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Abstract

The Hodrick-Prescott (HP) filter has become a widely used tool for detrend-
ing integrated time series in applied econometric analysis. Even though the
theoretical time series literature sums up an extensive catalogue of severe
criticism against an econometric analysis of HP filtered data, the original
Hodrick and Prescott (1980, 1997) suggestion to measure the strength of
association between (macro-)economic variables by a regression analysis of
corresponding HP filtered time series still appears to be popular. A con-
tradictory situation which might be justified only if HP induced distortions
were quantitatively negligible in empirical applications. However, this hy-
pothesis can hardly be maintained as the simulation results presented within
this paper indicate that HP filtered series give seriously rise to spurious re-
gression results.
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1 Introduction

Two decades after its introduction in a working paper by Hodrick and Prescott
(1980, 1997) the so-called Hodrick-Prescott (HP) filter plays a prominent role
in econometric time series analysis.1 The method is easily applied to extract a
stochastic trend moving smoothly over time just as one would draw it with a free
hand and generates stationary series for data generating processes (DGPs) being
integrated up to order four. But even though the widespread usage of HP filtered
data in empirical studies might seem well motivated at a first glance, the proce-
dure has been and still is objected to severe criticism.2

On the one hand, from a theoretical point of view, its underlying assumption of
an independent secular-cyclical decomposition of economic time series does not
have to be fulfilled naturally.3 On the other hand, from a methodological point
of view, every filtering technique4 has to distort the characteristics of the original
data set as it is impossible to construct an ideal filter with a finite number of
observations.5 Thus, the practioner is confronted with a fundamental question:
Does it make sense to use (HP) filtered data for further econometric analysis?

Despite all criticisms, the HP filter is still widely applied to actual and artifi-
cial time series. First of all, the influential paper by Hodrick and Prescott (1980,
1997) inspired many real business cycle advocates.6 In this tradition, for instance,
Fiorito and Kollintzas (1994) study output fluctuations of G7 economies whereas
Christodoulakis, Dimelis and Kollintzas (1995) compare business cycle features of
EC-members. Further exemplary applications of the HP technique can be found
on the field of monetary policy analysis: Razzak (1997), e.g. estimates a non-linear
expectations-augmented Phillips curve. Orphanides and van Norden (2002) com-

1 See, e.g. Pedersen (2001): “The most widely used filter is the Hodrick-Prescott filter . . . ”.
2 The most popular reviewers of the HP filter are Cogley and Nason (1995), Ehlgen (1998),

Guay and St-Amant (1997), Harvey and Jaeger (1993), King and Rebelo (1993) and Park (1996).
3 As an example, see the following remark of King and Rebelo (1993): “The dividing lines

virtually disappear in models of endogenous economic growth, in which transient displacements
to the dynamic system have permanent consequences for the paths of economic quantities”.

4 Statistical theory offers a large set of alternative filtering methods like deterministic time
trends, first-order differences, the Beveridge and Nelson procedure, unobserved components
models or frequency domain techniques. As we do not intend to provide a complete survey of
the variety of possible filtering procedures in this paper, the reader is invited to look up Canova
(1994, 1998) or Pedersen (2001) for complementary presentations and comparisons of the most
popular detrending methods.

5 For an illustrative empirical study of this topic see Canova (1998) who points out “that
both quantitatively and qualitatively ’stylized facts’ of U.S. business cycles vary widely across
detrending methods”.
Studies based on prefiltered data therefore should be complemented by a comparison of the
results for different detrending methods. See Bjørnland (2000) for an example.

6 We do not replicate the complete list of standard references at this place as the interested
reader finds a comprehensive summary of prominent HP applications in Ravn and Uhlig (2002).
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pare HP filter performance with alternative detrending methods in estimating the
output gap whereas Grant (2002) employs the HP technique in an empirical study
of Okun’s law. Recently, Bouakez, Cardia and Ruge-Murcia (2003) used linearly
detrended as well as HP filtered data for a study of the effects of monetary shocks
on output.

This established practice lately received new support by Pedersen (2001), who
compares the distortionary effects of ten different linear filters and concludes that
the HP filter is the less distorting one for a class of AR(1)-processes. Due to
this lasting prominence,7 the following pages examine the effects of HP filter-
distortions in a regression context. After a formal description of the method and
a closer discussion of its properties in section 2, section 3 presents the results of a
Monte Carlo study which indicate a serious risk of spurious regressions. Section 4
summarizes the main findings and provides our conclusions.

2 The HP Filter

The decomposition procedure of the HP filter assumes that a given time series yt

was generated as sum of a cyclical component ct and a stochastic trend τt being
uncorrelated with this cycle:

yt = τt + ct . (1)

Being interested in smoothly varying trend components, Hodrick and Prescott
(1980, 1997) operationalize this idea by a penalty function which balances the
trade-off between “goodness-of-fit” and “degree of smoothness” of the trend esti-
mate in the following way.

min
τt

T∑
t=1

(yt − τt)
2 + λ

T−1∑
t=2

[(τt+1 − τt)− (τt − τt−1)]
2 . (2)

Obviously, any empirical application of equation (2) forces the researcher to choose
a numerical value for the smoothing parameter λ.8 Hodrick and Prescott suggested
to set λ = 1600 for quarterly data and, indeed, almost every quarterly based HP
application did rely on this proposal whereas for other data frequencies no com-
mon practice seems to have been established until today.9

7 See, e.g. Ravn and Uhlig (2002): “. . . [the HP filter] has withstood the test of time and the
fire of discussion remarkably well. Thus . . . it is likely that the HP filter will remain one of the
standard methods for detrending.”

8 0 ≤ λ ≤ ∞. With λ increasing, the trend variability decreases. In the limiting case λ →∞
the trend becomes perfectly linear.

9 By setting λ = 1600 Hodrick and Prescott aimed at fulfilling the restriction λ = σ2
τ

σ2
c

(στ and
σc indicating the standard deviations of the trend and the cyclical component, respectively).
Statistical derivations of optimal smoothing parameters for varying sampling frequencies are
provided by Ravn and Uhlig (2002) and Pedersen (2001).

3



Early studies of the properties of the HP filter have been presented by Singleton
(1988) and King and Rebelo (1993). For stationary series, it operates as a sym-
metric linear filter which induces no phase shifts, serves as close approximation
to an ideal high-pass filter eliminating frequencies of 32 quarters or greater (see
figure 1 which visualizes the power transfer functions of an ideal linear high-pass
filter for frequencies of 32 quarters or greater and the one of the HP filter with
λ = 1269)10 and, as the results in Pedersen (2001) suggest, is less distorting than
other approximate high-pass filters.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Frequency
Figure 1: Power transfer functions: Ideal high-pass and HP filter (solid)

However, the HP filter is typically applied to non-stationary series. Even
though King and Rebelo (1993) showed that it generates stationarity for data
sets being integrated up to order four together with the conditions for the HP
filter being optimal in the sense of Wiener (1949), heavy criticism rose against
this common practice.
First, due to its imposed restrictions, a careless application of HP filtered data can
be criticized from an economical perspective. Singleton (1988), e.g. points out
that the fundamental hypothesis of independent trend and cyclical components
was already rejected by Burns (1934) whereas Smant (1998) stresses the perfect-
foresight character of HP detrended series.11 Furthermore, equation (1) neglects
any influences due to additional time series components like seasonal variations

10 From the definition of the fundamental frequency ω = 2π/T (T representing period length
in the time domain), it immediately follows that an ideal high-pass filter for T = 32 should give
zero weights to frequencies less than π/16 ≈ 0.196 whereas the higher frequencies should be
given a weight equal to one.

11 A critique that can be raised against every filter calculating actual estimates on the basis
of future observations.
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or noise terms. Empirical applications of the HP technique are therefore often
performed to seasonal adjusted series. Nevertheless, as any seasonal adjustment
procedure also creates distortions, this common practice cannot be justified easily
by statistical theory.
Second, from a methodological perspective, King and Rebelo (1993) showed that
HP filtering can only be optimal when the original series were integrated of or-
der two. But as many macroeconomic time series are well approximated by first
difference stationary DGPs, the warning of Cogley and Nason (1995) against ap-
plying the HP filter to first-order integrated or near unit root processes must be
taken seriously. Similar criticism is raised by Harvey and Jaeger (1993), Guay
and St-Amant (1997) and Park (1996). They show that an application of the HP
filter to integrated series creates artificial business cycles. Furthermore, this prob-
lem deepens with the degree of integration. In addition to that, Ehlgen (1998)
shows that even if the optimality conditions for the HP filter are met its appli-
cation always alters the autocorrelations and standard deviations of original series.

3 Simulation

This section summarizes the findings of two Monte Carlo studies considering the
main characteristics of HP filtered series in a regression setup. Within subsec-
tion 3.1 two independent autoregressive processes are simulated and regressed on
each other. Our findings indicate serious pitfalls for a regression analysis of HP
detrended series: For near unit root DGPs, OLS-test statistics of prefiltered series
do suffer from significant size distortions. Furthermore, the additional simulation
exercises of subsection 3.2 point out that HP filering might seriously detach the
underlying dynamics of a multivariate DGP.

3.1 MC-Study of Independent AR(1)-Processes

Within this subsection, we are going to present the results of AR(1)-simulation
exercises which use the findings of Pedersen (2001) that HP detrending with λ =
1269 is the least distorting filtration method12 for a stationary autoregressive
process of the form

yt = 0.9 · yt−1 + ut . (3)

12 Note that Pedersen derives this result by a comparison of ten different filters including the
seemingly preferable Baxter and King (1999) band-pass filter. Additionally, Pedersen also shows
that the extra-distortions induced by the suboptimal standard λ = 1600 assumption seem to be
small overall.
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For each simulation run we generated a pair of independent time series

y1
t = φ1y1

t−1 + εt (4)

y2
t = φ2y2

t−1 + ψt , (5)

where εt and ψt are iid-distributed white noise processes with standard deviations
σε = 0.0375 and σψ = 0.15, respectively. As the HP filter assumes the absence of
high frequency signals like, e.g. seasonal dummies, this setup – labelled setup A
in the sequel – seems preferable to us.13 Subsequently, the artificial series passed
the HP filter with λ = 1269, yielding artificial trend and cyclical components yt

i
HP

and yt
i
cycl. Then, the following OLS-regressions were estimated:

y1
t = α1y

1
t−1 + α2y

2
t−1 + ut (6)

y1
t cycl = β1y

1
t−1cycl

+ β2y
2
t−1cycl

+ vt (7)

y1
t HP = γ1y

1
t−1HP

+ γ2y
2
t−1HP

+ wt (8)

This procedure was replicated a thousand times in order to record the events of
5%-significant t-statistics of the estimated (structural non-explanatory) parame-
ters α̂2, β̂2 and γ̂2.

14

Finally, these simulations were performed for 81 different parameter-constellations
fulfilling 0 ≤ φi ≤ 0.99.15 For illustrative purposes figure 2 visualizes a stochas-
tic realization of both processes (upper panel) together with their estimated HP
trends (lower panel) for the near unit root case φ1 = φ2 = 0.99.16

3.1.1 Results for the Unfiltered Series

Running 1000 regressions with a chosen significance-level of 5% should yield about
50 (erroneously) significant α̂2-estimates for the original time series realizations.
An examination of table 1 shows that this assumption seems to be violated only in
the near unit root case φ1 = φ2 = 0.99. A successful filter, however, might at least
slightly decrease the number of significant estimation results for φi ∈ {0.90, 0.95}.

13 Nevertheless, additional simulation exercises based on seasonal DGPs have also been carried
out. See appendix A for an account of these complementary findings.

14 Each simulation run was based on 480 observations generated by equations (4) and (5)
with starting values y1

1 , y2
1 set equal to zero. Yet, to avoid distortions due to initializing-effects,

the first 80 observations were dropped, so the effective estimation samples were based on 400
artificial observations. Replications of this simulation exercise with 50, 100 and 200 observations
per sample did not seem to affect the qualitative findings.

15 This interval was chosen, because Pedersens technique for the derivation of optimal smooth-
ing parameters is restricted to the class of stationary DGPs.

16 The corresponding HP cyclical components are plotted in figure 3.
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Figure 2: DGP-Realizations (upper panel) and estimated HP trends

Table 1: Setup A: Regression results for equation (6)

T = 400 φ1

φ2 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.00 66 42 72 57 45 49 46 49 40
0.05 52 60 42 41 53 52 55 62 43
0.10 51 51 66 55 44 57 40 57 57
0.25 47 40 51 59 69 53 52 43 56
0.50 49 52 40 50 60 53 51 49 56
0.75 37 55 55 55 53 52 54 45 50
0.90 47 57 58 49 53 53 64 64 55
0.95 60 44 65 47 59 54 58 64 71
0.99 48 51 51 53 57 49 55 61 94

Entries indicate number of significant t-statistics
for α̂2 (at 5%-level) in 1.000 replications
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3.1.2 Results for the HP Cyclical Components

The estimated HP cyclical components y1
t cycl, y2

t cycl shown in figure 3 correspond
to the exemplary pair of series introduced by figure 2.

0 50 100 150 200 250 300 350 400
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0
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0.4

0.6

Figure 3: HP cyclical components

Simulating 1000 pairs of artificial HP cyclical components with varying con-
stellations of the autoregressive parameters the regression setup according to equa-
tion (7) yields the results summarized by table 2. Comparing these results with
the ones for the unfiltered series, some quite amazing observations have to be
pointed out.

Table 2: Setup A: Regression results for equation (7)

T = 400 φ1

φ2 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.00 72 52 76 64 53 64 62 40 56
0.05 66 66 52 52 63 62 58 45 47
0.10 71 47 76 63 53 62 64 52 70
0.25 57 49 61 61 78 62 41 43 54
0.50 48 59 55 68 83 81 58 63 69
0.75 56 60 58 62 74 70 77 78 64
0.90 55 65 52 64 69 98 93 91 99
0.95 55 51 66 58 72 92 96 97 117
0.99 54 52 47 63 79 84 94 90 92

Entries indicate number of significant t-statistics

for β̂2 (at 5%-level) in 1.000 replications
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Whereas for the unfiltered series the evidence of distorted significance statistics
appeared limited to the φ1 = φ2 = 0.99 case, for the estimated cyclical components
the whole interval 0.75 ≤ φi ≤ 0.99, at least, must be suspected of generating spu-
rious regression results. Furthermore, for the one and only really problematic case
of table 1 (the nearly integrated case with both autoregressive parameters close
to one) the qualitative improvements gained by estimating filtered series instead
of nearly integrated level data seem to be rather poor.17

Overall, the HP application obviously worsened things. For the unfiltered data,
only 1 parameter-regime did yield more than 75 significant estimates whereas for
the HP cyclical components the number of these events increased up to 20. To
put it another way: In almost 25% of our simulation exercises the estimated HP
cyclical components of two independent DGPs suffered evidently from spurious
regression results.

3.1.3 Results for the Artificial HP Trends

Our study restricts itself to an analysis of stationary DGPs, so the estimated
HP trends themselves also have to be stationary. An exemplary time series plot
of two HP estimates y1

HP , y2
HP for the most interesting parameter constellation

φ1 = φ2 = 0.99 has already been introduced by the lower panel of figure 2. As
expected, almost all variability of the original series (upper panel of figure 2) has
been smoothed out by the HP filter. Note however that the filtration process
obviously induced spurious cyclical patterns for series y2

HP . Note further that,
whereas series y1

HP seems to run more or less vertically at a first glance, a prelim-
inary visual inspection cannot exclude the potential pitfall of both filter-outcomes
following similar filtration induced structures.18

We therefore turn over to an inspection of the regression results for equation (8),
i.e. regressing HP trend components on each other, which have been summarized
in table 3. The findings of table 3 are apparently striking. There do exist severe
pitfalls in an econometric interpretation of HP trends:
For more than 82% of the parameter combinations in our simulation study the
number of significant estimates γ̂2 exceeds the number of the insignificant ones.
Even for the “best performing” simulation (φ1 = 0.99, φ2 = 0.50), more than
every fourth regression wrongly indicates a significant correlation.19

17 Yet, as can be checked by the tables of appendix A, this conclusion is slightly softened for
the seasonal DGPs.

18 As the ordinates of figure 2 have been scaled to match the relative high standard deviation
of y2 it might be impossible to recognize similar patterns for the less volatile y1 series.

19 Furthermore, this problem seriously deepens in the presence of additional seasonal signals.
See appendix A.
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Table 3: Setup A: Regression results for equation (8)

T = 400 φ1

φ2 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.00 574 537 566 567 604 570 537 484 311
0.05 592 581 573 564 555 603 522 479 301
0.10 595 579 589 573 576 561 532 459 302
0.25 574 573 549 604 553 578 544 491 282
0.50 587 585 568 575 585 570 536 483 269
0.75 581 580 591 617 585 565 539 488 318
0.90 618 622 618 609 635 577 592 564 380
0.95 638 633 635 646 643 636 644 624 459
0.99 658 679 683 663 660 662 660 661 625

Entries indicate number of significant t-statistics
for γ̂2 (at 5%-level) in 1.000 replications

Overall, there seems to exist a positive correlation between HP distortions and the
variance of the original DGPs.20 However, with regard to table 3 we can hardly
expect suitable situations for any regression analysis of HP trend estimates.

20 The events of spurious significance tend to decrease with rising φ1 and to increase with
rising φ2.
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3.2 MC-Study of an Estimated VAR-Process

This section presents simulation results for an exemplary empirical HP appli-
cation.21 After a short description of the example, subsection 3.2.2 studies the
impact of HP filtering on simulated series with well defined causality structure.
Subsection 3.2.3 completes this analysis with a study of the impact of the HP filer
on two independently generated series.

3.2.1 The Empirical Example

The upper panel of figure 4 shows a plot of logged real GDP series for the United
States and Germany over the period 1975:1-2001:4.22 In addition to the level
data, a time series plot of the corresponding HP estimated cyclical components23

is given by the lower panel of figure 4.
The filtration process obviously succeeded in separating two stationary24 series

which seem to be governed by similar dynamic patterns over the sample period.
In applied econometric research one would usually tend to interpret these simi-
larities as international business cycle linkages which might be analyzed by the
means of correlation-analysis or error-response-estimates (see, e.g. International
Monetary Fund, 2001, Sachverständigenrat zur Beurteilung der gesamtwirtschaft-
lichen Entwicklung, 2001 or Weyerstraß, 2002).25 For our simulation study, we
follow the approach employed by the German council of economic advisors26, i.e.
considering error-response-estimates for the HP estimated cyclical components.
However, even if we assume the existence of a cointegration relation between the
level series due to theoretical considerations, the results of table 2 indicate that
any apparent correlation between HP filtered series might be an artefact generated
by the filtration process itself.

21 This approach corresponds to the idea of “data based Monte Carlo methods” introduced
by Ho and Sørensen (1996).

22 Data taken from the OECD Main Economic Indicators Database. The German series is
based on observations for unified Germany. However, given that data for unified Germany are
not available prior to 1990, we follow the approach chosen by the German council of economic
advisors (Sachverständigenrat zur Beurteilung der gesamtwirtschaftlichen Entwicklung, 2001):
The official data series for unified Germany have been recursively backcasted from 1993 on by
historical West-German growth rates.

23 According to the common λ = 1600 assumption of empirical research.
24 For convenience, the results of augmented Dickey-Fuller-Tests for the series of figure 4 are

given by table 14 in the appendix.
25 An alternative approach would consist in a test for cointegration of the level data using, e.g.

the Engle and Granger (1987) procedure. Let yGER and yUS denote the logged level-GDP series
for Germany and the U.S., which have to be treated as I(1)-variables (see the corresponding
ADF-test results of table 14 in the appendix). Regressing yGER on yUS and a constant (see
table 15 in the appendix), the null of no cointegration between both series cannot be rejected
at a 10%-level (see table 16 in the appendix). Consequently, a regression analysis of these level
series might be subject to the spurious regression fallacy.

26 Sachverständigenrat zur Beurteilung der gesamtwirtschaftlichen Entwicklung (2001).
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Figure 4: German (dashed) and U.S. (solid) logged GDP, HP cyclical components

We try to assess the risk of a spurious regression fallacy for this example
by means of Monte Carlo simulations based on data generating processes which
mimic the empirical data under two assumptions. In subsection 3.2.2 the case of a
cointegrated bivariate DGP is analyzed, while in 3.2.3, the simulated DGP does
not allow for any business cycle spill-overs between both series.

3.2.2 Simulation Results for Interdependent Processes

Within this subsection we are going to simulate a cointegrated bivariate DGP.
Aiming at the specification of a well defined structural VAR, we start by estimat-
ing an unrestricted VAR-model for the logged level data. Considering standard
information criteria we choose a lag order of p = 2, so we estimate the following
model:27

Y t = C + Φ1Y t−1 + Φ2Y t−2 + εt , (9)

27 See table 17 for a detailed account of estimation results.
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where

Y t =

(
yUS

t

yGER
t

)
, C =

(
cUS

cGER

)
, εt =

(
εUS
t

εGER
t

)
,

εt ∼ N(0,Σ) , and E(εtε
′
t−h) =

{
Σ for h = 0

0 for h 6= 0
.

Economic theory suggests a strong impact of yUS on yGER but only modest feed-
back effects from yGER to yUS.28 And, indeed, the OLS-estimation of a VEC-
specification of equation (9):

∆Y t = CV EC + α · EC + ΦV EC∆Y t−1 + εt , (10)

with
EC = 1.9724 + yUS

t −1.4614
[−15.2266]

·yGER
t , (11)

results in a significant loading coefficient in the German equation whereas the U.S.
series does not seem to adjust to the long-run German development.29

We therefore decide to simulate a DGP according to the following parameter
restrictions:

ΦV EC =

(
φV EC

11 0
φV EC

21 φV EC
22

)
, α =

(
0
α2

)
. (12)

Under these restrictions, the reorganized results of a SUR-estimation of equa-
tion 10 yield the following parametrization:30

yUS
t = 0.0052 + 1.3280 · yUS

t−1 − 0.3280 · yUS
t−2 + εUS

t (13)

yGER
t = 0.1116 + 0.1247 · yUS

t−1 − 0.0707 · yUS
t−2

+ 0.8580 · yGER
t−1 + 0.0630 · yGER

t−2 + εGER
t ,

Σ̂ =

(
6.11E − 05 7.14E − 06
7.14E − 06 8.57E − 05

)
.

The simulation setup considered within this subsection can now be summarized
as follows: Taking the historical observations for 1974:3 and 1974:4 as starting
values a stochastic simulation of model (13) generates a pair of artificial time
series yUS and yGER, each consisting of 400 observations.

28 Beck and Winker (2004) analyze these feedback mechanisms in a structural model of the
German economy complemented by VEC models for the bilateral trade flows.

29 See table 18 in the appendix.
30 See table 19 in the appendix for a comprehensive overview of the estimation results.
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These simulated level series then have to pass the HP filter (yielding a pair of
artificial cyclical components {yUS

cycl, y
GER
cycl })31 as well as the first difference filter

(yielding a pair of artificial growth rates series {yUS
∆ , yGER

∆ }).
Next, for each pair of simulated series ({yUS, yGER}, {yUS

cycl, y
GER
cycl }, {yUS

∆ , yGER
∆ })32

a bivariate VAR(p)-model is estimated according to the following specification-
algorithm:

1. Choosing the Initial Lag Length p̂SC

As the Schwarz-Criterion is known to be strongly consistent (see, e.g. Lütke-
pohl, 1993, p. 132), the initial lag length p̂SC is estimated by minimizing
the Schwarz-Criterion for all p ∈ {1, 2, . . . , 9}.33

2. Hypothesis Testing

(a) Residual Autocorrelation
The presence of residual autocorrelation is tested up to order 9 by
means of a multivariate LM-test (see, e.g. Johansen, 1995, p. 22, for
details). In case of rejection of the null at a 5%-level, the initial lag
order is increased by one and the VAR is being reestimated with the
new specification. This procedure is repeated until the hypothesis of
no serial correlation cannot be rejected. However, the maximum lag
order is limited to p̂MAX = 9. Therefore, even in case of any remain-
ing autocorrelations, this testing procedure will be abandoned for lag
orders greater than nine.

(b) Residual Heteroskedasticity
As far as the autocorrelation test was not terminated with p̂MAX the
residual diagnostics continue with a system analogue of White’s (1980)
LM-test for heteroskedasticity (see Doornik, 1996, for computational
details). Again, a 5%-significant system LM-statistic causes model-
reestimation with increased lag order. This procedure is repeated until
the null of no heteroskedasticity cannot be further rejected or p̂MAX is
reached, respectively.

31 Note that the underlying DGP rests on AR(2)-processes. Considering this class of autore-
gressive processes, Pedersen (2001) indicates that HP filtering with a conventional smoothing
parameter of λ = 1600 appears to induce worse distortions than, inter alia, HP detrending based
on a numerical value of λ = 1007. We therefore decided on a dual simulation setup: The esti-
mation procedures described within this chapter have been simulated for the common λ = 1600
approach as well as for Pedersens λ = 1007 suggestion. However, our findings appear to be very
robust to changes in the smoothing parameter.

32 See figure 5 for exemplary realizations of these series.
33 Obviously, the “cut off” lag had to be chosen ad hoc. However, considering the implied loss

of degrees of freedom we doubt that any macroeconometrician would consider more than nine
lags in a quarterly based VAR-analysis whereas, e.g. Canova and Marrinan (1998) estimate a
VAR with nine lags and a constant on detrended output series.
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(c) Normality Test
For the multivariate normality test we employ a residual factorization
originally suggested by Doornik and Hansen (n.d.). The resulting test
statistic is invariant to ordering and scale of the estimated VAR and
follows a χ2(4)-distribution under the null (see Doornik and Hansen,
n.d., for details). Rejection of the normality assumption again forces
a VAR-reestimation with increased lag length as far as the maximum
lag order is not exceeded.

The algorithm therefore results with three separately estimated VARs (for the
simulated level series, their first differences and the HP estimated trend-deviations,
respectively), each of them following the structure given by equation (14).

Y n
t = Ĉ

n
+ Φ̂

n

1Y
n
t−1 + . . . + Φ̂

n

p̂nY n
t−p̂n + ε̂n

t , (14)

ε̂t ∼ N(0, Σ̂) , and E(ε̂tε̂
′
t−h) =

{
Σ̂ for h = 0

0 for h 6= 0
,

with Y n denoting the corresponding pair of series, i.e.

Y n =

(
yUS

yGER

)
, or

(
yUS

cycl

yGER
cycl

)
, or

(
yUS

∆

yGER
∆

)
, respectively ,

and 0 < p̂n < 10 .

Next, we test within each of the estimated VARs whether the lagged values of
yGER (yGER

cycl , yGER
∆ , respectively) could be excluded from the regressor list for the

corresponding U.S. series, i.e. we test:

H0 : Φ̂
n

i =

(
φ̂i

11 0

φ̂i
21 φ̂i

22

)
(14.1)

versus

H1 : Φ̂
n

i =

(
φ̂i

11 φ̂i
12

φ̂i
21 φ̂i

22

)
, i = 1, . . . , p̂n .

Additionally, we also test whether the lagged U.S. observations might be excluded
from the regressor list for the corresponding German series:

H0 : Φ̂
n

i =

(
φ̂i

11 φ̂i
12

0 φ̂i
22

)
(14.2)

versus

H1 : Φ̂
n

i =

(
φ̂i

11 φ̂i
12

φ̂i
21 φ̂i

22

)
, i = 1, . . . , p̂n .

15



50 100 150 200 250 300 350 400
7

8

9

10

11

50 100 150 200 250 300 350 400
−0.05

0

0.05

50 100 150 200 250 300 350 400
−0.05

0

0.05

Figure 5: Simulated level series (upper panel), corresponding HP estimated cycli-
cal components (mid panel) and simulated growth rates (lower panel)

Both tests are carried out as likelihood ratio tests by multiplying the difference
between the log-determinants of the restricted and the unrestricted models by the
number of degrees of freedom.34

34 The resulting statistic λLR is known to have an asymptotical χ2-distribution. However,
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Note that the estimated LR-statistics for the simulated level data should not
suffer from any size distortions as the underlying DGP does establish a cointe-
gration relation between both series. Note further that the DGP parametrization
given by equation (13) restricts the order of integration of both series to one. Con-
sequently, we should not expect any problems arising from a spurious regression
fallacy. These theoretical considerations can be checked easily by counting the
number of significant test results in sufficient replications of the simulation setup.

With the given set of historical starting values, the simulation exercise was per-
formed a thousand times. Then, a second set of 1000 simulations was computed,
based on historical observations for 1974:4 and 1975:1, followed by a third loop
of 1000 simulations (starting in 1975:1 and 1975:2) and so on.Finally, after 72
replications of the simulation tasks, our resulting findings can be summarized as
shown by table 4.35

Table 4: Interdependent simulation results

λ Quantities of significant LR-test statistics
Regressors L(yGER) L(yUS) L(yGER

cycl ) L(yUS
cycl) L(yGER

∆ ) L(yUS
∆ )

1600 Mean 64.2 995.3 128.6 492.1 54.6 772,6
Std.Dev. 6.6 2.1 14.7 44.8 7.1 31.0

1007 Mean 62.5 994.9 126.8 464.6 55.3 773.9
Std.Dev. 7.2 2.1 16.8 41.3 7.5 32.7

Mean indicates the mean number of significant LR-statistics (at 5%-level)
over 72 simulations each consisting of 1.000 tested sets of hypotheses.
Std.Dev. stands for the sample standard deviation of the mean.

At a 5% level, successive replications of 1000 tests for the non-binding hypothesis
of the German series Granger-causing the U.S. series should end up with a mean
of approximately 50 accidental significant statistics. For the level data (column
3) as well as for the first difference filter (column 7) this assumption seems to be
reasonably fulfilled. Yet, the test statistics for the HP detrended series (column
5) obviously suffers from size distortions: The empirical size of a likelihood ratio
test based on estimated HP trend deviations approximately equals the empirical
size of the level data multiplied by a factor of two.

taking estimation errors and the limited length of economic time series into account, one would
usually prefer to divide λLR by the number of tested restrictions as this results with an approx-
imately F -distributed test statistic. Therefore, all reported results for the tests (14.1), (14.2)
and (15.1) actually rest on a comparison of the computed values for λLR

p̂n with the tabulated
5% critical values of a F -distribution with (p̂n) numerator and (400 − 2 · p̂n − 1) denominator
degrees of freedom. (See, e.g. Lütkepohl, 1993, p. 93f, for a methodological discussion of this
topic.)

35 As indicated by its first column, table 4 summarizes the results of two independent simu-
lation exercises. Overall, a change in the HP smoothing parameter does not appear to have a
significant impact on our findings.
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Furthermore, for the HP filtered series the true characteristics of the original DGP
can only be tested significantly in about 50% of our simulation runs (column 6),
whereas for the first difference filter this figure after all exceeds 75%. However,
due to the higher convergence rate of integrated series, causality-tests based on
the original level data impressively prove their superior power in this simulation
setup (column 4).

3.2.3 Independent Simulation Results

This section completes our study with a simulation setup based on two indepen-
dent univariate DGPs. The following pair of autoregressive equations seems to
provide a reasonable description of the logged level data:

yUS
t = 1.3057 · yUS

t−1 − 0.3050 · yUS
t−2 + εUS

t (15)

yGER
t = 0.9093 · yGER

t−1 + 0.1273 · yGER
t−2 + 0.1073 · yGER

t−3

+ 0.0913 · yGER
t−4 − 0.2348 · yGER

t−5 + εGER
t ,

Σ̂ =

(
6.13E − 05 1.28E − 05
1.28E − 05 8.75E − 05

)
.

According to the foregoing simulation setup, 1000 pairs of independent time series
yUS, yGER, each spanning over 400 observations, were generated by stochastic
simulations of model (15). These series again had to pass the HP filter as well
as the first difference filter, yielding output gap estimates as well as growth rates
estimates. Then, following the algorithm described in section 3.2.2, VAR-models
were specified and estimated for each couple of simulated series.
As the true DGP given by model (15) is characterized by a zero skew diagonal
for all parameter matrices Φi (i = 1, 2, . . . , 5), we are now especially interested in
the empirical size of a likelihood ratio test for the following restrictions:

H0 : Φ̂
n

i =

(
φ̂i

11 0

0 φ̂i
22

)
(15.1)

versus

H1 : Φ̂
n

i =

(
φ̂i

11 φ̂i
12

φ̂i
21 φ̂i

22

)
, i = 1, . . . , p̂n .

Replicating the testing procedures a thousand times for 72 different starting val-
ues, the resulting findings can be summarized as shown by table 5: The averaged
results for the differenced series range around their nominal level of 5% whereas
more than 20% of the level-based test procedures wrongly indicate the tested re-
strictions as binding. However, for the HP detrended data the amount of spurious
regression results appears to be important, too. The empirical size of the HP
based likelihood ratio tests approximately equals the nominal size multiplied by
a factor of two (see column 4 of table 5).
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Table 5: Independent simulation results

Quantities of significant
LR-Test statistics

λ Regressors L(y) L(ycycl) L(y∆)

1600 Mean 209.1 107.9 54.2
Std.Dev. 12.9 11.8 6.2

1007 Mean 207.2 107.5 53.5
Std.Dev. 14.2 9.3 7.3

Mean: Mean number of significant LR-statistics (5%-level).
Std.Dev.: Sample standard deviation.

Summarizing the results of tables 4 and 5, there is obviously much to be said
against an regression analysis of HP detrended time series. Yet, where do these
deficiencies actually stem from? Subsection 3.2.4 will give a hint.

3.2.4 Further Simulation Results: Estimated Lag Orders

Let us turn back to subsection 3.2.2 for a short time before we come to our
conclusions. As already introduced by equations (14) and (9), this setup dealt
with the estimation of VAR(p̂)-processes for a simulated DGP which constitutes
a cointegrated VAR(2) in levels. We know that the applied specification algorithm
allowed for a maximum lag order of p̂MAX = 9, but which lag specifications have
been overall preferred? Table 6 gives the answer and reveals some insightful
structures.

Table 6: Interdependent simulation results

λ Quantities of lag order estimates p̂
1600 Series 1 2 3 4 5 6 7 8 9

Levels 22.3 680.1 24.9 9.9 4.4 2.1 1.0 0.4 254,9
Gaps 13.3 544.4 42.8 19.1 11.7 7.3 4.8 3.2 353.6

Diffs. 747.3 40.1 14.1 7.1 3.7 1.8 0.7 0.4 184,8

1007 Levels 21.8 676.0 25.3 9.9 4.6 2.1 1.3 0.4 258.7
Gaps 12.1 561.8 50.0 18.7 12.4 6.8 4.4 3.0 330.8
Diffs 746.5 41.4 14.5 6.9 3.5 1.7 0.7 0.3 184.3

Figures indicate the average number of selected V AR(p̂) specifications after
72 repetitions of the simulation exercise described in subsection 3.2.2.
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Averaged over 72 different simulation exercises our specification procedure de-
tects the true lag order of the differenced series (symbolized by the Diffs. entry)
in three out of four cases.36 For the simulated level series (Levels) at least two out
of three specified VARs end up with the correct lag length. For the HP detrended
series (Gaps), however, this amount decreases to approximately 55%.
Additionally, due to failed residual miss-specification tests, about every third HP
based VAR-model is being estimated with the maximum lag length. This figure
averages twice the amount of miss-specified models for the differenced series. Com-
pared to the results for the simulated level series it still outnumbers the amount
of miss-specified level models for more than a third. An objective evidence of the
underlying causations of this effect remains for future research.

4 Conclusion

Hodrick and Prescott (1980, 1997) originally suggested to measure the strength
of association between (macro-)economic variables by a regression analysis of cor-
responding HP filtered time series. With regards to our findings this proposal
should not be accepted for the following reasons:

1. For cointegrated series, the power of traditional test statistics seems to be
heavily weakened by pre-filtering whereas the test statistics of the unfiltered
series are known to converge at a higher rate.

2. For not cointegrated series, the problem of spurious regression results might
be extensively worsened by an application of the HP procedure whereas the
first difference filter proves to provide reliable results.

Our experimental setup therefore confirms and strengthens the complementary
methodological criticisms about the HP approach being subject to the Nelson
and Kang (1981) critique “. . . that inappropriate detrending of time series will
tend to produce apparent evidence of periodicity which is not in any meaningful
sense a property of the underlying system. . . .The dynamics of econometric models
estimated from such data may well be wholly or in part an artifact of the trend
removal procedure.”

36 A look back to equations (9) and (10) confirms that the first differences of the simulated
DGP can be represented as a VAR(1)-process.
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A Further Univariate Simulation Results

Within section 2 we already mentioned that HP outcomes might become dis-
torted by neglected high frequency signals like, e.g. seasonal variations. Conse-
quently, the previously presented simulation results considered “plain” autoregres-
sive DGPs without any seasonal influences. However, as empirical time series usu-
ally are characterized by significant seasonal patterns, this appendix summarizes
complementary results for seasonal DGPs.37 By adding four seasonal dummies to
equations (4) and (5) we constructed the following DGPs:

y1
t = φ1y1

t−1 + θ1
1s

1
1 + θ1

2s
1
2 + θ1

3s
1
3 + θ1

4s
1
4 + εt (16)

y2
t = φ2y2

t−1 + θ2
1s

2
1 + θ2

2s
2
2 + θ2

3s
2
3 + θ2

4s
2
4 + ψt (17)

Again, 480 observations were generated, now according to processes (16) and (17)
with starting values y1

1, y2
1 set equal to zero. Concerning the numerical parameter

values, two different setups were simulated: Whereas setup B considers the case
of centralized seasonals (

∑4
i=1 θj

i = 0 ∀ j ∈ {1, 2}), the complementary non-
centralized (

∑4
i=1 θ2

i 6= 0) case is studied within setup C. Table (7) summarizes
the individual parameter constellations.

Table 7: Simulation setups

Setup DGP No. σ θ1 θ2 θ3 θ4

B (1) 0.0375 -0.3 0.4 0.6 -0.7
B (2) 0.15 -06 -0.2 0.1 0.7
C (1) 0.0375 -0.3 0.4 0.6 -0.7
C (2) 0.15 0.2 0.1 -0.7 0.1

Seasonal dummies were also added to the OLS-regressor-lists. The estimated
equations therefore can be formally written as:

y1
t = α1y

1
t−1 + α2y

2
t−1 + α3s1 + α4s2 + α5s3 + α6s4 + ut (18)

y1
t cycl = β1y

1
t−1cycl

+ β2y
2
t−1cycl

+ β3s1 + β4s2 + β5s3 + β6s4 + vt (19)

y1
t HP = γ1y

1
t−1HP

+ γ2y
2
t−1HP

+ γ3s1 + γ4s2 + γ5s3 + γ6s4 + wt (20)

Simulating and regressing thousand artificial series for varying autoregressive pa-
rameters and bookkeeping the events of 5%-significant estimates α̂2, β̂2 and γ̂2, we
derived the following tables of results:

37 In additional simulation exercises deterministic time trends were also included in the re-
gressor lists for yt and y1

t HP . This kind of modification did not seem to induce any systematic
variation of the findings so the corresponding results will not be published, though, it goes
without saying that they are available on request to the authors.
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A.1 Setup B Regression Results

Table 8: Setup B: Regression results for equation (18)

T = 400 φ1

φ2 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99
0.00 62 44 51 54 40 49 55 48 44
0.05 52 60 55 41 42 42 39 48 47
0.10 54 52 44 48 52 44 57 48 30
0.25 55 51 51 47 40 50 50 51 54
0.50 51 52 40 41 57 46 61 49 52
0.75 53 51 55 57 44 60 54 51 54
0.90 55 53 47 46 53 50 61 60 75
0.95 56 55 49 47 56 53 64 64 93
0.99 57 55 47 62 66 58 70 83 114

Table 9: Setup B: Regression results for equation (19)

T = 400 φ1

φ2 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99
0.00 74 66 62 63 59 57 39 43 40
0.05 61 65 61 53 59 64 51 45 45
0.10 61 57 54 59 69 50 45 53 46
0.25 67 64 63 66 61 53 51 58 46
0.50 56 62 60 55 71 70 75 65 60
0.75 52 59 67 54 70 89 65 79 74
0.90 46 61 52 54 77 72 89 86 96
0.95 64 62 46 48 68 88 94 79 90
0.99 50 76 54 54 88 76 89 85 101

Table 10: Setup B: regression results for equation (20)

T = 400 φ1

φ2 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99
0.00 630 600 639 611 619 587 567 550 520
0.05 623 618 603 594 618 595 596 495 492
0.10 632 637 614 625 588 594 571 527 451
0.25 610 649 601 602 603 585 575 476 422
0.50 609 620 609 600 601 599 569 523 441
0.75 586 626 624 597 565 612 558 542 429
0.90 623 617 636 625 613 602 601 595 509
0.95 623 626 638 632 651 639 664 610 562
0.99 652 618 642 665 652 684 668 674 687
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A.2 Setup C Regression Results

Table 11: Setup C: Regression results for equation (18)

T = 400 φ1

φ2 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99
0.00 65 46 49 46 49 63 48 45 54
0.05 46 48 52 50 49 58 54 55 49
0.10 42 53 51 42 57 48 55 50 41
0.25 58 39 49 59 54 50 52 41 48
0.50 45 52 40 47 42 51 49 42 52
0.75 61 59 57 48 46 53 61 57 41
0.90 41 46 44 55 57 46 57 61 59
0.95 40 55 43 43 35 57 54 64 88
0.99 52 56 53 52 54 57 64 76 141

Table 12: Setup C: Regression results for equation (19)

T = 400 φ1

φ2 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99
0.00 72 46 49 50 57 53 41 41 53
0.05 47 57 63 62 52 64 48 46 39
0.10 52 61 58 50 63 57 58 53 43
0.25 64 45 56 60 75 54 58 58 57
0.50 60 64 50 61 73 69 75 56 65
0.75 70 66 67 61 68 89 80 79 72
0.90 45 47 61 71 62 83 101 82 74
0.95 44 54 49 59 46 84 91 73 102
0.99 44 60 69 57 70 112 84 83 98

Table 13: Setup C: Regression results for equation (20)

T = 400 φ1

φ2 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99
0.00 623 610 635 615 608 581 570 545 508
0.05 592 621 589 597 587 589 547 524 460
0.10 612 573 586 626 599 556 549 531 435
0.25 580 582 579 583 591 567 562 497 467
0.50 590 570 595 593 613 591 584 499 517
0.75 594 596 597 616 615 592 583 515 465
0.90 621 628 624 602 619 625 617 591 490
0.95 636 637 644 629 651 668 601 619 545
0.99 674 665 660 628 690 678 666 692 663
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B Further VAR-Simulation Results

In the regression tables, estimated standard deviations are shown in parenthesis
whereas the t-statistics are be given in brackets.

Table 14: Results of ADF-Tests for individual series

Sample: 1975:1 2001:4
Series Lags Statistic

yUS 12 -0.3205
yGER 0 −0.9010
yUS

cycl 12 -3.8932**

yGER
cycl 4 -4.6986**

yUS
∆ 11 -4.0987**

yGER
∆ 4 -4.2403**

Table 15: Static regression results

Dependent Variable
Regressor yGER

t

0.7063
yUS

t (0.0122)
[58.1084]
1.1573

c (0.1062)
[10.8957]

Regression statistics
Sample 1975:1 2001:4

R2 0.9696

R
2

0.9693∑
ε̂2
t 0.0956

σ̂ 0.0300
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Table 16: Engle-Granger-Test results

Sample: 1976:2 2001:4
Series Lags Statistic t0.10 t0.05 t0.01

ût 4 -2.72 -3.04 -3.34 -3.90
t0.01, t0.05 and t0.10 denote asymptotic critical values
for cointegration tests at a 1%, 5% and 10% level,

given by table 20.2 of Davidson and MacKinnon (1993).
Lag order selection based on the AIC.

Table 17: Unrestricted VAR-Estimation results

VAR-Regression Results
Sample: 1975:1 2001:4

Dependent Variable
Regressor yUS

t yGER
t

1.3222 0.1242
yUS

t−1 (0.0933) (0.1108)
[14.1753] [1.1210]
-0.3169 -0.0687

yUS
t−2 (0.0967) (0.1149)

[-3.2754] [-0.5975]
- 0.0039 0.8570

yGER
t−1 (0.0820) (0.0974)

[-0.0481] [8.7991]
-0.0065 0.0622

yGER
t−2 (0.0796) (0.0946)

[-0.0821] [0.6574]
0.0355 0.1123

c (0.0419) (0.0497)
[0.8471] [2.2574]

Regression statistics
R2 0.9989 0.9971

R
2

0.9989 0.9969∑
ε̂2
t 0.0066 0.0093

σ̂ 0.0080 0.0095
F : L(yGER) = 0 0.0770 414.2914

p− value 0.9259 0.0000
F : L(yUS) = 0 1520.7040 3.7920

p− value 0.0000 0.0258
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Table 18: VECM-Estimation results

VECM Regression Results
Sample: 1975:1 2001:4
Cointegration-Relation:

EC = 1.9724 + yUS
t −1.4614

[−15.2266]
·yGER

t

Dependent Variable
Regressor ∆yUS

t ∆yGER
t

0.0092 0.0551
EC (0.0180) (0.0214)

[0.5085] [2.5770]
0.3138 0.0690

∆yUS
t−1 (0.0963) (0.1142)

[3.2597] [0.6046]
0.0071 -0.0622

∆yGER
t−1 (0.0793) (0.0941)

[0.0890] [-0.6612]
0.0052 0.0051

c (0.0011) (0.0013)
[4.8289] [3.9811]

Regression statistics
R2 0.1123 0.0790

R
2

0.0867 0.0525∑
ε̂2
t 0.0066 0.0093

σ̂ 0.0080 0.0095
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Table 19: Bivariate DGP – SUR estimation results

DGP Regression Results
Sample: 1975:1 2001:4
Cointegration-Relation:

EC = 1.9724 + yUS
t −1.4614

[−15.2266]
·yGER

t

Dependent Variable
Regressor ∆yUS

t ∆yGER
t

0.0000 0.0540
EC (0.0209)

[2.5877]
0.3280 0.0707

∆yUS
t−1 (0.0898) (0.1120)

[3.6545] [0.6311]
0.0000 -0.0630

∆yGER
t−1 (0.0919)

[-0.6861]
0.0052 0.0051

c (0.0010) (0.0013)
[5.1074] [4.0524]

Regression statistics
R2 0.1101 0.0790

R
2

0.1017 0.0525∑
ε̂2
t 0.0066 0.0093

σ̂ 0.0079 0.0095
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