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Abstract: While exchanges and regulators are able to observe and analyze the individual behavior
of financial market participants through access to labeled data, this information is not accessible by
other market participants nor by the general public. A key question, then, is whether it is possible to
model individual market participants’ behaviors through observation of publicly available unlabeled
market data alone. Several methods have been suggested in the literature using classification methods
based on summary trading statistics, as well as using inverse reinforcement learning methods to
infer the reward function underlying trader behavior. Our primary contribution is to propose an
alternative neural network based multi-modal imitation learning model which performs latent
segmentation of stock trading strategies. As a result that the segmentation in the latent space is
optimized according to individual reward functions underlying the order submission behaviors
across each segment, our results provide interpretable classifications and accurate predictions that
outperform other methods in major classification indicators as verified on historical orderbook data
from January 2018 to August 2019 obtained from the Tokyo Stock Exchange. By further analyzing the
behavior of various trader segments, we confirmed that our proposed segments behaves in line with
real-market investor sentiments.

Keywords: neural networks; latent segmentation; imitation learning

1. Introduction

Research into stock traders’ behavior patterns and operating principles is important to understand
the dynamics of financial markets Brock et al. (1992); Obizhaeva and Wang (2013). Many studies
have investigated stock trading strategies using dynamic models Ladley (2012); Rust et al. (1992);
Vytelingum et al. (2004), and neural network models Chavarnakul and Enke (2008); Chen et al. (2003);
Krauss et al. (2017). However, these models cannot explain traders’ behavior perfectly, and more
sophisticated methods are desired.

However, the general problem of modeling market agent behavior from historical data is
complicated by the sheer number of agents and the diversity of their utility functions. It is simply
impractical to try to enumerate them all. Furthermore, most stock trading data are anonymized
Comerton-Forde and Tang (2009), and information about who submitted a certain order is not available.

The goal of this study is to learn stock trader behavior patterns from anonymized historical stock
order data using neural network-based imitation learning (IL) Schaal (1999); Schaal et al. (2003). To realize
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multi-modal imitation learning, we propose latent segmentation Cohen and Ramaswamy (1998); Swait (1994)
of stock trading strategies by trader objective function. Orders are segmented according to the weighted
average of the reward function for each stock trader segment. An IL model is defined for each segment and
trained to predict which trader segment was most likely to have submitted a particular order at a particular
time. We refer to the proposed method as “Latent Segmentation Imitation Learning (LSIL)”.

LSIL was evaluated using both simulated market data and actual historical stock order data.
Experiments using simulated data were conducted to evaluate the validity of latent segmentation,
and experiments on historical stock order data were conducted to examine the accuracy of stock
order predictions made by LSIL. We find that LSIL models are able to predict stock orders with
a degree of accuracy, and also provide meaningful insights into the drivers of trader behavior.
Detailed investigation into changes in market conditions and segments revealed that our proposed
segments behaves in line with real-market investor sentiments.

The primary contributions of this study can be summarized as follows:

1. We propose a neural network-based method for imitation learning of stock trading strategies.
To consider diverse trading strategies, latent segmentation of based on a reward function
is introduced.

2. The proposed method is evaluated using both simulated market data and historical stock
order data. The proposed method was confirmed to provide both accurate stock order predictions
and a meaningful interpretation of trader segment behavior.

2. Related Work

2.1. Modeling Stock Trading Strategies

Modeling stock trading strategies have a long research history. Traditionally, dynamic
model-based approaches apply simple rules and formulas to describe trader behavior. For simulated
markets, various agents that mimic certain idealized real-life trader behavior are defined,
such as random traders Raberto et al. (2001) as well as value and momentum traders
Muranaga and Shimizu (1999). There are also strategies derived from the financial engineering
perspective such as the sniping strategy Rust et al. (1992), the Zero intelligence strategy Ladley (2012),
and the risk-based bidding strategy Vytelingum et al. (2004). More recently, as well as the development
of rule-based strategies Chen et al. (2019); Yu et al. (2019), neural network-based methods Xiao et al.
(2017) have been applied to learn strategies and develop models based on observed data. For example,
deep reinforcement learning (DRL) has been applied in financial markets Meng and Khushi (2019)
as well as deep direct reinforcement learning (RL) Deng et al. (2016) and DRL for price trailing
Zarkias et al. (2019) have been proposed.

2.2. Imitation Learning

Imitation learning (IL) has been studied extensively in applications to robotics, navigation,
game-play, and other areas Hussein et al. (2017). Recently, neural network-based IL
methods, such as one-shot IL Duan et al. (2017); Finn et al. (2017), third-person IL
Stadie et al. (2017), and Generative adversarial IL (GAIL) Ho and Ermon (2016) have been proposed.
Inverse RL has also seen active interest in applications involving learning expert behavior.
Abbeel and Ng (2004); Ng and Russell (2000). Some imitation leaning methods have been applied
to financial tasks Liu et al. (2020).

In related work, other multi-modal IL methods have been proposed
Kuefler and Kochenderfer (2018); Piao et al. (2019). Hausman et al. (2017) proposes a method
for training multi-modal policy distributions from unlabeled data using generative adversarial
networks (GAN) Goodfellow et al. (2014). However, combinations of multiple policies derived from
multiple participants have yet to be studied.
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2.3. Latent Segmentation

Latent segmentation is a method to partition data based on statistical information
Cohen and Ramaswamy (1998), and is primarily seen in marketing approaches based on consumer
segments Bhatnagar and Ghose (2004); Swait (1994). In recent years, latent segmentation using a deep
neural network has been proposed and applied to various tasks Angueira et al. (2019); Ezeobiejesi and
Bhanu (2017); Nguyen et al. (2018); Villarejo Ramos et al. (2019).

3. Latent Segmentation Imitation Learning (LSIL)

As mentioned previously, financial markets consist of stock orders with various objectives,
and these objectives are not self-evident from trading data alone. Since previous studies were
seemingly able to classify trading strategies Yang et al. (2015), we should be able to achieve higher
prediction accuracy by modeling each strategy class. In this study, we assume latent segmentation of
traders Cohen and Ramaswamy (1998); Swait (1994) and that all traders belong to a unique segment
at each time, that each trader may drift between segments, but cannot belong to more than one
segment simultaneously.

Let the latent segments si (i = 1, 2, . . . , N) represent specific trading strategies. Then, the probability
of submitting stock order π(o|X) can be written as

π(o|X) =
N

∑
i=1

p(si|X)πsi (o|X; θi) (1)

where X are market states, p(si|X) is the probability that traders belonging to segment si submit
an order, and πsi (o|X; θi) is the probability that a stock order is submitted by traders in segment
si conditioned on parameter θi. Each πsi (o|X; θi) is predicted using an individual network, which we
refer to as segment level order networks.

Although we can obtain (Xt, ot) pairs from historical stock order data, information about si is
never available. Therefore, we also predict p(si|X) using another neural network that we refer to as
the segment network. The predicted probability of a given segment is written p(si|X; θs), where θs is
the parameter of the segment network.

As mentioned previously, each segment represents an individual strategy. Much like in
reinforcement learning, we introduce an individual reward function for each segment. The reward
function for segment si is denoted rsi (o). Then, with the predicted segment probability, the expected
reward for order o is calculated as follows.

E[r(o)] =
N

∑
i=1

p(si|X; θs)rsi (o) (2)

Since real markets are not perfectly efficient Jung and Tran (2016), we assume there exists a
segment of traders that acts inefficiently. We introduce an exceptional action segment s∗, which has a
uniform reward function and requires ∑N

i=1 p(si|X; θs) + p(s∗|X; θs) = 1. s∗ represents noise traders
Shleifer and Summers (1990) who do not act efficiently, and/or traders whose investment strategies do
not fit our segmentation scheme. The gradient with respect to the parameters in the segment network
θs is calculated as follows:

−∇θs

(
N

∑
i=1

p(si|X; θs)rsi (o) + p(s∗|X; θs)r∗

)
(3)

Appropriate selection of reward function rsi (o) is essential for training the segment network.
Reward functions across the segments are constrained to similar scales in order for training to converge.
In this study, as the simplest case, r(o) is calculated as the profit and loss (P&L) of the order o.
Thus, r(o) can be calculated as follows.
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r(o) = pmid,ø∆I + ∆c (4)

Here, pmid,ø is the mid price of the stock at time τ after order o is submitted. ∆I and ∆c are
change in inventory and cash due to order o and can be calculated from the change of the market
limit-order-book. For LMT and MKT, ∆I is the executed quantity and ∆c is the transaction amount.
∆I ≥ 0 and ∆c ≤ 0 in case of buy LMT or MKT, and ∆I ≤ 0 and ∆c ≥ 0 in case of sell LMT or MKT.
For CXL, ∆I and ∆c are excluded quantity and transaction amount; −1 times executed quantity and
transaction amount of the canceling order. Therefore, differing from LMT and MKT, ∆I ≤ 0 and
∆c ≥ 0 in case of buy CXL, and ∆I ≥ 0 and ∆c ≤ 0 in case of sell CXL.

Here, τ refers to a time scale value, and pmid,ø, ∆I, and ∆c are affected by τ.
Therefore, segments are considered to have individual τ values. By setting a τ value for each segment,
the segment network can be trained.

Each πsi (o|X; θi) can be optimized by standard cross entropy minimization for π(o|X; θ) in
Equation (1). The gradient with respect to each θi takes the form

∇θi CE(ot,
N

∑
i=1

p(si|Xt)πsi (o|Xt; θi)) (5)

where CE is a cross entropy function, and ot and Xt are the observed order and market states.
In addition, the cross entropy gradient with respect to θs can be calculated and added to Equation (3)
as an adjustment term. We performed training and validation of the proposed model with and without
the adjustment term (we refer to these methods as LSIL1 and LSIL2), and the results may be seen in
the experiments section.

4. Neural Network Configuration

4.1. Feature Engineering

As market states X, price series and orderbook features are used.
The price series is comprised of 10 market prices (last or current trade price) taken at certain time

step intervals. The time step intervals were selected according to the time scale value of each cluster τci .
The orderbook features are a arranged in a vector array of the latest orderbook volumes at 10 price

levels above and below the mid-market price. To distinguish buy and sell orders, buy order volumes
are recorded as negative values.

4.2. Stock Order Digitization

We consider a single market and three order types: Limit order (LMT), Market order (MKT),
and Cancel order (CXL). LMT and CXL specify the market side (i.e., buy or sell), prices, and quantities,
and MKT specifies the market side, and quantities.

Orders were digitized based on order type (i.e., LMT, MKT, CXL), order price, and order volume.
In practice, some orders are defined as combinations of two or more types of orders.
For example, price change orders and volume change orders can be interpreted as a combination
of LMT or MKT and CXL. In such a case, the LMT or MKT part of the order that is considered to reflect
the latest intentions of the agents, is extracted.

Order price and volume are digitized into possible values. For price, 10 prices above and below
the mid price are possible. For volume, up to five times the minimum trading unit is possible, and CXL
orders are digitized with negative volume. LMT and CXL orders have (10 + 10)× (5 + 5) = 200
possible values, and MKT orders that do not specify prices have 5 + 5 = 10 possible values.
Thus, 210 values are possible, and orders that do not match any condition are discarded.
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4.3. Network Architecture

The proposed network architecture is shown in Figure 1. The network consists of the segment
network and segment level order networks. Networks outputs are aggregated by Equation (1) and
the overall order probability π(o|X) is calculated. Reward and order probability losses are calculated
using the predicted probabilities, observed order, and reward functions for each segment.

Figure 1. Overview of the proposed network. The network consists of the segment network and
segment level order networks. The segment network predicts segment probability, and segment level
order networks predict segment level order probabilities. The overall order probability is calculated
by aggregating segment and segment level order probabilities. Loss functions are calculated with
predicted probabilities, observed order, and reward functions for each segment.

Segment network and segment level order networks have the same layer configuration, except for
the last fully-connected layer. In these networks, two market state features, price series and orderbook
(Section 4.1), are extracted and merged. To extract price series features, a long short-term memory
(LSTM) Hochreiter and Schmidhuber (1997) layer is used according to previous studies Bao et al. (2017);
Fischer and Krauss (2018). Convolutional layers Krizhevsky et al. (2012) are used to extract orderbook
features that have positional information Tashiro et al. (2019); Tsantekidis et al. (2017). Merged features
are transformed by fully-connected layers and the segment or order probability is output from the
last layer.

5. Experiments

Experiments were performed using simulated market data and historical market data.
In experiments using simulation data, we ran an artificial market simulation in advance, and trained
neural network models using the generated data. The objective of the experiments on artificial
data was to verify that the proposed LSIL model could predict segment probability correctly in an
idealized setting where order-trader pair information is available. In experiments using historical data,
we trained models using actual public stock trading data from the Tokyo Stock Exchange.
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The proposed LSIL method was used to train networks with and without the adjustment term
(Section 3). We refer to the networks as LSIL1 and LSIL2, respectively, and the proposed method was
compared to a standard IL model and GAIL model. The IL model has the same layer configuration
as the LSIL segment level order networks and simply predicts order probabilities from market states.
The GAIL model is based on sequence generative adversarial nets (SeqGAN) Yu et al. (2017) and
generates order sequences without using market states. In addition, a network, which we refer to as
segment IL (SIL) with the same network architecture as LSIL, was optimized to minimize only order
probability loss and not reward loss.

Model performance was compared using the following benchmarks: precision at k (P@k),
area under receiver operating characteristic (AUROC), and expected reward E[r(o, X)]. Precision at k
is the percentage of correct answers included in the top k classes in predicted scores. P@k and AUROC
are calculated for predicted order probabilities. Expected reward E[r(o, X)] is calculated to validate
LSIL predicted cluster probability. As reward values are centered, positive E[r(o, X)] indicates that the
LSIL model can predict segment probability appropriately.

5.1. Experiments on Simulated Data

We ran an artificial market simulation to generate a dataset, and used the dataset to train and
validate our LSIL models. The artificial market simulator consists of markets and agents where markets
play the role of the environment whose state evolves through the actions of the agents. In each step
of simulation, an agent is sampled, the agent submits an order, and markets process orders and update
their orderbooks. Market pricing follows a continuous double auction Friedman and Rust (1993).

We define a fundamental price pF for the market. The fundamental price represents the fair price of
the asset/market, is observable by stylized agents and is used to predict future prices. The fundamental
price changes according to a geometric Brownian motion (GBM) Eberlein and Keller (1995) process.
The volatility of the GBM was set to 5× 10−6.

Stylized agents are commonly used in artificial market simulations to model the behavior of
realistic economic actors Hommes (2006), and reproduce many stylized facts of actual financial markets
Chiarella and Iori (2002); Chiarella et al. (2009). Stylized agents predict expected future log return r
using the following equation:

r =
1

wF + wC + wN
(wFF + wCC + wN N) (6)

where

F =
1
τ

log(
p∗t
pt
) (7)

C =
1
τ

log(
pt

pt−τ
) (8)

N ∼ N (µ, σ2) (9)

and pt and p∗t are current market price and fundamental price, respectively, and τ is the time window
size (or time scale). Weight values wF, wC, and wN are sampled randomly and independently from
exponential distributions for each agent. The stylized agents predict future market prices pt+τ from
the predicted log return using the following equation:

pt+τ = pt exp(rτ) (10)

A stylized agent submits a buy LMT with price pt+τ(1− k) if pt+τ > pt, and submits a sell LMT
with price pt+τ(1 + k) if pt+τ < pt. The parameter k is the called order margin and represents the
amount of profit that the agent expects from the transaction. In this experiment k was set to 0.01.
The submitting volume v is fixed to one.
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In this study, the following seven types of stylized agents are registered to the simulator:
Type 1 (15 ≤ τ ≤ 25), Type 2 (30 ≤ τ ≤ 50), Type 3 (60 ≤ τ ≤ 100), Type 4 (120 ≤ τ ≤ 200),
Type 5 (240 ≤ τ ≤ 400), Type 6 (480 ≤ τ ≤ 800), and Exceptional (w f = wc = 0). Noise weights
wN were fixed at 0 for for types 1 to 6. To prevent chart term C from becoming too dominant,
the expected value of chart weights wC was attenuated according to τ.

These types of stylized agents reflect our assumption that agents with some type of time scale exist.
Here, 100 agents were registered for types 1 to 6 and 400 agents were registered for the exceptional type.

One simulation consists of 101,000 steps where the first 1000 steps were used to build up the
initial market orderbook and subsequently discarded. Simulations were performed 10 times with
changing random seeds, and the data from the first eight simulations were used for training and the
data of the remaining two simulations were used for validation.

According to the configured types of stylized agents, LSIL segments si were set as follows:
s1: τ = 20, s2: τ = 40, s3: τ = 80, s4: τ = 160, s5: τ = 320, s6: τ = 640, and s∗: Exceptional.

The results of modeling are shown in Table 1. For all indicators of order prediction accuracy,
the proposed LSIL2 outperformed all other methods. We find that our proposed method worked
well without the adjustment term. In addition, since the expected rewards of LSIL1 and LSIL2
were both positive at 0.1127 and 0.0721, we believe LSIL1 and LSIL2 were able to predict segment
probabilities appropriately. Appropriate prediction of segment probabilities also contributed to the
improvement of prediction accuracy as shown in Table 1.

Table 1. Order prediction accuracy for artificial stock order data. Predicted order probabilities are
validated with precision at k = 1, 5, 10, and AUROC.

Model P@1 ↑ P@5 ↑ P@10 ↑ AUROC ↑
IL 0.0436 0.1764 0.2889 0.8416

GAIL 0.0166 0.0713 0.1391 0.8263
SIL 0.0546 0.2181 0.3796 0.9071

LSIL1 0.0518 0.1959 0.3446 0.9016
LSIL2 0.0606 0.2439 0.4094 0.9120

5.2. Experiments on Historical Data

We used FLEX_FULL historical full-order-book data from the Tokyo Stock Exchange.1

FLEX_FULL contains tens of millions of stock order data per day recorded in millisecond resolution
Brogaard et al. (2014).

In this experiment, data for symbol 9022 (Central Japan Railway Company) collected between
1 January 2018 and 31 December 2018 were used for training, and data collected between 1 January 2019
and 31 August 2019 were used for validation. Training and validation samples were extracted every
10 available samples. The segments si of LSIL were set to the same values as the experiments using
artificial data.

The average of each segment probability along all validation data is p(s1) = 0.4362, p(s2) = 0.0517,
p(s3) = 0.0500, p(s4) = 0.0893, p(s5) = 0.1348, p(s6) = 0.1835, and p(s∗) = 0.0546 while the LSIL1
and LSIL2 rewards were 0.0371 and 0.0179. We thus see that traders with the shortest-term rewards
are dominant in this market and in agreement with the ratio of orders submitted from the co-location
site at the TSE.

The accuracy results are shown in Table 2. We can see that SIL, LSIL1, and LSIL2 predicted
orders with similar accuracy. Although LSIL2 outperforms on simulated data, we attribute its
underperformance on historical data to the simplicity of our reward function specification. In general,
real-market investors are considered to have a wide variety of “reward functions”, and therefore more

1 https://www.jpx.co.jp/english/markets/paid-info-equities/realtime/index.html.

https://www.jpx.co.jp/english/markets/paid-info-equities/realtime/index.html
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diverse types of reward functions are needed for more accurate prediction. Nevertheless, we are able to
obtain salient features of the most dominant segments.

Table 2. Order prediction accuracy for historical stock order data. Predicted order probabilities are
validated with precision at k = 1, 5, 10, and AUROC.

Model P@1 ↑ P@5 ↑ P@10 ↑ AUROC ↑
IL 0.1344 0.4347 0.6266 0.9371

GAIL 0.0456 0.2388 0.4155 0.9091
SIL 0.1392 0.4469 0.6381 0.9407

LSIL1 0.1401 0.4466 0.6376 0.9406
LSIL2 0.1398 0.4463 0.6371 0.9404

An example of predicted segment probability is shown in Figure 2. It shows changes of segment
probabilities predicted using trained LSIL2 model and market prices over time. Segment probabilities
fluctuate as market states (market price, orderboook, etc.) change. In this case, we see the market price
rose suddenly at the end of the plot, and the probability of s1 temporarily increased just before the rise
of the market price. s1 is the segment of traders with the shortest-term rewards. In general, short-term
investors are considered to act when price fluctuations are expected immediately afterwards, and the
increase in the probability of s1 in Figure 2 is reasonable. Although there are some price fluctuations
that are not linked to price fluctuations, we are able to interpret meaningful behavior patterns and
gain insight into the agents driving the dynamics of real markets.

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

s1( = 20)
s2( = 40)
s3( = 80)

s4( = 160)
s5( = 320)

s6( = 640)
s  (Exceptional)

09:06 09:07
Time

25020

25040

M
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ke
t p
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e

Figure 2. Example of predicted segment probabilities using the trained Latent Segmentation Imitation
Learning (LSIL)2 model (4 April 2019). The predicted probability of each segment changes over time.
In this case, the market price rose suddenly at the end of the plotted period, and the probability of
s1 temporarily increased just before the rise of the market price. This probability change indicates a
short-term traders action in anticipation of price fluctuations.
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6. Conclusions

Traders’ behavior prediction is an essential issue in financial market research, and it would be very
useful if individual investment strategies could be extracted even from anonymized data. The proposed
latent segmentation method was able to predict stock order submission probabilities more accurately
with latent segmentation compared to naive IL and GAIL. This result shows that the proposed method
was able to separate and approximate appropriate strategies. While the predicted segment probabilities
by the proposed method are but one of many realizations, we find that our predicted behavior can
give useful insight into the profit and loss timescales driving market participants’ behaviors under
different market scenarios.

The limitation of this study is that the segmentation ability largely depends on the design of the
reward function. Real-market investors have a wide variety of objectives Jensen (2001), and rule-based
reward functions cannot fully represent them. In future work, we intend to consider a more detailed
segmentation based on selection and scaling of reward functions. In addition, we also intend to apply
inverse reinforcement learning (IRL) methods Hadfield-Menell et al. (2016); Ng and Russell (2000)
for training reward functions from historical trading data. By using IRL, more appropriate reward
functions that will improve validity of the segmentation can be obtained.
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