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Abstract

The convergence of estimators, e.g. maximum likelihood estimators, for
increasing sample size is well understood in many cases. However, even
when the rate of convergence of the estimator is known, practical application
is hampered by the fact, that the estimator cannot always be obtained at
tenable computational cost.

This paper combines the analysis of convergence of the estimator itself
with the analysis of the convergence of stochastic optimization algorithms,
e.g. threshold accepting, to the theoretical estimator. We discuss the joint
convergence of estimator and algorithm in a formal framework.

An application to a GARCH-model demonstrates the approach in prac-
tice by estimating actual rates of convergence through a large scale simula-
tion study. Despite of the additional stochastic component introduced by the
use of an optimization heuristic, the overall quality of the estimates turns out
to be superior compared to conventional approaches.
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gence.
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1 Introduction

The convergence of estimators, e.g. maximum likelihood estimators, for increas-
ing sample size is well understood in many cases. However, even when the
rate of convergence of the estimator is known, practical application is hampered
by the fact, that the estimator cannot always be obtained at tenable computa-
tional cost. In fact, the literature mentions many estimation problems, where
standard optimization methods fail to provide a reliable approximation to the
theoretical estimator. Examples include switching regression models (Dorsey
and Mayer, 1995; Clements and Krolzig, 1998), censored quantile regression
(Fitzenberger, 1997; Fitzenberger and Winker, 1998) or the GARCH-model
(Brooks et al., 2001). Even for simpler problems, standard software might fail
to provide adequate results (McCullough and Vinod, 1999; McCullough and Wil-
son, 1999; McCullough and Wilson, 2002; McCullough and Wilson, 2005). Of-
ten, this failure of standard methods is not due to a suboptimal implementation
of the algorithms, but results from the inherent computational complexity of the
problems and has to be taken as given (Winker, 2001, pp. 57ff).

However, if the theoretical estimator has to be replaced by some numerical ap-
proximation, the actual rate of convergence might differ from the theoretical one.
In fact, if the implementation of the estimator is such that it will not converge to
the theoretical estimator with the sample size growing to infinity, the convergence
properties of the estimator get lost. Unfortunately, many real life implementations
of complex estimators cannot guarantee to result in the true theoretical estimator
or, at least, a close approximation. Furthermore, typically, the algorithms are not
constructed in a way to offer some options for a satisfying convergence as they are
built with the purpose to obtain the theoretical estimator. Thus, if these methods
work fine, the theoretical convergence results apply, if they fail, no statement on
convergence can be provided.

The picture changes when the algorithm for calculating the estimator itself
might be subject to a stochastic analysis. This is the case, e.g. for optimization
heuristics like genetic algorithms or local search heuristics. In particular, when
it can be proven that the result found by the heuristic converges to the theoretical
estimator with an increasing number of iterations, a joint convergence analysis be-
comes feasible. In this contribution, we consider the threshold accepting heuristic,
for which Althöfer and Koschnik (1991) provide such a convergence result. A first
detailed analysis of the stochastic properties of this algorithm in an application to
experimental design is provided by Winker (2005). Here, we consider a standard
estimation problem, namely the maximum likelihood estimation of the parameters
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of a GARCH-model. The estimation problem and the application of threshold ac-
cepting to this problem is described by Maringer (2005, pp. 63ff). The aim of
this contribution is to derive and analyze the joint convergence properties of the
optimization algorithm and the maximum likelihood estimator. In particular, by
means of a large scale simulation study, we estimate the number of iterations of
the optimization algorithm as a function of the sample size required to obtain a
standard rate of convergence for the actual parameter estimates.

The paper is structured as follows. Section 2 provides a formal framework
for the analysis of joint convergence of the calculation of the estimator and the
estimator itself. The framework is applied to a GARCH-model in Section 3, where
a large scale simulation study is introduced. The results of this simulation study
and its implication on the actual convergence properties of the GARCH-estimator
are provided in Section 4. Section 5 summarizes the main findings and provides
an outline for further research.

2 Convergence of Optimization Based Estimators

2.1 Notation

Before turning to the discussion of the convergence properties of optimization
based estimators, we have to introduce some notation. We assume that the true
model for the data generating process is known except for the values of a number
of parameters collected in the true parameter vector ψψψTR. In particular, we will
not consider issues related to model misspecification. For a given data sample
consisting of T observations, let ψψψML,T denote the value of the theoretical estima-
tor, e.g. the maximum likelihood estimator for the GARCH-model. This vector
cannot be observed unless a deterministic algorithm is available which provides
the estimator with certainty. Such a situation is given, e.g., for the ordinary least
squares estimator when the problem size is not too large and the scaling and mul-
ticollinearity of the explanatory variables is not too extreme. However, as pointed
out before, this condition is not fulfilled for the GARCH-model when relying on
standard optimization tools (Brooks et al., 2001).

In contrast, when a stochastic optimization heuristic like threshold accepting
has to be used to obtain an approximation of the estimator, only one or several
realizations of this stochastic procedure can be observed. The quality of these
realizations will depend on the computational effort spent on the optimization
process. For threshold accepting, the number of local search steps or iterations I
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provides an adequate measure of this computational effort. Thus, if the optimiza-
tion is run R times with I iterations for each run, we obtain R approximations of
ψψψML,T , which are denoted as ψψψT,I,r, where r = 1, . . . ,R.

Now, the two aspects of convergence of optimization based estimators can be
discussed. First, asymptotic consistency of the theoretical estimator ψψψML,T with
regard to sample size T has to be established. This is the usual task considered in
econometric analysis. Second, we have to demonstrate that based on the approx-
imations ψψψT,I,r it is possible to obtain convergence in probability towards ψψψML,T

as I goes to infinity. Finally, in a third step we have to show that both results can
be combined to obtain a convergence result for the estimator found by the thresh-
old accepting implementation. In particular, we have to provide a relationship
I(T ) resulting in a convergence in probability of an estimate based on the ψψψT,I,r

towards the true parameter vector ψψψTR.
This task is slightly complicated by the fact that in a stochastic optimization

approach, it is not optimal to spend all available computational resources on a
single run, i.e. R = 1, but rather to allow for a small number of runs R and to
use the best result out of these runs corresponding to the first order statistic of the
objective function, e.g. the likelihood function (Winker, 2005).

2.2 Convergence of the Estimator

The maximum likelihood estimator of the GARCH-model ψψψML,T converges with
the standard rate

√
T to the true parameter vector ψψψTR and is asymptotically nor-

mally distributed if the usual regularity conditions are satisfied (Herwartz, 2004,
p. 202). An equivalent expression of this convergence result is the following: For
any given δ > 0 and ε > 0, there exists a sample size T (δ ,ε) such that for any
T ≥ T (δ ,ε) we find

P(|ψψψML,T −ψψψTR| < ε) > 1−δ . (1)

In fact, for given δ , asymptotically, T has to be chosen proportional to 1/ε2 to
obtain (1). Figure 1 provides a stylized illustration of this convergence property
of the estimator with regard to increasing T .

2.3 Convergence of Threshold Accepting

Suggested by Dueck and Scheuer (1990), threshold accepting is a heuristic opti-
mization method where a solution is repeatedly modified and updated in a stochas-
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Figure 1: Convergence of the ML estimator with regard to T
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tic fashion.1 Consequently, repeated runs of the optimization heuristic on a single
problem instance will result in a distribution of results ψψψT,I,r.

According to the convergence result for threshold accepting obtained by
Althöfer and Koschnik (1991), there exist suitable parameters for the threshold
accepting implementation such that the global optimum of the objective function
can be approximated at arbitrary accuracy with any fixed probability close to one
by increasing the number of iterations. If the search of parameters ψψψT,I,r is re-
stricted to a compact set, the continuity of the likelihood function allows for the
following conclusion from this convergence result: For any given δ > 0 and ε > 0,
there exists a number of iterations I(δ ,ε) such that

P(|ψψψT,I,r −ψψψML,T | < ε) > 1−δ (2)

for any r = 1, . . . ,R. Obviously, the convergence of the first order statistic of
ψψψT,I,r, r = 1, . . . ,R will also satisfy this condition – potentially for a smaller value
of I. Unfortunately, the theoretical convergence result does not allow to derive a
general result on the required number of iterations I(δ ,ε). Consequently, it will
be left to the analysis of our empirical implementation to demonstrate that I(δ ,ε)
can be chosen to be a function of T (δ ,ε) growing at a less than linear rate.

1For a more detailed presentation of this method and applications in economics and statistics,
see Winker (2001).
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2.4 Joint Convergence

The stochastic feature of the optimization heuristic might appear like a drawback
on first sight as compared to standard optimization tools. However, a combina-
tion of the convergence results for estimator and optimization allows to derive a
joint convergence result, which, in general, cannot be obtained for deterministic
procedures.2

Let ε > 0 be a predefined required level of accuracy of the estimator with
regard to the true parameter value. Furthermore, let δ > 0 denote an admissible
(though small) probability for missing this level of accuracy. Then, according
to (1), we find T (δ/2,ε/2) such that

P(|ψψψML,T −ψψψTR| < ε/2) > 1−δ/2 . (3)

Furthermore, using (2) for an adequate number of iterations I(T (δ/2,ε/2)), we
find

P(|ψψψT,I,R −ψψψML,T | < ε/2) > 1−δ/2 , (4)

where ψψψT,I,R denotes the estimate corresponding to the best result out of R repli-
cations of the threshold accepting heuristic. Remember that the empirical applica-
tion in section 3 will demonstrate that in practice I(T (δ/2,ε/2)) can be bounded
by a linear function of T (δ/2,ε/2) rendering a real implementation feasible.

Combining (3) and (4), we find

P(|ψψψT,I,R −ψψψTR| < ε) > 1−δ , (5)

i.e. convergence of the heuristic optimization based estimator to the true parameter
value for T going to infinity and I going to infinity as a function of T .

3 Application to GARCH-Model

3.1 Model and Data for the Computational Study

As a benchmark implementation for assessing the performance of the estimation
method in practice, we consider the basic GARCH(1,1) model

rt = ψ0 + et with et ∼ N(0,σ2
t ) , (6)

2The obvious exceptions are those estimates which can be obtained with certainty by means of
a deterministic algorithm given the available computational resources.
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where

σ2
t = ψ1 +ψ2e2

t−1 +ψ3σ2
t−1 . (7)

(8)

For the empirical application, we refer to the estimates obtained by Bollerslev and
Ghysels (1996) based on 1974 daily observations for the changes in the German
mark / British pound exchange rate. Their maximum likelihood estimates of the
parameters of the GARCH(1,1) are the following (using our notation):

ψψψTR = [ψTR
0 . . .ψTR

3 ] = [ −0.00619041 0.0107613 0.153134 0.805974 ].
(9)

We use this model and parameters for a data generating process and produce 100
time series each consisting of 2100 observations.3 For the computational study,
we then removed the first 100 observations (which were used as a forerun to allow
the process to swing in). From the remaining series, we analyzed the first T
observations with T = 50, 100, 200, 400, 1000, and 2000.

3.2 The Optimization Heuristic

For finding the parameters that maximize the loglikelihood function of the
GARCH model,

L = −T
2

ln(2π)− 1
2

T

∑
t=1

(
ln(σ2

t )+
e2

t

σ2
t

)
, (10)

we use the threshold accepting implementation suggested in Maringer (2005,
chapter 2). First, a random initial solution for ψψψ is generated. The only con-
straint on this initial solution is that the values of all of parameters must be within
certain limits: In order to avoid negative values for σ2

t , the parameters ψ1, ψ2, and
ψ3 must not be negative. Also the ARCH and GARCH parameters ψ2 and ψ3, re-
spectively, must not exceed 1.4 For ψ0, values within the interval [−1;+1] were
accepted which appeared to be a sufficiently generous range for daily changes in
the exchange rates.

In each of the following iterations, a new solution ψψψ∗ is generated. This is
done by changing one element of the vector ψψψ by adding a random term δ to its

3This approach is based on the idea of data based Monte Carlo simulation as introduced by Ho
and Sørensen (1996).

4A more rigorous constraint would have been ψ2 +ψ3 ≤ 1.
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current value while keeping the other elements unchanged; which of the elements
is changed is also determined randomly. The error term δ is uniformly distributed
within a range [−ui;ui]. ui therefore defines a neighborhood around the current
value of the parameter. As indicated by the index i, ui is subject to change over the
iterations. It proved favorable when the neighborhood is narrowed down during
the optimization process by decreasing ui in regular intervals; Table 1 summa-
rizes the values which appeared most efficient in preceding experiments for this
problem and were therefore chosen for our implementation. If the changed value
would exceed one of the lower or upper bounds used for its initialization, the value
is set equal to this bound.

number of iterations, I 1 000 5 000 10 000 25 000 50 000 100 000
initial value for u .05 .025 .025 .025 .025 .01
terminal value for u .005 .0025 .00125 .00125 .00125 .001

Table 1: Parameters for the Threshold Accepting implementation

After generating the new solution ψψψ∗ by modifying ψψψ , the value of the log-
likelihood function for this new parameter combination, L∗, is determined and
compared to the one of the previous ψψψ , L. If L∗ > L, the random change caused
an improvement, and the modified parameter set ψψψ∗ replaces the previous solu-
tion ψψψ . Contrariwise, L∗ < L means that the random change in ψψψ degraded the
solution. In order to overcome local optima, however, the change is kept anyway
if the impairment is not too severe, i.e., if it does not exceed a given threshold τi.
In short, the random change will therefore be kept if L∗+τi > L, otherwise it will
be undone and ψψψ is kept as the current solution. The initial value for this thresh-
old, τ0, is set to 0.01.5 During the optimization process, it is linearly lowered in
regular intervals towards zero. Hence, the algorithm is rather tolerant in accepting
impairments in the beginning, yet strict during the last iterations.

This local neighborhood search was repeated over a given number of itera-
tions, I. The algorithm then reports the parameter vector ψψψ corresponding to the
highest value of the likelihood function L found in any of these iterations. The al-
gorithm is implemented using the Delphi (Version 7) programming environment
and executed on Pentium IV machines, and the CPU time per optimization run
is in the range of less than a second (for short data series and a low number of

5In preliminary experiments, alternative values depending on I were tested. It turned out,
however, that there is hardly any additional gain by this flexibility when u is variable.
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iterations) up to approximately 20 seconds (for process with 2000 observations
and using 100000 iterations).

4 Results

4.1 Notation

As we consider 6 different values for both T and I and 100 data series, this adds
up to 3 600 different optimization problems. For each of these problems, the al-
gorithm was run approximately R ≈ 1700 times, resulting in a total of 6 146 393
reported solutions. For evaluation purposes, we then computed the mean squared
deviation between the reported parameters and the true (TR) and the maximum
likelihood parameters (ML), respectively:

MSDTR,d,T,I
p =

1
R
·

R

∑
r=1

(
ψd,T,I,r

p −ψTR
p

)2
(11)

MSDML,d,T,I
p =

1
R
·

R

∑
r=1

(
ψd,T,I,r

p −ψML,d,T
p

)2
(12)

where ψd,T,I,r
p is the p-th element of the optimal parameter vector for the data se-

ries d with T observations reported in the r-th run and found within I iterations.
While the true parameters ψψψTR are known from the data generating process and
are the same for all processes d and lengths T (see equation (9)), the (supposed)
maximum likelihood parameters ψψψML,d,T are the best results for process d and
length T reported in any of the runs or by the Matlab toolbox (as described in
section 4.3). Figure 2 illustrates the results for the MSD’s for the GARCH param-
eter ψ3 for one specimen data series d as a function of the sample size T and the
number of iterations I used in the threshold accepting implementation.

4.2 Convergence Behavior

4.2.1 Convergence of the Estimator

In section 2.2 it was stated that the maximum likelihood parameters will converge
to the true values when the length of the data series, T , is increased. Figure 3
depicts the median and the 25% and 75% quantiles, respectively, of the optimal
parameters for the 100 data series in dependence of T . Akin to the stylized graph
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Figure 2: MSDTR (left) and MSDML (right) for ψ3 for one specimen data series

2
4

6
8

5

10

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

ln(T)

ln(I)

ln
( 

M
S

D
M

L (ψ
3) 

)

2
4

6
8

5

10

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

ln(T)

ln(I)

ln
( 

M
S

D
T

R
(ψ

3) 
)

in Figure 1, this illustrates the relationship between the number of observations,
T , and the range within which the maximum likelihood estimators are likely to be
found. In particular for the parameters ψ1 and ψ3, it can be noted that they are
not symmetrically distributed when T is small. This can be partially attributed to
the imposed limits on these parameters (0 ≤ ψi ≤ 1 for i = 1, ..,3). In any case,
however, an increase in T lets the medians eventually converge to the true values,
the range between the upper and lower quantiles narrows down – and, thus, the
mean squared deviations from the true values decrease.

This convergence can be expected to show up also when individual data series
are considered. The left graph in Figure 2 suggests a linear relationship between
the logs of T and MSDTR, i.e., that the maximum likelihood parameters tend to
converge to the true values when a time series is prolonged. The slope of the linear
relationship provides an estimate of the rate of convergence. However, this con-
vergence is not necessarily smooth: If the added observations contain an unusually
high number of outliers, an increase in T might well drive the maximum likelihood
estimators away from their true values (i.e., increases the MSDTR). This effect will
show primarily when the number of observations is still rather low; nonetheless it
might also appear in longer time series, but will eventually disappear as T goes to
infinity.
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Figure 3: Median (thick line) and 25% and 75% quantiles (thin lines) of the max-
imum likelihood estimators of the 100 data series
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To test for this convergence property, we estimate the linear relationship be-
tween the logs of the mean squared deviations from the true values and the number
of observations. In order to isolate effects of the optimization heuristic, we group
the data by the number of the algorithm’s iterations, I, and then estimate the pa-
rameters of the model

ln
(

MSDTR,d,T,I
p

)
= ad,I

p +bd,I
p · ln(T ). (13)

for each data series d = 1 . . .100.
Table 2 summarizes the aggregate results and some statistics. As has been

stated in section 2.3 (and will be confirmed by our empirical results in section
4.2.2), the optimization algorithm will produce more reliable results when it is
allowed a higher number of iterations. Hence, the main focus should be on the
results for I = 100000; however, it is safe to say that if the algorithm is conceded
at least 5000 iterations, the conclusions are virtually the same.6

On average, the mean rate of convergence of MSDTR,d,T,I
p as a function of T

is found to be approximately of the order of 1
T ,7 and it is even faster for ψ1 and

ψ3. The relationship is also supported by the high average R2’s. However, the rel-
atively large standard deviations of the parameters bd,I

p indicate that their values
(and thus the convergence rates) can differ substantially between different real-
izations of the data generating process. We found two main reasons for this. As

6The joint effects of the number of iterations and the number of observations will be discussed
in section 4.2.3.

7This corresponds to the usual rate of convergence of 1√
T

for the parameters.
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Values for bI
p, averaged over d

I MSDTR,I(ψ0) MSDTR,I(ψ1) MSDTR,I(ψ2) MSDTR,I(ψ3)
1000 -0.921 -1.171 -0.394 -0.936
5000 -0.969 -1.950 -1.143 -1.725
10000 -0.969 -1.985 -1.159 -1.716
25000 -0.967 -1.949 -1.157 -1.690
50000 -0.965 -1.912 -1.160 -1.669
100000 -0.962 -1.890 -1.159 -1.643

I Standard deviation of the reported values bd,I
p

1000 0.647 0.641 0.404 0.409
5000 0.724 0.824 0.664 0.663
10000 0.728 0.804 0.698 0.742
25000 0.730 0.815 0.723 0.788
50000 0.734 0.821 0.726 0.796
100000 0.737 0.830 0.731 0.789

I Fraction of values for bd,I
p significantly different from 0 (5%)

1000 0.31 0.50 0.26 0.63
5000 0.26 0.60 0.43 0.62
10000 0.26 0.58 0.44 0.58
25000 0.26 0.53 0.42 0.57
50000 0.26 0.51 0.42 0.58
100000 0.26 0.53 0.42 0.58

I Corresponding values for R2, averaged over d
1000 0.429 0.599 0.397 0.677
5000 0.429 0.646 0.583 0.671
10000 0.428 0.640 0.576 0.652
25000 0.429 0.624 0.567 0.639
50000 0.429 0.617 0.569 0.639
100000 0.428 0.615 0.567 0.639

Table 2: The influence of the number of observations, T , when the maximum
number of iterations, I, is fixed
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mentioned above, when the data series is extended and the additional observations
contain outliers, this might increase the gap between ψψψML and ψψψTR; a further in-
crease in the number of observations, however, will eventually outbalance this
effect. However, the convergence rate is also low when there are hardly any out-
liers within the whole of the data series; in this case, ψψψML is already close to ψψψTR

for small T – and will remain small when T is increased. In these cases, the influ-
ence of T on MSDTR will vanish and bd,I

p will not be significantly different from
0.

On the other hand, if the extreme values of a data series are concentrated in
the first observations, then for short T , ψψψML will differ substantially from ψψψTR.
Adding further observations are then likely to quickly drive the optimal parame-
ters ψψψML towards ψψψTR, and the convergence rate will be substantially above av-
erage. Thus, according to our interpretation of the simulation results, the high
standard deviation is mainly due to small sample effects.

4.2.2 Convergence of Threshold Acceptance

When analyzing the convergence of ψψψML, a crucial question is how reliable the
optimal (i.e., maximum likelihood) parameters are identified in the first place.
When using threshold accepting for the optimization, the central influencing factor
on the reliability is the number of iterations per run: the more iterations, the more
time the algorithm is conceded to find the optimum. Under the assumption of a
linear relationship between the logs of the MSDML and the number of iterations,
I, a model of the type

ln
(

MSDML,d,T,I
p

)
= ad,T

p +bd,T
p · ln(I) (14)

can be estimated for each data series d and fixed length T . Table 3 summarizes the
mean values for bT

p and some statistics. The results confirm the previous consid-
erations: in particular for long data series, the number of iterations has a negative
influence on MSDML. Overall, the mean rate of convergence of MSDML,T as a
function of I is found to be of the order 1

I or faster. Though the convergence rate
differs between data series, these differences diminish the longer the time series
become, as can be seen from the standard deviations for the reported values of
bd,T

p . Also, in many (or, for large T , virtually all) cases, this relationship is sta-
tistically significant. The high average R2’s indicate that I is the main contributor
to the deviation between the reported and the Maximum likelihood parameters for
the GARCH model.
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Values for bT
p , averaged over d

T MSDML,T (ψ0) MSDML,T (ψ1) MSDML,T (ψ2) MSDML,T (ψ3)
50 -0.958 -1.196 -1.328 -1.094
100 -1.257 -1.829 -1.669 -1.734
200 -1.527 -2.561 -2.207 -2.520
400 -1.510 -2.841 -2.518 -2.794
1000 -1.514 -3.026 -2.826 -3.005
2000 -1.366 -3.107 -2.948 -3.099

T Standard deviation of the reported values bd,T
p

50 0.896 1.140 1.005 1.044
100 0.809 1.265 1.001 1.173
200 0.533 0.962 0.757 0.916
400 0.389 0.762 0.570 0.712

1000 0.300 0.362 0.245 0.324
2000 0.250 0.228 0.166 0.202

T Fraction of values for bd,T
p significantly different from 0 (5%)

50 0.65 0.66 0.52 0.69
100 0.79 0.84 0.73 0.80
200 0.97 0.95 0.95 0.96
400 1.00 0.98 0.99 0.98

1000 1.00 1.00 1.00 1.00
2000 0.99 1.00 1.00 1.00

T Corresponding values for R2, averaged over d
50 0.714 0.731 0.682 0.745
100 0.821 0.781 0.769 0.773
200 0.896 0.857 0.857 0.853
400 0.913 0.901 0.891 0.897

1000 0.905 0.946 0.935 0.944
2000 0.895 0.970 0.961 0.968

Table 3: The influence of the maximum number of iterations, I, when the number
of observations, T , is fixed
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4.2.3 Joint Convergence

The empirical results on the convergence of the maximum likelihood estimator
(subsection 4.2.1), in particular the estimated rate of convergence (Table 2)) con-
firm the asymptotic theory. Furthermore, when I is chosen at least proportional to
T , the threshold accepting approximation of this estimator (subsection 4.2.2) will
converge at the same rate to the maximum likelihood estimator. As discussed in
Subsection 2.4, the following joint convergence property results: There exists a
constant λI such that if I is chosen to be λIT , the threshold accepting approxima-
tion ψd,T,I,r

p to ψTR
p satisfies the convergence condition (5) for any given probabil-

ity 1−δ and any ε > 0 when T grows at a rate proportional to 1/ε2. Or, expressed
in other words, the threshold accepting based maximum likelihood estimator of
the GARCH-model parameters converges in probability to the parameters of the
data generating process at the same rate as the theoretical maximum likelihood
estimator.

Thus, the additional stochastic component introduced by the use of a stochas-
tic search heuristic does not destroy the convergence properties of the maximum
likelihood estimator. In fact, as a comparison with a standard approach will show
in the following subsection, the heuristic provides better and more robust results.

Figure 4 depicts the convergence of the maximum likelihood estimates to the
true parameters in dependence of the number of observations for the considered
specimen data series as well as the median and the 10% and 90% quantiles of
the results reported by the threshold accepting algorithm for different numbers of
iterations. The graphs for I = 1000 iterations (top row) exhibit the difficulties of
the algorithm to find the optimal results, i.e. the maximum likelihood estimates,
when I is chosen too small. When considering the quantiles, it turns out that some
of these “bad” reported solutions are actually closer to the true parameters than to
the maximum likelihood estimates. However, this might be rather a special feature
of the data generating process considered in our paper than a general outcome.
Increasing I slightly (second and third row) results in high quality approximations
to the maximum likelihood estimator already for rather small sample sizes.

When the sample size is very short, the optimization problem might become
more demanding. Thus, the threshold accepting algorithm has a higher chance
of converging prematurely to – and eventually reporting a local optimum. In this
case, the quality of the results will benefit from an increase in the number of
iterations, but only to a limited extent: Once the algorithm has converged to a
local optimum, additional iterations will not always drive the search process away
from this solution. Therefore, the approach practiced in our application to use
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Figure 4: Convergence of maximum likelihood estimators (∗) to the true param-
eters (horizontal dotted lines) and median (−�−) and 10% and 90% quantiles
(dashed lines) for I = 1000, 5000 and 25000 maximum iterations for one speci-
men data series
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several restarts R for a given number of iterations I instead of spending all CPU
time on a single run appears to be adequate, in particular for small sample sizes.8

4.3 Comparison to Standard Software

In addition to the threshold accepting approach, we also estimated the GARCH
parameters using the GARCH package for Matlab; Brooks et al. (2001) found this
package to be more reliable than several other standard econometric software pro-
grammes. This package uses a deterministic approach, repeated runs on the same
data series will therefore report equal results. For the 100 different realizations
each with six different values for T , 600 different parameter sets are estimated
with this package. Comparing the reported value of the loglikelihood function to
a ten digit precision, in 253 out of these 600 cases the threshold accepting ap-
proach finds better results, in 259 cases the differences of the reported results are
below precision, and in just 88 cases, the best of all solutions reported by threshold
accepting is inferior to Matlab’s. The advantage of the threshold accepting over
the deterministic approach becomes even more apparent when the magnitude of
the deviations is considered: defining the deviation Δ = LTA−LMatlab, the “worst”
deviation for the threshold accepting is Δ = −0.000001. For the evaluations with
respect to the maximum likelihood estimator, these differences are negligible. The
”best” result for threshold accepting, however, comes with Δ = +9.45, corre-
sponding to a real desaster of the conventional algorithm.

5 Conclusions

For estimation tasks being slightly more complex than ordinary least squares re-
gression, deterministic algorithms will not always provide the theoretical estima-
tor. In this case, the use of optimization heuristics might be an adequate solu-
tion. However, the stochastic features of these algorithms introduce an additional
source of uncertainty to the estimator. In addition to the deviation of the theoret-
ical estimator from the parameters of the data generating process due to the finite
sample size, the approximation error of the search heuristic has to be taken into
account.

If the search heuristic converges to the theoretical estimator for the number of
iterations going to infinity, it is possible to derive a joint convergence result. We

8For a detailed analysis of the tradeoff between restarts and number of iterations for given
computational resources see Winker (2005).
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introduce such a convergence result for threshold accepting applied to maximum
likelihood estimation. Unfortunately, so far, no distributional results are avail-
able for the approximation by threshold accepting. Nevertheless, convergence in
probability is a strong result as compared to standard algorithms.

We apply the method to the maximum likelihood estimation of a GARCH-
model and find that the theoretical joint convergence result holds for the applica-
tion already when setting the number of iterations of the algorithm proportional to
the sample size. Thus, the threshold accepting based estimator has superior con-
vergence properties compared to standard approaches. Furthermore, it generates
better and more robust results already for small samples.

Overall we conclude that the use of stochastic optimization tools in economet-
rics is indicated whenever standard tools fail to generate reliable results. Further-
more, an application of these tools might provide benchmarks when the quality of
standard methods is unknown. Of course, our empirical results resting on a single
data generating process, further evidence is required to assess the robustness of
our findings. Furthermore, it would be highly interesting to derive the distribu-
tion of the results obtained by the optimization tool instead of a convergence in
probability result. These extensions are left for future research.
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