σ2

Y])(T − t)− σY
√

1− ρ2][B̄Y(T)− B̄Y(t)]

(σYρ− σX)
√

T − t
,

the first term becomes

(I) = V(t)EQ
[
EQ
[
1{V(T)≥KF(T)}

V(T)
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∣∣∣Ft ∨ F B̄Y
∞

]∣∣∣Ft

]
= V(t)EQ

[
(2π)−1/2

∫ d?1

−∞
erd(T−t)− σ2

X
2 (T−t)+σX

√
T−tξ e−

1
2 ξ2

dξ
∣∣∣Ft

]
= V(t)erd(T−t)EQ

[
(2π)−1/2
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−∞
e−

1
2 [ξ−σX

√
T−t]2 dξ
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]
= V(t)erd(T−t)EQ

[
(2π)−1/2
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−∞
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1
2 η2

dη
∣∣∣Ft

]
= V(t)erd(T−t)EQ

[
Φ(d?1 − σX

√
T − t)

∣∣∣Ft

]
= V(t)erd(T−t)(2π)−1/2

∫
R

Φ(d1[η])e−
1
2 η2

dη

with d1[η] as in the assertion. By similar arguments, the second simplifies to

(I I) = F(t)EQ
[
EQ
[
1{V(T)≥KF(T)}
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∣∣∣Ft ∨ F B̄Y
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with d2[ξ] as specified by the theorem. Combining (I) and (I I), we obtain the stated
formula. The cases σYρ < σX and σYρ = σX can be derived via similar calculations. It
remains to show the formula for the compo FX option. With d1 and d2 as stated in the
theorem, this will be done by rewriting the compo call option as K quanto put options via

CF,compo
t (K, T) = e−rd(T−t)EQ

 1
F(T) − K

1
F(T)

+∣∣∣∣∣∣Ft


= e−rd(T−t)KEQ[(K−1 − F(T))+|Ft] = e−r f (T−t)−(rd−r f )(T−t)KEQ[(K−1 − F(T))+|Ft]

= Φ(−d2)e−rd(T−t) − e−r f (T−t)Φ(−d1)KF(t).

Proof of Theorem 4. Again we start with the compo equity option. With T being independent of
(BX , BY), we can condition on the subordinator and proceed as in the proof of Theorem 3:

CN,compo
t (K, T) = e−rd(T−t)EQ[F(T)(N(T)− K)+|Ft]

= e−rd(T−t)EQ[EQ[(V(T)− KF(T))+|Ft ∨ FT∞ ]|Ft]

= e−rd(T−t)EQ
[
EQ[1{V(T)≥KF(T)}V(T)|Ft ∨ FT∞ ]︸ ︷︷ ︸

:=(I)

−K EQ[1{V(T)≥KF(T)}F(T)|Ft ∨ FT∞ ]︸ ︷︷ ︸
:=(I I)

∣∣∣Ft

]
.

In contrast to the Black–Scholes-type model, (BX , BY) is correlated without assuming
partly equal sample paths. However, using the well-known fact that conditional Gaussian
random variables are again normally distributed, we obtai, n for 0 ≤ t < T,

BX(T (T))− BX(T (t))
∣∣∣BY(T (T))− BY(T (t)),FT∞

∼ N
(

ρ[BY(T (T))− BY(T (t))], [T (T)− T (t)](1− ρ2)
)

.

Since T (T)− T (t) 6= 0 a.s., we set
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log
(

V(t)
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)
+ [r f + wY(λ

?
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?
X) + βY − βX ](T − t) + (βX + λ?

X − βY − λ?
Y)[T (T)− T (t)]

σX
√

1− ρ2
√
T (T)− T (t)

− (σY − ρσX)[BY(T (T))− BY(T (t))]
σX
√

1− ρ2
√
T (T)− T (t)
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Now we can proceed with the individual terms, starting with
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Moreover, we have

(I I) = F(t)EQ
[
EQ
[
1{V(T)≥KF(T)}

F(T)
F(t)
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Combining everything, we obtain the assertion. The formula for the compo FX call
can be derived via similar, but rather tedious, calculations.

Proof of Theorem 5. The proof follows along the lines of Theorem 4 and involves, again,
a tedious calculation.

Appendix B. Identifier Numbers (WKNs) of All RSPs Used in Empirical Analysis

Nikkei 225 open-end-tracker: 252140, 698516, 702976, 787332, CB5UYN, HV1NKY, DR1CD5,
DZ2NX7, DZ2RZC

Nikkei 225 quanto call options: SG3424, SG3425, SG3426, SG3427, SG3428, SG3429, SG343A,
SG343B, SG343C, SG343D, SG343E, SG343F, SG343G, SG343H, SG343J, SG343K, SG343L,
SG343M, SG343N, SG343P, SG343Q, SG343R, SG343S, SG343T, SG343U, SG343V, SG343W,
SG343X, SG343Y

Nikkei 225 compo call options: SG196L, SG196M, SG3WBJ, SG3WBK, SG3WBL, SG3WBM,
SG3WBP, SG3WBQ, SG3WBR, SG3WBS, SG3WBT, SG3WBU, SG3WBV, SG2L0T, SG2L0U,
SG2L0V, SG2L0W, SG2WQW, SG2WQX, SG2WQY

EURJPY compo options: SG3W6J, SG3W6K, SG3W6L, SG3W6M, SG3W6N, SG3W6P,
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SG3W6Q, SG3W6R, SG3W6S, SG3W6T, SG3W6U, SG3W6V, SG3W6W, SG3W6X, SG3W6Y,
SG3W6Z, SG3W60, SG3W61

Nikkei 225 KO options: SG36ET, SG36EV, SG36EY, SG36EZ, SG36E0, SG36E1, SG36E4,
SG4EFS, SG4EFT, SG4EFU, SG4EFV, SG4EFW, SG4EFX, SG4EFY, SG4EFZ, SG4EF0, SG4EF1,
SG4EF2, SG4EF3, SG4EF4, SG4EF5, SG4EF6, SG4EF7, SG4EF8, SG4EF9, SG4EGA, SG4EGB,
SG4EGC, SG4EGD, SG4EGE, SG4EGF, SG4EGG, SG4EGH, SG4EGJ, SG4EGK, SG4EGL,
SG4EGM, SG4EGN, SG4EGP, SG4EGQ, SG4EGR, SG4EGS, SG4EGT, SG4EGU, SG4EGV,
SG4EGW, SG4EGX, SG4EGY, SG4FZL, SG4FZM, SG4FZN, SG4FZP, SG4FZQ, SG4FZT,
SG4FZU, SG4FZV, SG4FZW, SG4FZX, SG4FZZ, SG4FZ0, SG4FZ1, SG4FZ2, SG4FZ3, SG4FZ4,
SG4FZ5, SG4FZ6, SG4FZ7, SG4FZ8, SG4FZ9, SG4F0A, SG4F0B, SG4F0C, SG4F0D, SG4F0E,
SG4F0F, SG4NCZ, SG4NC0, SG4NC1, SG4NC2, SG4NC3, SG4NC4, SG4NC5, SG4NC6,
SG4NC7, SG4NC8, SG4NC9, SG4NDA, SG4NDB, SG4NDC, SG4NDD, SG4S20, SG4S21,
SG4S22, SG4S23, SG4S24, SG4S25, SG4S26, SG4S27, SG4S28, SG4S29, SG4S3A, SG4S3B,
SG4S3C, SG4S3D, SG4S3E, SG4S3F, SG4S3G, SG4S3H, SG4S3J, SG4S3K, SG4S3L, SG4S3M,
SG4S3N, SG4S3P, SG4S3Q, SG4S3R, SG4S3S, SG4S3T, SG4S3U, SG4S3V, SG4S3W, SG4S3X,
SG4S3Y, SG4S3Z, SG4S30, SG41DF, SG41DG, SG41DH, SG41DJ, SG41DK, SG41DL, SG41DM,
SG41DN, SG41DP, SG41DQ, SG41DR, SG41DS, SG41DT, SG42UV, SG42UW, SG42UX,
SG42UY, SG42UZ, SG42U0, SG42U1, SG42U2, SG42U3, SG42U4, SG42U5, SG42U6, SG42U7,
SG42U8, SG42U9, SG42VA, SG42VB, SG42VC, SG42VD, SG42VE, SG42VF, SG42VG, SG42VH,
SG42VJ, SG42VK, SG42VL, SG42VM, SG42VN, SG42VP, SG4739, SG474A, SG474B, SG474C,
SG474D, SG474E, SG474F, SG474G, SG474H, SG474J, SG474K, SG474L, SG474M, SG474N,
SG474P, SG474Q, SG474R, SG474S, SG474T, SG474U, SG474V, SG474L, SG474X, SG474Y,
SG474Z, SG4740, SG4741, SG4742, SG4743, SG4744, SG4745, SG4746, SG4747, SG4748,
SG4749, SG475A, SG475B, SG475C, SG475D, SG475E, SG475F, SG475G, SG475H, SG475J,
SG475K, SG475L, SG475M, SG475N, SG475P, SG475Q, SG475R, SG475S, SG475T, SG475U,
SG475V, SG475W, SG475X, SG475Y, SG475Z, SG4750, SG4751, SG4752, SG4753, SG4754,
SG4755, SG4756, SG5BFZ, SG5BF0, SG5BF1, SG5BF2, SG5BF3, SG5BF4, SG5BF5, SG5BF6,
SG5BF7, SG5BF8, SG5BF9, SG5BGA, SG5BGB, SG5BGC, SG5BGD, SG5LUU, SG5LUV,
SG5LUW, SG5LUX, SG5LUY, SG5LUZ, SG5LU0, SG5LU1, SG5LU2, SG5LU3, SG5LU4,
SG5LU5, SG5LU6, SG5LU7, SG5LU8, SG5LU9, SG5LVA, SG5LVB, SG5LVC, SG5LVD,
SG5LVE, SG5LVF, SG5LVG, SG5LVH, SG5LVJ, SG5LVK, SG5LVL, SG5LVM, SG5LVN,
SG5LVP, SG5LVQ, SG5LVR, SG5LVS, SG5LVT, SG5LVU, SG5LVV, SG5NVU, SG5NVV,
SG5NVW, SG5NVX, SG5NVY, SG5NVZ, SG5NV0, SG5NV1, SG5NV2, SG5NV3, SG5NV4,
SG5NV5, SG5NV6, SG5NV7, SG5NV8, SG5NV9, SG5NWA, SG5NWB, SG5NWC, SG5NWD,
SG5NWE, SG5NWF, SG5NWG, SG5NWH, SG5NWJ, SG5NWK, SG5NWL, SG5NWM,
SG5QKA, SG5QKB, SG5QKC, SG5QKD, SG5QKE, SG5QKF, SG5QKG, SG5QKH, SG5QKJ,
SG5QKK, SG5QKL, SG5QKM, SG5QKN, SG5QKP, SG5QKQ, SG5QKR, SG5QKS, SG5QKT,
SG5QKU, SG5QKV, SG5QKW, SG5QKX, SG5QKY, SG5QKZ, SG5QK0, SG5QK1, SG5QN3,
SG5QN4, SG5VQL, SG5VQM, SG5VQN, SG5VQP, SG5VQQ, SG5VQR, SG5VQS, SG5VQT,
SG5VQU, SG5VQV, SG5VQW, SG5VQX, SG5VQY, SG5VQZ, SG5VQ0, SG5VQ1, SG5VQ2,
SG5V0G, SG5V0H, SG5V0J, SG5V0K, SG5V0L, SG5V0M

References
Baeumer, Boris, and Mark M. Meerschaert. 2010. Tempered stable Lévy motion and transit super-diffusion. Journal of Computational

and Applied Mathematics 233: 2438–48. [CrossRef]
Ballotta, Laura, Griselda Deelstra, and Grégory Rayée. 2015. Quanto Implied Correlation in a Multi-Lévy Framework. Available

online: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2569015 (accessed on 10 October 2020).
Barndorff-Nielsen, Ole Eiler, and Sergei Z. Levendorskii. 2001. Feller processes of normal inverse Gaussian type. Quantitative Finance 1:

318–31
Barndorff-Nielsen, Ole E., and Neil Shephard. 2001. Normal Modified Stable Processes. Department of Economics, Discussion Paper

Series. Oxford: University of Oxford, p. 72.
Baxter, Martin, and Andrew Rennie. 1996. Calculus: An Introduction to Derivative Pricing. Cambridge: Cambridge University Press.

http://doi.org/10.1016/j.cam.2009.10.027
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2569015


J. Risk Financial Manag. 2021, 14, 136 27 of 27

Bianchi, Michele L., Svetlozar R. Rachev, Young S. Kim, and Frank J. Fabozzi. 2010. Tempered stable distributions and processes in
finance: Numerical analysis. In Mathematical and Statistical Methods for Actuarial Sciences and Finance. Edited by Marco Corazza and
Claudio Pizzi. Berlin and Heidelberg: Springer.

Branger, Nicole, and Matthias Muck. 2012. Keep on smiling? The pricing of Quanto options when all covariances are stochastic.
Journal of Banking & Finance 36: 1577–91.

Brigo, Damiano, and Aurélien Alfonsi. 2005. Credit default swap calibration and derivatives pricing with the SSRD stochastic intensity
model. Finance and Stochastics 9: 29–42. [CrossRef]

Broadie, Mark, and Paul Glasserman. 1997. A continuity correction for discrete barrier options. Mathematical Finance 7: 325–48.
[CrossRef]

Carr, Peter, and Dilip Madan. 1999. Option pricing and the Fast Fourier Transform. Journal of Computational Finance 2: 61–73. [CrossRef]
Chen, Andrew H., and John W. Kensinger. 1990. An analysis of market-index certificates of deposit. Journal of Financial Services

Research 4: 93–110. [CrossRef]
Chen, Kuang C., and R. Stephen Sears. 1990. Pricing the SPIN. Financial Management 19: 36–47. [CrossRef]
Delbaen, Freddy, and Walter Schachermayer. 1994. A general version of the fundamental theorem of asset pricing. Mathematische

Annalen 312: 463–520. [CrossRef]
Derman, Emanuel, Piotr Karasinski, and Jeffrey Wecker. 1990. Understanding guaranteed exchange-rate contracts in foreign stock

investments. In Goldman Sachs Quantitative Strategies Research Notes. New York: Goldman Sachs.
Dimitroff, Georgi, Alexander Szimayer, and Andreas Wagner. 2009. Quanto Option Pricing in the Parsimonious Heston Model.

Available online: https://ssrn.com/abstract=1477387 (accessed on 23 September 2009).
Eberlein, Ernst, and Kathrin Glau. 2014. Variational solutions of the pricing PIDEs for European options in Lévy models. Applied

Mathematical Finance 21: 417–50. [CrossRef]
Eberlein, Ernst, Kathrin Glau, and Antonis Papapantoleon. 2009. Analyticity of the Wiener-Hopf factors and valuation of exotic

options in Lévy models. In Advanced Mathematical Methods for Finance. Berlin and Heidelberg: Springer, pp. 223–45.
Eberlein, Ernst, Kathrin Glau, and Antonis Papapantoleon. 2010. Analysis of Fourier transform valuation formulas and applications.

Applied Mathematical Finance 17: 211–40. [CrossRef]
Eberlein, Ernst, and Ulrich Keller. 1995. Hyperbolic distributions in finance. Bernoulli 1: 281–99. [CrossRef]
Eberlein, Ernst, Ulrich Keller, and Karsten Prause. 1998. New insights into smile, mispricing and value at risk: the hyperbolic model.

Journal of Business 71: 371–405. [CrossRef]
Eberlein, Ernst, Antonis Papapantoleon, and Albert N. Shiryaev. 2009. Esscher transform and the duality principle for multidimensional

semimartingales. Annals of Applied Probability 19: 1944–71. [CrossRef]
Escobar, Marcos, Peter Hieber, and Matthias Scherer. 2014. Efficiently pricing double barrier derivatives in stochastic volatility models.

Review of Derivatives Research 17: 191–216. [CrossRef]
Fink, Holger, Sebastian Geissel, Jörn Sass, and Frank T. Seifried. 2019. Implied risk aversion: an alternative rating system for retail

structured products. Review of Derivatives Research 22: 357–87. [CrossRef]
Geman, Hélyette, and Marc Yor. 1996. Pricing and hedging double-barrier options: a probabilistic approach. Mathematical Finance 6:

365–78. [CrossRef]
Gerber, Hans. U., and Elias S. W. Shiu. 1994. Option pricing by Esscher transforms. Transactions of Society of Actuaries 48: 99–191.
Guillaume, Florence. 2013. The αVG model for multivariate asset pricing: calibration and extension. Review of Derivatives Research 16:

25–52. [CrossRef]
Guillaume, Florence, and Wim Schoutens. 2012. Calibration risk: Illustrating the impact of calibration risk under the Heston model.

Review of Derivatives Research 15: 57–79. [CrossRef]
Kawai, Reiichiro, and Hiroki Masuda. 2012. Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations.

Communications in Statistics-Simulation and Computation 41: 125–39. [CrossRef]
Kim, Young S., Rosella Giacometti, Svetlozar T. Rachev, Frank J. Fabozzi, and Domenico Mignacca. 2012. Measuring financial risk and

portfolio optimization with a non-Gaussian multivariate model. Annals of Operations Research 201: 325–43. [CrossRef]
Kim, Young S., Jaesung Lee, Stefan Mittnik, and Jiho Park. 2015. Quanto option pricing in the presence of fat tails and asymmetric

dependence. Journal of Econometrics 187: 512–20. [CrossRef]
Kunitomo, Naoto, and Masayuki Ikeda. 1992. Pricing options with curved boundaries. Mathematical Finance 2: 275–98. [CrossRef]
Park, Jiho, Youngrok Lee, and Jaesung Lee. 2013. Pricing of quanto option under the Hull and White stochastic volatility model.

Communications of the Korean Mathmatical Society 28: 615–33. [CrossRef]
Sato, Ken-Iti. 1999. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press.
Schoutens, Wim, and Geert Van Damme. 2011. The β-variance gamma model. Review of Derivatives Research 14: 263–82. [CrossRef]
Stoimenov, Pavel A., and Sascha Wilkens. 2005. Are structured products ’fairly’ priced? An analysis of the german market for

equity-linked instruments. Journal of Banking and Finance 29: 2971–93. [CrossRef]
Teng, Long, Matthias Ehrhardt, and Michael Günther. 2015. The pricing of quanto options under dynamic correlation. Journal of

Computational and Applied Mathematics 275: 304–10. [CrossRef]
Wilkens, Sascha, Carsten Erner, and Klaus Röder. 2003. The pricing of structured products in germany. Journal of Derivatives 11: 55–69.

[CrossRef]
Wilmott, Paul. 2006. Paul Wilmott on Quantitative Finance. Hoboken: John Whiley & Sons, Ltd.

http://dx.doi.org/10.1007/s00780-004-0131-x
http://dx.doi.org/10.1111/1467-9965.00035
http://dx.doi.org/10.21314/JCF.1999.043
http://dx.doi.org/10.1007/BF00352565
http://dx.doi.org/10.2307/3665633
http://dx.doi.org/10.1007/BF01450498
https://ssrn.com/abstract=1477387
http://dx.doi.org/10.1080/1350486X.2014.886817
http://dx.doi.org/10.1080/13504860903326669
http://dx.doi.org/10.2307/3318481
http://dx.doi.org/10.1086/209749
http://dx.doi.org/10.1214/09-AAP600
http://dx.doi.org/10.1007/s11147-013-9094-4
http://dx.doi.org/10.1007/s11147-018-9151-0
http://dx.doi.org/10.1111/j.1467-9965.1996.tb00122.x
http://dx.doi.org/10.1007/s11147-012-9080-2
http://dx.doi.org/10.1007/s11147-011-9069-2
http://dx.doi.org/10.1080/03610918.2011.582561
http://dx.doi.org/10.1007/s10479-012-1229-8
http://dx.doi.org/10.1016/j.jeconom.2015.02.035
http://dx.doi.org/10.1111/j.1467-9965.1992.tb00033.x
http://dx.doi.org/10.4134/CKMS.2013.28.3.615
http://dx.doi.org/10.1007/s11147-010-9057-y
http://dx.doi.org/10.1016/j.jbankfin.2004.11.001
http://dx.doi.org/10.1016/j.cam.2014.07.017
http://dx.doi.org/10.3905/jod.2003.319211

	Introduction
	The NTS Framework for Quanto Options
	Data on Retail Structured Products
	Naive Model Calibration Using Quanto Options
	Compo Options and a New Calibration Algorithm
	Conclusions
	Proofs
	Identifier Numbers (WKNs) of All RSPs Used in Empirical Analysis
	References

