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Abstract: The main objective of this paper is to present an algorithm of pricing perpetual American
put options with asset-dependent discounting. The value function of such an instrument can be
described as Vω

APut (s) = supτ∈T Es[e−
∫ τ

0 ω(Sw)dw(K− Sτ)+], where T is a family of stopping times, ω

is a discount function and E is an expectation taken with respect to a martingale measure. Moreover,
we assume that the asset price process St is a geometric Lévy process with negative exponential

jumps, i.e., St = seζt+σBt−∑
Nt
i=1 Yi . The asset-dependent discounting is reflected in the ω function, so

this approach is a generalisation of the classic case when ω is constant. It turns out that under certain
conditions on the ω function, the value function Vω

APut (s) is convex and can be represented in a closed
form. We provide an option pricing algorithm in this scenario and we present exact calculations for
the particular choices of ω such that Vω

APut (s) takes a simplified form.

Keywords: option pricing; American option; Lévy process

MSC: 60G40; 60J60; 91B28

JEL Classification: G13; C61

1. Introduction

In this paper, we consider a perpetual American put option with asset-dependent
discounting. We consider a standard stochastic background for this problem, i.e., we define
a complete filtered risk-neutral probability space (Ω,F , {Ft}t≥0,P), on which we define
the asset price process St. Then, Ft is a natural filtration of St satisfying the usual conditions
and P is a risk-neutral measure under which the discounted (with respect to the risk-free
interest rate r > 0) asset price process e−rtSt is a local martingale. A family of Ft-stopping
times is denoted by T while Es denotes the expectation with respect to P when S0 = s = ex.
The value function of the perpetual American put option with asset-dependent discounting
can be represented by

Vω
APut(s) := sup

τ∈T
Es

[
e−
∫ τ

0 ω(Sw)dw(K− Sτ)
+
]
. (1)

The asset-dependent discounting is reflected in the ω function, which is our key
concept considered in this article. We underline here that the discount function ω for
various economical reasons can be different from the risk-free interest rate r > 0; see
Al-Hadad and Palmowski (2021) for further explanation. The way we choose discounting
is to model strong dependence of discount factor with the asset price. The goal is to
understand various economical phenomena that might appear in this extreme case. Our
approach differs from typical studies considered in the literature, where the interest rate is
independent from the asset price or there is a weak dependence between these two factors.
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Therefore, this research is noteworthy not only in the context of option pricing, but also in
other areas where optimisation problems appear.

Our main motivation comes from the work of Linetsky (1999) who considers up-
and-out put options traded mainly over-the-counter. In these options, the discount-
ing factor depends exponentially on the cumulative excursion time above or below a
given barrier during the entire life of the option. In other words, ω(s) = $1{s∈A(H)}
where A(H) = {s ≥ 0 : ±(s − H) ≥ 0}. Similar step-like options were considered in
Rodosthenous and Zhang (2018) where the discounting is related to the occupation time of
the asset price below a fixed level y exceeding an independent exponential random variable
with mean 1/$. This discounting corresponds to the special choice of ω(s) = r + $1{s≤y},
where r is a risk-free interest rate. In general, one can think of ω(St) as the general knock-
out (or knock-in) rate depending on the asset price of some vanilla options. This additional
feature might allow us to customise the financial product according to the demand of the
risk management.

Moreover, we assume that the asset price process St is a geometric Lévy process with
negative exponential jumps, i.e.,

St := seXt (2)

with

Xt := ζt + σBt −
Nt

∑
i=1

Yi, (3)

where ζ and σ > 0 are constant, Nt is the Poisson process with intensity λ ≥ 0 independent
of Brownian motion Bt, and {Yi}i∈N are i.i.d. random variables independent of Bt and Nt
having exponential distribution with mean 1/ϕ > 0. Under the martingale measure P, the
drift parameter is of the form

ζ := r− σ2

2
+

λ

ϕ + 1
.

Note that when λ = 0, then we end up with the classical Black–Scholes model.
However, empirical studies show that stock prices have a heavier left tail than normal
distribution. Note that the negative jumps underline the market crashes that appear
once per while. Therefore, nowadays many books and articles concern, as we do in this
work, pricing of derivative securities in market models based on Lévy processes; see
Cont and Tankov (2004) for more details. Still, to get a complete picture, we analyse here
the case of λ = 0 as well. Our model of asset price is a particular case of the Kou model
where the logarithm of the price process is a jump diffusion; see Kou (2002).

The main objective of this paper is to present an algorithm of pricing perpetual
American put options with asset-dependent discounting with the value function defined
in (1) and the asset price process St given in (2). Furthermore, we take into account some
specific scenarios (e.g., when σ = 0 or λ = 0), and, for these cases, we are able to derive
analytical forms of the value function, while for more complex examples, we show how to
handle them numerically.

Detailed theoretical results of the analysed problem were already developed in
Al-Hadad and Palmowski (2021), where the authors presented the approach of deriving a
closed form of value function (1) for even a more general setting than it is considered here.
Therefore, in this paper, we focus more on numerical side of this problem and analyse, in
detail, a few particular cases where more explicit results can be derived.

Still, before we present the option pricing method in our set-up, we recall the most
important theoretical issues on which our article is based on. A key step in deriving a closed
form of (1) is identifying the form of the optimal stopping rule τ∗ for which the supremum
in (1) is attained. It turns out that under certain conditions on the discount function ω,
which are presented in the next section, the value function is convex. By combining this fact
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with the classical optimal stopping theory presented, e.g., in Peskir and Shiryaev (2006), it
allows us to conclude that the optimal stopping region is an interval [l∗, u∗] and hence

τ∗ = inf{t ≥ 0 : St ∈ [l∗, u∗]}

for some optimal thresholds l∗ ≤ u∗. Observe that for the non-negative discount function ω,
we have l∗ = 0 (since waiting is not beneficial). Therefore, in this case a single continuation
region appears. In general, for the negative ω, we can observe a double continuation region;
for more details, see De Donno et al. (2020).

The optimal boundary levels l∗ and u∗ can be found by application of standard
methods of maximising the function

vω
APut(s, l, u) := Es

[
e−
∫ τl,u

0 ω(Sw)dw(K− Sτl,u)
+

]
over l and u > l. To find vω

APut(s, l, u), we use exit identities for spectrally negative Lévy pro-
cesses containing so-called omega scale functions introduced in Li and Palmowski (2018).

As shown in (Al-Hadad and Palmowski 2021, Theorem 9), another way of finding the
optimal thresholds l∗ < u∗ is to apply the classical smooth and continuous fit conditions.

Typically, a price of the option is a solution to a certain Hamiltonian–Jacobi–Bellman
(HJB) system, and the optimal thresholds are identified using the smooth fit conditions.
We want to underline that our approach is different, although still finding the omega scale
functions is carried out via solving certain ordinary differential equations.

The paper is organised as follows. In Section 2, we introduce basic theory and notation.
Section 2.4 provides the main theoretical results of this paper. In Section 3, we present some
specific examples where the option price can be expressed in the explicit way. Section 4
focuses on the purely numerical analysis. We also show there that these two approaches
are consistent. The last section includes our conclusions.

2. Preliminaries
2.1. Assumptions

It the beginning, we note that the analysed American put option will not be realised
when its payoff is equal to 0. Hence, we can transform the form of the value function given
in (1) into the following one

Vω
APut(s) := sup

τ∈T
Es

[
e−
∫ τ

0 ω(Sw)dw(K− Sτ)
]
. (4)

We work under the same assumptions as those formulated in (Al-Hadad and Palmowski
2021, Section 2.2). However, this time we consider slightly more specific assumptions on the
ω function, namely, that

Assumption 1. A discount function ω is concave, nondecreasing and bounded from below.

From (Al-Hadad and Palmowski 2021, Remark 3) we can then conclude that under
Assumption 1, the value function Vω

APut(s) is convex.

2.2. Optimal Stopping Time

From (Al-Hadad and Palmowski 2021, Section 2.4), it follows that the optimal exercise
time is the first entrance of the process St into some interval, that is, it has the following form

τl,u = inf{t ≥ 0 : St ∈ [l, u]}.

Hence, we can represent value function (4) as

Vω
APut(s) = vω

APut(s, l∗, u∗),
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where
vω

APut(s, l∗, u∗) := sup
0≤l≤u≤K

vω
APut(s, l, u)

and

vω
APut(s, l, u) := Es

[
e−
∫ τl,u

0 ω(Sw)dw(K− Sτl,u)

]
. (5)

Moreover, we denote the optimal stopping time by

τ∗ := τl∗ ,u∗ ,

where l∗ and u∗ realise the supremum above. As shown in (Al-Hadad and Palmowski 2021,
Theorem 9), another way of identifying the critical points l∗ and u∗ can be achieved via
application of the smooth fit property. In that case, l∗ and u∗ satisfy

(Vω
APut)

′(u∗) = −1 and (Vω
APut)

′(l∗) = −1. (6)

2.3. Scale Functions

By applying the fluctuation theory of Lévy processes, we can find a closed form of (5),
and hence of (4), in terms of the so-called omega scale functions.

To introduce them formally, first let us define the Laplace exponent of Xt via

ψ(θ) :=
1
t

logE[eθXt | X0 = 0],

which is well-defined for θ ≥ 0 since our Xt is a spectrally negative Lévy process. In the
case of Xt given in (3), the Laplace exponent takes the form

ψ(θ) = ζθ +
σ2

2
θ2 − λθ

ϕ + θ
. (7)

By Φ(q), we denote the right inverse of ψ(θ), i.e.,

Φ(q) := sup{θ ≥ 0 : ψ(θ) = q},

where q ≥ 0.
The first scale function W(q)(x) is defined as a continuous and increasing function

such that W(q)(x) = 0 for all x < 0, while for x ≥ 0, it is defined via the following Laplace
transform ∫ ∞

0
e−θxW(q)(x)dx =

1
ψ(θ)− q

(8)

for θ > Φ(q). We define also the related scale function Z(q)(x) by

Z(q)(x) := 1 + q
∫ x

0
W(q)(y)dy,

where x ∈ R. From Cohen et al. (2013), we know that for Xt given in (3), we have

W(q)(x) =
eγ1x

ψ′(γ1)
+

eγ2x

ψ′(γ2)
+

eΦ(q)x

ψ′(Φ(q))
, (9)

where {γ1, γ2, Φ(q)} is the set the real solutions to ψ(θ) = q. In turn, Z(q)(x) is as follows

Z(q)(x) = 1 + q
(

eγ1x − 1
γ1ψ′(γ1)

+
eγ2x − 1
γ2ψ′(γ2)

+
eΦ(q)x − 1

Φ(q)ψ′(Φ(q))

)
. (10)
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If we take σ = 0 or λ = 0 in (7), then W(q)(x) and Z(q)(x) take simplified forms

W(q)(x) =
eγ1x

ψ′(γ1)
+

eγ2x

ψ′(γ2)

and

Z(q)(x) = 1 + q
(

eγ1x − 1
γ1ψ′(γ1)

+
eγ2x − 1
γ2ψ′(γ2)

)
for γ1 and γ2 being again the real solutions to ψ(θ) = q.

The generalisation of W(q)(x) and Z(q)(x) are the ξ-scale functions {W (ξ)(x), x ∈ R},
{Z (ξ)(x), x ∈ R}, where ξ is an arbitrary measurable function. They are defined as the
unique solutions to the following equations

W (ξ)(x) = W(x) +
∫ x

0
W(x− y)ξ(y)W (ξ)(y)dy, (11)

Z (ξ)(x) = 1 +
∫ x

0
W(x− y)ξ(y)Z (ξ)(y)dy, (12)

where W(x) = W(0)(x) is a classical zero scale function.
To simplify notation, we introduce also the following St counterparts of the scale

functions (11) and (12)

W (ξ)(s) :=W (ξ◦exp)(log s), (13)

Z (ξ)(s) := Z (ξ◦exp)(log s), (14)

where ξ ◦ exp(x) := ξ(ex).
For α, for which the Laplace exponent is well-defined, we can define a new probability

measure P(α) via
dP(α)

s
dPs

∣∣∣∣∣
Ft

= eα(Xt−log s)−ψ(α)t.

By Palmowski and Rolski (2002) and (Kyprianou 2006, Cor. 3.10), under P(α), the
process Xt is again a spectrally negative Lévy process with the new Laplace exponent

ψ(α)(θ) := ψ(θ + α)− ψ(α) = ζ(α)θ +
σ(α)2

2
θ2 − λ(α)θ

ϕ(α) + θ
,

where
ζ(α) := ζ + σ2α, σ(α) := σ, λ(α) :=

λϕ

ϕ + α
and ϕ(α) := ϕ + α. (15)

For the new probability measure P(α), we can define the ξ-scale functions which are
denoted by the adding subscript α to the regular counterparts, i.e., W

(ξ)
α (s), Z

(ξ)
α (s).

Lastly, we define the following auxiliary functions

ωu(s) := ω(su) and ωα
u(s) := ωu(s)− ψ(α). (16)

2.4. Theoretical Representation of the Price

The starting point for our entire analysis is the following results. The first one is a
corollary from (Al-Hadad and Palmowski 2021, Theorem 15).

Theorem 1. Let Assumption 1 hold, and assume that ω is non-negative. Then, the optimal
stopping region is of the form (0, u∗] and we have
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1. For σ = 0 and λ > 0

Vω
APut(s) := sup

u>0
vω

APut(s, 0, u)

= sup
u>0

{(
K− uϕ

ϕ + 1

)(
Z (ωu)

( s
u

)
− cZ (ω)/W (ω)W

(ωu)
( s

u

))}
.

(17)

2. For λ = 0 and σ > 0

Vω
APut(s) := sup

u>0
vω

APut(s, 0, u)

= sup
u>0

{
(K− u)

(
lim

α→∞

( s
u

)α(
Z

(ωα
u)

α

( s
u

)
− c

Z
(ωα)

α /W
(ωα)

α
W

(ωα
u)

α

( s
u

)))}
.

(18)

3. For σ > 0 and λ > 0

Vω
APut(s) := sup

u>0
vω

APut(s, 0, u)

= sup
u>0

{(
K− uϕ

ϕ + 1

)(
Z (ωu)

( s
u

)
− cZ (ω)/W (ω)W

(ωu)
( s

u

))
+ (K− u)

(
lim

α→∞

( s
u

)α(
Z

(ωα
u)

α

( s
u

)
− c

Z
(ωα)

α /W
(ωα)

α
W

(ωα
u)

α

( s
u

)))}
,

(19)

where

cZ (ω)/W (ω) = lim
z→∞

Z (ω)(z)
W (ω)(z)

and c
Z

(ωα)
α /W

(ωα)
α

= lim
z→∞

Z
(ωα)

α (z)

W
(ωα)

α (z)
.

The optimal boundary u∗ in (18) and (19) can be determined by the smooth fit condition

(Vω
APut)

′(u∗) = −1,

while the optimal boundary u∗ in (17) can be determined by the continuous fit condition

Vω
APut(u∗) = K− u∗.

Remark 1. Let us note that, using (13) and (14), we can interpret the value functions occurring in
Theorem 1 both as the functions of s variable and x variable, where x = log s.

Remark 2. Formula (18) corresponds to the continuous transition of St to an interval (0, u], while
(17) describes the situation when St jumps from (u, ∞) into (0, u]. A combination of these two
components makes up formula (19).

To find the option price Vω
APut(s), we have to identify

W
(ωα

u)
α (s) =W (ωα

u◦exp)
α (log s) and Z

(ωα
u)

α (s) = Z (ωα
u◦exp)

α (log s),

where ωα
u(s) is given in (16), and the case of α = 0 corresponds to W (ωu)(s) and Z (ωu)(s).

Observe that we need to find the above ξ-scale functions for ξ = ωα
u ◦ exp under

measure P(α), i.e., we have to identifyW (ξ)
α (x) and Z (ξ)

α (x). This is equivalent to taking
our asset price process St of the form of (2) but with the new parameters given in (15).

The second key result for our numerical analysis follows straightforward from
(Al-Hadad and Palmowski 2021, Theorem 16) and allows us to identify the above omega
scale functions using ordinary differential equations.



J. Risk Financial Manag. 2021, 14, 130 7 of 19

Theorem 2. Assume that ξ is continuously differentiable. Then

1. If σ = 0 and λ > 0 or λ = 0 and σ > 0, thenW (ξ)(x) solves

W (ξ) ′′(x) = ((Υ1 +Υ2)ξ(x) + γ2)W (ξ) ′(x) + ((Υ1 +Υ2)ξ
′(x)−Υ1γ2ξ(x))W (ξ)(x) (20)

with {
W (ξ)(0) = Υ1 + Υ2,

W (ξ) ′(0) = Υ2γ2 + (Υ1 + Υ2)
2ξ(0).

Moreover, Z (ξ)(x) solves the same Equation (20) with{
Z (ξ)(0) = 1,

Z (ξ) ′(0) = (Υ1 + Υ2)ξ(0).

2. If σ > 0 and λ > 0, thenW (ξ)(x) solves

W (ξ) ′′′(x) = (γ2 + γ3)W (ξ) ′′(x)

+ (Υ2(γ2 − γ3)ξ(x)− γ2γ3 − Υ1γ3ξ(x))W (ξ) ′(x)

+
(
Υ2(γ2 − γ3)ξ

′(x) + Υ1γ2γ3ξ(x)− Υ1γ3ξ ′(x)
)
W (ξ)(x)

(21)

with 
W (ξ)(0) = 0,

W (ξ) ′(0) = Υ2γ2 + Υ3γ3,

W (ξ) ′′(0) = Υ2γ2
2 + Υ3γ3

2.

Moreover, Z (ξ)(x) solves the same Equation (21) with
Z (ξ)(0) = 1,

Z (ξ) ′(0) = 0,

Z (ξ) ′′(0) = ξ(0)(Υ2(γ2 − γ3)− Υ1γ3).

3. Option Pricing—Analytical Approach

In this section, we present some examples of discount functions for which we are able
to determine the analytical form of the value function Vω

APut(s).

3.1. Constant Discount Function

The case when ω function is constant, i.e., ω(s) = q is the standard example which
appears in the literature quite extensively. However, this case is quite special, as it turns
out that the second term of the sum in (19) simplifies and we do not need to deal with the
measure P(α) (and thus to calculate the limit for α→ ∞) to find Vω

APut(s). This fact is stated
in the below theorem.

Theorem 3. Assume that ω(s) = q. Then

lim
α→∞

( s
u

)α(
Z

(q−ψ(α))
α

( s
u

)
− c

Z
(q−ψ(α))

α /W
(q−ψ(α))

α
W

(q−ψ(α))
α

( s
u

))
=

σ2

2

(
W (q)′

( s
u

)
−Φ(q)W (q)

( s
u

))
.

(22)
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Proof. Note that

lim
α→∞

( s
u

)α(
Z

(q−ψ(α))
α

( s
u

)
− c

Z
(q−ψ(α))

α /W
(q−ψ(α))

α
W

(q−ψ(α))
α

( s
u

))
(23)

corresponds to the continuous transition of the process St to the interval (0, u] or, in other
words, continuous exit from half-line (u, ∞). We define

τ+
b = inf{t ≥ 0 : Xt ≥ b}, τ−0 = inf{t ≥ 0 : Xt ≤ 0}.

It turns out that formula (23) is equivalent to

E s
u

[
e−qτ−0 ; τ−0 < τ+

b , Xτ−0
= 0

]
,

for details, see (Al-Hadad and Palmowski 2021, Proof of Theorem 7).
Then, using (Loeffen et al. 2014, (13)) for x = log

( s
u
)
, a = 0 and v(q)(x) = W(q)′(x)

together with the fact that W(q)′(0) = 2
σ2 (see (Kyprianou 2006, 8.5 (ii), p. 235)), we obtain

E s
u

[
e−qτ−0 ; τ−0 < τ+

b , Xτ−0
= 0

]
=

σ2

2

(
W(q)′(x− log u)− W(q)′(b)

W(q)(b)
W(q)(x− log u)

)
.

Lastly, taking limit b ↑ ∞ and applying L’Hospital’s Rule, complete the proof.

Ultimately, value function (19) for the constant discount function ω(s) = q can be
written as

Vω
APut(s) = sup

u>0

{(
K− uϕ

ϕ + 1

)(
Z (q)

( s
u

)
− cZ (q)/W (q)W

(q)
( s

u

))
+ (K− u)

σ2

2

(
W (q)′

( s
u

)
−Φ(q)W (q)

( s
u

))}
.

Remark 3. For the case of λ = 0, using (22), one can show that value function (18) simplifies to
the well-known formula for the value function in the Black–Scholes model, i.e.,

Vω
APut(s) = sup

u>0

(
(K− u)

( s
u

)− 2r
σ2
)

,

where we substituted q = r and ζ = r − σ2

2 . Therefore, we are not forced to apply the smooth
fit condition in order to find the optimal value of u. We can do this analytically by finding the
maximum of Vω

APut(s) with respect to u.

Figure 1 presents value function (19) for three different values of q, i.e., q ∈ {0.3, 0.6, 0.9}.
Based on Figure 1, we can simply note that a higher value of the discount function ω

results in a smaller value of Vω
APut(s), which is in line with the financial intuition.

In turn, Figure 2 shows a comparison of (17)–(19) for the same value of q = 0.5.
The resulting relation between these functions is again consistent with the economical

expectations.

3.2. Linear Discount Function

In this subsection, we consider a linear discount function of the form ω(s) = Cs for
some positive constant C.
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Figure 1. The value and payoff functions for the given set of parameters: K = 20, r = 0.05, σ = 0.2,
λ = 6, ϕ = 2 and q ∈ {0.3, 0.6, 0.9}.

Figure 2. The value and payoff functions for the given set of parameters: K = 20, r = 0.05, σ = 0.4,
λ = 6, ϕ = 2 and q = 0.5.

3.2.1. σ = 0

Let us consider the case of σ = 0. Then, the asset price process St jumps into the
interval (0, u], which means from Theorem 1 that

Vω
APut(s) = sup

u>0

(
K− uϕ

ϕ + 1

)(
Z (ωu)

( s
u

)
− cZ (ω)/W (ω)W

(ωu)
( s

u

))
, (24)
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where ωu
( s

u
)
= ω(s) = Cs. Equivalently, (24) can be rewritten as

Vη

APut(x) = sup
u>0

(
K− uϕ

ϕ + 1

)(
Z (ηu)(x− log u)− cZ (η)/W (η)W (ηu)(x− log u)

)
, (25)

where x = log s and ηu(x− log u) = η(x) = Cex.
To find a closed form of value function (25), we need to identify the scale functions

W (ηu)(x− log u) and Z (ηu)(x− log u). From Theorem 2, it follows that bothW (η)(x) and
Z (η)(x) solve the following ordinary differential equation

f ′′(x) = (Aex + B) f ′(x) + Dex f (x) (26)

with A = C
ζ , B = λ−ϕζ

ζ and D = C 1+ϕ
ζ , while the initial conditions are as follows{
W (η)(0) = 1

ζ ,

W (η) ′(0) = C+λ
ζ2

(27)

and {
Z (η)(0) = 1,

Z (η) ′(0) = C
ζ .

(28)

Substituting t = Aex and F(t) = f (x) to (26), we obtain the Kummer’s equation of
the form

tF′′(t) + (b− t)F′(t)− aF(t) = 0, (29)

where b = 1− B and a = D
A .

If b is not an integer, then the general solution to (29) has the form

F(t) = K11F1(a1, b1; t) + K2t1−b
1F1(a2, b2; t), (30)

where K1 and K2 are the constants that can be found based on the initial conditions, a1 = a,
b1 = b, a2 = a− b+ 1, b2 = 2− b, while 1F1(·, ·; ·) is the Kummer confluent hypergeometric
function.

We denote by KW
1 , KW

2 and KZ
1 , KZ

2 the constants corresponding to W (η)(x) and
Z (η)(x), respectively. Using initial conditions (27) and (28), we can simply calculate these
constants for bothW (η)(x) and Z (η)(x). By shifting these functions by log u, we simply
produceW (ηu)(x− log u) and Z (ηu)(x− log u).

The asymptotic behaviour of 1F1(a, b; t) for t→ ∞ is as follows

1F1(a, b; t) =
Γ(b)
Γ(a)

etta−b
[

1 + O
(

1
t

)]
. (31)

Based on (31), we calculate the constant cZ (η)/W (η) (or equivalenly cZ (ω)/W (ω) ) occur-
ing in (25). It has the following form

cZ (η)/W (η) =
KZ

1
Γ(b1)
Γ(a1)

Aa1−b1 + KZ
2

Γ(b2)
Γ(a2)

Aa2−1

KW
1

Γ(b1)
Γ(a1)

Aa1−b1 + KW
2

Γ(b2)
Γ(a2)

Aa2−1
. (32)

Combining all the obtained results and substituting them into (25), we can present
value function (25) graphically for some sample parameter values. This is carried out in
Section 4.
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3.2.2. λ = 0

Let us consider the case of λ = 0. In this case, the asset price process St enters the
interval (0, u] in a continuous way only. Therefore, from Theorem 1

Vω
APut(s) = sup

u>0

{
(K− u)

(
lim

α→∞

( s
u

)α(
Z

(ωα
u)

α

( s
u

)
− c

Z
(ωα)

α /W
(ωα)

α
W

(ωα
u)

α

( s
u

)))}
(33)

which is equivalent to

Vη

APut (x) = sup
u>0

{
(K− u)

(
lim

α→∞
eα(x−log u)

(
Z (ηα

u)
α (x− log u)− c

Z (ηα)
α /W (ηα)

α
W (ηα

u)
α (x− log u)

))}
. (34)

It suffices to find now W (ηα
u)

α (x − log u) and Z (ηα
u)

α (x − log u). From Theorem 2, it
follows thatW (ηα)

α (x) and Z (ηα)
α (x) solve

f ′′(x) = Bα f ′(x) + (Dαex + Eα) f (x) (35)

with Bα = − 2
σ2 (ζ + σ2α), Dα = 2C

σ2 and Eα = − 2
σ2

(
ζα + σ2

2 α2
)

. The initial conditions have
the following form W

(ηα)
α (0) = 0,

W (ηα)
α

′
(0) = 2

σ2

(36)

and Z
(ηα

u)
α (0) = 1,

Z (ηα
u)

α

′
(0) = 0.

(37)

Substituting t = 2
√
−Dαex and F(t) = e−

Bα x
2 f (x) to (35), we obtain the Bessel differ-

ential equation of the form

t2F′′(t) + tF′(t) + (t2 − v2)F(t) = 0, (38)

where v =
√

Bα
2 + 4Eα = 2ζ

σ2 . The general solution to (38) is equal to

F(t) = K1 Jv(t) + K2Yv(t)

and therefore

f (x) = e
Bα x

2

(
K1 Jv(2

√
−Dαex) + K2Yv(2

√
−Dαex)

)
. (39)

Based on the form of (39) and the fact that Dα does not depend on α, we can simply
note that value function (34) is also independent of α. Therefore, we can take an arbitrary
value of α in (35). Thanks to this key observation, its solution (39) can take a simplified
form. Indeed, for α = 0, Equation (35) is equal to

f ′′(x) = B0 f ′(x) + D0ex f (x), (40)

where B0 = −2ζ
σ2 and D0 = 2C

σ2 . Hence, the general solution to (40) takes the following form

f (x) = e
B0x

2

(
K1 Jv(2

√
−D0ex) + K2Yv(2

√
−D0ex)

)
. (41)

For B0 = 1
2 − n, where n ∈ N0 and D0t > 0, Equation (41) reduces to

f (x) = K1

(
cosh(4

√
D0ex)

)n

+ K2

(
sinh(4

√
D0ex)

)n

.
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If we take the following sample parameters r = 0.05 and σ = 0.2, we obtain n = 2 and
therefore

f (x) = K1

(
3 sinh(2

√
ex)

4e
5
2 x

+
sinh(2

√
ex)

e
3
2 x

− 3 cosh(2
√

ex)

2e2x

)
+ K2

(
3 cosh(2

√
ex)

4e
5
2 x

+
cosh(2

√
ex)

e
3
2 x

− 3 sinh(2
√

ex)

2e2x

)
.

(42)

Applying initial conditions (36) and (37), we can simply obtain KW
1 , KW

2 and KZ
1 , KZ

2 .

Using equality (42), which holds for bothW (ηα)
α (x) and Z (ηα)

α (x), we can calculate that

c
Z (ηα)

α /W (ηα)
α

= cZ (η)/W (η) =
KZ

1 + KZ
2

KW
1 + KW

2
. (43)

Taking into account all the obtained results, we can obtain value function (34) for
sample data. This is performed in Section 4 as well.

3.3. Power Discount Function

This time, we take into account a power function of the form ω(s) = Csn for n ∈ (0, 1]
and C being some positive contant. This case is a generalisation of a linear discount
function.

3.3.1. σ = 0

Similar to the case of a linear discount function, the scale functions W (η)(x) and
Z (η)(x) solve

f ′′(x) = (Aenx + B) f ′(x) + Denx f (x) (44)

with A = C
ζ , B = λ−ϕζ

ζ and D = C n+ϕ
ζ , while the initial conditions are the same as those

provided in (27) and (28). Applying a substitution t = A
n enx and F(t) = f (x), we transform

(44) into
tF′′(t) + (b− t)F′(t)− aF(t) = 0, (45)

where b = 1− B
n and a = D

An . The general solution to (45) has the same form as was
provided in (30).

Therefore, for both the linear and the power discount function ω, the form of the value
function Vη

APut(x) is identical.

3.3.2. λ = 0

As in the above case, the idea of finding a closed form of the value function can be
borrowed from the linear case. This time, the scale functionsW (ηα)

α (x) and Z (ηα)
α (x) satisfy

the equation
f ′′(x) = Bα f ′(x) + (Dαenx + Eα) f (x)

with Bα = − 2
σ2 (ζ + σ2α), Dα = 2C

σ2 and Eα = − 2
σ2

(
ζα + σ2

2 α2
)

, while the initial conditions

are of the form (36) and (37). If we substitute t = 2
n
√
−Dαenx and F(t) = e−

Bα x
2 f (x), we

receive the Bessel differential equation for F(t) with the solution

F(t) = K1 Jv(t) + K2Yv(t).

Therefore, we have

f (x) = e
Bα x

2

(
K1 Jv

(
2
n
√
−Dαenx

)
+ K2Yv

(
2
n
√
−Dαenx

))
, (46)
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where v =

√
Bα

2+4Eα
n = 2ζ

nσ2 . We can show, as in the prevoius section, that the value function
which arises in this scenario does not depend on α. Thus, for α = 0, (46) takes the form

f (x) = e
B0x

2

(
K1 Jv

(
2
n

√
−D0enx

)
+ K2Yv

(
2
n

√
−D0enx

))
.

Again, having exact formulas for the scale functions, we can easily represent the form
of the value function. All results are presented in Section 4.

4. Option Pricing—Numerical Approach

In this section, we show how to numerically identify the value function Vω
APut(s) for

arbitrary discount function ω. We present some figures corresponding to the various
discount functions as well.

4.1. Different Discount Functions

For some discount functions ω, we are unable to find the analytical forms ofW (η)(x),
Z (η)(x),W (ηα)

α (x) and Z (ηα)
α (x), which are the solutions to the ordinary differential equa-

tions occurring in Theorem 2. That is, formally we cannot identify explicitly the value
function either. In such a situation, we can proceed a numerical analysis of these equations.

In general, solving a high-order ordinary differential equation consists of transforming
it into first-order vector form and then applying an appropriate algorithm that returns
the numerical solution of the n + 1-dimensional system of first-order ordinary differential
equations. For practical purposes, however—such as in financial engineering—numeric
approximations to the solutions of ordinary differential equations are often sufficient. In
this paper, we focus on the Higher-Order Taylor Method. This method employs the Taylor
polynomial of the solution to the equation. It approximates the 0-th order term by using the
previous step’s value (which is the initial condition for the first step), and the subsequent
terms of the Taylor expansion by using the differential equation.

4.1.1. σ = 0

For the case of σ = 0, we showed in the previous section how to derive the value
function for the linear discount function ω. Figure 3 presents comparison of the value
function given in (24) when the scale functions were calculated analytically (as shown
in Section 3.2.1) and numerically by solving differential ordinary Equation (26). In this
example, a linear discount function was chosen, i.e., ω(s) = Cs. The difference between
these functions is so small that this is negligible.

Moreover, Figure 4 illustrates the constant cZ (η)/W (η) obtained in (32) together with
the quotient of the functions Z (η)(x) andW (η)(x).

As we mentioned at the beginning of this section, we are not always able to get
an analytical solution to an ordinary differential equation. This is the case, for example,
when the discount function is of the form ω(s) = C arctan(s) for some positive C. Then,
we can only obtain the scale functions numerically. Figure 5 shows two value functions,
for ω(s) = Cs and ω(s) = C arctan(s), respectively. Since for all positive s we have
s > arctan(s), then we expect that the value function corresponding to ω(s) = C arctan(s)
takes greater values rather than for ω(s) = Cs. We can also note that the difference between
these functions becomes greater for higher values of s, which is in line with economical
intuition since the difference between ω(s) = s and ω(s) = arctan(s) also extends as
s increases.
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Figure 3. Comparison of value function (24) for ω(s) = Cs for both methods of determining the scale
functions—analytical and numerical one. The chosen set of parameters is as follows: K = 20, C = 0.1,
r = 0.05, λ = 6, ϕ = 2.

Figure 4. Comparison of the constant cZ (η)/W (η) and the ratio of Z (η)(x) andW (η)(x) for a linear
discount function ω(s) = Cs and K = 20, C = 0.1, r = 0.05, λ = 6, ϕ = 2.

4.1.2. λ = 0

The case of λ = 0 corresponds to the situation when the stock price process (2) does
not have any jumps. Then, the value function takes the form (18). From the numerical point
of view, the problem lies in choosing a sufficiently large value of α in (18) to obtain the final
and right form of the value function. In this section, we avoid this problem by selecting
discount functions for which the value function is independent of the α parameter.
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Figure 5. Comparison of value function (24) for both ω(s) = Cs and ω = C arctan(s) and for the
given set of parameters: K = 20, C = 0.5, r = 0.05, λ = 6, ϕ = 2.

Figure 6 presents a comparison of the value function given in (33) for ω(s) = Cs and
for the scale functions obtained analytically and numerically. As shown in Section 3.2.2,
in this case, we can take an arbitrary value of α and obtain a simplified form of the
value function and ordinary differential equation that the scale functions solve. Similar
to the previous example, we again can observe a negligible difference between these two
value functions.

Figure 6. Comparison of value function (33) for ω(s) = Cs for both methods of determining the scale
functions–analytical and numerical one. The chosen set of parameters is as follows: K = 20, C = 0.1,
r = 0.05, σ = 0.2.
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In turn, Figure 7 shows the constant cZ (η)/W (η) given in (43) with the ratio of Z (η)(x)
andW (η)(x).

Figure 7. Comparison of the constant cZ (η)/W (η) and the ratio of Z (η)(x) andW (η)(x) for a linear
discount function ω(s) = Cs and K = 20, C = 0.1, r = 0.05, σ = 0.2.

Lastly, in Figure 8, we can observe the value functions for both ω(s) = C
√

s and
ω(s) = C

√
s + Z for some positive Z, i.e., we compare two discount functions that differ

in shift. This time, we can see that the value functions obtained in this way also differ only
in shift, which confirms financial intuition.

Figure 8. Comparison of value function (33) for both ω(s) = C
√

s and ω = C
√

s + Z and for the
given set of parameters: K = 20, C = 0.005, Z = 0.1, r = 0.05, σ = 0.2.
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4.1.3. σ > 0 and λ > 0

The most general case is when σ > 0 and λ > 0. Then, the considered value function
Vω

APut(s) is given by (19). It can be also represented as the function of x variable:

Vη

APut(x) = sup
u>0

{(
K− uϕ

ϕ + 1

)(
Z (ηu)(x− log u)− cZ (η)/W (η)W (ηu)(x− log u)

)
+ (K− u)

(
lim

α→∞
eα(x−log u)

(
Z (ηα

u)
α (x− log u)− c

Z (ηα)
α /W (ηα)

α
W (ηα

u)
α (x− log u)

))}
.

(47)

For the linear discount function ω(s) = Cs, the scale functionsW (η)(x) and Z (η)(x)
occurring in (47) are the solutions to the following ordinary differential equation

f ′′′(x) = A f ′′(x) + (Bex + D) f ′(x) + Eex f (x) (48)

with A = γ2 +γ3, B = C[Υ2(γ2 − γ3)− Υ1γ3], D = −γ2γ3, E = C[Υ2(γ2−γ3)+Υ1γ2γ3−
Υ1γ3].

The initial conditions forW (η)(x) and Z (η)(x) are as follows
W (η)(0) = 0,

W (η) ′(0) = Υ2γ2 + Υ3γ3,

W (η) ′′(0) = Υ2γ2
2 + Υ3γ3

2

and 
Z (η)(0) = 1,

Z (η) ′(0) = 0,

Z (η) ′′(0) = C[Υ2(γ2 − γ3)− Υ1γ3].

Thus,W (ηα)
α (x) and Z (ηα)

α (x) solve

f ′′′(x) = Aα f ′′(x) + (Bαex + Dα) f ′(x) + (Eαex + Fα) f (x) (49)

with Aα = γα2 + γα3 , Bα = C[Υα2(γα2 − γα3)− Υα1 γα3 ], Dα = −Υα2(γα2 − γα3)ψ(α) −
γ2γ3 + Υα1 γα3 ψ(α), Eα = C[Υα2(γα2 − γα3) + Υα1 γα2 γα3 − Υα1 γα3 ], Fα = −Υα1 γα2 γα3 ψ(α).

The initial conditions forW (ηα)
α (x) and Z (ηα)

α (x) are as follows
W (ηα)

α (0) = 0,

W (ηα)
α

′
(0) = Υα2 γα2 + Υα3 γα3 ,

W (ηα)
α

′′
(0) = Υα2 γα2

2 + Υα3 γα3
2

and 
Z (ηα)

α (0) = 1,

Z (ηα)
α

′
(0) = 0,

Z (ηα)
α

′′
(0) = C[Υα2(γα2 − γα3)− Υα1 γα3 ].

In this case, we are not able to identify explicit solutions to third-order ordinary
differential Equations (48) and (49). Therefore, we are forced to use only the numerical
method to find the scale functions and, hence, the value function.

Figure 9 shows several graphs of the value function (19) for different values of α
parameter together with the first and second component occurring in (19).
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(a) α = 10 (b) α = 20

(c) α = 50 (d) α = 150
Figure 9. Comparison of value function (19) for the particular choice of α, ω(s) = Cs and for the given set of parameters:
K = 20, C = 0.1, r = 0.05, σ = 0.2, λ = 6, ϕ = 2.

5. Conclusions

In this paper, we have presented a novel approach to pricing the perpetual American
put options with asset-dependent discounting. For the asset price process St being the
geometric spectrally negative Lévy process, we have shown that the value function (1) is
the solution of the ordinary differential equations given in Theorem 2. We have used these
theoretical results to perform extended numerical analysis for some key financial examples.
In particular, for some cases, we have managed to produce some explicit formulas for the
value function. In the cases where it was impossible to do so, we have used the numerical
analysis of the above-mentioned ordinary differential equations based on the Higher-Order
Taylor Method. We have presented many figures of the value functions that arise in various
scenarios.

One can think of further generalisations; for example, when the discount factor is
randomised. Thia can be achieved in different ways, e.g., by introducing additional Markov
economical environment. One can also think about other very realistic models for financial
assets, for example, based on generalised hyperbolic distributions and their subclasses; see
Prause (1999), for more details. This type of research is left for future investigations.
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