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Abstract: In this paper we propose a maximum entropy estimator for the asymptotic distribution
of the hedging error for options. Perfect replication of financial derivatives is not possible, due
to market incompleteness and discrete-time hedging. We derive the asymptotic hedging error for
options under a generalised jump-diffusion model with kernel bias, which nests a number of very
important processes in finance. We then obtain an estimation for the distribution of hedging error
by maximising Shannon’s entropy subject to a set of moment constraints, which in turn yields the
value-at-risk and expected shortfall of the hedging error. The significance of this approach lies in the
fact that the maximum entropy estimator allows us to obtain a consistent estimate of the asymptotic
distribution of hedging error, despite the non-normality of the underlying distribution of returns.

Keywords: generalised jump; kernel biased; asymptotic hedging error; esscher transform; maximum
entropy density; value-at-risk; expected shortfall

JEL Classification: C13; C51; G13

1. Introduction

The theory of pricing and hedging options has been the centre of attention in modern
mathematical finance since the seminal Black–Scholes model. It provides a theoretical
value and hedging strategy for European options, under the key assumption that there
exists a trading strategy that constructs a portfolio that perfectly replicates the pay-off of
an option. Furthermore, Black and Scholes assume the underlying stock price follows a
geometric Brownian motion, and trading may take place in continuous time. With these
assumptions, they show that the initial value of the replicating portfolio provides the initial
price of the option. Moreover, the Black–Scholes analysis demonstrates that an option can
be created synthetically by dynamically trading in the underlying asset. Nevertheless, it
is well accepted that the perfect replication of options by any self-financing strategy is
impossible, due to market incompleteness as well as discrete-time hedging. These two
sources of error are termed the jump error and the gamma error.

Many researchers, (see for example Hubalek et al. (2006), Cont et al. (2007), and
Kennedy et al. (2009)) have studied the problem of hedging an option in an incomplete
market, particularly where stock prices may jump. It is well understood that, except in
very special cases, martingales with respect to the filtration of discontinuous processes
cannot be represented in the form of a unique self-financing strategy, which leads to market
incompleteness. At the jump time, both the model price of the option and value of the
hedging portfolio jump. The former is a non-linear function of the stock price but the
latter is a linear function of the stock price. Therefore, the jump induces a discrepancy
between the value of the option and its replicating portfolio, and thus leads to a jump
error. Furthermore, these researchers generally assume that the hedging portfolio can
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be continuously rebalanced, which is only possible in the absence of transcription costs.
In practice, this level of liquidity is not possible and market practitioners rebalance their
hedging portfolio using discrete-time observations, just a few times per trading day. The
discrete hedging of derivatives securities leads to the gamma error. This error is not easy
to measure because the stochastic analysis techniques are not available in discrete time.
Wang et al. (2015) provides a recent analysis of literature regarding hedging in a discrete
time incomplete market. We base our research on the seminal work of Bertsimas et al. (2000),
Hayashi and Mykland (2005) developed a methodology to analyse the discrete hedging
error in a continuous-time framework using an asymptotic approach. This methodology
was further developed by Tankov and Voltchkova (2009) who investigate the gamma
risk via establishing a limit theorem for the renormalised error when the discretisation
step tends to zero. Additionally, Rosenbaum and Tankov (2014) discuss the optimality
conditions of discretised hedging strategies in the presence of jump.

In this paper we contribute to the literature by approaching the problem from a differ-
ent angle. We characterise the risk in a dynamic hedge of options through the asymptotic
distribution of hedging error. In particular, we investigate the case of conventional delta
hedging for a European call option, although other types of options may be treated in a
similar manner. Furthermore, we obtain an estimation for the distribution of hedging error
by maximising Shannon’s entropy (Shannon (1948)) subject to a set of moment constraints,
which in turn yield the value-at-risk (VaR) and expected shortfall (ES) of the hedging
error, two widely-used risk metrics in finance. In the literature there exist two dominant
approaches for constructing the distribution of hedging error, namely, the parametric and
non-parametric approaches. The new approach that we propose in this paper chooses the
probability distribution with the most uncertainty, or maximum entropy, subject to what
is known. This allows us to obtain a consistent estimate of the asymptotic distribution of
hedging error, despite the non-normality of the underlying distribution of returns. As a
result, we can drive a very generalised modelling framework, which can be applied in
different areas of derivatives pricing.

We first extend the methodology introduced in Hayashi and Mykland (2005) to model
the asymptotic hedging error for vanilla call options when the underlying asset is gov-
erned by a generalised jump-diffusion model with kernel bias. The class of kernel biased
completely random measures is a wide class of jump-type processes that can nicely be rep-
resented by a generalised kernel-biased mixture of Poisson random measures. The impor-
tance of using a kernel biased completely random measure is to derive a variety of forms of
distortion of jump sizes through the kernel link function. For example, Fard and Siu (2013)
discuss the importance of this representation as it provides great flexibility in modelling
different types of finite and infinite jump activities compared with existing studies.

Next, we estimate the probability density function of the hedging error using the maxi-
mum entropy (ME) methodology. It allows the agent to effectively combine the aforemen-
tioned risk factors dynamically over time to update its belief about the possible distribution
governing the terminal hedging error. Maximum entropy is widely used in estimation and
information theory, in which beliefs are updated so that the posterior coincides with the prior
as closely as possible. Furthermore, ME methodology only updates those aspects of beliefs for
which new evidence was gained (cf., Cover and Thomas (2012), Saghafian and Tomlin (2016)
and references therein). Despite its widespread use in fields such as estimation theory, physics,
statistical mechanics, and information theory among others, it is only recently that researchers
have begun to appreciate its usefulness in econophysics. For instance, Xi et al. (2014) use the
maximum entropy model to study business cycle synchronisation of the G7 economic system.
Gzyl and Mayoral (2016) uses the maximum entropy principle to develop a non-parametric
method of determining the prices of the zero coupon bonds, when the only information avail-
able consists of the prices of a few coupon bonds. Chan (2009) proposes a general modelling
framework for the EM algorithm in approximating the distribution of financial returns in
order to develop entropy-based risk metrics; Geman et al. (2014) and Xu et al. (2014) expand
on Chan (2009) and develop a robust optimisation framework for portfolio construction;
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Mistrulli (2011) and Zhou et al. (2013) applies the entropy maximisation principle to measure
financial contagion and systemic risk. Geman et al. (2014), who use ME density in the VaR
context, make an interesting observation that the real world is mostly ignorant about the
importance of true probability distributions. They further point out that historically, finance
theory has had a preference for parametric, less robust, methods. An approach that is based
on distributional and parametric certainties may be useful for research purposes but does not
accommodate responsible risk taking. Their study shows the importance of the use of true
probability distributions in VaR calculations.

The remainder of this paper is structured as follows. In Section 2 we present the
calculations for pricing European options under a generalised jump-diffusion model with
kernel bias. Furthermore, we generalise the Hayashi and Mykland (2005) framework
to derive the asymptotic hedging error, stemmed from the market incompleteness and
discrete hedging. In Section 3, we obtain an estimation for the distribution of hedging
error by maximising Shannon’s entropy subject to a set of moment constraints, which in
turn yield the value-at-risk and expected shortfall of the hedging error. Section 4 provides
a numerical analysis to highlight the applicability of the method. Section 5 concludes
the paper.

2. Modelling Framework

The inadequacy of the constant volatility of the Black–Scholes (henceforth, BS) option
valuation model to replicate the characteristics of observed option prices is empirically
evidenced in the finance literature. For example, the volatility smile for equity options
exhibits a consistent pattern illustrating that implied volatilities are lower for options with
higher strike prices. This is particularly the case particularly for short maturity options.
Several methods are suggested to accommodate the volatility smile in option pricing,
but, stochastic volatility models (see e.g., Heston 1993; Hull and White 1987) and jump
diffusion models (see e.g., Bates 1991; Merton 1976; Naik and Lee 1990) have become
popular alternatives to BS’s constant volatility.

Many studies provide evidence that stochastic volatility models are a significant
improvement (cf. Dotsis et al. (2007)). Nevertheless, their applicability in empirical
studies suffers from two major drawbacks, namely, implausible correlation structure
between returns and volatility, and excessively high “volatility of volatility” (cf. Bates
(2000); Diavatopoulos et al. (2012); Dotsis et al. (2007)). Amongst these, the seminal
work of Bakshi et al. (1997) reviews a range of alternative option pricing models, and
conclude that stochastic volatility is of “first-order importance in improving upon the
[Black–Scholes] formula”, but adding jumps may provide further improvement based on
an out-of-sample test.

As a result, a large body of the recent literature has focused on augmenting stochas-
tic volatility models with jumps. For example, Bakshi et al. (2003), Eraker et al. (2003),
and Bakshi et al. (2012) conduct a set of empirical investigations for the case of index
options, evidencing the importance of adding the jump component in the returns process.
Chang et al. (2013) finds that joint time series data of the underlying S&P 500 index and
options on it strongly reject a stochastic volatility model without jumps. Shanahan et al.
(2016) price long-maturity equity linked products, as a composition of three embedded
options, using the Meixner process (to capture jumps) and a diffusion process to capture
stochastic volatility.

On the other hand, option pricing with both jumps and stochastic volatility is rather
cumbersome, as analytical solutions are rarely achievable. Even in the relatively simple con-
text of vanilla American options, the studies of Bakshi et al. (2003) and Bakshi et al. (2012)
uses European option calculations on a restricted set of out-of-the-money options.

Recently, some theoretical improvement have been offered in the literature, such as
the polynomial approximation of stochastic volatility in Shanahan et al. (2016). However,
due to the absence of supportive empirical evidence, we chose a more practical alternative,
proposed by Andersen and Andreasen (2000). By so doing, we aim to extend the analysis of
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Dupire (1994) to the case of jumps, whereby a model combining jumps with a deterministic
volatility is developed. This type of model captures the observed behaviour of implied
volatilities (see e.g., Andersen and Andreasen 2000). In addition, it is much easier to use
for contracts where no analytic solution is readily available. Moreover, note that adopting
a deterministic local volatility function approach has an advantage in calibrating European
option prices. Indeed, instead of solving a set of backward equations, one for each option
of a different strike and maturity, one only needs to solve a single one-dimensional forward
equation for all strikes and maturities.

2.1. Financial Markets

We fix a complete probability space (Γ,F ,P), where P is the real-world probability
measure. Let T denote the time index set [0, T] of the economy. Let {r(t)}t∈T be the
instantaneous market interest rate of a money market account. Then, the dynamics of the
value of the risk-free asset, {Bt}t∈T would be:

dBt

Bt
= r(t)dt, B0 = 1.

To model different types of finite and infinite jump activities, we adopt the kernel
biased representation of completely random measures of James (2002, 2005).

To proceed, consider the measurable space (T ,B(T )), where B(T ) is the Borel σ-field
(generated by the open subsets of T ). We denote by B0 the family of Borel sets U ∈ R+,
with closure Ū not containing 0. Define X = T × R+. Under these definitions, the
measurable space (X ,B(X )) is explicitly given by (T ×R+,B(T )⊗B0).

Let N(., U) define a Poisson random measure for all U ∈ B0. We denote by N(dt, dz)
the differential form of measure N(t, U). In addition, define ρ(dz|t) as a Lévy measure that
depends on t. Let η be a σ-finite (nonatomic) measure on T . Following James (2005), we
assume that there exists an arbitrary positive function h(z) onR+, which along with ρ and
η are chosen such that:

N

∑
i=1

∫
B

∫
R+

min(h(z), 1)ρ(dz|t)η(dt) < ∞.

and h2(z) ≤ ztρ(z), where z is a cádlág Ft-adapted process. Define the intensity measure:

ν(dt, dz) := ρ(dz|t)η(dt),

as well as the kernel biased completely random measure:

µ(dt) :=
∫
R+

h(z)N(dt, dz).

The latter is a kernel-biased Poisson random measure N(dt, dz) over the state space
of the jump size R+ with the mixing kernel function h(z). We can replace the Poisson
random measure with any random measure and choose some quite exotic functions for
h(z) to generate different types of finite and infinite jump activities. Let {Wt}t∈T denote a
standard Brownian motion on (Ω,F ,P) with respect to the P-augmentation of its natural
filtration FW := {FW

t }t∈T . Let ÑXt(dt, dz) denote the compensated Poisson random
measure defined by:

Ñ(dt, dz) = N(dt, dz)− ρ(dz|t)η(dt).

Let µt and σt denote the drift and volatility of the market value of the underlying asset,
respectively. Consider a random jump process A := {A(t)|t ∈ T }, such that:

dAt = At−

[
µtdt + σtdWt +

∫
R+

h(z)Ñ(dt, dz)

]
, (1)
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where A0 = 0. We assume under P the price process {St}t∈T is defined as St := exp(At)
so that:

dSt =

(
µt +

1
2 σ2

t

)
dt + σtdWt −

∫
R+

{
h(z)− eh(z) + 1

}
ρd(z|t)η(dt) +

∫
R+

(
eh(z) − 1

)
Ñ(dt, dz), (2)

with S0 = 1.

2.2. Esscher Transform

It is well known that no arbitrage opportunities are necessary for the determination of
a unique equivalent risk neutral martingale measure, thus ensuring the fair valuation of the
option (Pilska 1997). In this paper, we emphasise on the possibility of having incomplete
markets, and as such there may be more than one equivalent martingale measure, i.e., more
than one no-arbitrage price. There are different methods to price and hedge derivative
securities in incomplete financial markets. For example, one can choose an equivalent
martingale measure by minimising the quadratic utility of the terminal hedging errors (see
e.g., Follmer and Sondermann 1986; Follmer and Schweizer 1991; Schweizer 1995). One
can also adopt an economic approach based on the marginal rate of substitution to select a
pricing measure via a utility maximisation problem (see e.g., Davis 1997). Finally, one may
employ the minimum entropy martingale measure method to determine the equivalent
martingale measure (see e.g., Avellaneda 1998; Fard and Siu 2012; Frittelli 2000).

In this study we employ the Esscher transform to determine an equivalent martingale
measure for the valuation of the option (see Gerber and Shiu 1994). The method provides
market practitioners with a convenient and flexible way to value options. For example,
it has been shown in Elliott et al. (2005) that for exponential Lévy models, the Esscher
martingale transform for the linear process is also the minimal entropy martingale measure,
i.e., the equivalent martingale measure which minimises the relative entropy, and this
measure also has the property of preserving the Lévy structure of the model. In the
framework of exponential Lévy models, the study of equivalent martingale measures the
relationships and optimality properties, which has been developed in several directions,
see Esche and Schweizer (2005), Hubalek and Sgarra (2006), and Tankov (2003) and the
references therein.

Let FA := {FA
t }t∈T and FS := {FS

t }t∈T denote the P-augmentation of the natural
filtration generated by A and S, respectively. Since, FA and FS are equivalent, we can
use either one as an observed information structure. Write B(T ) for the Borel σ-field of T
and let BM(T ) denote the collection of B(T )-measurable and nonnegative functions with
compact support on T . For each process θ ∈ BM(T ), write:

(θ.A)t :=
∫ t

0
θ(u)dA(u), t ∈ T ,

such that θ is integrable with respect to the return process.
Let {Λt}t∈T denote a G-adapted stochastic process:

Λt :=
e(θ.A)t

M(θ)t
, t ∈ T ,

whereM(θ)t := E[e(θ.A)t |FA
t ] is a Laplace cumulant process and takes the following form:

M(θ)t = exp
[ ∫ t

0 θs

(
µs − 1

2 σ2
s

)
ds + 1

2

∫ t
0 θ2

s σ2
s ds +

∫ t
0

∫
R+

(
eθsh(z) − 1− θh(z)

)
ρ(dz|s)η(ds)

]
.
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Therefore,

Λt = exp

[ ∫ t

0
θsσsdWs −

1
2

∫ t

0
θ2

s σ2
s ds +

∫ t

0

∫
R+

θsh(z)Ñ(dz, ds) (3)

−
∫ t

0

∫
R+

(
eθsh(z) − 1 + θsh(z)

)
ρ(dz|s)η(ds)

]
.

The goal is to use Λt in (3) as the Radon–Nikodym derivative to change the historical
probability measure to the risk-neutral measure. Therefore, (3) is an essential part of our
pricing formulation. An important characteristic of risk-neutral measure is that every
discounted price process is a martingale under this measure. To establish this key property,
it is paramount to show that (3) is Gt-martingale.

Lemma 1. Λt is P martingale w.r.t Gt.

See Appendix A for proof.
For each θ ∈ L(A) define a new probability measure Pθ ∼ P on G(T) by the Radon–

Nikodym derivative:
dPθ

dP

∣∣∣∣
G(T)

:= ΛT . (4)

This new measure dPθ is defined by the Esscher transform ΛT associated with
θ ∈ L(A).

The local-martingale condition, i.e., there exists an equivalent martingale measure
under which discounted asset prices are local-martingales in the absence of arbitrage, is
the foundation of asset pricing theory. Below, we state a necessary and sufficient condition
for the local martingale condition in our framework.

Proposition 1. For each t ∈ T , let the discounted price of the risky asset at time t be:

S̃(t) := e−rtS(t).

Then the discounted price process S̃ := {S̃(t)|t ∈ T } is an Pθ-local-martingale if and only if
θt := 〈θ, Xt〉, t ∈ T , is such that θ := (θ1, θ2, ..., θN) ∈ RN satisfies the following equation:

θtσ
2
t +

∫
R+

{
eθh(z)(eh(z) − 1)− h(z)

}
ρd(z|t)η′(t) = rt − µt. (5)

See Appendix A for proof.
The results from the Lemma 1, Equation (4), and Proposition 1, allow us to use (3) to

drive the risk-neutral dynamics of the return process.

Proposition 2. Suppose W̃t = Wt−
∫ t

0 σsθds is aPθ-Brownian motion, ρθ(dz|t) := eθh(z)ρ(dz|t)
is the Pθ compensator of Nθ(dz, dt) then:

dAt =
(
µt + 2θσ2

s − 1
2 σ2

s
)
dt + σtdW̃t +

∫
R+ h(z)

(
1− e−θh(z))ρθ(dz|t)η(dt) +

∫
R+ h(z)Ñθ(dz, dt). (6)

See Appendix B for proof.
Similarly, we can derive the risk-neutral price process of the reference portfolio.

Proposition 3. The price process of the reference portfolio S under Pθ is:

dSt = (rt −
1
2

σ2
t )dt + σtdW̃t +

∫
R+

(
eθh(z)(eh(z) − 1)− h(z)

)
Ñθ(dt, dz). (7)
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Proof. Proof of Proposition 3. Recall St := exp(At). Then the proof can easily follow by
applying Ito’s Lemma and the martingale condition (5) to (6).

We study the hedging of a European option with pay-off function G using the popular
delta hedging strategy. The option price is given by:

C(t, S) = Eθ [G(ST)|St = S], (8)

where we assume C ∈ C∞([0, T)×R). Furthermore, the delta hedging strategy is Ht :=
∂C(t,S)

∂S , which is the most widely-used hedging strategy with a mathematically tractable
structure. Detailed discussion about the hedging strategy is provided in the next subsection.

2.3. Continuous Hedging Strategy

We assume the existence of a continuous-time trading strategy H. If continuous-time
hedging was possible, agents in the market would like to follow this strategy. This strategy
may be chosen in several ways and may not lead to a perfect replication when markets are
incomplete. In this study, we do not address the relative advantages of different choices of
H. Rather, we suppose its existence from another generalised jump-diffusion process that
satisfies the same set of assumptions as S. As such, we assume that:

dHt = atdt + btdWt +
∫
R+

γtÑ(dt, dz), (9)

underP, where at, bt, and γt are the parameters of the process that will be determined below.
By applying the Itô Lemma to the definition of Ht, we can show the

following decomposition:

dHt := d
∂C(t, S)

∂S
=

{
∂2C
∂t∂S

(t, S) +
(

µt +
1
2

σ2
t +

∫
R+

h(z)ρ(dz|t)η′
) ∂2C

∂S2 (t, S) +
1
2

σ2
t

∂3C
∂S3 (t, S)

}
dt

+ σt
∂2C
∂S2 (t, S)dWt +

∫
R+

{ ∂C
∂S

(t, S + eh(z) − 1)− ∂C
∂S

(t, S)
}

ρ(dz|t)η′dt

+
∫
R+

{ ∂C
∂S

(t, S + eh(z) − 1)− ∂C
∂S

(t, S)
}

Ñ(dt, dz).

Then,

at =
∂2C
∂t∂S

(t, S) +
(

µt +
1
2

σ2
t +

1
2

σ2
t

∂3C
∂S3 (t, S)

+
∫
R+

{∂C
∂S

(t, S + eh(z) − 1)− ∂C
∂S

(t, S) + h(z)
∂2C
∂S2 (t, S)

}
ρ(dz|t)η′dt

bt =σt
∂2C
∂S2 (t, S)

γt =
∂C
∂S

(t, S + eh(z) − 1)− ∂C
∂S

(t, S).

2.4. Asymptotic Hedging Error

In what follows we drive the asymptotic distribution of the hedging error, generalising the
methodology proposed in Hayashi and Mykland (2005) and Tankov and Voltchkova (2009).

Let,

µn
t :=(−n) ∨ µt ∧ n; σn

t :=(−n) ∨ σt ∧ n; hn(z) :=−
√

nρ(n) ∨ h(z) ∧
√

nρ(n);

an
t :=(−n) ∨ at ∧ n; bn

t :=(−n) ∨ bt ∧ n; γn
t (z) :=−

√
nρ(n) ∨ γt(z) ∧

√
nρ(n).
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Then the processes Sn and Hn are Lévy–Itô processes with bounded coefficients and
bounded jumps that coincide with S and H on the set:

Ωn :={ sup
0≤t≤T

max(|µt|, |σt|, |zt|) ≤ n; sup
0≤t≤T

max(|at|, |bt|, |zt|) ≤ n; N([0, T], ((−∞,−n) ∪ (n, ∞)) = 0)}.

Since all processes are supported cádlág, P[Ωn]→ 1.
The continuous re-balancing of a portfolio is practically unfeasible. Typically, holders

of a position in an option ∆-hedge in discrete time intervals of ti = iT/n. Therefore, the
trading strategy is piecewise constant and given by Fφn(t), where φn(t) = sup{ti, ti < t}.
The value of the hedging portfolio at time t is V0 +

∫ t
0 Hs−dSs with continuous hedging and

V0 +
∫ t

0 Hφn(t)dSs with discrete hedging. Then the asymptotic distribution of the difference
between discrete and continuous hedging is:

Un
t =

∫ t

0
(H−s − Hφn(t))dSs =

∫ t

0
Hn

s−dSs (10)

where n→ ∞. For any process A we set An
t := At − Aφn(t). Under the above conditions,

Hayashi and Mykland (2005) provides a thorough discussion on the stable convergence of
the bounded processes to their respective original processes.

Furthermore, define the renormalised hedging error process by:

Zn
t =
√

nUn
t =
√

n
∫ t

0
Hn

s−dSs. (11)

Let {Ŵt}t∈T be a standard Brownian motion independent of W and N, and let (ξk)k≥1
and (ξ ′k)k≥1 be two sequences of a standard normal random variable and (ζk)k≥1 sequence
of independent uniform random variables on [0,1], such that the three sequences are
independent from each other and other random elements. Let

(
Ti
)

i≥1 be an enumeration
of the jump times of N, and define:

∆FTi =
∂C
∂S

(Ti, STi )−
∂C
∂S

(Ti, ST−i
), σ̃T−i

= σTi

∂2C
∂STi

(Ti, STi ), σ̃s = σs
∂2C
∂S2 (s, Ss).

Then, applying Theorem 1 in Tankov and Voltchkova (2009) to the renormalised
discrete delta hedging error Zn

t gives the following asymptotical convergence result in
finite-dimensional laws:

Zt =

√
T
2

∫ t

0
σsσ̃sdŴs +

√
T ∑

i:Ti≤t:∆St 6=0
∆FTi

√
ζiξiσTi +

√
T ∑

i:Ti≤t:∆St 6=0
∆STi

√
1− ζiξ

′
i σ̃T−i

(12)

≡
√

T
2

∫ t

0
σ2

s
∂2C
∂S2 dŴs +

√
T ∑

i:Ti≤t:∆St 6=0

( ∂C
∂S

(Ti, STi )−
∂C
∂S

(Ti, ST−i
)
)√

ζiξiσTi+

√
T ∑

i:Ti≤t:∆St 6=0
∆STi

√
1− ζiξ

′
iσTi

∂2C
∂STi

(Ti, STi ).

3. Estimation of the Density of the Hedging Error

Let ZT be a realisation of the hedging error in (12) at date T (say the maturity date
of the option). Suppose that we have a random sample {Z(j) : j = 1, . . . , n} of n i.i.d.
observations from ZT , each with pdf fZ and cdf FZ on a support Ω ⊆ R. Note from (12)
that ZT always has a continuous density almost everywhere (a.e). In this section, the VaR
and the ES associated to ZT are of inferential interest. The VaR associated to ZT at level α is
defined as:

VaRα(ZT) = inf{z ∈ R : FZ (z) ≥ α} = F−1
Z

(α), (13)
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while the expected shortfall is given as:

ESα(ZT) =
1
α

∫ α

0
VaRγ(ZT)dγ

= − 1
α

(
E[ZT1{ZT≤zα}] + zα[α− FZ (zα)]

)
, (14)

where zα = inf{z ∈ R : FZ (z) ≥ α} is the lowest α-quantile and 1A(z) = 1 if x ∈ A and
1A(z) = 0 else. The dual representation of (14) is given by:

ESα(ZT) = inf
Q∈Qα

EQ[ZT ], (15)

where Q is absolutely continuous such that dQ
dP ≤ α−1. If the density of ZT is continuous,

then the expected shortfall is equivalent to the tail conditional expectation defined by
TCEα(Z) = E[−ZT |ZT ≤ −VaRα(ZT)] . If FZ (or fZ ) were given, then the computation
of VaRα(ZT) and ESα(ZT) is straightforward from (13)–(15). This is unfortunately not the
case, and one has to resort to estimation techniques to approximate them. Suppose that we
have a consistent estimate of fZ , say f̂Z . So, we can also estimate its cdf and compute the
estimate of the value-at-risk and the expected shortfall as:

V̂aRα(ZT) = F̂−1
Z

(α), ÊSα(ZT) =
1
α

∫ α

0
V̂aRγ(ZT)dγ. (16)

Our main goal is to find an estimator f̂Z of fZ that captures the maximum uncertainty
in ZT . To achieve this goal, we will use the information entropy approach.

3.1. Information Entropy and Density Estimation

The information entropy associated with ZT is defined as:

IE(ZT) = −
∫

Ω
fZ (z) ln fZ (z)dz, (17)

where, by convention, we assume that 0× ln(0) = 0. IE(ZT) is a measure of the information
carried by ZT . As data are communicated more, they are corrupted with more noise so that
the entropy increases, therefore they carry less information.

Let g(k)Z : Ω→ R (k = 0, 1, 2, . . . ) be a moment function of ZT . Then, the moment of
ZT with respect to g(k)Z is defined as:

µk = E[g(k)
Z

(z)] =
∫

Ω
g(k)

Z
(z) fZ (z)dx, k = 0, 1, 2, . . . . (18)

In practice, polynomial functions are often used for the moment function (for example,
see Zellner and Highfield (1988)). g(k)Z (k = 0, 1, 2, . . . ), i.e., g(k)Z (z) = zk, k = 0, 1, 2, . . . ,
with the normalisation g(0)Z (z) = 1. In this case, we have:

µ0 =
∫

Ω
fZ (z)dz = 1, µk =

∫
Ω

zk fZ (z)dz, k = 1, 2, . . . . (19)

For the remainder of the paper, we assume the sequence
(
µk
)

k≥1 satisfies the Carle-
man’s condition [see Akhiezer (1965)], i.e.,

∞

∑
k=1

µ
− 1

2k
2k = +∞. (20)

Note that when Ω = R and g(k)Z (z) = zk for all k = 0, 1, 2, . . . , condition (20) is
sufficient for the determinacy of the Hamburger moment problem.
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Due to issues associated with using many moments, we only use k = 0, . . . , m moments
in (19), and our goal is to find the density function fZ (z) such that:

max
fZ∈L1(Ω): fZ≥0

{
IE(ZT) = −

∫
Ω

fZ (z) ln fZ (z)dz
}

(21)

subject to

µ̄k =
∫

Ω
g(k)

Z
(z) fZ (z)dz, k = 0, 1, 2, . . . , m (22)

where µ̄k = n−1 ∑n
j=1 g(k)Z (Z(j)) is the empirical moment of ZT with respect to g(k)Z . For now,

we assume that the number m of selected moments of the pdf in (19) that have been chosen
to match the empirical moments is fixed. Later on, we discuss how m can be selected in a
data-dependent manner based on a Bayesian- or Schwartz-type information criterion. Since
g(0)Z = 1, the zeroth moment implies that µ0 =

∫
Ω fZ (z)dz = µ̄0 = 1 in (22). For example if

g(k)Z (z) = zk, k = 0, 1, 2, 3, 4 with g(0)Z (z) = 1, we have m = 4 and problem (22) becomes:

max
fZ∈L1(Ω): fZ≥0

IE(ZT) subject to

µ̄0 =
∫

Ω
fZ (z)dz = 1, µ̄1 =

∫
Ω

z fZ (z)dz, µ̄2 =
∫

Ω
z2 fZ (z)dz

µ̄3 =
∫

Ω
z3 fZ (z)dz, µ̄4 =

∫
Ω

z4 fZ (z)dz. (23)

For the remainder of the paper, we call the solution f̂Z (z) of problem (22) the maximum-
entropy estimator of fZ (z). We will now establish that such a solution exists and is unique.
Let,

L( fZ , λ0, . . . , λm) = −IE(Z) +
m

∑
k=0

λk

(∫
Ω

g(k)
Z

(z) fZ (z)dz− µ̄k

)
(24)

denote the Lagrange function associated with (22), where λ0, . . . , λm are the Lagrange
multipliers. By noting that solving (22) is equivalent to static problem:

min
fZ∈L1(Ω): fZ≥0, λ0,...,λm

L( fZ , λ0, . . . , λm), (25)

it is sufficient to show that (25) has a unique solution with respect to fZ ∈ L1(Ω) : fZ ≥ 0.
More often, the minimisation over fZ is carried out via the first variation of L( fZ , λ0, . . . , λm)
with respect to fZ . This type of calculation is misleading because L( fZ , λ0, . . . , λm) has
support on the set

{
fZ ∈ L1(Ω) : fZ ≥ 0 a.e.

}
, and the complement of this set is dense

in L1, meaning that not only is L( fZ , λ0, . . . , λm) nowhere differentiable in L1, it is also
nowhere continuous. Due to these reasons, we follow the convex duality approach in
Borwein et al. (2003). From (Borwein et al. 2003, Theorems 1–2), there is a unique solution
fZ of (25) satisfying:

fZ (z; λ) = exp

(
−1− λ0 −

m

∑
k=1

λkg(k)
Z

(z)

)

=
1
θ

exp

(
−

m

∑
k=1

λkg(k)
Z

(z)

)
(26)

where λ = (λ0, λ1, . . . , λm)′, θ = exp(1+ λ0), and the zeroth-moment equality implies that:

θ =
∫

Ω
exp

(
−

m

∑
k=1

λkg(k)
Z

(z)

)
dz.
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To complete the closed form of fZ (z; λ), we must substitute λ in (26) by an optimal

value λ̂. Zellner and Highfield (1988) consider the case in which g(k)Z (z) = zk where
k = 1, . . . , m = 4, and use an algorithm based on a Newton method to compute λ1, . . . , λ4
from the restrictions in (22). This numerical approximation is cumbersome even for a
moderate choice of m = 4. In this paper, we propose the maximum likelihood (ML) method
to estimate λ1, . . . , λm, and θ.

Since {Z(j) : j = 1, . . . , n} are i.i.d. with common pdf 1
θ exp

(
−∑m

k=1 λkg(k)Z (z(j))
)

,
the likelihood function of the sample can be written as:

L(Z(1), . . . , Z(n); λ) =
n

∏
j=1

1
θ

exp

(
−

m

∑
k=1

λkg(k)
Z

(zj)

)

=
1
θn exp

[
−

n

∑
j=1

m

∑
k=1

λkg(k)
Z

(zj)

]
. (27)

The log-likelihood function from (27) is then given by `(Z(1), . . . , Z(n); λ) = −n ln(θ)−
∑n

j=1 ∑m
k=1 λkg(k)Z (zj). The ML estimator of λ = (λ0, λ1, . . . , λm)′ satisfies:

max
λ

`(Z(1), . . . , Z(n); λ) (28)

and we can prove the following on the existence of unique solutions for both problems (28)
and (22).

Proposition 4. Suppose that µ̄k = n−1 ∑n
j=1 g(k)Z (Z(j)) < ∞ ∀ k = 1, . . . , m. Then:

(a) Problem (28) has a unique solution with respect to λ;
(b) Problem (22) has a unique solution with respect to fZ (·).

Proof. First, observe first that `(Z(1), . . . , Z(n); λ) is a concave function in λ, and twice
differentiable with respect to λ. The first order condition of (28) is given by:

∂`(Z(1), . . . , Z(n); λ)

∂λk
= −n

∂ ln(θ)
∂λk

−
n

∑
j=1

g(k)
Z

(zj) = 0

⇔ ∂ ln(θ)
∂λk

= −n−1
n

∑
j=1

g(k)
Z

(zj) = −µ̄k, k = 1, . . . , m. (29)

Moreover, θ = exp(1 + λ0) =
∫

Ω exp
(
−∑m

k=1 λkg(k)Z (zj)
)

dzj from the zeroth-moment
equality. Thus,

∂ ln(θ)
∂λk

=
1
θ

∂

∂λk

∫
Ω

exp

(
−

m

∑
k=1

λkg(k)
Z

(zj)

)
dzj = −

∫
Ω

g(k)
Z

(zj)
1
θ

exp

(
−

m

∑
k=1

λkg(k)
Z

(zj)

)
dzj

= −
∫

Ω
g(k)

Z
(zj) fZ (zj)dzj = −µk ≡ µk(λ), (30)

where µk(λ) is a continuous function of λ. Therefore, (29) and (30) entail that:

µk(λ) = µ̄k, k = 1, . . . , m. (31)

So, as long as µ̄k < ∞, (31) has a solution with respect to λ, i.e., the likelihood function
`(Z(1), . . . , Z(n); λ) has a critical point λ̂.

We will now show that this critical point, λ̂, is the unique point where `(Z(1), . . . , Z(n); λ)
is maximised. Let H(Z(1), . . . , Z(n); λ) denote the hessian matrix of the log-likelihood
function `(Z(1), . . . , Z(n); λ). The (k, p) entree of H(Z(1), . . . , Z(n); λ) is:
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∂

∂λp

(
∂`(Z(1), . . . , Z(n); λ)

∂λk

)
=

∂

∂λp

−n
∂ ln(θ)

∂λk
−

n

∑
j=1

g(k)
Z

(zj)

 = −n
∂

∂λp

∂ ln(θ)
∂λk

= n
∂

∂λp

(
1
θ

∫
Ω

g(k)
Z

(zj) exp

(
−

m

∑
k=1

λkg(k)
Z

(zj)

)
dzj

)

= −n
1
θ

∫
Ω

g(p)
Z

(zj)g(k)
Z

(zj) exp

(
−

m

∑
k=1

λkg(k)
Z

(zj)

)
dzj +

n

(
1
θ2

∫
Ω

g(k)
Z

(zj) exp

(
−

m

∑
k=1

λkg(k)
Z

(zj)

)
dzj

)
×
∫

Ω
g(p)

Z
(zj) exp

(
−

m

∑
k=1

λkg(k)
Z

(zj)

)
dzj

= −n
[∫

Ω
g(p)

Z
(zj)g(k)

Z
(zj) fZ(zj)dzj −

∫
Ω

g(p)
Z

(zj) fZ(zj)dzj

∫
Ω

g(k)
Z

(zj) fZ(zj)dzj

]
= −n

[
E(g(p)

Z
(zj)g(k)

Z
(zj))−E(g(p)

Z
(zj))E(g(k)

Z
(zj))

]
= −nCoV

(
g(p)

Z
(zj), g(k)

Z
(zj)

)
, ∀ p, k = 1 . . . , m, (32)

where CoV(a, b) is the covariance of the two random variables a and b. From (32), it is clear
that H(Z(1), . . . , Z(n); λ) is a symmetric and strictly negative definite for all values of the
vector of Lagrange multipliers. Thus, the critical point λ̂ is a unique maximum, which
completes the proof of Proposition 4(a). It follows immediately from (26) that f̂Z (z; λ̂) is
also a unique maximum, thus establishing Proposition 4(b).

3.2. Choice of m and the Moment Functions in the Density Estimation

To avoid the problems associated with using many moments, we suggest using a
finite number m of moments in the estimation of the density function fZ (z). In practice,

the choice of m, as well as that of the moment functions g(k)Z (·), k = 1, . . . , m, may not be
obvious. In this section, we briefly discuss how both m and g(k)Z (·), k = 1, . . . , m can be
approximated in a data dependent manner. First, note from (26) that the density function
fZ (z; λ) satisfies:

fZ (z; λ) =
1
θ

exp

(
−

m

∑
k=1

λkg(k)
Z

(z)

)
. (33)

For the choice of moment functions, we replace each g(k)Z (z) in (33) with its truncated
Taylor series expansion of around the expectation of z. From this, the problem of looking
for the proper g(k)Z (z), k = 0, 1, . . . , m, moment functions is the same as finding an optimal
order of truncation for each of the expansion:

λ̂ = arg max
λ

n

∏
j=1

1
θ

exp

(
−

m

∑
k=1

λk[a0k + a1kzj + a2kz2
j + a3kz3

j + . . .]

)

= arg max
λ

n

∏
j=1

1
θ

exp
(

β0 + β1zj + β2z2
j + β3z3

j + . . .
)

, (34)

where β0, β1, β1, β3, . . . are unknown coefficients to be estimated. We are interested
in finding m and the truncation order l0 of the power series in (34). So, the search for m
and the moment functions is converted to a search for an optimal truncation orders m and
l0, that yields the best fit of f̂Z (z; λ̂) to the data. We suggest using Bayesian information
criterion (BIC) or Schwartz information criterion (SIC) based on (34) to select the optimal
m and l0. Let λ̂MLE denote the ML estimator of λ using the optimal order of truncation
l0. Then, the estimated pdf of fZ (z) is f̂Z (z; λ̂MLE), which can then be used to compute
V̂aRα(Z) and ÊSα(Z) in (16).
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4. Numerical Analysis

In this section we conduct a numerical experiment to analyse the sensitivity of the
hedging error with respect to model parameters. In the previous sections we have defined
a general jump-diffusion process with the jump component specified by a kernel biased
completely random measure. This generalised framework nests a number of very important
models in mathematical finance, including, but not limited to, the jump diffusion model
of Merton (1976), the generalised gamma process discussed in Lo and Weng (1989), the
variance gamma process by Madan et al. (1998), and the CGMY model of Carr et al. (2002).
Here, for simplicity, we only use the generalised gamma (GG) process. The analysis can
be easily extended to other classes of models or even their Markovian regime switching
versions discussed in Fard and Siu (2013).

The GG process generalises several famous models in finance. For example, the
inverse gamma (IG) and weighted gamma (WG) processes are special forms of the GG
process. Let α ≤ 1 denote a constant shape parameter and δ(t) be the time-dependent scale
parameter of the GG process. We can express the intensity process of the GG process as:

ρ(dz|t)η(dt) =
1

Γ(α)αeδ(t)zzα
dzη(dt),

where Γ(·) is the gamma function. We note that this process simplifies to a WG process
when α = 1 and to a IG process when α = 1

2 .
Several observations are of order. First, to obtain the GG process, we must set the

kernel function h(z) to czq, for some constants c and q, and choose a particular parametric
form of the compensator measure. Second, different versions of GG processes are obtained
for different sets of the kernel function parameters values. For example, if c > 0 and q = 1
(linear kernel function), then we obtained the scale-distorted version of the GG process. If
c > 1, then the jump sizes are overstated, while they are understated if 0 < c < 1. When
q > 0 and c = 1, we obtain the power-distorted version of the GG process. When q > 1,
small jump sizes (i.e., 0 < z < 1) are understated and large jump sizes (i.e., z > 1) are
overstated. Finally, when 0 < q < 1, small jump sizes are overstated and large jump sizes
are understated.

To simulate the GG process, we use the Poisson weighted algorithm by Lee and Kim
(2004). Throughout the simulations, we set at α = 1/2. It is worth mentioning that the
Poisson weighted algorithm applies to a wide class of completely random measures, which
are very difficult to simulate directly, see Lee and Kim (2004).

To implement the algorithm, divide the time interval to maturity [0, T] into nT equally
spaced subintervals. Then for each j = 0, 1, ..., n− 1, let [tj, tj+1] be the (j + 1)st subinterval.
Let M denote the number of jumps of the completely random measure over the term to
maturity, such that, M controls the accuracy of the approximation of the algorithm. To
implement the Poisson weighted algorithm, we take the following steps:

Step 1. Let ℵ denote a normalised density function defined by ℵ−1 := 1
η′(t)

∫ T
0 η′(s)ds;

Step 2. Generate a set of i.i.d random variables Ti ≥ 0 for each i = 1, 2..., MT, from ℵ;
Step 3. Generate the jump size Ωi from the conditional density function gTi (i.e., gamma);
Step 4. Evaluate whether Ti ∈ [tj, tj+1). If yes, calculate:

λi =
ρθ(Ωi|Ti)

MTgti (Ωi)

∫ T

0
η′(s)ds.

λi is the intensity of the Poisson distribution, used to generate the Poisson
weightsW .
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We provide a comparative analysis of the density function of the hedging error
obtained by our ME estimation of the hedging error with that obtained by Monte Carlo
simulation. In Monte Carlo simulation, we calculate the hedging error at tn, ∆Πn, n =
1, . . . , N, with hedging portfolio Πn := Π(tn, S) defined by:

Π(tn, s) = S(tn)H(tn, S)− C(tn, S)

where the option price and delta are computed by evaluating the risk neutral expectation
in Equation (8).

We consider hedging a one-month at the money call option with S(0) = K = 1.
We analyse different hedging frequencies, namely, N = 4 (weekly hedging), N = 20
(daily hedging), N = 80 (hedging every hour and a half), and N = 320 (hedging every
20 min). For brevity, we suppose that the WG process with c = q = 1, equal model
parameters under P and Pθ , zero interest rate, and zero drift for the underlying asset.
Furthermore, we assume constant volatility, σ = 18%. Then, the set of rebalancing times is
{tn}, tn = nδt, n = 1 . . . , N with δ = 0.1. All computations are fully vectorised in JULIATM.

In this setting, the kernel-biased completely random measure on T is κ(t) =

∑MT
i=1 h(ΩiWi)1(Ti≤t). It can be shown that the process generated by the Poisson weighting

algorithm converges in distribution to κ(t) defined on [0, T] with the Skorohod topology as
M → ∞ (see Lee and Kim 2004). Note that the true values of the truncation lag (m) and
truncation order (l0) in the entropy density are set at m = l0 = 4. The optimal choice of these
parameters with the BIC criterion varies within the pseudo-samples, but the minimum and
maximum choice of each parameter are 2 and 5, respectively.

Figure 1 compares the distribution of hedging error obtained from the Monte Carlo
Simulation and estimated from the ME method. In Table 1 we report the summary statistics
for the distribution of hedging error, as well as the 99% and 95% VaR, obtained by the above
two methods. From the numerical analysis, it follows that the distribution of hedging
error for a small number of trades has a high volatility and is negatively skewed, which
indicates that it is more likely to have large losses than large wins. It is noteworthy that the
ME estimation of the distribution fails to sufficiently capture the right tail of the empirical
distribution, nevertheless it adequately describes the left tail.
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(a) Hedging every week (N = 4)
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(b) Hedging every day (N = 20)
Figure 1. Cont.
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(c) Hedging every 1.5 h (N = 80)
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Figure 1. Distribution of hedging error of a one-month European call option under the Weighted Gamma, obtained using
Monte Carlo simulation and computing Max Entropy estimation.

As we increase the frequency of the delta hedging trades, the distribution becomes
more symmetric, and our ME estimation performs better. For N = 20, our distribution is
strongly leptokurtic, indicating the option writers’ large exposure to jumps. When trading
frequency increases to 80 and 320, the distribution peaks around zero and the volatility
significantly decreases, however, the left tail is still noticeable. From our analysis, it appears
that the volatility is negatively related to the frequency of delta hedging trades. However,
further research is required to conclusively establish the relationship between the number
of trades and moments of the distributions.

Table 1. Summary statistics: Moments (Mj for j = 1, 2, 3, 4) of the distribution of hedging error under
the GG (generalised gamma) process. VaR: Value-at-risk.

N M1 (%) M2 (%) M3 (%) M4 (%) 99% VaR 95% VaR

Max Entropy 4 0.173 43.21 −1.97 7.01 99.87 74.38
Max Entropy 20 0.154 28.44 −2.41 16.01 88.31 72.11
Max Entropy 80 −0.058 26.04 −3.36 19.74 77.59 51.6
Max Entropy 320 −0.041 22.14 −3.99 14.32 61.33 46.31

Monte Carlo 4 0.131 42.52 −1.03 6.51 101.73 75.12
Monte Carlo 20 0.143 29.37 −2.33 15.36 76.12 62.49
Monte Carlo 80 −0.072 25.41 −3.21 19.85 74.06 49.33
Monte Carlo 320 −0.074 23.33 −4.01 18.94 64.83 48.99

5. Conclusions

Perfect replication of financial derivatives is not possible, given market incompleteness
and discrete-time hedging. We characterised the risk in dynamic hedge of European
options through the asymptotic distribution of hedging error. Furthermore, we obtained
an estimation for the distribution of hedging error by maximising Shannon’s entropy
(Shannon (1948)) subject to a set of moment constraints, which in turn yielded the value-at-
risk (VaR) and expected shortfall (ES) of the hedging error, two widely-used risk metrics in
finance. This new approach chooses the probability distribution with the most uncertainty
subject to what is known. Thus we obtained a consistent estimate of the asymptotic
distribution of hedging error, despite the non-normality of the underlying distribution of
returns. As a result, we derived a very generalised modelling framework, which can be
applied in different areas of derivatives pricing. Some parametric specifications of this
framework include, but are not limited to, the jump diffusion model of Merton (1976), the
generalised gamma process discussed in Lo and Weng (1989), the variance gamma process
by Madan et al. (1998), and the CGMY model of Carr et al. (2002).
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Finally, we conducted a robust numerical simulation of the result, to highlight the
practical applications of our model.
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Appendix A. Proof of Lemma 1

James (2002, 2005) shows that:

E
[

exp
( ∫ t

0

∫
R+

θsh(z)Ñ(ds, ds)
)∣∣∣Gt

]
= exp

( ∫ t

0

∫
R+

(
eθsh(z) − 1 + θsh(z)

)
ρ(dz|s)η(ds)

)
.

Then, by taking the conditional expectations of (3), the results follow.

Proof. Proof for Proposition 1 S̃ is FA-adapted, S̃ is an (FY,Pθ)-local-martingale if and
only if it is a (G,Pθ)-local-martingale. By Lemma 7.2.2 in Elliott and Kopp (2005), S̃ is
an (GY,Pθ)-local-martingale if and only if ΛS̃ := {Λ(t)S̃(t)|t ∈ T } is a (G,Pθ)-local-
martingale. First, by Bayes’ rule:

Eθ

[
exp

(
−
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0
rsds

)
St

∣∣∣G0

]
= exp

(
−
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0
rsds

)
E
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Λt exp
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0
dAu

)
|G0

]

= exp
(
−
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0
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)E
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0 (θ + 1)dAu

)
|G0

]
M(θ)t

= exp
(
−
∫ t

0
rsds

)
M(θ + 1)t

M(θ)t

= exp
( ∫ t

0
(µs − rs −

1
2

σ2
s )ds +

1
2

∫ t

0
(2θ + 1)σ2

s ds

+
∫ t

0

∫
R+

{
eθh(z)(eh(z) − 1)− h(z)

}
ρd(z|t)η(dt)

)
.

Then by setting time s = 0, and applying the martingale condition we achieve:∫ t

0
(µs − rs −

1
2

σ2
s )ds +

1
2

∫ t

0
(1 + 2θ)σ2

s +
∫ t

0

∫
R+

{
eθh(z)(eh(z) − 1)− h(z)

}
ρd(z|t)η′(s)ds = 0.

Hence, for each t ∈ T , (5) must hold.
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Appendix B. Proof for Proposition 2

Assume that P ∼ Pθ with density process Λt. Suppose Zu ∈ BM(T ). Then by
Bayes’ rule:

Mθ
A(Z)t :=Eθ [e(Z .A)t |G0] = E[Λt.e(Z .A)t |G0]

= exp

( ∫ t

0
Z(µs −

1
2

σ2
s )ds +

∫ t

0

1
2
(Z + θ)2σ2

s ds

+
∫ t

0

∫
R+

{
e(Z+θ)h(z) − 1− (Z + θ)h(z)

}
ρ(dz|s)η(ds)

−
∫ t

0

1
2
(θ.σs)

2ds

−
∫ t

0

∫
R+

{
eθh(z) − 1− θh(z)

}
ρ(dz|s)η(ds)

)

= exp

( ∫ t

0
Z(µs + 2θσ2

s −
1
2

σ2
s )ds

+
∫ t

0

∫
R+

(
eθh(z) − 1

)
ρ(dz|s)η(ds) +

1
2

∫ t

0
Z2σ2

s ds

+
∫ t

0

∫
R+

{
eZh(z) − 1−Zh(z)

}
eθh(z)ρ(dz|s)η(ds)

)
.

Then under Pθ , (6) holds.
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