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Abstract: Estimation of the causal effect of a binary treatment on outcomes often requires conditioning
on covariates to address selection concerning observed variables. This is not straightforward when one
or more of the covariates are measured with error. Here, we present a new semi-parametric estimator
that addresses this issue. In particular, we focus on inverse propensity score weighting estimators
when the propensity score is of an unknown functional form and some covariates are subject to
classical measurement error. Our proposed solution involves deconvolution kernel estimators of the
propensity score and the regression function weighted by a deconvolution kernel density estimator.
Simulations and replication of a study examining the impact of two financial literacy interventions on
the business practices of entrepreneurs show our estimator to be valuable to empirical researchers.

Keywords: program evaluation; measurement error; propensity score; unconfoundedness; financial
literacy

1. Introduction

Empirical researchers in economics, finance, management, and other disciplines are often interested
in the causal effect of a binary treatment on outcomes. In some cases, randomization is used to ensure
comparability across the treatment and control groups. However, researchers must rely on observational
data when randomization is not feasible. With observational data, concern over the non-random
selection of subjects into the treatment group becomes well-founded. Addressing the possibility
of non-random selection requires much of the data at hand. Moreover, even with randomization,
demands on the data may be non-trivial since randomization only balances covariates across the
treatment and control groups in expectation.

In this paper, we consider the case where adjustment for observed covariates is performed to
recover an unbiased estimate of the effect of a treatment. Thus, we are restricting ourselves to the case
of selection on observed variables. The econometric and statistics literature on the estimation of causal
effects in the case of selection on observed variables has grown tremendously of late.1 This has led
to the proliferation of statistical methods designed to estimate the causal effect(s) of the treatment,
including parametric regression methods, semi- or non-parametric methods based on the propensity
score, and combinations thereof.

Despite the growing number of estimation methods, there are only a few that take into account
measurement errors in the data. Here, we present a new semi-parametric estimator that partially fills

1 See Imbens and Wooldridge (2009) and Abadie and Cattaneo (2018) for excellent surveys.
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this gap. In particular, we focus on the case when the propensity score is of an unknown functional
form and some covariates are subject to classical measurement error. There are two issues to be dealt
with to estimate the treatment effect in such a situation: first, we need to estimate the functional
form of the propensity score; second, we need to estimate the moment of a known (or estimated)
function of mismeasured covariates. The first issue is solved by using deconvolution kernel regression.
For the second issue, as the sample analogue is no longer feasible due to the unobservability of the
error-free covariates, we consider the integration weighted by deconvolution kernel density estimator.

We illustrate our estimator both via simulation and by revisiting the randomized control trial
(RCT) on financial literacy examined in Drexler et al. (2014). In the experiment, micro-entrepreneurs
taking out a loan from ADOPEM, a microfinance institution in the Dominican Republic, are randomly
assigned to one of three treatment arms to assess the causal effect of financial literacy programs on
a firm’s financial practices, objective reporting quality, and business performance. The first treatment
provided subjects with standard accounting training. The second treatment provided rule-of-thumb
training that covered basic financial heuristics. The final group received neither training and serves as
the control group. The authors find significant beneficial effects of the rule-of-thumb training, but not
the standard accounting training.

We revisit this study for three reasons. First, proper evaluation of financial literacy interventions is
critical. As documented in Lusardi and Mitchell (2014), financial literacy in the US and elsewhere seems
woefully inadequate for individuals and small business owners to navigate complex financial matters.
Mckenzie and Woodruff (2013, pp. 48–49) offer the following vivid description:

“Walk into a typical micro or small business in a developing country and spend a few
minutes talking with the owner, and it often becomes clear that owners are not implementing
many of the business practices that are standard in most small businesses in developed
countries. Formal records are not kept, and household and business finances are combined.
Marketing efforts are sporadic and rudimentary. Some inventory sits on shelves for years at
a time, whereas more popular items are frequently out of stock. Few owners have financial
targets or goals that they regularly monitor and act to achieve.”

As evidenced in this quote, the lack of financial literacy among micro-entrepreneurs has real
consequences. Lusardi and Mitchell (2014) discuss the wider impacts of a lack of financial literacy,
such as lower participation in financial markets, poor investment decisions, susceptibility to financial
scams, inadequate retirement planning, increased credit card and mortgage debt, etc. See Morgan and
Trinh (2019) for a recent example.

While the impacts are well-documented, knowledge of the efficacy of various programs aiming to
teach financial literacy is inadequate. Specifically, the causal effect of specific types of financial literacy
training interventions is relatively unexplored. Existing research typically lumps all financial literacy
programs together, potentially masking insights into what works and what does not. For example,
Fernandes et al. (2014) perform a meta-analysis of 201 studies assessing the impact of financial literacy
and education programs on financial behaviors, finding that interventions explain only 0.1% of the
variance in financial behaviors. By comparing two different training programs, Drexler et al. (2014)
represent an important contribution to the literature.

Second, better understanding the determinants of successful microenterprises is critical in lesser
developed countries. Berge et al. (2015, p. 707) state: “Microenterprises are an important source of
employment, and developing such enterprises is a key policy concern in most countries, and in
particular in developing countries where they employ more than half of the labor force.” However,
the viability of microenterprises has been found to be heterogenous, as the authors further note that
“a growing literature shows that success cannot be taken for granted” (p. 707). Recent research has
focused on sources of this heterogeneity, finding that it is not explained fully by variation in capital
(Bruhn et al. 2018). The study by Drexler et al. (2014) addresses this issue by exploring the impact of
different types of financial literacy training on firm success.
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Finally, our proposed estimator is well-suited to the application. To start, despite training being
randomly assigned, the authors control (via regression) for several covariates to increase the precision
of the treatment effect estimates. Moreover, one covariate is continuous and potentially suffers from
classical measurement error. This covariate reflects the size of the loan received by the entrepreneur.
While this variable is unlikely to be mismeasured as it is obtained from bank records, arguably the
‘true’ covariate of interest is a measure of capital investment in the firm by the entrepreneur. This could
be below the official size of the loan due to some funds being diverted to non-business use, or above
the official size of the loan due to other funds being used to supplement the loan. As Drexler et al.
(2014, p. 2) note, “for microenterprises the boundary between business and personal financial decisions
is often blurred.”

Applying our proposed estmator, we find the results in Drexler et al. (2014) to be generally
robust to ‘modest’ amounts of measurement error. However, for a few outcomes, the magnitude of the
estimated treatment effect changes. With greater amounts of measurement error, the results are not
surprisingly less robust. Typically in such cases we find larger point estimates once measurement error
is addressed.

The remainder of the paper is organized as follow. Section 2 provides a brief overview of the
literature on measurement error in covariates. Section 3 provides an overview of the potential outcomes
framework, discusses identification with and without measurement error in covariates, and presents
our proposed estimator. Section 4 studies the small sample properties of the proposed estimators by
simulation. Section 5 contains our application to assessment of two financial literacy interventions.
Section 6 concludes.

2. Measurement Error in Covariates

A small literature has considered measurement error in an observed covariate when estimating
the causal effect of a treatment in the case of selection on observed variables. In a regression context
with classical measurement error, it is well known that the Ordinary Least Squares (OLS) estimate
of the coefficient on the mismeasured regressor suffers from attenuation bias (see, e.g., Frisch 1934;
Koopmans 1937; Reiersol 1950). However, bias will also impact the estimated treatment effect if
treatment assignment is correlated with the true value of the mismeasured covariate (Bound et al. 2001).
The sign of this covariance determines the sign of the bias. If the measurement error is correlated with
treatment assignment (i.e., it is nonclassical), then the direction of the bias depends on whether the
partial correlation between the measurement error and treatment assignment is positive or negative
(Bound et al. 2001). Finally, if multiple covariates suffer from measurement error, then one is typically
unable to sign the bias even under classical measurement error (Bound et al. 2001).

With classical measurement error, a consistent estimate of the treatment effect can be recovered
using Instrumental Variable (IV) estimation, where the mismeasured covariate(s) are instrumented
for using valid exclusion restrictions. However, this solution places further demands on the data as
valid instruments must be available. As an aside, it is also important to realize that the estimated
treatment effect will still be inconsistent if treatment assignment is correlated with the measurement
error (Bound et al. 2001).

Beyond the regression context, several recent papers consider the effect of measurement error in
one or more covariates when relying on semi- or non-parametric estimators of the treatment effect.
Battistin and Chesher (2014), extending early work in Cochran and Rubin (1973), focus on the bias
of treatment effect parameters estimated using semiparametric (propensity score) methods. The bias,
which may be positive or negative, is a function of the measurement error variance. The authors
consider bias-corrected estimators where the bias is estimated under different assumptions concerning
the reliability of the data.

McCaffrey et al. (2013) develops a consistent inverse propensity score weighted estimator for
the case when covariates are mismeasured. In particular, the authors consider a weight function of
mismeasured covariates whose conditional expectation given the correctly measured covariates equals



J. Risk Financial Manag. 2020, 13, 290 4 of 24

the error-free inverse propensity score. Their estimator is then constructed based on approximating the
weight function by projecting the inverse of the estimated propensity score onto a set of basis functions.
To estimate the propensity score with mismeasured covariates, knowledge of the measurement error
distribution is generally needed. It is worth noting that the measurement error considered in this paper
could be non-classical, as only conditional independence between the measurement error and the
outcome and the treatment given the correctly measured covariates is required. As a cost to this extra
flexibility, the authors only establish consistency; further characterization of the asymptotic properties
are left as a gap to be filled.

Jakubowski (2010) assesses the performance of propensity score matching when an unobserved
covariate is proxied by several variables. The author considers two estimation methods. The first is
a propensity score matching estimator where the propensity score model includes the proxy variables.
The second is also a propensity score matching model except now the propensity score model includes
an estimate of the unobserved covariate obtained via a factor analysis approach.

Webb-Vargas et al. (2017) examines the performance of inverse propensity score weighting with
a mismeasured covariate. The authors then consider an inverse propensity score weighting estimator
that replaces the mismeasured covariate with multiple imputations. The imputations make use
of an auxiliary data source that contains both the true covariate and the mismeasured covariate.
Each imputation leads to a unique propensity score model and hence a distinct estimate of the
treatment effect. These multiple estimates are then combined into a final estimate.

Rudolph and Stuart (2018) assess the performance of three approaches to deal with measurement
error in covariates when applying propensity score estimators. The first approach is propensity score
calibration which, similar to Webb-Vargas et al. (2017), relies on an auxialiary data source that contains
both the true covariate and the mismeasured covariate. The second approach is a bias-corrected
technique based on the fomulas derived in VanderWeele and Arah (2011). As these bias formulas
depend on various unknown sensitivity parameters, this technique relies on either external data to
make educated guesses concerning the values of these parameters or sensitivity analysis using a grid of
plausible values. The final approach is similar and relies on the sensitivity (to unobserved confounders)
approach of Rosenbaum (2010) for matched pairs.

Hong et al. (2019) perform an extensive simulation exercise to explore the impact of multiple
mismeasured covariates with and without correlated measurement errors. The authors find that
correlation in the measurement errors can exacerbate the bias and that including auxiliary variables
that are correlated with the true values of the mismeasured covariates may help mitigate the bias.

In sum, it is now well known that measurement error in covariates that belong in the propensity
score model introduces bias in the estimated treatment effect. While a few solutions have been proposed,
these solutions have not completely solved the problem. Some solutions rely on auxiliary data that
contain both the true and mismeasured covariates. Other solutions are based upon bias-corrected
estimates requiring the specification of parameter values whose true values are typically unknown.
Finally, some solutions are based on trying to reduce the bias through the use of multiple proxies or
assessing how severe the measurement error would have to be to explain the treatment effect ignoring
measurement error.

Compared to most of these existing works, our estimator has the advantage of not requiring
a specific functional form of the propensity score so that it can avoid the bias caused by potential
model misspecification. McCaffrey et al. (2013) is an exception as it also treat the propensity as
a nonparametric object. However, instead of the consistency established in McCaffrey et al. (2013),
our estimator allows us to further characterize the differences in the convergence rates when the
measurement errors are of different smoothness.

For the technical aspects, this paper contributes to the vast literature on estimating the
non-/semi-parametric measurement error models using deconvolution. See books by Meister (2009)
and Horowitz (2009) and surveys by Chen et al. (2011) and Schennach (2016) for reviews. This
literature started with the density estimation; See Carroll and Hall (1988), Stefanski and Carroll (1990),
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Fan (1991a, 1991b), Bissantz et al. (2007), Van Es et al. (2008), Lounici and Nickl (2011) among others.
The deconvolution approach used to estimate the density later extend to the estimation of regression
function; See Fan and Truong (1993), Fan and Masry (1992), Delaigle and Meister (2007), Delaigle et al.
(2009) and Delaigle et al. (2015). Like works in other semi-parametric setups (Fan 1995; Dong et al.
2020b), our estimator is constructed using the deconvolution kernel estimators of both the density and
the regression function as the building blocks.

3. Empirics

3.1. Potential Outcomes Framework

Our analysis is couched within the potential outcomes framework (see, e.g., Neyman 1923;
Fisher 1935; Roy 1951; Rubin 1974). We consider a random sample of N individuals from a large
population, where individuals are indexed by j = 1, ..., n. Define Yj(T) to be the potential outcome
of individual j under treatment T, T ∈ T .2 In this paper, we limit ourselves to binary treatments:
T = {0, 1}. The causal effect of the treatment for a given individual is defined as the individual’s
potential outcome under treatment (T = 1) relative to the individual’s potential outcome under control
(T = 0). Formally,

τj = Yj(1)−Yj(0). (1)

In the evaluation literature, several population parameters are of potential interest. Here, attention
is given to the average treatment effect (ATE)

τ = E[τj] = E[Yj(1)−Yj(0)]

and the average treatment effect for the treated (ATT)

τtreat = E[τj|T = 1] = E[Yj(1)−Yj(0)|T = 1].

The ATE is the expected treatment effect of an observation chosen at random from the population,
whereas the ATT is the expected treatment effect of an observation chosen at random from the
treatment group.

Each observation is characterized by the quadruple {Yj, Tj, Xj, Zj}, where Yj is the observed
outcome, Tj is a binary indicator of the treatment received, Xj is a scalar covariate, and Zj is
a d-dimensional vector of covariates. The covariates included in Xj and Zj must be pre-determined
(i.e., they are not affected by Tj) and must not perfectly predict treatment assignment. The observed
outcomes is

Yj = TjYj(1) + (1− Tj)Yj(0) (2)

which makes clear that only one potential outcome is observed for any individual. Absent randomization,
τ and τtreat are not identified in general due to the selection problem, that is the distribution of
(Y(0), Y(1)) may depend on T. Even with randomization, the efficiency of estimates can be improved
by incorporating the covariates.

3.2. Strong Ignorability

To overcome the selection problem, or to improve the efficiency of estimates obtained under
randomization, a set of fully observed covariates are commonly assumed, conditional on which
(Y(0), Y(1)) and T are independent. This is referred to as the conditional independence or unconfoundedness
assumption (Rubin 1974; Heckman and Robb 1985). Formally, this assumption is expressed as

2 We assume that the Stable Unit Treatment Value Assumption (SUTVA), where potential outcomes of individuals do not
depend on the treatment assignment of others, to hold (Neyman 1923; Rubin 1986).
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Assumption 1. (Y(0), Y(1)) ⊥ T|(X, Z).

In addition to Assumption 1, the following overlap or common support assumption concerning the
joint distribution of treatment assignment and covariates is also needed. Let pX,Z(x, z) = P(T = 1|X =

z, Z = z) denote the propensity score, and X and Z denote supports of X and Z respectively.

Assumption 2. 0 < pX,Z(x, z) < 1 for all (x, z) ∈ X ×Z .

Assumptions 1 and 2 are jointly referred to as strong ignorability in Rosenbaum and Rubin (1983)
and lead to the following well known result

τ = E
[

(T − pX,Z(X, Z))Y
pX,Z(X, Z)(1− pX,Z(X, Z))

]
(3)

τtreat = E
[
(T − pX,Z(X, Z))Y
p(1− pX,Z(X, Z))

]
, (4)

where p = P(T = 1) is the probability of getting treated; See Proposition 18.3 of Wooldridge (2010).
Thus, strong ignorability is sufficient to identify the estimands, τ and τtreat, when all variables are
accurately measured.

3.3. Strong Ignorability with Measurement Error

Consider the case where Assumptions 1 and 2 continue to hold, but the quadruple {Yj, Tj, Wj, Zj}
is observed by the researcher instead of {Yj, Tj, Xj, Zj}. Here, the observed scalar, Wj, is assumed to be
a noisy measure of Xj, generated by

Wj = Xj + εj,

where εj is measurement error. Let fV denote the density of a random variable V and f ft(t) =∫
eitx f (x)dx denote the Fourier transform of a function f with i =

√
−1. To identify τ and τtreat in the

presence of contaminated data, we impose the following assumption in addition to strong ignorability.

Assumption 3. ε ⊥ (Y, T, X, Z), fε is known, and f ft
ε vanishes nowhere.

Assumption 3 requires the measurement error to be classical. Although this is somewhat
restrictive, it is worth noting that this setup is consistent with multiplicative measurement error of
the form W = Xε, as this can be transformed to an additive structure by taking the natural logarithm.
In fact, as argued in Schennach (2019), we do not need full independence; only f ft

W(t) = f ft
X(t) f ft

ε (t) for
all t ∈ R is necessary, which is as equally strong as a conditional mean restriction. The assumption
of a known error distribution is unlikely to hold in practice, but is imposed here for simplicity.
We discuss the relaxation of this assumption when auxiliary information is available, such as the
repeated measurements of X, in Section 3.5.

The identification result in the presence of contaminated data is given in the following theorem.

Theorem 1. Under Assumptions 1–3, τ and τtreat are identified from {Y, T, W, Z}.

The intuition behind Theorem 1 is straightforward. Based on (3) and (4), to identify τ and τtreat,
it is sufficient to identify fY,X,Z|T , which follows by implementing the convolution theorem to fY,W,Z|T
under Assumption 3.

Theorem 1 in McCaffrey et al. (2013) provides results that be used to achieve the point identification
of τ and τtreat under similar assumptions. In particular, using their Theorem 1, τ and τtreat can be
identified by (3) and (4) if the inverse propensity score is replaced by a non-stochastic function A
of W and Z whose conditional expectation given X and Z equals 1/pX,Z, i.e., E[A(W, Z)|X, Z] =

1/pX,Z(X, Z), and A is needed to finally pin down τ and τtreat. McCaffrey et al. (2013), however, do not
provide further details on A except in very special cases.
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Under Assumptions 1–3, where Assumption 3 is slightly stronger than Assumption 1 in McCaffrey
et al. (2013), we can derive a general explicit form of their function A. For example, for E[Y(1)], which
is needed to construct τ, the function A is given by

A(w, z) =
p
∫

e−itw { fW,Z|T=1(·,z)}ft(t)

| f ft
ε (t)|2

dt

2π fW,Z(w, z)
, (5)

where { fW,Z|T=1(·, z)}ft(t) =
∫

eitw fW,Z|T=1(w, z)dw. While it is not easy to give an intuitive
interpretation of (5), using the law of iterated expectation, the result shown in Appendix A.2 implies
that (5) is the equivalent quantity of the inverse propensity score in the contaminated case. As can be
seen, the functional form of A depends on fW,Z|T and fε. The former, fW,Z|T , is identified as {T, W, Z}
are directly observed, but extra knowledge on the latter, fε, is needed to identify A, which echos the
known error distribution part of Assumption 3.

In fact, the functional form of A not only matters to the identification of τ and τtreat, but also matters
to the convergence rates of estimators of τ and τtreat. In particular, as will be seen in Section 3.4, varying
the smoothness of fε (implying f ft

ε decays to zero at different rates as t → ∞) alters the convergence
rate. Intuitively, as f ft

ε appears in the denominator of A, even if the same estimator of fW,Z|T is used to
construct the estimator of A and then the estimators of τ and τtreat, due to the integration, the resulting
estimators of τ and τtreat should converge at different speeds if f ft

ε decays to zero at different rates.

3.4. Estimation

If we directly observe X, τ and τtreat can be estimated by

τ̌ =
1
n

n

∑
j=1

(Tj − p̌X,Z(Xj, Zj))Yj

(1− p̌X,Z(Xj, Zj)) p̌X,Z(Xj, Zj)

τ̌treat =
1
n

n

∑
j=1

(Tj − p̌X,Z(Xj, Zj))Yj

p̂ p̌X,Z(Xj, Zj)
,

where p̂ = 1
n ∑n

j=1 Tj and p̌X,Z is a nonparametric estimator of the propensity score, pX,Z. These are
known as the inverse propensity score weighting (IPW) estimators; see Horvitz and Thompson (1952).
However, this estimator is no longer feasible when X is unobserved due to measurement error.
To overcome this, note that we can alternatively express τ and τtreat as

τ =
∫∫∫ { p fY,X,Z|T=1(y, x, z)

pX,Z(x, z)
−

(1− p) fY,X,Z|T=0(y, x, z)
1− pX,Z(x, z)

}
ydydxdz, (6)

τtreat =
∫∫∫ {

fY,X,Z|T=1(y, x, z)−
(1− p)pX,Z(x, z) fY,X,Z|T=0(y, x, z)

p(1− pX,Z(x, z))

}
ydydxdz, (7)

Derivation of (6) and (7) are discussed in Appendix A.1. To keep the notation simple, we will focus
on the case when both X and Z are scalar for the rest of this section. By applying the deconvolution
method with fε known and given the i.i.d. sample {Yj, Tj, Wj, Zj}n

j=1 of (Y, T, W, Z), the conditional
densities fY,X,Z|T=1(y, x, z) and fY,X,Z|T=0(y, x, z) can be estimated by

f̃Y,X,Z|T=1(x, y, z) =
b−3

n ∑n
j=1 TjK

( y−Yj
bn

)
K
( x−Wj

bn

)
K
( z−Zj

bn

)
∑n

j=1 Tj
, (8)

f̃Y,X,Z|T=0(x, y, z) =
b−3

n ∑n
j=1(1− Tj)K

( y−Yj
bn

)
K
( x−Wj

bn

)
K
( z−Zj

bn

)
n−∑n

j=1 Tj
, (9)

and the propensity score pX,Z(x, z) can be estimated by
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p̃X,Z(x, z) =
∑n

j=1 TjK
( x−Wj

bn

)
K
( z−Zj

bn

)
∑n

j=1 K
( x−Wj

bn

)
K
( z−Zj

bn

) , (10)

where bn is a bandwidth, K is a (ordinary) kernel function, and K is a deconvolution kernel function
defined as

K(x) =
1

2π

∫
e−itx Kft(t)

f ft
ε (t/bn)

dt.

Plugging (8), (9), and (10) into (6) and (7), we obtain estimators of τ and τtreat as follow.

τ̃ =
∫
X

∫
Z

{
q̃1,1(x, z)
q̃0,1(x, z)

− q̃1,0(x, z)
q̃0,0(x, z)

}
q̃(x, z)dxdz, (11)

τ̃treat =
∫
X

∫
Z

{
q̃1,1(x, z)− q̃1,0(x, z)q̃0,1(x, z)

q̃0,0(x, z)

}
1
p̂

dxdz (12)

where X and Z separately denote the support of X and Z, and

q̃(x, z) =
1

nb2
n

n

∑
j=1

K
( x−Wj

bn

)
K
( z− Zj

bn

)
,

q̃k,s(x, z) =
1

nb2
n

n

∑
j=1

Yk
j Ts

j (1− Tj)
1−sK

( x−Wj

bn

)
K
( z− Zj

bn

)
for k, s = 0, 1.

Derivation of (11) and (12) are left to Appendix A.3.

Remark 1 (Case of vector X and Z). The proposed method can be easily generalized to case when X and Z
are vector even though it is constructed based on the case when both X and Z are scalar. In particular, let X =

(X1, . . . , Xdx ) and Z = (Z1, . . . , Zdz) be dx- and dz-dimensional vectors, respectively, and W = (W1, . . . , Wdx )

a dx-dimensional vector of noisy measures of X generated by Wd = Xd + εd for d = 1, . . . , dx. Following a
simiar route as when X and Z are both scalar, we can estimate τ and τtreat by

τ̃′ =
∫
X1

· · ·
∫
Xdx

∫
Z1

· · ·
∫
Zdz

{
q̃′1,1(x, z)
q̃′0,1(x, z)

−
q̃′1,0(x, z)
q̃′0,0(x, z)

}
q̃′(x, z)dxdz,

τ̃′treat =
∫
X1

· · ·
∫
Xdx

∫
Z1

· · ·
∫
Zdz

{
q̃′1,1(x, z)−

q̃′1,0(x, z)q̃′0,1(x, z)
q̃′0,0(x, z)

}
1
p̂

dxdz,

where Xd1 and Zd2 separately denote the support of Xd1 and Zd2 for d1 = 1, . . . , dx and d2 = 1, . . . , dz,
x = (x1, . . . , xdx ), z = (z1, . . . , zdz), and

q̃′(x, z) =
1

nbdx+dz
n

n

∑
j=1

dx

∏
d=1

Kd

( xd −Wd,j

bn

) dz

∏
j=1

K
( zd − Zd,j

bn

)
,

q̃′k,s(x, z) =
1

nbdx+dz
n

n

∑
j=1

Yk
j Ts

j (1− Tj)
1−s

dx

∏
d=1

Kd

( xd −Wd,j

bn

) dz

∏
j=1

K
( zd − Zd,j

bn

)
for k, s = 0, 1,

with

Kd(x) =
1

2π

∫
e−itx Kft(t)

f ft
εd(t/bn)

dt for d = 1, . . . , dx.

We conjecture that analogous results to our main theorems can be established for the multivariate case.

To derive the convergence rates of τ̃ and τ̃treat, we need following conditions.
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Assumption 4.

(i) {Yj, Tj, Wj, Zj}n
j=1 is an i.i.d. sample of (Y, T, W, Z). fX,Z and E[Y(s)|X, Z] are bounded away from zero,

and fX,Z and E[Y2(s)|X, Z] are bounded for s = 0, 1 over compact support X ×Z .
(ii) fX,Z, pX,Z, and E[Y(s)|X, Z] for s = 0, 1 are γ-times continuously differentiable with bounded and

integrable derivatives for some positive integer γ.
(iii) K is differentiable to order γ and satisfies∫

K(u)du = 1,
∫

up+1K(u)du 6= 0,
∫

ulK(u)du = 0 for l = 1, 2, . . . , γ.

Also, Kft is compactly supported on [−1, 1], symmetric around zero, and bounded.

(iv) bn → 0 and nbn

(
inf|t|≤b−1

n
| f ft

ε (t)|
)2
→ ∞ as n→ ∞.

Assumption 4(i) requires the random sampling and the regularity of densities and conditional
moments. Assumption 4(ii) imposes smoothness restrictions on the densities and conditional moments,
which are needed to control the magnitude of bias in the estimation together with the properties of
kernel function K as imposed in Assumption 4(iii). In addition to the standard properties of a high-order
kernel function, Assumption 4(iii) also requires Kft to be compactly supported, which is commonly used
in deconvolution problems to truncate the ill-behaved tails of the integrand for regularization purposes.
Meister (2009) discusses how kernels of any order can be constructed quite simply. Assumption 4(iv)
imposes mild bandwidth restrictions. In particular, it simply requires that the bandwidth must decay to
zero as the sample size grows, but should not decay too fast. The second part of Assumption 4(iv) is
needed so that the higher order components of the estimation error are asymptotically negligible.

Theorem 2. Under Assumptions 1–4, it holds

|τ̃ − τ| = Op

n−1/2b−3/2
n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−1

+ bγ
n

 ,

|τ̃treat − τtreat| = Op

n−1/2b−3/2
n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−1

+ bγ
n

 .

Theorem 2 presents the convergence rates of τ̃ and τ̃treat. The second term bγ
n in the convergence

rate characterizes the magnitude of the estimation bias, which is identical to the error-free case.
The first term characterizes the magnitude of the estimation variance. Compared to the error-free case,

the estimation variance of τ̃ and τ̃treat decays slower due to the extra term b−1/2
n

(
inf|t|≤b−1

n
| f ft

ε (t)|
)−1

.
In particular, the smoother is the error distribution, the larger will be the estimation variance and,
hence, the slower will be the convergence rate.

As is typical in the nonparametric measurement literature, to further specify the convergence
rates of τ̃ and τ̃treat, we consider two separate cases characterized by different smoothness of the
measurement error: the ordinary smooth case and the supersmooth case. For the ordinary smooth
case, the error characteristic function decays at a polynomial rate. In particular, we impose the
following condition.

Assumption 5. There exist positive constants α and cos
0 ≤ cos

1 such that

cos
0 (1 + |t|)−α ≤ | f ft

ε (t)| ≤ cos
1 (1 + |t|)−α for all t ∈ R.

If fε satisfies Assumption 5, we say that it is ordinary smooth of order α. Popular examples of
ordinary smooth densities include the Laplace and gamma density. The convergence rates of τ̃ and
τ̃treat in the presence of ordinary smooth error of order α are specified as follow.
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Corollary 1. Under Assumptions 1–4, if Assumption 5 holds true, we have

|τ̃ − τ| = Op

(
n−1/2b−(3/2+α)

n + bγ
n

)
,

|τ̃treat − τtreat| = Op

(
n−1/2b−(3/2+α)

n + bγ
n

)
.

Corollary 1 shows that τ̃ and τ̃treat converge in a polynomial rate n−r for some constant r > 0.
The value of r depends on the choice of the bandwidth bn, which will be discussed in Section 4.

For the supersmooth case, the error characteristic function decays at an exponential rate.
In particular, we impose the following condition.

Assumption 6. There exist positive constants β, β0, and css
0 ≤ css

1 such that

css
0 e−β0|t|β ≤ | f ft

ε (t)| ≤ css
1 e−β0|t|β for all t ∈ R.

If fε satisfies Assumption 6, we say that it is supersmooth of order β. Popular examples of
supersmooth densities include the Cauchy and Gaussian density. The convergence rates of τ̃ and τ̃treat

in the presence of supersmooth error of order β are specified as follow.

Corollary 2. Under Assumptions 1–4, if Assumption 6 holds true, we have

|τ̃ − τ| = Op

(
n−1/2b−3/2

n eβ0b−β
n + bγ

n

)
,

|τ̃treat − τtreat| = Op

(
n−1/2b−3/2

n eβ0b−β
n + bγ

n

)
.

Corollary 2 shows that τ̃ and τ̃treat can only converge at a logarithm rate, which is much slower
than the polynomial rate that has been seen in the ordinary smooth case. In particular, a normal
error would make the estimator much more data-demanding than the case with a Laplace error.
Again, the specific rate will depends on the choice of the bandwidth bn, which will be discussed
in Section 4.

3.5. Case of Unknown Measurement Error Distribution

Assuming the measurement error distribution to be fully known is usually unrealistic in practice.
Auxiliary information, such as repeated measurements of X, can be used to relax the assumption of
a known error distribution imposed in Assumption 3.

Suppose we have two independent noisy measures of X, W and Wr, determined as follows

Wj = Xj + εj

Wr
j = Xj + εr

j ,

for j = 1, . . . , n. To identify the distribution of ε, we impose the following assumption.

Assumption 7. (ε, εr) are mutually independent and independent of (X, Y, Z, T), the distributions of ε and
εr are identical, and fε is symmetric around zero.

The error characteristic function, f ft
ε , can be estimated by

f̂ ft
ε (t) =

∣∣∣∣∣ 1n n

∑
j=1

cos{t(Wj −Wr
j )}
∣∣∣∣∣
1/2
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under Assumption 7 (Delaigle et al. 2008) 3.
When the measurement error distribution is unknown, we can estimate τ and τtreat by plugging

in this estimator, yielding

τ̂ =
∫
X

∫
Z

{
q̂1,1(x, z)
q̂0,1(x, z)

− q̂1,0(x, z)
q̂0,0(x, z)

}
q̂(x, z)dxdz, (13)

τ̂treat =
∫
X

∫
Z

{
q̂1,1(x, z)− q̂1,0(x, z)q̂0,1(x, z)

q̂0,0(x, z)

}
1
p̂

dxdz, (14)

where

q̂(x, z) =
1

nb2
n

n

∑
j=1

K̂
( x−Wj

bn

)
K
( z− Zj

bn

)
,

q̂k,s(x, z) =
1

nb2
n

n

∑
j=1

Yk
j Ts

j (1− Tj)
1−sK̂

( x−Wj

bn

)
K
( z− Zj

bn

)
for k, s = 0, 1,

and the deconvolution kernel function based on estimated error characteristic function defined by

K̂(x) =
1

2π

∫
e−itx Kft(t)

f̂ ft
ε (t/bn)

dt.

3.6. Inference

The proposed estimators, both in the case where the error distribution is known and the case
where it is not, are constructed based on deconvolution methods. Unfortunately, deconvolution-based
inference is known to be extremely challenging. Most of the existing work on the deconvolution-based
inference focuses on nonparametric objects, such as the density and regression function. In particular,
Bissantz et al. (2007) develops uniform confidence bands for the density of a mismeasured variable
when the error distribution is known. Lounici and Nickl (2011) derive upper bounds for the sup-norm
risk of a wavelet deconvolution estimator of the density of a mismeasured variable when the error
distribution is unknown but repeated measurements are available. The authors construct uniform
confidence bands for the density using these bounds. The resulting confidence bands, however, could
be conservative as the upper bound of the coverage probability is derived using the concentration
inequalities. Kato and Sasaki (2018, 2019) establish uniform confidence bands with asymptotic validity
for the density of a mismeasured variable and the regression function of a mismeasured covariate,
respectively, in the case when the error distribution is unknown but repeated measurements are
available. Inference concerning a function of densities and regression functions under the deconvolution
problem is remains an open question in the literature. We leave for future work the examination of
bootstrap methods for the construction of confidence intervals of our proposed estimators. In particular,
a non-parametric bootstrap as in Bissantz et al. (2007) could be considered for the case when the error
distribution is known, and a wild bootstrap as in Kato and Sasaki (2019) could be considered for the
case when the error distribution is unknown but repeated measurements are available.

4. Simulation

In this section, we evaluate the finite sample performance of the proposed estimators using Monte
Carlo simulation. In particular, we focus on the case with a single covariate for which we can only
observe its noisy measurement, and the following data generating process is considered

3 As ε and εr are independent and identically distributed under Assumption 7, we have E
[
eit(W−Wr)

]
= E

[
eit(ε−εr)

]
=

| f ft
ε (t)|2. As fε is symmetric around zero under Assumption 7, f ft

ε (t) > 0, which implies f ft
ε (t) =

∣∣∣E [eit(W−Wr)
]∣∣∣1/2

=

|E [cos{t(W −Wr)}]|1/2. Thus, f̂ ft
ε (t) is obtained by plugging in the sample analogue of E [cos{t(W −Wr)}].
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Y(T) = g(T, X) + U,

where covariate X is drawn from U[0.5, 1.5] and is independent of U, the error term U is drawn
from N(0, 1) and is independent of (T, X), the treatment is assigned according to P(T = 1|X) =

exp(0.5− X), and three specifications of g are considered

DGP1 :g(t, x) = t + x,

DGP2 :g(t, x) = t + x + x2 − x3,

DGP3 :g(t, x) = t + x− sin(x).

While X is assumed unobserved, we suppose W = X + ε and Wr = X + εr are observed,
where (ε, εr) is mutually independent and independent of (T, X, U). For the distributions of ε and εr,
we consider two cases. First, as an example of the case of ordinary smooth errors, we consider the case
when (ε, εr) have a zero mean Laplace distribution with standard deviation 1/3. Second, as an example
of the case of supersmooth errors, we consider the case when (ε, εr) have a normal distribution with
zero mean and standard deviation of 1/3.

Throughout the simulation study, we use the kernel function whose Fourier transform is

Kft(t) =


1 if |t| ≤ 0.05,

exp
{
− exp(−(|t|−0.05)2)

(|t|−1)2

}
if 0.05 < |t| < 1,

0 if |t| ≥ 1.

This is the infinite-order flat-top kernel proposed by Mcmurry and Politis (2004), whose Fourier
transform is compactly supported and can be used for the regularization purpose in the deconvolution
estimation.

A trimming term is used in the denominators q̂0,0 and q̂0,1 to ensure the stability. Specifically,
all values of the denominators below 0.01 are set to 0.01. Two sample sizes are considered, n = 250
and 500, and all results are based on 500 Monte Carlo replications. For the choice of the bandwidth,
to reduce the computation cost, we apply Delaigle and Gijbels (2004) to the first experiment, and use
it for all subsequent simulations. To increase the robustness, we use 2 times the optimal bandwidth
suggested by Delaigle and Gijbels (2004) as the deconvolution based estimator is more sensitive to
smaller bandwidth; see Dong et al. (2020a).

In Tables 1–3, results are reported for both τ̃ and τ̃treat, the proposed estimators for the case when
the error distribution is known and only W is observed, and τ̂ and τ̂treat, the proposed estimators
for the case when the error distribution is unknown and both W and Wr are observed. Results are
given for the bias (Bias), standard deviation (SD), and the rooted mean squared error (RMSE) of each
estimator in different settings.

Table 1. DGP1.

Known Error Distribution

Estimator τ̃ τ̃treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias 0.056 −0.217 −0.316 −0.292 0.131 −0.226 −0.322 −0.297

SD 0.371 0.104 0.126 0.096 0.559 0.109 0.128 0.098

RMSE 0.375 0.241 0.340 0.307 0.575 0.251 0.346 0.313



J. Risk Financial Manag. 2020, 13, 290 13 of 24

Table 1. Cont.

Unknown Error Distribution

Estimator τ̂ τ̂treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias 0.094 −0.216 −0.315 −0.292 0.185 −0.224 −0.321 −0.297

SD 0.451 0.103 0.127 0.096 0.690 0.108 0.129 0.098

RMSE 0.461 0.239 0.340 0.307 0.714 0.249 0.346 0.313

Table 2. DGP2.

Known Error Distribution

Estimator τ̃ τ̃treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias −0.082 −0.121 −0.170 −0.152 −0.086 −0.138 −0.178 −0.160

SD 0.273 0.103 0.125 0.096 0.400 0.107 0.127 0.098

RMSE 0.285 0.159 0.211 0.180 0.409 0.175 0.219 0.188

Unknown Error Distribution

Estimator τ̂ τ̂treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias −0.077 −0.120 −0.169 −0.152 −0.064 −0.137 −0.177 −0.160

SD 0.333 0.103 0.126 0.095 0.523 0.108 0.128 0.098

RMSE 0.342 0.158 0.211 0.180 0.527 0.174 0.219 0.188

Table 3. DGP3.

Known Error Distribution

Estimator τ̃ τ̃treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias −0.023 −0.159 −0.240 −0.218 0.002 −0.165 −0.244 −0.221

SD 0.287 0.102 0.124 0.095 0.416 0.107 0.126 0.097

RMSE 0.288 0.189 0.270 0.237 0.417 0.197 0.275 0.242

Unknown Error Distribution

Estimator τ̂ τ̂treat

Error Type OS SS OS SS

Sample Size 250 500 250 500 250 500 250 500

Bias −0.008 −0.158 −0.239 −0.217 0.021 −0.163 −0.243 −0.221

SD 0.337 0.102 0.125 0.094 0.538 0.106 0.127 0.097

RMSE 0.338 0.188 0.269 0.237 0.539 0.195 0.274 0.241

The results appear encouraging and display several interesting features. First, the estimators
have better performance with a larger sample size, and the performance of estimators is better with
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ordinary smooth error compared to the supersmooth error case. We also note that the performance of
the estimators for the case when the error distribution is unknown is close to that of the estimators
for the case when the error distribution is known. Using the estimated error distribution generally
adds extra noise to the estimation. There are cases when the symmetry of the error distribution
may allow the performance of the estimator to be independent of whether the error distribution is
estimated or not; see Dong et al. (2020b). Finally, as to be expected, the proposed estimators have
similar performance across different data generating processes, which implies that they are robust to
unobserved nonlinearity in the conditional expectation function.

5. Application

To illustrate our estimator in practice, we revisit the analysis in Drexler et al. (2014).4 Drexler et al.
(2014) examine a randomized control trial (RCT) in which micro-entrepreneurs taking out a loan from
ADOPEM, a microfinance institution in the Dominican Republic, are randomly assigned to one of
three treatment arms to assess the causal effect of financial literacy programs on a firm’s financial
practices, objective reporting quality, and business performance. The first treatment provided subjects
with standard accounting training. The second treatment provided rule-of-thumb training that covered
basic financial heuristics. The final group received neither training and serves as the control group.
The authors find significant beneficial effects of the rule-of-thumb training, but not the standard
accounting training.

Our analysis deviates from Drexler et al. (2014) in one main respect. Whereas Drexler et al. (2014)
examine both treatments simultaneously using a single regression model estimated by OLS, we do not.
As our estimator is based on the IPW estimator, we examine each treatment separately. To do so,
we restrict the sample to a single treatment arm along with the control group. Thus, our sample
sizes diverge from the original study. Nonetheless, we present OLS estimates for comparison to
Drexler et al. (2014) and they are essentially identical.

Our results are presented in Tables 4 and 5. The only difference across the two tables is the set of
outcomes being analyzed.5 In each table, Columns 2 and 5 report the OLS estimates of the treatment
effect. These are most directly comparable to Drexler et al. (2014), subject to the caveat mentioned above
that we assess each treatment separately. Columns 3 and 6 report IPW estimates of the ATE treating all
covariates as correctly measured and estimating the propensity score via logit. Finally, Columns 4 and
7 report the results of our estimator for the ATE, treating the size of the loan as potentially mismeasured.
Because the application lacks any auxiliary information on possible measurement error in this covariate,
we assume the measurement error is normally distributed with mean zero and three different variance,
corresponding to increasing levels of measurement error. Specifically, we set the standard deviation of
the measurement error to be 1/6, 1/3, and 2/3 of the standard deviation of the observed loan values.
The bandwidth for the observed loan values, as in the simulation experiment, is chosen as two times
the optimal bandwidth suggested by Delaigle and Gijbels (2004), and bandwidths for other covariates,
which are supposed to be error-free, are chosen based on Li and Racine (2003).

The results are interesting. In terms of the standard accounting treatment, the results appear robust
to modest measurement in loan size. The only outcome for which the treatment effect is statistically
significant ignoring measurement error is “setting aside cash for business purposes”. Here, the OLS
and IPW estimates are both 0.07. With modest measurement error, our estimator yields a point estimate
of 0.08. It is noteworthy, however, that we find even stronger effects as we increase the variance of the
measurement error.

In terms of the the rule-of-thumb treatment, the results appear predominantly robust to modest
measurement in loan size as well. In Table 4, all OLS and IPW estimates are statistically significant

4 Data are available at https://www.aeaweb.org/articles?id=10.1257/app.6.2.1.
5 Note, we do not analyze one outcome included in Drexler et al. (2014). Savings amount is excluded from our analysis as the

first-stage propensity score ignoring measurement error did not converge.

https://www.aeaweb.org/articles?id=10.1257/app.6.2.1
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at conventional levels. With modest measurement error, our estimator yields point estimates are
qualitatively unchanged; sometimes slightly larger and sometimes slightly smaller in absolute value.
As we increase the variance of the measurement error, however, the point estimates generally increase
in magnitude. Thus, the economic magnitudes of the treatment effects are sensitive to the degree
of measurement error. For example, increasing the standard deviation of the measurement error
from 1/6 to 2/3 of the standard deviation of the observed loan values at least doubles the magnitude
of the ATE for the outcomes “setting aside cash for business purposes,” “keep accounting records,”
“separate business and personal accounting,” and ”calculate revenues formally”.

Table 4. Impact of Training on Business Practices and Performance.

Dependent Variable Standard Accounting Rule-of-Thumb

OLS IPW IPW-ME OLS IPW IPW-ME

Business and Personal Financial Practices

Separate Business and 0.00 0.00 −0.05 0.08 0.08 0.08

Personal Cash (0.03) (0.03) {0.02} (0.03) (0.03) {0.10}

{{0.14}} {{0.24}}

524 532

Keep Accounting Records 0.04 0.04 0.05 0.12 0.12 0.08

(0.05) (0.05) {0.10} (0.03) (0.03) {0.09}

{{0.25}} {{0.21}}

524 533

Separate Business and 0.04 0.04 0.00 0.12 0.12 0.11

Personal Accounting (0.05) (0.05) {0.08} (0.03) (0.03) {0.14}

{{0.24}} {{0.25}}

521 532

Set Aside Cash for 0.07 0.07 0.08 0.12 0.12 0.13

Business Purposes (0.03) (0.03) {0.14} (0.04) (0.04) {0.14}

{{0.19}} {{0.23}}

524 532

Calculate Revenues 0.01 0.01 −0.03 0.06 0.06 0.07

Formally (0.04) (0.04) {0.04} (0.03) (0.03) {0.15}

{{0.16}} {{0.23}}

524 533

Business Practices 0.07 0.07 −0.15 0.14 0.14 0.13

Index (0.06) (0.06) {−0.17} (0.04) (0.04) {0.18}

{{−0.14}} {{0.15}}

525 534

Any Savings 0.01 0.01 −0.03 0.08 0.08 0.05

(0.05) (0.05) {0.01} (0.04) (0.04) {0.04}

{{0.19}} {{0.10}}

529 540

Notes: Sample includes only those individuals with own business and either exposed to the treatment in the
column heading or neither treatment. Number of observations beneath results for each model. Standard errors
for OLS and IPW are in parentheses and are clustered at the barrio-level. IPW-ME reports only point estimates.
The IPW-ME estimates in first row for each outcome assume the variance of the measurement is 1/6 of the
variance of the observed covariate; estimates in {} assume the variance of the measurement is 1/3 of the variance
of the observed covariate; estimates in {{}} assume the variance of the measurement is 2/3 of the variance of the
observed covariate. IPW and IPW-ME estimates are of the average treatment effect.
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In Table 5, the only outcomes for which the treatment effect is statistically significant ignoring
measurement error are “any reporting errors” and “revenue index”. For the former, our estimator
suggests, if anything, a larger ATE in absolute value once measurement error is addressed. For the
latter, our estimator suggests a smaller ATE once measurement error is addressed.

Table 5. Impact of Training on Business Practices and Performance.

Dependent Variable Standard Accounting Rule-of-Thumb

OLS IPW IPW-ME OLS IPW IPW-ME

Objective Reporting Quality

Any Reporting Errors −0.04 −0.04 −0.09 −0.09 −0.09 −0.15

(0.04) (0.04) {−0.07} (0.03) (0.03) {−0.15}

{{−0.04}} {{−0.21}}

496 508

Raw Profit 918 914 1123 1094 1086 857

Calculation Difference (746) (726) {1158} (551) (538) {925}

(RD$), weekly {{262}} {{690}}

273 289

Absolute Value Profit −324 −368 −633 −642 −641 −840

Calculation Difference (643) (622) {−595} (471) (460) {−803}

(RD$), weekly {{−98}} {{−919}}

273 289

Business Performance

Total Number 0.08 0.08 0.37 −0.04 −0.04 0.11

of Employees (0.09) (0.09) {−0.02} (0.09) (0.09) {−0.01}

{{0.61}} {{0.98}}

523 533

Revenue Index −0.02 −0.02 −0.02 0.10 0.10 0.04

(0.05) (0.05) {−0.03} (0.05) (0.05) {0.04}

{{−0.09}} {{0.03}}

511 518

Sales, −649 −686 −543 604 665 220

Average Week (RD$) (810) (791) {−619} (942) (941) {−480}

{{1663}} {{130}}

367 386

Sales, −672 −696 −386 1168 1111 389

Bad Week (RD$) (513) (497) {−291} (538) (533) {641}

{{116}} {{−35}}

359 373

Notes: Sample includes only those individuals with own business and either exposed to the treatment in the
column heading or neither treatment. Number of observations beneath results for each model. Standard errors
for OLS and IPW are in parentheses and are clustered at the barrio-level. IPW-ME reports only point estimates.
The IPW-ME estimates in first row for each outcome assume the variance of the measurement is 1/6 of the
variance of the observed covariate; estimates in {} assume the variance of the measurement is 1/3 of the variance
of the observed covariate; estimates in {{}} assume the variance of the measurement is 2/3 of the variance of the
observed covariate. IPW and IPW-ME estimates are of the average treatment effect.
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6. Conclusions

Estimation of the causal effect of a binary treatment on outcomes, even in the case of selection
on observed covariates, can be complicated when one or more of the covariates are measured with
error. In this paper, we present a new semi-parametric estimator that addresses this issue. In particular,
we focus on the case when the propensity score is of an unknown functional form and some covariates
are subject to classical measurement error. Allowing the functional form of the propensity score to
be unknown as well as a function of unobserved, error-free covariates, we consider an integration
weighted by deconvolution kernel density estimator. Our simulations and replication exercise show
our estimator to be valuable to empirical researchers. However, future work is needed to conduct
inference with this estimator.
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Appendix A. Derivation of Equations

Appendix A.1. Derivation of (6) and (7)

(6) follows by τ = E[Y(1)−Y(0)] and for t = 0, 1,

E[Y(t)] = E[E[Y(t)|X, Z]] = E[E[Y(t)|T = t, X, Z]] = E[E[Y|T = t, X, Z]]

=
∫∫∫

y fY|T=t,X=x,Z=z(y)dy fX,Z(x, z)dxdz

= P(T = t)
∫

y

{∫∫ fY,X,Z|T=t(y, x, z) fX,Z(x, z)
fX,Z|T=t(x, z)P(T = t)

dxdz

}
dy

= P(T = t)
∫∫∫ y fY,X,Z|T=t(y, x, z)

P(T = t|X = x, Z = z)
dydxdz,

where the second step follows by Assumption 1 and the last step requires Assumption 2. (7) follows
by τtreat = E[Y(1)−Y(0)|T = 1], E[Y(1)|T = 1] = E[Y|T = 1] = E[TY]/p, and

E[Y(0)|T = 1] = E[E[Y(0)|T = 1, X, Z]|T = 1]

= E[E[Y(0)|T = 0, X, Z]|T = 1]

= E[E[Y|T = 0, X, Z]|T = 1]

=
∫∫ {∫

y fY|T=0,X=x,Z=z(y)dy
}

fX,Z|T=1(x, z)dxdz

=
∫∫∫ y fX,Z|T=1(x, z)

fX,Z|T=0(x, z)
fY,X,Z|T=0(y, x, z)dydxdz

= E

[
Y fX,Z|T=1(X, Z)
fX,Z|T=0(X, Z)

∣∣∣∣∣ T = 0

]

=
1− p

p
E
[

YpX,Z(X, Z)
1− pX,Z(X, Z)

|T = 0
]

,

where the first step follows by Assumption 1 and the last step requires Assumption 2.
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Appendix A.2. Derivation of (5)

(5) follows by

E[Y(1)] = E
[

TY
pX,Z(X, Z)

]
= p

∫∫
E[TY|X = x, Z = z] fX,Z|T=1(x, z)dxdz

= p
∫∫ { 1

2π

∫
e−isx {E[TY|W = ·, Z = z]}ft(s)

f ft
ε (s)

ds

}{
1

2π

∫
e−itx { fW,Z|T=1(·, z)}ft(t)

f ft
ε (t)

dt

}
dxdz

=
p

2π

∫∫∫ { 1
2π

∫
e−i(s+t)xdx

} {E[TY|W = ·, Z = z]}ft(s){ fW,Z|T=1(·, z)}ft(t)

f ft
ε (s) f ft

ε (t)
dsdtdz

=
p

2π

∫∫ {E[TY|W = ·, Z = z]}ft(−t){ fW,Z|T=1(·, z)}ft(t)

| f ft
ε (t)|2

dtdz

=
p

2π

∫∫ {∫
E[TY|W = w, Z = z]e−itwdw

} { fW,Z|T=1(·, z)}ft(t)

| f ft
ε (t)|2

dtdz

=
∫∫

E[TY|W = w, Z = z]


p
∫

e−itw { fW,Z|T=1(·,z)}ft(t)
| f ft

ε (t)|2
dt

2π fW,Z(w, z)

 fW,Z(w, z)dwdz

= E[TYA(W, Z)],

where the sixth equality follows by
∫

δ(x − b) f (x)dx = f (b) with Dirac delta function δ(x) =
1

2π

∫
e−itxdx.

Appendix A.3. Derivation of (11) and (12)

(11) follows by

τ̃ =
∫∫∫ { p̂ f̃Y,X,Z|T=1(y, x, z)

p̃X,Z(x, z)
−

(1− p̂) f̃Y,X,Z|T=0(y, x, z)
1− p̃X,Z(x, z)

}
ydydxdz

=
1

nb3
n

n

∑
j=1

∫∫


TjK
(

x−Wj
bn

)
K
(

z−Zj
bn

)
∑n

l=1 TlK
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

) −
(1− Tj)K

(
x−Wj

bn

)
K
(

z−Zj
bn

)
∑n

l=1(1−Tl)K
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

)


{∫

K
( y−Yj

bn

)
ydy
}

dxdz

=(1)
1

nb2
n

n

∑
j=1

∫∫


TjK
(

x−Wj
bn

)
K
(

z−Zj
bn

)
∑n

l=1 TlK
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

) −
(1− Tj)K

(
x−Wj

bn

)
K
(

z−Zj
bn

)
∑n

l=1(1−Tl)K
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

)


{∫

K (ỹ) (Yj + bn ỹ)dỹ
}

dxdz

=(2)
1

nb2
n

n

∑
j=1

Yj

∫∫


TjK
(

x−Wj
bn

)
K
(

z−Zj
bn

)
∑n

l=1 TlK
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

) −
(1− Tj)K

(
x−Wj

bn

)
K
(

z−Zj
bn

)
∑n

l=1(1−Tl)K
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1 K
(

x−Wl
bn

)
K
(

z−Zl
bn

)

 dxdz

=
∫∫ { q̂1,1(x, z)

q̂0,1(x, z)
− q̂1,0(x, z)

q̂0,0(x, z)

}
q̂(x, z)dxdz,

where (1) follows by change of variables ỹ =
y−Yj

bn
and (2) follows by

∫
K(x)dx = 0 and

∫
K(x)xdx = 0.
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(12) follows by

τ̃treat =
1
p̂

∫∫∫ {
p̂ f̃X,Y,Z|T=1(x, y, z)−

p̃X,Z(x, z)(1− p̂) f̃X,Y,Z|T=0(x, y, z)
1− p̃X,Z(x, z)

}
ydxdydz

=
1

nb3
n p̂

n

∑
j=1

∫∫ 
TjK

( x−Wj
bn

)
K
( z−Zj

bn

)
−

(1−Tj)K
(

x−Wj
bn

)
K
(

z−Zj
bn

)
∑n

l=1 TlK
( x−Wl

bn

)
K
( z−Zl

bn

)
∑n

l=1(1−Tl )K
( x−Wl

bn

)
K
( z−Zl

bn

)


{∫

K
(

y−Yj

bn

)
ydy
}

dxdz

=(1)
1

nb2
n p̂

n

∑
j=1

∫∫ 
TjK

( x−Wj
bn

)
K
( z−Zj

bn

)
−

(1−Tj)K
(

x−Wj
bn

)
K
(

z−Zj
bn

)
∑n

l=1 TlK
( x−Wl

bn

)
K
( z−Zl

bn

)
∑n

l=1(1−Tl )K
( x−Wl

bn

)
K
( z−Zl

bn

)


{∫

K (ỹ) (Yj + bn ỹ)dỹ
}

dxdz

=(2)
1

nb2
n p̂

n

∑
j=1

Yj

∫∫ Tj −
(1− Tj)∑n

l=1 TlK
(

x−Wl
bn

)
K
(

z−Zl
bn

)
∑n

l=1(1− Tl)K
(

x−Wl
bn

)
K
(

z−Zl
bn

)
K

(
x−Wj

bn

)
K
(

z− Zj

bn

)
dxdz

=
∫∫ {

q̂1,1(x, z)− q̂1,0(x, z)q̂0,1(x, z)
q̂0,0(x, z)

}
1
p̂

dxdz,

where (1) follows by change of variables ỹ =
y−Yj

bn
and (2) follows by

∫
K(x)dx = 0 and

∫
K(x)xdx = 0.

The integrations in (11) and (12) are restricted on X and Z to emphasize that it is sufficient to integrate
over the supports of X and Z.

Appendix B. Proof of Theorems

Appendix B.1. Proof of Theorem 1

To identify τ and τtreat, it is sufficient to identify fY,X,Z|T as p(x, z) =
p fX,Z|T=1(x,z)

p fX,Z|T=1(x,z)+(1−p) fX,Z|T=0(x,z)

and fX,Z|T(x, z) =
∫

fY,X,Z|T(y, x, z)dy. Let { fY,W,Z|T(y, ·, z)}ft(t) =
∫

eitw fY,W,Z|T(y, w, z)dw.
The identification of fY,X,Z|T follows by

fY,X,Z|T(y, x, z) =
1

2π

∫
e−itx { fY,W,Z(y, ·, z)}ft(t)

f ft
ε (t)

dt,

for which we use the convolution theorem under Assumption 3.

Appendix B.2. Proof of Theorem 2

Define q(x, z) = fX,Z(x, z) and qk,s(x, z) = {mk
X,Z,s pX,Z,s fX,Z}(x, z) for k, s = 0, 1, where

mX,Z,s(x, z) = E[Y(s)|X = x, Z = z] and pX,Z,s(x, z) = ps
X,Z(x, z)(1− pX,Z(x, z))1−s. Then, we have

τ =
∫
X

∫
Z

{
q1,1(x, z)
q0,1(x, z)

− q1,0(x, z)
q0,0(x, z)

}
q(x, z)dxdz, (A1)

τtreat =
∫
X

∫
Z

{
q1,1(x, z)− q1,0(x, z)q0,1(x, z)

q0,0(x, z)

}
1
p

dxdz. (A2)

First, using ûv̂− uv = (û− u)v + (v̂− v)u + (û− u)(v̂− v) and v̂−1 − v−1 = −(v̂− v){v(v̂−
v) + v2}−1, we have

q̃1,s q̃
q̃0,s
− q1,sq

q0,s
=
{(q̃1,s − q1,s)q + (q̃− q)q1,s + (q̃1,s − q1,s)(q̃− q)}q0,s − (q̃0,s − q0,s)q1,sq

q0,s(q̃0,s − q0,s) + q2
0,s

, (A3)

q̃1,1

p̂
− q1,1

p
=

(q̃1,1 − q1,1)p− ( p̂− p)q1,1

p( p̂− p) + p2 , (A4)

q̃1,0 q̃0,1

q̃0,0 p̂
− q1,0q0,1

q0,0 p
=

 {(q̃1,0 − q1,0)q0,1 + (q̃0,1 − q0,1)q1,0 + (q̃1,0 − q1,0)(q̃0,1 − q0,1)}pq0,0

−{( p̂− p)q0,0 + (q̃0,0 − q0,0)p + ( p̂− p)(q̃0,0 − q0,0)}q1,0q0,1


pq0,0{( p̂− p)q0,0 + (q̃0,0 − q0,0)p + ( p̂− p)(q̃0,0 − q0,0)}+ p2q2

0,0
, (A5)
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where we intentionally suppress the dependence of q̂, q̂k,s, q, and qk,s on x and z for k, s = 0, 1 to keep
the notation simple.

For τ̃, note that

|τ̃ − τ| =

∣∣∣∣∣∣
∫
X

∫
Z


{

q̃1,1(x,z)q̃(x,z)
q̃0,1(x,z) − q1,1(x,z)q(x,z)

q0,1(x,z)

}
−
{

q̃1,0(x,z)q̃(x,z)
q̃0,0(x,z) − q1,0(x,z)q(x,z)

q0,0(x,z)

}  dxdz

∣∣∣∣∣∣
= O

(
max

s∈{0,1}
sup

(x,z)∈X×Z

∣∣∣∣ q̃1,s(x, z)q̃(x, z)
q̃0,s(x, z)

− q1,s(x, z)q(x, z)
q0,s(x, z)

∣∣∣∣
)

= O

 max
s∈{0,1}


sup(x,z)∈X×Z |q̃1,s(x, z)− q1,s(x, z)| sup(x,z)∈X×Z |q0,s(x, z)| sup(x,z)∈X×Z |q(x, z)|
+ sup(x,z)∈X×Z |q̃(x, z)− q(x, z)| sup(x,z)∈X×Z |q1,s(x, z)| sup(x,z)∈X×Z |q0,s(x, z)|

+ sup(x,z)∈X×Z |q̃1,s(x, z)− q1,s(x, z)| sup(x,z)∈X×Z |q̃(x, z)− q(x, z)| sup(x,z)∈X×Z |q0,s(x, z)|
+ sup(x,z)∈X×Z |q̃0,s(x, z)− q0,s(x, z)| sup(x,z)∈X×Z |q1,s(x, z)| sup(x,z)∈X×Z |q(x, z)|




= O

(
max

k,s∈{0,1}
sup

(x,z)∈X×Z
|q̃k,s(x, z)− qk,s(x, z)|+ sup

(x,z)∈X×Z
|q̃(x, z)− q(x, z)|

)
,

where the first step follows by (6) and (A1), the second step follows by the compactness of X and
Z (Assumption 4(i)), the third step follows by (A3), sup(x,z)∈X×Z |q̂0,s(x, z)− q0,s(x, z)| = op(1)
(Lemma 1 and Assumption 4(iv)), and inf(x,z)∈X×Z |q0,s(x, z)| > 0 (Assumption 4(i)) for s = 0, 1, and
the last step follows by sup(x,z)∈X×Z |q(x, z)| < ∞ (Assumption 4(i)), sup(x,z)∈X×Z

∣∣qk,s(x, z)
∣∣ < ∞

(Assumption 4(i)), and sup(x,z)∈X×Z
∣∣q̂k,s(x, z)− qk,s(x, z)

∣∣ = op(1) (Lemma 1 and Assumption 4(iv))
for any k, s = 0, 1.

For τ̃treat, note that

|τ̃treat − τtreat| =

∣∣∣∣∣∣
∫
X

∫
Z


{

q̃1,1(x,z)
p̂ − q1,1(x,z)

p

}
−
{

q̃1,0(x,z)q̃0,1(x,z)
p̂q̃0,0(x,z) − q1,0(x,z)q0,1(x,z)

pq0,0(x,z)

}  dxdz

∣∣∣∣∣∣
= O

(
sup

(x,z)∈X×Z

∣∣∣∣ q̃1,1(x, z)
p̂

− q1,1(x, z)
p

∣∣∣∣+ sup
(x,z)∈X×Z

∣∣∣∣ q̃1,0(x, z)q̃0,1(x, z)
p̂q̃0,0(x, z)

− q1,0(x, z)q0,1(x, z)
pq0,0(x, z)

∣∣∣∣
)

= O



sup(x,z)∈X×Z |q̃1,1(x, z)− q1,1(x, z)|+ | p̂− p| sup(x,z)∈X×Z |q1,1(x, z)|
+ sup(x,z)∈X×Z |q̃1,0(x, z)− q1,0(x, z)| sup(x,z)∈X×Z |q0,1(x, z)| sup(x,z)∈X×Z |q0,0(x, z)|
+ sup(x,z)∈X×Z |q̃0,1(x, z)− q0,1(x, z)| sup(x,z)∈X×Z |q1,0(x, z)| sup(x,z)∈X×Z |q0,0(x, z)|

+ sup(x,z)∈X×Z |q̃1,0(x, z)− q1,0(x, z)| sup(x,z)∈X×Z |q̃0,1(x, z)− q0,1(x, z)| sup(x,z)∈X×Z |q0,0(x, z)|
+| p̂− p| sup(x,z)∈X×Z |q0,0(x, z)| sup(x,z)∈X×Z |q1,0(x, z)| sup(x,z)∈X×Z |q0,1(x, z)|

+ sup(x,z)∈X×Z |q̃0,0(x, z)− q0,0(x, z)| sup(x,z)∈X×Z |q1,0(x, z)| sup(x,z)∈X×Z |q0,1(x, z)|
+| p̂− p| sup(x,z)∈X×Z |q̃0,0(x, z)− q0,0(x, z)| sup(x,z)∈X×Z |q1,0(x, z)| sup(x,z)∈X×Z |q0,1(x, z)|


= O

(
max

k,s∈{0,1}
sup

(x,z)∈X×Z

∣∣q̃k,s(x, z)− qk,s(x, z)
∣∣+ | p̂− p|

)
,

where the first step follows by (7) and (A2), the second step follows by the compactness of X
and Z (Assumption 4(i)), the third step follows by (A4), (A5), | p̂ − p| = op(1) (Lemma 1 and
Assumption 4(i)), sup(x,z)∈X×Z |q̃0,0(x, z) − q0,0(x, z)| = op(1) (Lemma 1 and Assumption 4(iv)),
0 < p < 1 (Assumption 2), inf(x,z)∈X×Z |q0,0(x, z)| > 0 (Assumption 4(i)), and the last step follows
by sup(x,z)∈X×Z

∣∣qk,s(x, z)
∣∣ < ∞ (Assumption 4(i)) and sup(x,z)∈X×Z

∣∣q̃k,s(x, z)− qk,s(x, z)
∣∣ = op(1)

(Lemma 1 and Assumption 4(iv)) for any k, s = 0, 1. The conclusion then follows by implementing
Lemma 1.
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Appendix C. Lemmas

To facilitate the proof of Theorem 4, we introduce following Lemma, where q, q̂, qk,s, and q̂k,s for
k, s = 0, 1 are the same as defined in Appendix B.2.

Lemma 1. Under Assumptions 3 and 4(i)–(iii), it holds | p̂− p| = Op

(
n−1/2

)
and

sup
(x,z)∈X×Z

|q̂(x, z)− q(x, z)| = Op

n−1/2b−3/2
n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−1

+ bγ
n

 ,

max
k,s∈{0,1}

sup
(x,z)∈X×Z

∣∣q̂k,s(x, z)− qk,s(x, z)
∣∣ = Op

n−1/2b−3/2
n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−1

+ bγ
n

 .

Proof. The first statement follows by E| p̂− p|2 = E|T|2
n ≤ n−1. For the rest two statements, we focus

on the last one as the second statement can be shown in a similar way.
First, note that

E[q̂k,s(x, z)] = b−2
n E

Yk
j Ts

j (1− Tj)
1−s

 1
2π

∫
e
−it
(

x−Wj
bn

)
Kft(t)

f ft
ε (t/bn)

dt

K
( z− Zj

bn

)
= b−2

n E

Yk
j Ts

j (1− Tj)
1−s

 1
2π

∫
e
−it
(

x−Xj
bn

)
Kft(t)dt

K
( z− Zj

bn

)
= b−2

n E
[

Yk
j Ts

j (1− Tj)
1−sK

( x− Xj

bn

)
K
( z− Zj

bn

)]
=
∫

qk,s(x− bnũ, z− bnṽ)K(ũ)K(ṽ)dũdṽ

= qk,s(x, z) + O
(
bγ

n
)

,

where the first step follows by the definition of the deconvolution kernel K, the second step follows
by the independence between ε and (Y, T, X, Z) (Assumption 3), the third step follows by K(x) =

1
2π

∫
e−itxKft(t)dt, the fourth step follows by the change of variables ũ = x−u

bn
and ṽ = z−v

bn
, and the

last step follows by the smoothness of fX,Z, pX,Z, and E[Y(s)|X, Z] (Assumption 4(ii)) and properties
of the γ-th order kernel function K (Assumption 4(iii)).

Also note that

Var(q̂k,s(x, z)) ≤ 1
nb4

n
E
∣∣∣∣Yk

j Ts
j (1− Tj)

1−sK
( x−Wj

bn

)
K
( z− Zj

bn

)∣∣∣∣2

= O

 1
nb4

n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−2 ∫∫∫ ∣∣∣∣K( z− v
bn

)∣∣∣∣2 {E[Y2k
j Ts

j (1− Tj)
1−s|X, Z] fX,Z}(u, v) fε(η)dudvdη


= O

 1
nb3

n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−2 ∫∫
|K(ṽ)|2 {E[Y2k

j Ts
j (1− Tj)

1−s|X, Z] fX,Z}(u, z− bn ṽ)dudṽ


= O

 1
nb3

n

(
inf
|t|≤b−1

n

| f ft
ε (t)|

)−2
 ,

where the first step follows by the random sampling (Assumption 4(i)), the second step follows
by the fact that Kft is supported on [−1, 1] (Assumption 4(iii)), the third step uses the change of
variables ṽ = z−v

bn
, and the last step follows by the boundedness of E[Y2

j (s)|X, Z] for s = 0, 1
(Assumption 4(i)), the smoothness of fX,Z (Assumption 4(ii)), and properties of the γ-th order kernel
function K (Assumption 4(iii)).
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