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Abstract: The recent evolution of prudential regulation establishes a new requirement for banks
and supervisors to perform reverse stress test exercises in their risk assessment processes, aimed at
detecting default or near-default scenarios. We propose a reverse stress test methodology based on
a stochastic simulation optimization system. This methodology enables users to derive the critical
combination of risk factors that, by triggering a preset key capital indicator threshold, causes the
bank’s default, thus detecting the set of assumptions that defines the reverse stress test scenario.
This article presents a theoretical presentation of the approach, providing a general description
of the stochastic framework and, for illustrative purposes, an example of the application of the
proposed methodology to the Italian banking sector, in order to illustrate the possible advantages of
the approach in a simplified framework, which highlights the basic functioning of the model. In the
paper, we also show how to take into account some relevant risk factor interactions and second round
effects such as liquidity–solvency interlinkage and modeling of Pillar 2 risks including interest rate
risk, sovereign risk, and reputational risk. The reverse stress test technique presented is a practical
and manageable risk assessment approach, suitable for both micro- and macro-prudential analysis.

Keywords: reverse stress testing; stress testing; stochastic optimization; Monte Carlo simulation;
simulated annealing; sovereign risk; reputational risk; liquidity-solvency interlinkage; SREP; RAF;
ICAAP; SREP; recovery plan

JEL Classification: C15; C53; C61; C63; G21; G32

1. Introduction

The recent evolution in prudential regulation has introduced further prescriptions regarding how
institution-wide stress testing exercises should be carried out for ICAAP (Internal Capital Adequacy
Assessment Process) and ILAAP (Internal Liquidity Adequacy Assessment Process) and recovery plan
purposes (BCBS 2018; ECB 2018a, 2018b; EBA 2018a, 2018b). These increasingly stringent requirements
present risk managers in financial institutions and supervisors with new relevant issues on both the
methodological and operational sides. Specifically, bank stress tests should:

• Consider many adverse scenarios, rather than just one, in order to assess the effects of different
combinations of risk factors and degrees of severity, also covering losses related to rare but
plausible events and addressing the vulnerabilities of the banks.
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• Adopt a high degree of severity, in order to limit the risk of generating a false sense of security
after passing a too-lenient stress test exercise.

• Consider the impact of risks that are difficult to quantify (e.g., reputational and strategic risks).
• Be able to effectively capture the effects of phenomena related to tail events in the medium–long

term such as non-linearity, second round and feedback effects, and interaction between risk factors,
particularly in relation to the solvency–liquidity interlinkage.

• Perform no less than an annual reverse stress test analysis1, also assessing the probability that the
events and risk factors assumed in the reverse stress test may occur2; in this regard, the European
Banking Authority—EBA has also introduced the concept of «plausibility of scenario»3.

Under traditional stress tests, we explicitly select a scenario, then we assess its impact on capital,
while reverse stress test works in the opposite direction, where we first specify the magnitude of the
impact on capital, or better, an event associated with an impact on capital such as regulatory breach,
and then we find the scenarios that generate this loss/default event. The aim of the reverse stress
test is to contribute to understanding the bank’s vulnerabilities and the degree of sustainability of its
business model, identifying the conditions of default or near default, and the associated critical level of
risk drivers. The output of this kind of stress test is the detection of the reverse stress test scenario,
which also represents the starting point of the recovery plan scenario.

Its usefulness lies in the fact that by comparing the reverse stress test scenario with the bank’s
stress test exercise, it is possible to challenge the assumptions and the degree of severity of the latter
as well as assess the plausibility that the event of default or near-default associated with the reverse
stress test scenario may occur. Thence, reverse stress tests are attractive from a risk perspective,
but implementing a reverse stress test, though simple in concept, is a nontrivial exercise.

As a matter of fact, assessing the probability of occurrence of the reverse stress test scenario is very
different from assessing the default probability of the bank and its overall level of resiliency. In fact,
the former is the probability that a specific set of assumptions that cause the bank’s default may occur,
whereas the latter is the probability associated with the entire set of scenarios in which the bank may
default, therefore covering a much larger set of assumptions and adverse events. In other words,
there are many ways in which a bank may default, and therefore many default scenarios. To obtain a
general and univocal measure of the bank’s overall risk, we have to consider all the potential scenarios
in which the event of default (or of regulatory breach) may occur (and not just one, i.e., the reverse
scenario) to assess the bank’s probability of default (or the probability of regulatory breach).

In previous research (Montesi and Papiro 2013, 2014, 2018), we described how to assess a bank’s
financial fragility through a stochastic simulation model by determining the frequency with which a
bank may breach a regulatory capital requirement threshold (e.g., Common Equity Tier 1 ratio—CET1
ratio) in the future. This kind of exercise (i.e., assessing the probability of breach) is somewhat simpler
than detecting the reverse stress test scenario, because we do not necessarily have to discover which
particular adverse event combination determines a regulatory breach. We can estimate and quantify

1 Section 4.6.5 of EBA guidelines on stress testing; EBA (2018b).
2 EBA guidelines on stress testing (EBA 2018b, p. 31) in relation to reverse stress tests specify that “institutions should: . . . (c)

assess (depending on the institution’s size as well as the nature, scale, complexity and riskiness of its business activities) the
likelihood of events included in the scenarios leading to the pre-defined outcome”. See also the Bank of England (2020,
p. 19) for a description of the Prudential Regulation Authority’s expectations about reverse stress testing: “Firms in scope of
Chapter 15 of the Internal Capital Adequacy Assessment Part of the PRA Rulebook must carry out reverse stress testing in
accordance with Chapter 15 of that Part. This includes requirements on the firm to reverse stress test its business plan; that
is, to carry out stress tests and scenario analyses that test its business plan to failure”.

3 EBA guidelines (see EBA 2018b, p. 15) state: “Plausibility of scenario means the degree to which a scenario can be regarded
as likely to materialise in respect of the consistency of the relationship of that scenario with the current macroeconomic
and financial variables, the support of the scenario by a coherent narrative and the backing of the scenario by probability
distribution and historical experiences. Plausibility is not restricted to historical experiences, and hence expert judgements
that take into account changing risk environments (e.g., observed structural breaks) and stress events that were observed in
similar risk environments outside the institution’s own direct historical experience should play a key role. It is also possible
to use simulation methods (e.g., Monte Carlo simulations)”.
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the degree of fragility of a bank even without identifying the exact adverse event and risk factor
magnitude that causes the default4. Detecting the exact level and combination of risk factors that lead
to a default (breach) point is a much more complex task. Since the number of scenarios and risk factor
combinations that may trigger a bank’s default threshold can be (theoretically and in the real world)
very high, there is not just one reverse scenario, but many; this raises the thorny question of how to
select one reverse stress test scenario from all those that may cause a bank’s default.

Therefore, in addition to the need to model functional relations between risky variables and
solvency indicators in adverse conditions, as in the traditional deterministic stress test or even in
the more advanced stochastic stress test, reverse stress testing also involves a procedure or criteria
to determine a specific set of conditions of risk drivers (e.g., Gross Domestic Product—GDP drop,
interest rates shift, stock market crash, etc.) that defines a particular default scenario: the reverse
stress test scenario. Despite the regulatory demand for this kind of stress test exercise, there are still
very few papers on the topic, and as Grundke (2011) observes: “Unfortunately, despite the intensity
with which the necessity of reverse stress tests is discussed by bank supervisors, there is not much
scientific literature on how to carry out a quantitative reverse stress test in practice. In general, only
case studies for simply structured portfolios with one or two risk factors can be found” (Grundke 2011,
p. 74). In 2020, the situation has not substantially changed, and studies generally consider reverse
stress tests by focusing on one specific asset class (loans, bonds, etc.) or type of risk (credit, market,
etc.), generally assuming a context of linear setting involving elliptical distributions for risk factors.
This kind of assumption makes it much easier to implement algorithms capable of detecting reverse
stress test scenarios; however, the real context in which banks operate is considerably more complex
and requires a different modeling framework5. It is necessary to take into account all relevant risks
(systemic and idiosyncratic), their complex interactions, non-linear phenomena and feed-back, and
second round effects, which are particularly important in tail stressed scenarios and in a multiperiod
analysis context. Little research has been published on more general reverse stress test frameworks
covering all the main bank risk factors6, and in our opinion, more dedicated research work is called for
on this topic in order to satisfactorily address the issues just mentioned. The scope of this article is to
present a general reverse stress test methodology based on an optimization system applied within a
stochastic simulation framework for stress testing. The model provides a quantitative procedure that
allows us to derive the combination of risk factors that, by triggering a key indicator threshold (CET1
ratio), causes, with a desired degree of approximation, the bank’s default and thus defines the reverse
stress test scenario. Furthermore, the reverse stress test process provides a useful set of results that
aids in understanding the bank’s vulnerabilities and sources of risk.

Since the correct identification of the reverse scenario necessarily requires consideration of the
interaction among all the relevant bank’s risk sources, in addition to taking into account the traditional
Pillar 1 risk factors (credit, market, and operational risks), the methodological framework also shows
a possible modeling of some relevant Pillar 2 risks and their feedback and second round effects,
particularly taking into account some of the main features of the liquidity–solvency interlinkage.
Therefore, we considered interest rate risk and reputational risk, and placed a particular focus on the
modeling of sovereign risk. Although all models presented were kept at a very simple and essential
level to highlight the basic functioning of the proposed methodology without obscuring the big picture

4 As Taleb noted: “It is far easier to figure out if something is fragile than to predict the occurrence of an event that may harm
it. [ . . . ] Sensitivity to harm from volatility is tractable, more so than forecasting the event that would cause the harm”. Taleb
(2012, pp. 4–5). For example, within the stochastic simulation framework of our model (Montesi and Papiro 2018), once we
have selected the bank’s risk factors variables (credit risk, market risk, operational risk . . . , etc.) and set for each variable a
probability distribution function through a Monte Carlo simulation process, we are able to estimate the probability of breach
disregarding which particular scenarios (set of risk factors combination) will determine that event.

5 For this kind of simple reverse stress test approach see Flood and Korenko (2015), Breuer et al. (2009), Kopeliovich et al.
(2015). Glasserman et al. (2015).

6 Along that research avenue are the works of: Grundke and Pliszka (2018), McNeil and Smith (2012).
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of the framework with too many modeling details, in our opinion, they capture the core elements
at stake, thus providing some indications regarding a potentially viable approach for modeling risk
factors typically considered as hard to quantify such as reputational risk.

The methodology proposed is quite different from previous research works, since it adopts a
holistic approach aimed at stressing the entire bank, considering all the relevant risks affecting capital
and the most important interactions and second round effects. Furthermore, another very important
advantage lies in the computational effectiveness of the peculiar heuristic technique adopted to solve the
reverse stress test problem—a stochastic optimization system based on simulated annealing—capable
of detecting all the reverse scenarios that trigger the bank’s failure. Moreover, we also provide a
selection criteria based on the criterion of proximity to the starting point of the analysis, in order to
select the most likely reverse stress scenario among all the possible solutions detected.

The proposed methodology can be applied by bank risk managers and supervisors in all risk
assessment processes that require a reverse stress test: Risk Appetite Framework—RAF, ICAAP,
Recovery & Resolution Plan, Supervisory Review and Evaluation Process - SREP.

The rest of the paper is organized as follows. In Section 2, we set some preliminary aspects that
help us to better address which are the main issues regarding reverse stress testing. Then, in Section 3,
we provide a very brief overview of the stochastic modeling framework for reverse stress testing;
Section 4 describes the optimization system applied to derive a solution to the identification of the
reverse scenario. We then present the assumptions and modeling of a case study based on the Italian
banking sector intended to offer a simplified practical example of how the methodology works in
Section 5, subsequently followed by Section 6, which reports the main results of the exercise performed.
We performed two kinds of analysis: (a) a stress test exercise aimed at assessing the probability of
breaching several regulatory thresholds in stressed conditions (OCR—Overall Capital Requirement
and TSCR—Total SREP Capital Requirement); and (b) a reverse stress test exercise aimed at detecting a
specific set of assumptions of the primary risk drivers that can cause the triggering of a regulatory
breach in relation to the two different thresholds (OCR and TSCR), showing how it is possible to
perform this kind of exercise with real figures. Section 7 provides some concluding considerations;
the appendices report further details of the assumptions and data used for the case study.

2. Definition and Logic of Reverse Stress Testing Analysis

Before describing the proposed methodology, it is opportune to briefly deal with some preliminary
issues that help us to better define the sphere and complexity of this topic. From a technical point of
view, reverse stress test analysis is aimed at finding a solution to an inverse problem (i.e., detecting
those scenarios on the edge between the condition of viability and default), or in other words, the exact
conditions in a small set of risk drivers that trigger the bank’s default, which from a regulatory point of
view can be identified by the breaking of a minimum regulatory threshold such as Total SREP Capital
Requirement (TSCR) or considering higher thresholds such as Over Capital Requirement (OCR)7.

The solution to this problem can only be simple if we think in terms of an extremely reduced
and simplified modeling framework, for example, based on a synthesis profitability indicator such as
Return On Equity - ROE or Return On Assets—ROA. If we assume that we can represent a bank’s
business model only through a set of four fundamental variables such as business growth (financial
assets), risk absorption (RWA), profitability (ROE), and a capital regulatory constraint (CET1 ratio),
we can obtain a solution in a closed formula that allows us to detect the critical level of profitability/loss
that triggers the default by causing the bank’s breach of the regulatory capital constraint. The following

7 Extending the analysis to multiple capital requirements (CET1, Tier 1, total capital, leverage ratio) and further indicators
with respect to capital such as liquidity does not change the nature of the issue.
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formula describes the reverse stress test breaking point (i.e., the level of ROE that causes a CET1 ratio
below the pre-set regulatory threshold8):

ROEt =
(1− αt−1)

(1− αt)
·
(1 + gt)·RWt·CET1t

RWt−1·CET1t−1
− 1 (1)

where g is the rate of growth of financial assets; RW is the average risk weight of assets (RWA/TA);
α is the capital regulatory adjustments (CET1Adj) expressed as a percentage share of the Equity Book
Value; and CET1 is the regulatory minimum threshold of the common equity capital ratio that sets the
default condition.

We can also express the breaking point of (1) in terms of ROA, through the well-known relationship
between ROE and ROA, as9:

ROAt =
(1 + gt)·RWt·CET1t

(1− αt)
−

RWt−1·CET1t−1

(1− αt−1)
(2)

This kind of simple basic modeling, in which all the complexity of the interactions between the
bank’s risk factors and accounting/regulatory variables are removed by collapsing everything into a
single explicatory variable (ROE or ROA), allows us to highlight the quantitative relations between

8 The following steps describe the derivation of (1). By expressing regulatory capital absorption in terms of total assets (TA),
we can define the regulatory capital constraint in terms of the minimum required Equity Book Value (EBV) as:

EBV = TA·RW·CET1 + CET1Adj (i)

where CET1Adj represents all the regulatory capital adjustments (such as intangibles, prudentail filters, capital deductions,
etc.); a positive sign of CET1Adjt meaning a net capital deduction (the reverse in case of negative sign). By expressing
CET1Adj as a share α of Equity Book Value (EBV), we have:

CET1Adj = α·EBV (ii)

Thence, (a) can be expressed as:

EBV =
RW·TA·CET1

1− α
(iii)

In the absence of extraordinary capital transaction, keeping a capital target profile in line with regulatory constraint can be
done by adjusting the dividend/capital retention policy to satisfy the following condition:

Net Incomet·(1− δt) = ∆EBVt (iv)

where δ represents the payout ratio; and ∆EBVt is the change in equity book value required to maintain the capital position
in line with the regulatory constraint. By developing some simple passages, we can express (d) as:

ROEt·
TAt−1 ·RWt−1 ·CET1t−1

(1−αt−1)
·(1− δt)

=
TAt−1 ·(1+g)·RWt ·CET1t

(1−αt)
−

TAt−1 ·RWt−1 ·CET1t−1
(1−αt−1)

(v)

where ROEt = Net Incomet/EBVt−1. The left side of the expression represents the share of net income retained by the bank,
while the right side represents the capital needed to respect the regulatory constraint as a function of the growth of assets,
the regulatory capital threshold, the risk weight, and the capital adjustments. By simplifying (e) and placing δt = 0 we can
derive (1).

9 We can express the breaking point condition in terms of ROA by considering the well-known relation that links ROE to ROA
through the leverage (`):

ROE = `·ROA (vi)

In fact, considering that the leverage is the ratio between Total Assets (TA) and EBV, we can also express it as (see
previous footnote):

` =
TA

EBV
=

(1− α)

RW·CET1
(vii)

which is the leverage implied in the breaking point condition. Considering (vi) and (vii), we then have:

ROE =
(1− α)

RW·CET1
·ROA (viii)

By substituting (viii) in (1), we can easily obtain (2)
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profitability, capital assets growth and risk; a high level of breaking point losses indicate a low risk of
breaching the regulatory capital, while a low level of breaking point losses imply a high risk of breach.
However, it tells us nothing more than that. If we intend to minimally analyze and understand the
risk factors and the context that can cause the bank’s default, which is, after all, the aim of reverse
stress testing, we need to introduce several risk drivers into the model. Abandoning the too-simplistic
context and introducing more explanatory variables into the modeling framework makes finding a
solution to the reverse stress test problem a much more difficult and challenging task.

In fact, the greater the number of risk drivers considered, the greater the number of possible
solutions (and not just one, as in the simple example above), since there can be numerous possible
combinations of risk factor assumptions that can determine a breaking point. Moreover, the more
articulated our model is, the more computationally complex finding the solutions becomes.

As a general rule, limiting the number of risk factors to the most relevant ones and containing the
level of analyticity of the model helps to reduce the complexity of the reverse stress test solution. In order
to make the reverse problem computationally tractable and its solution meaningful and adequate for
its purpose, we must necessarily make some choices regarding the limitation, selection, and modeling
of the risk drivers considered, acknowledging that these choices are unavoidably subjective and will
affect the solutions. For instance, assuming in the model that credit risk is dependent from GDP
(or only from it), for example, through a satellite model that links the GDP rate of growth to PDs
(probability of default) and LGDs (loss given default), a certain path of solutions can already be pre-set
in terms of scenario conditions while excluding others. This widespread assumption, also adopted in
the supervisory stress test, is much less obvious than what it may seem at first glance10, considering
that quite often (like in the 2007 crisis) the original source of risk stems from the instability of the
financial sector, while the downturn of the real economy arises only afterward as a consequence of a
financial crisis11. In this regard, Hyman Minsky’s theoretical contributions are quite enlightening12.

Even once we have determined a quantitative technique for solving the reverse stress test, given
the fact that this problem (except in the simplistic world outlined above) always involves multiple
solutions, we must deal with the issue of how to select one reverse stress test scenario from all the
possible breaking points that lie on the edge of the default area.

If we simulate all the possible future economic dynamics of the bank, we can plot on a graph all the
values of a key synthesis risk indicator such as the CET1 ratio, which is associated with each forecast
scenario simulated. Once we have set a relevant threshold such as that established by prudential
regulation and supervisors, we can share the points between those lying above the threshold and those
falling below in the breach area. In Figure 1, we show a graphical representation of all the CET1 ratios
generated within a simulation of 5000 different forecast scenarios13. The points below the thresholds
(10% OCR and 7% TSCR) in the pink breach area represent the scenarios in which there is a breach of
the relevant threshold. If we group and represent all the points through a distribution function, we can
determine the frequency of breaching the relevant threshold within the forecast simulation: 21.88% for
OCR and 2.54% for TSCR. To the extent that the simulation effectively replicates the variability of all
the main bank’s risk drivers and the corresponding capital ratio outcomes, these frequencies can be
considered as an assessment of the bank’s probability of breach. Assessing such probability of breach
corresponds to assessing the bank’s financial fragility and its overall degree of risk. As mentioned
in the introduction, we have already described how to perform such assessment in a previous paper
(Montesi and Papiro 2018); in this article, we focus on determining the points that lie on the edge of the

10 On this point, see Alfaro and Drehmann (2009) and Borio et al. (2012a, 2012b)
11 Moreover, consider that empirical studies show that GDP is often not the variable that mostly explains PDs and generally

also presents a significant temporal lag in affecting PDs, which poses a relevant problem in modeling it within a forecast
period that typically covers three years. In this regard, see Bofondi and Ropele (2011); Fiori et al. (2009).

12 See in particular Minsky (1982, 2008) and Kindleberger’s (1989) contributions on financial instability.
13 Consider that the graphic representation shown in Figure 1, with all of the simplifications of this case, depicts the results of a

real application.
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relevant threshold. In fact, taking a closer look at Figure 1, we can see that while most of the points lie
either above or below the threshold, some of them just lie on the bar of the threshold (light pink for
OCR and dark pink for TSCR). These points correspond to all the scenarios in which the impact of the
simulated risk factors exactly triggers the regulatory breach: a slightly less severe impact not causing
any breach, while more severe impacts determine capital ratios progressively lower than the threshold.
As we can see, there are many points, not just one, that lie on the bar. Of course, the width of the bar
(and therefore the number of scenarios lying on it) changes according to the desired degree of accuracy
of the threshold’s breach. The aim of reverse stress testing is to determine the forecast assumptions of
the key risk factors underlying those points, which we can call reverse breaking points. The purpose
of this paper is to present a technique to determine the reverse breaking points and then suggest a
criterion for selecting one breaking point among all those determined and the corresponding set of risk
factor forecast assumptions, which define the reverse stress test scenario.

To do so, we must apply a selection criterion, which again involves some degree of subjectivity;
for example, the most likely scenario, the one that has the minimum level of approximation from the
breaking condition, an average of the conditions derived from all the potential solution, the scenario
that is less distant from the current economic conditions, etc. The selection criterion is not a minor
issue, in this regard, an appropriate way to represent all the outcomes of the reverse stress test solutions
showing the distribution of the critical levels of the specific bank’s main risk factors and its most likely
vulnerabilities can strongly help us in finding an effective selection criterion.

Therefore, reverse stress testing involves two types of problems: (1) a computational issue related
to the technique used to derive the reverse solutions (the reverse breaking points); and (2) the choice of
a criterion to select the reverse stress test scenario from all the solutions obtained. The first issue can be
resolved through quantitative methods, while the latter cannot be addressed in purely quantitative
terms, but ultimately requires subjective decisional criteria.

In the next section, we present a reverse stress testing model based on a stochastic optimization
system as a quantitative means of determining all the possible breaking point solutions on the edge of
the default area (i.e., the set of risk driver assumptions related to each breaking point). We then show a
possible way to determine a reverse stress test scenario from the set of solutions derived. The model
attempts to consider all the bank’s most relevant risk factors and their main interactions, although
their modeling has been kept at the simplest possible level. The aim is to supply a practicable general
methodology for addressing the reverse stress testing issues outlined above, providing a meaningful
representation of selected adverse scenarios that can help us to understand the combination of risk
factor assumptions that may threaten the bank’s viability.
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3. Stochastic Reverse Stress Testing: Modeling and Framework

The model framework described refers to the empirical exercise performed, which will be more
specifically described below. This particular type of modeling is partially affected by the limited data
set available for the case study; it is of course possible to conceive a more generalized and extensive
version of the framework that is better suited to managing more structured contexts for which a
wider set of data is available. Whatever the particular modeling features adopted, the general model
framework consists of two layers (see Figure 2):

• An upper layer that includes all the systemic risk factors (e.g., GDP, interest rates, stock market,
etc.) representing the drivers on which the stochastic optimization system is based and which
defines the set of assumptions of the reverse scenario. The small set of macro variables adopted in
our exercise is just a basic example; the type and number of variables can of course be changed
and extended to other variables that may be useful for the modeling of the second layer of the
framework (however, keep in mind that the higher the number of explanatory variables used
in the optimization system, the higher the number of possible solutions to the reverse stress test
there will be).

• A lower layer made up of all the mathematical relationships that define a multi-period forecast
model that projects the bank’s income statement, balance sheet, and regulatory capital figures.
The forecast model variables simulate the impact of all systemic and idiosyncratic risk factors
on the bank’s economics, expressed through probability distribution functions. The forecast
model follows the same stochastic framework presented in our previous work, to which we
refer (Montesi and Papiro 2018). A sound multi-period stochastic forecasting model must
meet the following requirements: (1) A dividend/capital retention policy that reflects the
regulatory capital constraints and stress test aims; (2) The balancing of total assets and total
liabilities in a multi-period context, so that the financial surplus/deficit generated in each
period is always properly matched to a corresponding (liquidity/debt) balance sheet item14;
and (3) The setting of rules and constraints to ensure a good level of intrinsic consistency
and correctly manage potential conditions of non-linearity. In fact, the most important
requirement of a stochastic model is that it must prevent the generation of inconsistent
scenarios. In traditional deterministic forecasting models, the consistency of results can be
controlled by observing the entire simulation development and set of outputs. However,
in stochastic simulation, which is characterized by the automatic generation of a very large
number of random scenarios, this kind of consistency check cannot be performed, and we
must necessarily prevent inconsistencies ex-ante within the model itself, rather than correcting
them ex-post. In practical terms, this entails introducing rules, mechanisms, and constraints
into the model that always ensure consistency, even in stressed scenarios15.

The necessary link between the upper and lower layers is given by specific satellite models that
translate the dynamic of the macro variables (systemic risk) into each of the bank’s relevant micro
variables that affect the Profit & Loss and balance sheet (PD, interest income and expenses, etc.).
In our exercise, we considered a limited and very simple set of satellite models; the models can of
course be freely extended and made more sophisticated without changing the essence of the modeling
framework and the process by which reverse solutions are derived. Idiosyncratic risks, on the other

14 On modeling logics regarding points 1 and 2, see Montesi and Papiro (2018), pp. 7–9.
15 This means the setting of rules such as the dividend/capital retention policy, through which we can prevent the distribution

of dividends when the bank experiences losses; the application of several prudential rules related to the calculation of
regulatory capital, which are conditioned with respect to the constrains and the triggering of particular thresholds; and
more, in general, other potential managerial actions that can be activated by the evolution of the economics subject to the
specific scenario, as better explained later in this paper such as avoiding expanding new loans during recessions, etc.
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hand, are simulated directly within the lower layer of the framework. These variables are not subject
to the optimization system for determining the reverse stress test scenario. For the purpose of this
exercise, we considered idiosyncratic risks as operational risk, reputational risk, and a component of
market risk; since the bank considered in the exercise represents a sort of proxy of the countrywide
banking sector, we did not consider any idiosyncratic credit risk factor, but more idiosyncratic risk
components could be included.
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Figure 2. The stochastic simulation framework for reverse stress testing.

We may also consider introducing into the framework a further modeling component, in which
we can model the feedback given by the bank management’s reactions to adverse events that have
occurred, in order to bring the model closer to the real behavior of banks under stressed conditions.
For instance, it does not make much sense to contemplate in the model that a bank keeps on granting
the same amount of new loans within a prolonged severely adverse business cycle; or that in times of
trouble, it does not make any cost reductions if they are needed and feasible. As we have explained,
the modeling of these kinds of automatisms in adverse scenarios is particularly relevant for stochastic
simulation models in a multi-period context. The idea is to make recourse to appropriate control
variables and logic functions, through which to model the activation of an economic rational reaction
of the bank’s management in response to particular preset conditions such as the incurring of net
losses or the triggering of a capital threshold16. In principle, this kind of feedback mechanism should
be limited to those variables that are, at least partially, under the direct control of management, namely
costs and investments. Capital issues and sales of business units at unreasonable prices in adverse
market conditions to cover capital shortfall should not be considered.

Of course, modeling this kind of feedback function is not an easy task and unavoidably involves
some kind of arbitrariness. Nevertheless there are some basic options that, although not exhaustive,
can be generally adopted without presenting too many shortcomings such as reducing administrative
costs in the case of net losses (e.g., eliminating the personnel bonus, reducing advisory and consultancy
expenses, blocking staff turnover and salary increase, delaying IT projects, cutting marketing expenses,
etc.); risk assets deleveraging in relation to the capital capacity (e.g., partial renewal of matured

16 The introduction of this kind of feed-back mechanism in the model can be assimilated to the concept of real options, which
is often used in corporate finance and management theory to explain the component of value given by the level of flexibility
inherent in the strategic and tactical management of a company. For a review of real options theory in strategic management
research, see Trigeorgis and Reuer (2017).
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exposures, temporary stop to new business, switching from greater to lesser capital absorbing
exposures, sales of assets, etc.); reduction of government bond risk during a sovereign crisis (e.g.,
reducing the portfolio’s duration or size acting on a partial renewal or different composition of matured
securities); no dividends or interest paid on additional Tier 1 capital instruments in case of net losses;
etc. Imagining these kinds of features as a feed-back component of the model allows us to conceive it
as a switch that can activate, deactivate, or possibly even modulate management reactions, according
to the scope of the analysis, and also to quantify (by differential analysis) the magnitude of the bank’s
reaction capacity17.

In Section 5, we report the assumptions and modeling features of the main risk factors adopted in
the reverse stress test exercise, while the assumptions related to minor variables are provided in the
Appendices A and B.

By using a multivariate stochastic forecast model such as the one just described, we can develop a
stress test analysis aimed at assessing a bank’s capital adequacy and its financial fragility, estimating
the probability of breaching key regulatory capital/liquidity indicators (by determining the frequency
of scenarios in which there is a breach of a pre-set default threshold of capital ratios over the entire
number of random scenarios simulated). However, this alone does not allow us to identify a specific
set of conditions that can act as a watershed between the viability area and the default area, given
that there are many scenarios that can trigger the default including those that determine points within
the default area as well as scenarios that lie at its edge (i.e., the breaking points that constitute the
solutions to the reverse stress test). Within a stochastic simulation aimed solely at assessing a bank’s
fragility by determining its probability of breach, we may also fail to detect the specific source of risk.
In fact, for that purpose, it would suffice to estimate, for example, the distribution function of loan loss
provisions (and all other risky variables), regardless of whether they arise from an idiosyncratic or
systemic event. For the purpose of determining the reverse scenario, it is also crucial to determine the
source of risk, how that level of provision arises and the specific value of the driver that causes them.
In order to identify the particular sets of assumptions related to the breaking points, we must assume a
specific modeling layer that specifies how these risk drivers relate to all the other relevant forecast
variables. More specifically, for the purpose of reverse stress testing, from a modeling point of view, it
is important:

A. To use satellite models that link the dynamics of a few drivers (typically macroeconomic
variables such as GDP) to the evolution of the bank’s micro variables, ultimately affecting P&L,
balance sheet, and regulatory figures (e.g., provisions for loan losses, net trading income, other
comprehensive income reserve, etc.). Satellite models help to reduce the number of explicative
variables and, together with the creation of a forecasting model that properly connects the related
input variables with each other18, derive a consistent and synthetic set of conditions that solve
the reverse stress test exercise and define its scenario.

B. To appropriately consider the most relevant interactions between risk factors. Keeping in mind
that the purpose of the reverse stress test is to determine the right triggering combination of
risk factors, it is crucial that the model is able to take into account and measure the impact
of feed-back and second round effects among risk factors, which in a multi-period context
can generate non-linearity phenomena and are particularly relevant in extreme tail scenarios
typically associated with reverse analysis; how they are modeled-in affects the ranking and
impact of risk factors and thus the solutions of the model. More specifically, we refer to the need

17 For example, by structuring the feed-back relationships according to the characteristics associated with a particular risk
appetite framework—RAF policy (such as risk limits and early warning thresholds activating escalation process and
subsequent remediation actions), it is possible to quantify the mitigation effects related to that specific RAF policy, simply as
the difference between the results (capital ratios) associated with two different analyses, one performed with the feed-back
components on and the other with the feed-back components off.

18 For example, operating cost as a function of business volume, LGD as a function of PD, etc.
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to consider relevant Pillar 2 risks (such as interest rate, sovereign and reputational risks), and
the modeling of dynamics such as systemic–idiosyncratic interactions and liquidity–solvency
interlinkage19.

Moreover, to resolve the stress test problem, we also need to adopt a specific computational
technique aimed at reducing the calculations and elaboration time necessary to reach a solution;
this technique is presented in Section 4, while the description of the selection criterion is provided in
Section 6 within the empirical part of paper, since the meaning of this methodological part is clearer
when put directly in relation with a specific case study.

4. Optimization System for Reverse Stress Test

4.1. Simulated Annealing Driven by Multi-Start Strategy: A Heuristic Solution

Reverse stress test problem solving can be compared to a scenario optimization issue. There are
several quantitative techniques that can be used to resolve problems of parameter optimization such as
scenario optimization (Monte Carlo method), simultaneous perturbation, stochastic gradient descent,
random search, swarm optimization, and genetic algorithms20. The choice of the specific technique to
employ depends largely on the specific context and issues to be addressed; unfortunately, there is no
optimal algorithm to be adopted for all conditions.

Moreover, in the context of complex and non-linear systems such as the multivariate and
multiperiod forecast model outlined above, the choice of the most appropriate technique is not an
easy one. In fact, these kinds of models are characterized by computational complexity related to
the multiple dimension of the research domain (i.e., we have more than a variable to optimize),
the existence of several non-linear relevant conditions that affect the results21, and in particular, the
presence of other stochastic variables linked to idiosyncratic risk (those related to the lower layer of the
model). In addition, the multiperiod context of the exercise generates a further element of complexity
due to the significant time dependence relationship among variables. This kind of complexity is quite
common in modeling economic and financial phenomena, albeit with a wide range of differences.
With specific regard to optimization problems, Gilli and Schumann (2012) highlighted that the use
of classical optimization techniques is not necessarily a good solution in optimization problems in
financial modeling. More specifically, the two authors argue that in all cases in which there is a high
level of computational complexity, it is necessary to make recourse to alternative solutions: “In such
cases, an often observed practice is to ‘convexify’ the problem by making additional assumptions,
simplifying the model (for instance by dropping constraints), or imposing prior knowledge (e.g.,
limiting the parameter domain). This makes it possible to employ classical optimization methods,
but the results obtained are not necessarily good solutions to the original problem. An alternative
approach, ( . . . ), is the use of optimization heuristics like Simulated Annealing or Genetic Algorithms.
These methods are powerful enough to handle objective functions and side constraints essentially
without restrictions on their functional form.” (Gilli and Schumann 2012, p. 155).

For the reverse stress test exercise presented in this article, the optimization system adopted was
Simulated Annealing (SA), an iterative heuristic aimed at approximating a global optimization in a

19 For example, a sovereign debt crisis can impact the bank’s cost of funding more or less severely depending on the maturity of
its liabilities during the forecasting period; a systemic crisis (GDP/stock market drop) affecting the bank’s capital profile can
worsen its rating and thus increase its cost of funding; similarly, reputational events can impact the bank’s profitability, etc.

20 For a review of this literature, see Gendreau and Potvin (2010).
21 Consider, for instance, the dynamics related to the increase in the cost of funding arising from the bank’s rating downgrade,

or potential impairment on the stock of government bonds in the HCT portfolio in the case of severe downgrade of the
country’s rating, or the mechanism of CET1 deductions related to an increase of DTA above the regulatory threshold.
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large search space. This heuristic is closely related to the Markov Chain Monte Carlo method (MCMC);
more specifically, it is an evolution of the Metropolis-Hastings method22.

We combined a variant of SA, similar to that proposed by Painton and Diwekar (1995), with a
multi-start method to improve the search process. In our opinion, one of the main advantages of this
technique, under certain conditions of configuration of the cooling schedule, lies in the fact that it
enables us to reach an optimal solution, reducing the amount of sampling necessary. The SA technique,
compared to a simpler (but blind) random search method, allows us to better guide the search by
setting a calibration of the optimization process. Indeed, as evidenced by Painton and Diwekar (1995),
“The goal of stochastic annealing is to minimize the expectation of the objective or cost function by
balancing the trade-offs between accuracy and computational efficiency” (Painton and Diwekar 1995,
p. 494).

The multi-start technique permits better coverage of the search domain and more accurate
mapping of the points on the edge, tracking the best candidate solution at each iteration. By starting
from a set of preselected inputs of the domain (the primary risk drivers), it allows us to move more
quickly toward the breaking condition, detecting the scenario that presents the highest probability of
lying on the edge of the default area. In this regard, SA with multi-start is a very flexible technique,
which allows us to adjust the system to the particular purpose of the analysis by properly setting the
range of potential values of the variables to be optimized and the steps of the search process. This
calibration and parametrization of the reverse stress test is a very important aspect, since it affects the
quality of the solutions obtained by means of the optimization.

The basic idea behind the SA technique is the following: at each step, the algorithm randomly
(by means of a stochastic sampling method) selects a set of risk driver values as a solution close to the
current set, then it measures the quality of the solution by verifying how close the model’s output is to
the optimal condition (at a pre-set level of accuracy), and then decides whether to stay with the current
solution or to move to some neighboring values on the basis of a probabilistic assessment determined
through an acceptance function. During the search, the process leads the system to move toward more
severe stressed states and is repeated until the system reaches a breaking point. To adapt the SA to a
stochastic simulation framework (i.e., a forecast model that includes further stochastic variables in
addition to those to be optimized), we performed n trials for each step23, thus obtaining a plurality
of results that allowed us to consider a more accurate average value to establish whether the point
should be added to the set of breaking point solutions or whether the iterative process must continue,
restarting from the rejected point. The probability of accepting a move decreases with increasing
iterations, and this allows the algorithm to leave local minimum states.

To put it simply, the working of the SA optimization process can be described as follows:

(a) Before starting, it is necessary to set a domain sampling grid, which serves as the starting set of
values to feed the SA (Multistart) algorithm iterations, in order to keep the optimization process
from getting stuck in a local minimum by helping to explore further solutions in a wider space;
in other words, it serves to avoid the risk that the wrong choice of a starting point affects the
optimization process and thus leads to the selection of a solution that is not the best one.

(b) Then, starting from an initial point within the sampling grid, the SA optimization process explores
the input variables domain, randomly selecting at each iteration a new solution among all the
potential solutions in the neighborhood.

22 Proposed for the first time by Kirkpatrick et al. (1983), it was inspired by material thermodynamics; more specifically by the
technique for controlled cooling (annealing) aimed at reducing imperfections of a material. There are several applications of
the algorithm to continuous domains or with a multi-start technique; see in particular Solonen (2013), Locatelli (1996), Ali
and Gabere (2010).

23 In the simulation, we used 50 trials, but we noticed that even with fewer trials (10 or 20), we could obtain a good level
of accuracy.
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(c) Subsequently, we evaluated the new solution outcome. Considering the stochastic nature of the
idiosyncratic risk factors, it is recommended that the outcome be determined as an average of
several outcomes, generated with the same input point (potential solution) by running several
trials for each new potential solution (in our application we performed ten trials). If the outcome
obtained is closer to the target to be achieved than the former outcome, then the solution is
adopted as new best optimum; otherwise we decided, through an acceptance function based on
the Boltzman function (having as its input number of iterations and distance from the target),
whether the solution should be definitively discarded or could still be used as the starting point
for the selection of a new random point.

More formally, SA, as applied to our context, can be described as follows. First, we define with
S the polytope in R j (with j = number of systemic risk factors × number forecast periods) made up of the
intersection of the plans outlined by the value range of the several systematic risk factor drivers subject
to optimization, with CET1 the value of the capital ratio threshold, and with f(x, h) the function that
returns the value of the CET1 ratio at the risk horizon h conditional on realizations of the systematic risk
factors, where x ∈ S. Simply speaking, f(x, h) represents the final result of an articulated forecasting
model as outlined in Figure 2, with all its variables and relations simulating the dynamics of P&L,
balance sheet, and regulatory capital items, according to the accounting and regulatory rules that set
their relationships24.

The optimization process will aim to find the set of solution S∗ according to which:

S∗ =
{
x ∈ S

∣∣∣∣ min
[
E
(∣∣∣f(x, h) −CET1

∣∣∣)]} (3)

where E
(∣∣∣f(x, h) −CET1

∣∣∣) is the expected value of the difference in absolute value between the CET1
ratio conditional on realizations of the systemic risk factors at the time horizon h and the preset
threshold CET1 ratio.

Every run of the algorithm can be described in the following way:

• Step 0: Let x0 ∈ S be a given starting point.
• Step 1: Sample a point yk from the neighborhood.
• Step 2: Accept the new point using:

xk+1 =

{
yk+1 if p ≤ A(xk, yk+1 , tk)

xk otherwise

where A is the acceptance function; p is a uniformly random number in [0,1]; and tk is a global
time-varying parameter called the temperature at iteration k-th.

• Step 3: Update S∗ with the information collected up to iteration k-th.
• Step 4: Set tk = T(tk−1), where T is called the cooling schedule function.
• Step 5: Check the stopping criterion or continue iteration.

Once we have selected the forecast year in which to search for the breaking point solution and the
goal of the optimization process (i.e., the capital ratio threshold), in order to apply the SA algorithm,
it is necessary to define the method to select the next candidate solution neighborhood, the function A
of acceptance, and the cooling schedule T. We applied the selection method proposed by Muller (1959),
according to which we selected a random point in a hypersphere with radius r, which represents
the neighborhood.

24 The CET1 ratio is defined as: CET1 Capital/RWA. The calculation of both figures follows accounting and regulatory rules.
For the precise definition of CET1, Capital, and RWA used in the subsequent empirical analysis, see in particular Table A3 in
Appendix A, and the “Regulatory Capital and RWA” section of Appendix B.
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The cooling schedule function T can be defined as:

tk = tk−1·(1− γ) (4)

where γ is a constant smaller than the unit25. Empirically, we noted that this function allows us
to increase the convergence toward the solution point with an exponential decrease of the cooling
schedule, thus reducing the sample size26.

We can define the acceptance function, A, in the following way:

A =
e−[ f (y)− f (x)]

tk
(5)

where x is the current point and y the previous local optimizer point.
The described SA algorithm is just one possible technique for finding a solution to the reverse

stress test problem. In our opinion, it is a quite efficient methodology well suited to address complex
problems in which random variables are involved; other heuristics may also be adopted if they prove
to provide better solutions and reduce the calculation time and errors. In any case, it is important to
stress that the choices can have a significant impact on the quality results, and unfortunately, there is
no general way to find the best solutions for all possible problems.

4.2. The Reverse Breaking Point Frontier

In the lower layer of the model, we manage the idiosyncratic risk factors, which, although relevant
in contributing to determine the default conditions, do not take part in the optimization as drivers of the
reverse stress test. These idiosyncratic risk factors are also managed as stochastic variables in the model
and therefore the contribution of their impact on the bank’s capital varies in the different scenarios
simulated, especially where non-linearity conditions occur. The variability of the idiosyncratic risk
impact causes a margin of error in the precise determination of the reverse breaking points arising from
the optimization system. As above-mentioned, to address the issue, we ran many trials for each step of
the optimization process in order to reject the results whose average did not meet the required level
of accuracy. Of course, increasing the number of trials while improving the reliability of the average
also entails an increase in elaboration time; there is a natural trade-off between elaboration time and
margin of error that has to be balanced. To this end, for the initial calibration set-up of the model, we
can perform tests to assess the optimal number of trials for each step of the process that would offer
a good level of accuracy and elaboration time. In other words, keeping in mind that the aim of the
reverse stress test should be to select the most plausible scenario in which the bank defaults, we should
ensure that solutions with a high probability of exactly triggering the threshold should be considered,
while solutions that, for example, require a very high level of (very unlikely) idiosyncratic risk losses
should be excluded.

Therefore, in order to calibrate the model, we can generate a high number of stochastic trials
(e.g., 10,000) that allow us to detect all the values whose average has a high probability to coincide
with a breaking point solution. By performing this procedure for all the breaking points on the default
edge, we are able to appraise the quality of the solutions and disregard those that have an average
value too distant from the preset threshold. This is shown in Figure 3, in which we report the average
values of a sample of 25 breaking points on the edge of the distressed area (relative to the breach of the
9.54% threshold in the third forecast year), determined by simulating 10,000 trials for each breaking
point, showing that the range of deviations from the CET1 threshold was quite small.

25 In the simulation, we assumed γ = 0.01.
26 For a different formulation, see Liang et al. (2014).
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5. Reverse Stress Testing Exercise: The Italian Bank Case Study

We performed a reverse stress test exercise applying the methodology described, based on an
aggregated sample of the four largest Italian banks: Intesa Sanpaolo, Unicredit, Banco BPM, and UBI
Banca, representing in terms of total assets slightly more than 50% of the Italian banking industry.
To create the banks’ sample, we added up all the banks’ financial statement items to create a sort of
aggregated balance sheet that we called ITB (Italian Bank), and which can be considered as representing
both a typical Italian bank or a rough proxy of the Italian banking industry.

Since this reverse stress test exercise has been developed exclusively for illustrative purposes,
the specific modeling and set of assumptions applied were kept as simple as possible to facilitate the
understanding of the basic characteristics of the approach without obfuscating the description of the
“big picture” with unnecessary complications. Therefore, the specific set of assumptions adopted
for this exercise must be considered strictly as an example of the application of the methodology
proposed, and absolutely not as the only or best way to implement the approach. Depending on
the information available and the purposes of the analysis, more accurate assumptions and more
sophisticated modeling can be adopted. Nevertheless, in our opinion, the results obtained, albeit
based on a very simple modeling, can be considered as a sufficiently descriptive analysis of the Italian
banking sector’s resiliency. Of course, the simplified approach based on a one-bank analysis performed
through the aggregation of several banks’ financial statements presents some limits in deriving stress
testing results for macro-prudential purposes. In fact, in simulating the impact of adverse scenarios for
one aggregated bank, we implicitly apply a sort of capital compensation among the banks characterized
by capital shortfall and those by excess capital, which in a real context could not occur (i.e., the capital
buffer of one bank could not be used for covering a capital shortfall of another bank). This shortcoming
may alter the results in all the cases in which there are relevant differences within the sample in terms
of capital position and sensitivity to risk factors. The exercise time horizon was 2019–2021, considering
2018 financial statement data as the starting point of the analysis (for further details see Appendix A,
in which the templates report the set of forecast model variables used for the analysis).

In order to show the results of the optimization process in isolation from other dynamics, in the
exercise, we adopted a static balance sheet assumption, according to which assets and liabilities that
mature within the time horizon of the exercise were replaced with similar financial instruments in
terms of type, currency, credit quality at date of maturity; no cure rate was assumed on non-performing
exposures. Anyway, this assumption is not necessary and can be easily removed.
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Here below, we describe the modeling assumptions of the most relevant risk factors, while the
complete set of assumptions and modelling features adopted in the reverse stress test exercise are
provided in Appendix B.

5.1. Pillar 1 Risks

5.1.1. Credit Risk

This risk factor has been modeled-in through the accounting item “Net Adjustment for Impairment
on Loans” (see Table A2 in Appendix A). We adopted the expected loss approach through which
yearly loan loss provisions are estimated as a function of three components: probability of default (PD),
loss given default (LGD), and exposure at default (EAD). PDs are determined as a function of GDP
through a very simple satellite model that broadly replicates the dynamics envisaged by the EBA path
generators used for the EU-wide stress test exercises. More specifically, PD values have been simulated
through the following satellite model:

PDt = PDt−1·e−15·∆GDP (6)

where ∆GDP is the rate of change of the Italian GDP. We considered a starting point of PD equal
to 1.6%, which represents the default rate of the Italian banking system in 2018 (BI 2019, p. 173).
Therefore, the credit stress is driven only by systemic risk, managed through the GDP rate of change.
As explained above, the ∆GDP is the risk driver and is handled as a stochastic variable within the
optimization system aimed at detecting the reverse stress test scenarios.

Considering the range of possible variation of GDP assumed in the reverse stress test simulation
(0, −2%), in Figure 4, we report the distribution of all the yearly PD values used for calculating Net
Adjustment for Impairment on Loans in the three years of the analysis27. Of course, the most severe
PD points simulated were sparser, while lower PD points were denser.
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27 This is the annual rate used for determining the credit exposures default flow.
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The LGDs are determined as a function of PDs, according to the strong empirical relationship
between the two variables (Altman et al. 2005; and Altman and Hotchkiss 2006, in particular, pp. 326–27).
We adopted the linear relationship of LGD under stress estimated by Standard & Poors through the
following model (Schmieder et al. 2014, p. 63):

LGD(under stress) = LGD(historical) + 2.1535·PD (7)

where LGD(historical) is the value of LGD at the starting point (2018), which in our exercise is assumed
equal to the coverage ratio on the overall NPLs of the four banks in the sample, equal to 59.86%.

Of course, we are well aware that in addition to GDP further risk factors, systemic and idiosyncratic,
affect credit risk impact such as portfolio concentration, geo-sectorial diversification, credit risk
mitigation (e.g., real estate collateral on mortgages), etc. Moreover, breaking-down credit risk
parameters by business segment (e.g., retail, corporate, residential mortgage, etc.) can also improve
the model’s accuracy. These additional credit risk factors can be easily introduced in the modeling
framework proposed, through specific variables, in this case study, we only provided a high level
example of the model’s mechanics.

For the calculation of Net Adjustment for Impairment on Loans, we adopted a two-stage model:
one stage for performing loans and the other for non-performing loans28. For the sake of simplicity, we
considered all non-performing loans in one single Non Performing Loans—NPL category, without
differentiating between past due and unlikely to pay. In keeping with the static balance sheet
assumptions, Exposures At Default—EADs were kept constant and we assumed no cure rate on
defaulted exposures. The defaulted credit flow in each period was determined as the product of the
expected default rate (PD) at the end of the period times the value of performing loans at the beginning
of the period:

De f aulted Credit Flow t = PDt·Gross Per f orming Loant−1 (8)

The NPL stock is determined as:

NPLt = NPLt−1 + De f aulted Credit Flowt (9)

The Net Adjustment for Impairment on Loans is determined as:

Net Adjustments f or Impairment on Loanst

= De f aulted Credit Flow t·LGDt + NPL t−1·(LGDt − LGDt−1)
(10)

where the first addendum represents the impairments on new defaulted loans; and the second
addendum represents the impairments on old defaulted loans due to a change in the coverage of NPLs
that occurs any time that LGDt , LGDt−1. The loan losses reserve at the end of the period is then given
by the reserve at the beginning of the period, plus the Net Adjustment for Impairment on Loans:

Reserve f or Loan Lossest

= Reserve f or Loan Lossest−1

+ Net Adjustments f or Impairment on Loanst

(11)

5.1.2. Market Risk

This risk factor has been modeled-in through the accounting item “Net Gains/Losses on Financial
Assets” (see Table A2 in Appendix A), which includes mark-to market gains/losses, realized and
unrealized gains/losses on securities in the Held For Trading (HFT) portfolio. The variable is expressed

28 The model adopted is a reduced version of the model developed in Montesi et al. (2019) to which we refer.
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as a gains/loss rate on the financial assets held for trading and is determined as a function of the Euro
stock market index and its volatility through a simple satellite statistical regression model. The stock
index and its volatility are handled like stochastic variables within the stochastic optimization system
aimed at detecting the reverse stress test scenarios.

The return on the HFT portfolio is determined through a statistical model assessed by means of a
regression analysis of net trading income of the four banks compared to the EURO STOXX 50 Index
(SX5E) and its volatility, plus a random error that represents the idiosyncratic risk factor; considering a
time period that covers the last 13 years. The satellite model is given by the following expression:

Gains(Losses) HFTt = 0.011301 + 0.031474·∆SX5E t − 0.0284442·VolSX5Et + εt (12)

where ∆SX5E is the change in the EURO STOXX 50 index; VolSX5E is its volatility compared to the
previous year (360d); and εt represents a random error normally distributed with zero mean and
standard deviation equal to 0.003680, which coincides with the standard deviation of the residuals of
the estimate.

5.1.3. Operational Risk

Modeled-in through the accounting item “Other Non-Operating Income/Losses” (see Table A2
in Appendix A); this risk factor is modeled directly, making use of the corresponding regulatory
requirement records reported by the sample banks (considered as maximum losses due to operational
risk events). Operating losses is handled as a stochastic variable and modeled through a Beta
distribution function (shaped so as to resemble an exponential function), defined by the minimum
equal to zero and the maximum equal to the sum of the four banks’ 2018 operating risk capital
requirement (€4.594 million, which coincides with the maximum loss) and shape parameters α = 1;
β = 5. Figure 5 depicts the probability distribution adopted29.J. Risk Financial Manag. 2020, 13, x FOR PEER REVIEW 19 of 44 
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29 In less simplistic applications in which static balance assumption is relaxed, operational loss could be parametrically
modeled, for example, by modeling the operational losses in terms of rate of loss with respect to total assets or gross income,
figures typically considered by regulators as operational risk drivers; anyway this kind of modeling can also generate
counterintuitive results, since these drivers—especially gross income—tend to decrease in adverse scenarios, thus reducing
(instead than increasing) the operational risk impacts in tail scenarios.
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5.2. Pillar 2 Risks

5.2.1. Sovereign Risk

This risk driver is modeled-in through the BTP-Bund spread and handled as a stochastic
optimization variable. The spread increase is uniformly applied to all maturities (parallel shift
assumption). The spread dynamic determines, through a duration-convexity model, the impact on the
value of government bonds held, with effects to Profit & Loss and Accumulated Other Comprehensive
Income—AOCI according to the accounting treatment related to the specific portfolio. This risk also
generates relevant second round effects and interactions with other risk factors, arising from the impact
that the sovereign rating associated with the spread level has on the bank’s rating, and subsequently on
its cost of funding on newly issued liabilities, and from the impact of the tax effects (DTA)—generated
by the change in the value of government bonds held in the portfolio FVTOCI—on regulatory capital
deductions and RWA.

More specifically, to model sovereign risk, we considered the 10-year BTP-Bund spread; the starting
value is that of the end of December 2018, equal to 250 bps.

With regard to the first-round effect of the spread related to the impact on government bonds held,
we considered the holdings of securities in all of the sample banks’ accounting portfolios: FVTOCI—Fair
Value To Other Comprehensive Income; FVTPL—Fair Value To Profit and Loss; HTC—Held to Collect
(“Financial Assets at Amortized Cost”). The impact of the spread on the government bonds follows
the accounting treatment of each portfolio; namely:

• Impact on the FVTPL portfolio flows to P&L through the accounting item “Net Gains/Losses on
Financial Assets/Liabilities at FVTPL”.

• Impact on the FVTOCI portfolio flows directly to equity through the accounting item “Accumulated
Other Comprehensive Income” (OCI Reserve), net of the tax effects which are considered as DTA
within the regulatory capital deduction, and RWA. For the sake of simplicity, we considered all the
impacts as changes in the OCI Reserve value, without distinguishing between fair value repricing
effect (to equity) and credit risk impairment (to P&L) in the case of significant downgrade, as we
did for the HTC portfolio explained in the bullet below.

• Securities held in the HTC portfolio have an impact that flows to P&L through the accounting
item “Net Adjustment for Impairment on Loan”, only if the country rating falls to or below
BB+, (two or more notches with respect to the current rating BBB), assuming that it raises a
significant increase in credit risk; impairment is made by applying the five year PD reported
in the S&P Sovereign Cumulative Average Default Rates (S&P 2018, p. 83) and a 40% LGD
(adopting the same assumption of the EBA EU-wide stress test 2018 for Italian sovereign
risk). The simplified modeling assumption adopted disregards impairment for ratings above
junk bonds, since it would be negligible30.

We determined the duration and convexity for each maturity bucket on the basis of benchmark
securities of Italian government bonds, as shown in the table below; the first two short-term buckets
were assigned a zero duration and convexity. We then assigned duration and convexity to exposures
in each portfolio on the basis of the four banks’ records of Italian bond holdings published in the EBA
2018 EU-wide Transparency Exercise31 (see Table 1).

30 Considering S&P historical Sovereign default rate tables, PD values for ratings above BB are negligible.
31 Those records referred to exposures at 30 June 2018; as updated information was unavailable, we assumed them to be the

same at 31 December 2018.
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Table 1. Sovereign exposures, duration, and convexity.

Average
Maturity

FVTOCI
Exposures

FVTPL
Exposures

HTC
Exposures

Modified
Duration

Modified
Convexity

[0 - 3M] 1,369,025 1,322,906 3,708,605 - -

[3M - 1Y] 8,002,448 5,155,453 2,835,378 - -

[1Y - 2Y] 19,094,595 3,066,081 1,933,787 1.985 0.058

[2Y - 3Y] 10,749,907 515,166 2,477,251 2.412 0.083

[3Y - 5Y] 16,973,479 1,863,134 6,035,160 4.207 0.217

[5Y - 10Y] 20,840,835 3,389,338 14,111,435 7.482 0.635

[10Y - more] 1,183,862 2,058,778 16,033,261 14.297 2.408

TOTAL 78,214,150 17,370,855 47,134,878

Data Source: Exposure: EBA 2018 EU-wide Transparency Exercise, Duration and Convexity: Bloomberg.

We then determined the impact of the spread changes on the value of the government bond
holdings by applying the following Duration-Convexity approximation to each portfolio bucket:

∆FVY
t � −

EXPY
t ·∆it·MDY + EXPY

t ·
∆i2t
2
·MCY

 (13)

where ∆FVY
t is the fair value change in Italian government bond holdings at time t for the bucket Y;

EXPY
t is the exposure in Italian government bonds at time t for the bucket Y; ∆it is the yearly change

in the sovereign spread; MDY is the modified duration for the bucket Y; and MCY is the modified
convexity for the bucket Y.

In keeping with the static balance sheet assumption, the government bond holdings that mature
within the forecast time period were assumed as reinvested for the same amount and duration, but all
allocated in the HTC portfolio, because in a context of sovereign crisis, it would be rational for the
bank to allocate them in a portfolio that would be less exposed to market turbulence; of course, these
assumptions involve a lesser impact from the spread32. Reinvestment in securities yields an interest
income calculated with the updated interest rates on government bonds associated with the specific
stressed scenario.

In relation to the second-round effect of the spread, we assumed that a sharp increase in the 10-year
BTP-Bund spread was associated with a downgrade of the rating of the country (Italy), in keeping with
the relationship shown in Figure 6, which associates spread values with rating classes. The theoretical
relationship between the BTP-Bund spread and Italy’s rating was estimated on the basis of the average
percentage increase in the cost of funding associated with each rating class, considering a sample
that covers all ratings classes of all issuers (financial and non-financial in the U.S. and EU) between
1995–2018 (see Table 2); the spread increases associated with each of the lower ratings reported in
Table 2 were then applied to the current spread and rating class on the Italian debt, in order to rescale
that dynamic to the Italian sovereign risk case reported in Figure 6.

Subsequently, a downgrade in the sovereign rating involves a corresponding downgrade in the
bank’s rating; this empirically evident relationship is shown in the graph below (Figure 7) and is based
on the fact that rating agencies generally cap the rating of any issuer to the country rating.

32 In the context of a severely adverse scenario, like that in reverse stress testing, we may also adopt more rational assumptions
such as considering that there is no (less) reinvestment of securities matured, or reinvestment with a shorter duration.
For the sake of simplicity, we adopted a strict static balance sheet assumption, only changing the accounting portfolio.
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Figure 6. BTP—Bund spread and Italy rating theoretical relationship. Data Source: Bloomberg.
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The relation that links the banks’ rating to the country rating in each forecast year is the following:

Bank Rating = 1.1808·Country Rating0.9107 (14)

This statistical relationship has been assessed considering the S&P, Moody’s and Fitch ratings for
Italy, and the average rating of the four banks in the sample within the period 1997–201933. In Figure 8,
we show the records and estimated relationship. The available observations on the association between
the country rating and the average rating of the four banks were used to develop a relationship for all
the rating classes; for low rating classes (below B+), the country and bank ratings tended to match
(i.e., the country rating cap is active), while for high rating classes (above BB−), the country ratings
tended to be higher than the corresponding bank ratings.

33 We transformed the alphanumerical rating classes into an ordinal ranking scale, ranging from 1 (corresponding to D rating
class) to 22 (corresponding to AAA rating class).
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Figure 8. Italian bank rating and Italy rating theoretical relationship. Data Source: Bloomberg

The bank’s cost of funding changes according to its rating, the latter being determined as described
above. Therefore, a downgrade will cause an increase in the interest rate paid on newly issued liabilities
(according to the maturities of the liabilities issued existing at 2018)34; it does not affect the cost of
deposits (which are instead exposed to reputational risk).

The increase in interest rate applied to these liabilities is given by the difference between the
cost of funding associated with a bank’s new rating and its starting rating BBB (determined as RWA
weighted average of the ratings of the four banks considered in December 2018). The cost of funding
associated with each class of rating is determined according to Table 2, derived as the average default
spread market values on all classes of ratings of all issuers (financial and non-financial in the U.S. and
EU) between 1995–2018.

Table 2. Default spread associated with rating class.

1Y 3Y 5Y 10Y

BBB 0.78% 1.04% 1.24% 1.66%
BBB− 1.11% 1.47% 1.72% 2.42%
BB+ 1.24% 2.08% 2.58% 3.47%
BB 1.85% 2.65% 3.07% 3.83%
BB− 1.87% 2.67% 3.09% 3.85%
B+ 2.28% 3.18% 3.50% 4.14%
B 2.30% 3.37% 4.07% 4.95%
B- 2.96% 4.90% 5.81% 6.82%

Data source: Bloomberg.

The following picture (Figure 9) shows a workflow that highlights the interactions between
risk factors in the model. The modeling, albeit simplified, considers all the most relevant factors
and dynamics. The impact on RWA arises because of the prudential rule that requires DTA up to a
regulatory threshold not to be deducted from CET1, but included in the RWA with a 250% risk weight.

34 This connection links sovereign risk with interest rate risk and also to some extent to liquidity risk, because the impact is
determined according to the maturity structure of the liabilities and therefore to the bank’s funding need.
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A further potential interaction among risk factors could be modeled-in by expressing the bank’s
rating in each forecasting year as a function not only of the country rating, but also of the bank’s capital
profile, for example, by setting up a simple relationship that links the shadow bank’s rating to its CET1
ratio (or any other more complex scoring). In this way, the cost of funding (interest rate risk) would
be connected not only with the sovereign risk, but also to all other risks that affect the bank’s capital
position (e.g., credit risk). In this case, the bank’s rating would be defined as:

Bank Rating = min
[
1.1808·

(
Country Rating0.9107

)
; scoring rating

]
(15)

With the country rating acting as a ceiling on the shadow rating attributed to the bank
credit worthiness.

5.2.2. Reputational Risk

We considered the modeling of this risk factor limited to the most relevant and basic impact in
relation to the business model of our banks’ sample. In practice, we assumed (see Figure 10) that
reputational events may cause a customer drop out (mainly from the retail segment) that involves a
subsequent decrease of deposits (liabilities with low cost funding) to be replaced by new debt (liabilities
with high cost funding) as an immediately available source of funding, a decrease in net commissions
arising from a shrinking customer base and an increase in expenses due to legal costs, etc. Considering
the context of severely adverse conditions, we assumed that a reputational adverse event occurs in
any case in the first forecast year, with impacts (in terms of decrease in deposits and net commissions;
and increase in expenses) that can range between zero (in the case of perfect remediation management
of the reputational event) and a maximum level set according to benchmark parameters observed in
the reference market35. The impact then lasts for the entire forecasting period of the analysis36. In this

35 We determined the benchmark impact by considering the cases related to four Italian banks hit by severe reputational crisis:
Veneto Banca, Banca Carige, Banca MPS, and Banca Banca Popolare di Vicenza.

36 In Montesi and Papiro (2018), we proposed modeling reputational risk within the stochastic simulation framework for the
purpose of assessing a bank’s probability of default (fragility assessment), considering both the probability that a reputational
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regard, we assumed that the reputational event determines an increase in the cost of funding equal to
Euribor + bank spread applied to a refinancing up to a maximum of 21% deposits runoff, a decrease in
commissions as great as 10%, and an increase in expenses up to 10%37.

J. Risk Financial Manag. 2020, 13, x FOR PEER REVIEW 24 of 44 

 

an increase in the cost of funding equal to Euribor + bank spread applied to a refinancing up to a 
maximum of 21% deposits runoff, a decrease in commissions as great as 10%, and an increase in 
expenses up to 10%37. 

 
Figure 10. Reputational risk effects. 

This risk factor was handled by means of three specific stochastic variables related to the 
decrease in deposits, the decrease in “Net Commissions”, and the increase in “Operating Expenses”, 
all modeled through a Beta function defined by the minimum and maximum values and with shape 
parameters: α = 1; β = 5. In Figure 11, we report the parameters of the probability distribution 
functions involved in the modeling of reputational risk. 

 

 
reputational event can be established. Then, in scenarios in which reputational events occur, a series of 
stochastic variables linked to their possible economic impact such as reduction of commission factor, 
reduction of deposits factor, increased spread on deposits factor, increase in administrative expenses factor, 
etc. is in turn activated. Thus, values are generated that determine the entity of the economic impacts of 
reputational events in every scenario in which they occur. Otherwise, in the case of reverse stress test, in 
which we always assume adverse conditions, reputational risk can depend only on the magnitude of the 
losses and not on the probability of occurrence of a reputational event. 

37 Consider that a context of negative interest rates does not affect the mechanism envisaged by the model; in 
fact, in relation to P&L and capital impacts, what is relevant is the difference between the retail cost of 
funding (customers deposits drop out) and wholesale cost of funding (which replaces the deposits drop out); 
the latter typically having a higher cost for the bank than the former (even in a negative rates context). Of 
course, a negative interest rates context—and even more extraordinary supervisor’s monetary operations 
supporting the banking sector (such as TLTRO)—reduces the relevance of the reputational risk impact 
related to the cost of funding. 

CUSTOMERS
DROP OUT

INCREASE IN EXPENSESDECREASE IN NET 
COMMISSIONS

HIGHER INTEREST
PAID

DECREASE IN DEPOSITS 
(LOW COST FUNDING)

P&L

REPUTATIONAL 
EVENT

CET1 
CAPITAL

Figure 10. Reputational risk effects.

This risk factor was handled by means of three specific stochastic variables related to the decrease
in deposits, the decrease in “Net Commissions”, and the increase in “Operating Expenses”, all modeled
through a Beta function defined by the minimum and maximum values and with shape parameters:
α = 1; β = 5. In Figure 11, we report the parameters of the probability distribution functions involved
in the modeling of reputational risk.

event may occur and the variability of its adverse impact. In that work, we suggested introducing a reputational event risk
stochastic variable (simulated, for example, by means of a binomial type of distribution) through which, for each period,
the probability of occurrence of a reputational event can be established. Then, in scenarios in which reputational events occur,
a series of stochastic variables linked to their possible economic impact such as reduction of commission factor, reduction of
deposits factor, increased spread on deposits factor, increase in administrative expenses factor, etc. is in turn activated. Thus,
values are generated that determine the entity of the economic impacts of reputational events in every scenario in which
they occur. Otherwise, in the case of reverse stress test, in which we always assume adverse conditions, reputational risk can
depend only on the magnitude of the losses and not on the probability of occurrence of a reputational event.

37 Consider that a context of negative interest rates does not affect the mechanism envisaged by the model; in fact, in relation to
P&L and capital impacts, what is relevant is the difference between the retail cost of funding (customers deposits drop out)
and wholesale cost of funding (which replaces the deposits drop out); the latter typically having a higher cost for the bank
than the former (even in a negative rates context). Of course, a negative interest rates context—and even more extraordinary
supervisor’s monetary operations supporting the banking sector (such as TLTRO)—reduces the relevance of the reputational
risk impact related to the cost of funding.
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5.2.3. Interest Rate Risk

This risk factor was modeled-in by calculating the impact of interest rate changes on Net Interest
Income—NII and considering interest rates (Euribor Swap Rate 6M) as a stochastic variable within the
stochastic optimization system aimed at detecting the reverse stress test scenarios; the assumptions
adopted are based on the available data at the time of the analysis.

(1) The bulk of interest expenses are affected by:

(a) The changes in interest rates on the variable rate share of the pre-existent liabilities issued
(assumed to be 78.5%).

(b) The changes in interest rates on all debt due to banks (interbank short term financial debt),
whose source of funding in stressed conditions tends to increase.

(c) The changes in interest paid on all newly issued liabilities (both fixed and variable rate
issues) during the forecast period, which were assumed to be made at the new market
conditions (reflecting the dynamics of both the interest rates and the bank’s default spread,
which in turn depends on the sovereign spread).

(d) The change in interest paid on part of the deposits (we assumed that 10% of deposits were
sensitive to Euribor changes).

(e) The increase in interest paid due to the decrease in deposits (low cost of funding) related
to reputational events and the subsequent switch to debt due to banks (higher cost
of funding).

Of the impacts affecting interest expenses (a), (b), and (d) are purely driven by interest rate risk,
while (c) is also driven by sovereign risk, and (e) is driven by reputational risk. Of course, the fixed
rate share of pre-existing liabilities that does not expire within the forecast period is not affected by
interest rate risk.

(2) The bulk of interest income is affected by:

(a) The changes in interest rates on the variable rate share of pre-existing credit exposures
(assumed to be 40% of the total loans portfolio).

(b) The changes in interest rates on all loans to banks (interbank short-term financial exposures).
(c) The decrease in interest received due to the new flows of non-performing exposures

(we assumed that interest income was generated only on the value of exposures’ net of
accumulated provisions).
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(d) The increase in interest received on government bonds due to the re-investment of
securities expired within the forecast period in bonds with interest rates, which includes
the increase in the sovereign spread (assuming that the re-investment of government bonds
is always made with new securities issues that embody the current market conditions);
the reinvestments were determined on the basis of the maturity buckets of the government
bonds portfolios held by the four banks.

Of all the impacts affecting interest income, only (a) and (b) were related to interest rate risk,
while (c) was driven by credit risk and (d) by sovereign risk (as a matter of fact, this represents a
positive mitigation side effect of sovereign risk and not a negative impact). Of course, the fixed rate
share of pre-existing exposures was not affected by interest rate risk.

The description of the interest rate risk effects highlights the interlinkage between the risk factors
and the second round effects envisaged by the model.

6. Reverse Stress Test Results and Scenario Selection

The stress test exercise performed was developed exclusively as an exemplification for illustrative
purposes and does not represent to any extent a valuation on the capital adequacy of the banks
considered. Stress test and reverse stress test results should not be considered as the banks’ expected
or most likely figures, but rather be considered as potential outcomes related to the extremely severe
adverse scenarios assumed.

The risk assessment exercise performed included two kinds of analysis:

(a) A stress test exercise, aimed at assessing the probability of breaching regulatory thresholds
in stressed conditions; in this regard, we considered two different thresholds: (a) 9.54%,
corresponding to the aggregate OCR—Overall Capital Requirement of the four banks of the
sample; and (b) 6.5%, corresponding to the aggregated TSCR—Total SREP Capital Requirement.

(b) A reverse stress test exercise, aimed at detecting a specific set of assumptions of the primary
risk drivers that can cause the triggering of a regulatory breach in each of the three years of the
forecast time period; also in this case, we considered the two different thresholds: (a) 9.54% OCR
and (b) 6.5% TSCR.

Breaching the first threshold (OCR) is a usual result achieved in stress testing simulation and
does not indicate a particularly critical risk condition, since the capital conservation buffers (CCB)
are specifically dedicated to absorb capital losses under stressed conditions (even though hitting this
threshold implies relevant constraints to the bank such as the submission of a plan for restoring the
capital buffer and the application of the Maximum Distributable Amount (MDA) rules for dividend
distribution). Breaching the second threshold (TSCR) implies a more relevant risk condition, since it
involves the infringement of viability conditions for the bank.

All of the reverse stress test analyses were performed in relation to the transitional CET1 ratio
(in any case, the only material difference compared to the fully-phased ratio concerns the transitional
effect of the FTA of the IFRS 9 accounting principle). For the sake of simplicity, we did not consider
and exhibit other capital constraints (Tier 1, total capital, and leverage ratio), however, considering the
application of multiple constraints detection does not affect the methodology.

As already mentioned, we considered the following risk factors as primary drivers of the reverse
stress test exercise: Italian Real GDP rate of change; 10-year BTP-Bund spread; Euribor Swap Rate
6 months; SX5E Index rate of change; and SX5E Volatility. Table 3 shows the range of possible values
assumed for each risk driver for the reverse stress test optimization process. The first column reports
the records at 31 December 2018, which is related to the starting point of the analysis.
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Table 3. Range of optimization variables.

SYSTEMIC RISK FACTOR VALUES AT:
31 December 2018 MIN MAX

Italian GDP rate of change 0.9% (*) −2.0% 0.0%

10-year BTP-Bund Spread 250 BPS 450 BPS (+200 BPS) 650 BPS (+400 BPS)

Euribor Swap Rate 6M (**) −0.237% 0.32% (+0.557%) 0.62% (+0.857%)

SX5E Index rate of change (***) 3001 1800 (−40% rate of chg.) 2701 (−10% rate of chg.)

SX5E Volatility (***) 12.61% 25.00% (+12.39%) 45.00% (+32.39%)
(*) Italy Real GDP, 2018 YoY% (Source: Eurostat); (**) The range min/max was obtained on the basis of the adverse
scenario assumptions for the swap rate in the 2018 EU-wide stress test exercise (see ESRB 2018).; (***) In setting the
range of assumptions, we considered that in the last 25 years, the maximum yearly rate of change of the SX5E index
was about 45% and the maximum level of volatility recorded was about 37%.

Of course, the range of variability set for each risk factor variable is crucial in determining the
output, since the magnitude of the extreme values determines the possibility of breaking the preset
threshold; therefore, in correctly interpreting the results of the analysis, we always need to refer
to the specific assumptions adopted. In this regard, since detecting whether or not the bank may
potentially breach the threshold in a reasonable range of adverse scenarios is in itself a valuable piece
of information, we suggest starting the analysis by first setting a proper and plausible level of severity
in the assumptions (i.e., neither too mild nor too extreme). In this way, we can detect whether there
are adverse but plausible scenarios in which the bank breaches the threshold. Of course, it may be
that with that level of severity, the breach may never occur, and thus the reverse scenario cannot be
identified. In that case, we must increase the severity of the assumptions beyond the plausibility level
and possibly leave the range of values for each variable unconstrained38, so that some breaking points
can be reached in any case.

6.1. The Probability of Breach: A Measure to Assess the Degree of Bank Fragility

The stress test performed was somehow preliminary (even if not strictly necessary) and
complementary to the reverse stress test. In fact, with this analysis, by exploring through a stochastic
simulation the dynamics related to all the plausible adverse scenarios, we were able to calculate the
entire distribution functions of capital ratios recorded in all the scenarios and in each year; then,
by setting a particular capital ratio threshold, we can easily determine the bank’s probability of breach
as the frequency of scenarios with which the bank breaches the preset threshold within a given time
frame over the entire number of scenarios simulated (i.e., the points in the breach area in Figure 1).
This kind of analysis allows us to assess an effective measure of the fragility degree of the bank.

Tables 4 and 5 report the marginal and cumulated probabilities39 of breach related to the two
different thresholds for each forecast year. These probabilities were assessed through the stochastic
simulation methodology described in our above-mentioned previous paper (Montesi and Papiro 2018),
assuming for all the systemic risk factor stochastic variables a symmetric Beta distribution function
with parameters (4; 4) defined by the minimum and maximum values reported in Table 3.

The probability of breaching the TSCR threshold was null in the first two years and extremely low
in the third year. While, as to be expected, under the severe stressed conditions assumed, the cumulated
probability of breaching the higher OCR threshold (i.e., eroding the capital conservation buffers) was

38 Except for the case of consistency constraints set in terms of cap or floor to the range of potential values.
39 The marginal probability, represents a conditional probability, and it indicates the frequency with which the breach event

will occur in a certain period, but only in cases in which said event has not already occurred in previous periods. Cumulated
probability provides a measure of overall breach risk within a given time horizon and is given by the sum of marginal
breach probabilities.
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extremely high in the third year, substantial in the two-year time period, and negligible in the one-year
time period.

The results of the probability of the breach stress test indicate that a reverse stress test scenario
can be determined only in the third year (2021) for the TSCR threshold (since there were no breaches in
the first two years), and for all three forecast years for the OCR threshold.

Table 4. Probability of breach of the CET1 ratio: TSCR 6.5% threshold.

Probability Breakdown 2019 2020 2021

Marginal Probability 0.000% 0.000% 0.1012%

Cumulated Probability 0.000% 0.000% 0.1012%

Data Elaboration: by Streeling.Simulator.

Table 5. Probability of breach of the CET1 ratio: OCR 9.54% threshold.

Probability Breakdown 2019 2020 2021

Marginal Probability 0.069% 35.492% 61.561%

Cumulated Probability 0.069% 35.561% 97.053%

Data Elaboration: by Streeling.Simulator.

6.2. Reverse Stress Test Results

Once we have detected if and how many times the banks may breach in a given time horizon
a certain threshold, by performing the reverse stress test,\ we can then find out the subset of all
the particular scenarios that exactly trigger (within a preset approximation level40) the threshold
(i.e., the breaking points on the edge of the distressed area in Figure 1); and then, by adopting a selection
criterion, derive the assumptions of the primary risk drivers that specify the reverse stress test scenario.

To detect the breaking points, we applied the SA optimization system described in Section 4
to those five systemic risk drivers. On the basis of the solutions obtained through the optimization
system, in order to derive one set of assumptions that define the reverse stress test scenario, we need
to adopt a criterion to select a scenario among all those related to the breaking points. As already
stated, there is no univocal criterion for this purpose; any choice unavoidably involves some degree
of subjectivity. Therefore, it is very important to adopt a representative schema of the risk factor
solutions determined that can help us to understand which one can be more reasonably considered as
the most appropriate critical combination of assumptions that jeopardizes the bank’s viability. In this
regard, the temporal dimension of the analysis and the large number of breaking points (solutions)
obtained add further complexity to the issue. In fact, as explained, it is often necessary to consider
several periods and several risk factor drivers to reach default conditions; that plurality of underlying
assumptions (solutions) must be reduced and represented in a sensible way in order to allow us
to process it and derive a final solution. Simple statistical metrics such as the average can help us
in synthesizing the multidimensional complexity of the information related to the breaking points.
Once we have addressed this step, we need to apply a criterion to select the reverse stress test scenario
from all the breaking point solutions. In this paper, we propose two potential criteria associated with
two different ways of representing the reverse stress test scenario, of course, other criteria may also
be adopted.

One criterion is based on a very simple statistical measure, the simple average of all the breaking
point values. This criterion has the advantage of being of immediate understanding; it can be well
suited, whereas the solutions found have a low dispersion and the breach is triggered in a short period

40 The level of accuracy assumed in the exercise (i.e., the maximum tolerance accepted between the threshold and the capital
ratio determined by the optimization system as solution) was five decimals.
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(one year). In these circumstances, the rough approximation made by averaging the assumptions can
be a reasonable criterion; in Section 6.2.1, we apply this criterion, reporting some simple statistics
related to the reverse stress test performed (percentiles, absolute mean deviation, etc.) that can help us
to understand the range of the solutions.

Another criterion that can be adopted is based on proximity to the starting point of the analysis.
In other words, the scenario that involves, for all the risk factor variables considered, the shortest
overall distance from the current conditions, considering somehow that combination of risk factor
assumptions as the scenario that may occur before others in triggering the bank’s threshold. Minimizing
that distance in a generalized context is not an easy task and raises some issues; we describe how to
apply this criterion in Section 6.2.2.

6.2.1. The Average Reverse Stress Test Scenario

Tables 6–13 report for each the CET1 ratio threshold (6.54% TSCR and 9.54% OCR) and for each
forecast year:

• The reverse stress test set of results for all the systemic risk drivers, indicating the average values,
the mean absolute deviation, and the 95% and 5% percentiles of the set of breaking point solutions
determined through the SA optimization system. For a more immediate representation, we did
not report the results for all the three forecast years, but only the average values over the three
forecast years (in any case, the results in the three years were quite similar). (Tables 6, 8, 10 and 12).

• The reverse stress test shadow ratings associated with Italy and the ITB; the three year cumulated
losses for each risk factor (distinguishing between Pillar 1 and Pilar 2), indicating the average
values, the mean absolute deviation, and the 95% and 5% percentiles to provide a measure of the
dispersion of the different risk factor impacts (Tables 7, 9, 11 and 13)

Table 6. Reverse stress test scenario—2021 (113 breaking scenarios): TSCR 6.5% threshold (average
values: 2019–21).

GDP ∆% BTP/BUND
SPREAD

EURIBOR
SWAP RATE

YoY% SX5E
VALUE

SX5E
VOL (360D)

MEAN −1.86% 3.70% 0.52% −8.63% 36.86%

MEAN.DEV 0.05% 0.19% 0.07% 2.48% 4.87%

95% PERCENTILE −1.74% 3.94% 0.61% −4.50% 43.67%

5% PERCENTILE −1.96% 3.26% 0.36% −12.93% 26.99%

Data Elaboration: by Streeling.Simulator.

Table 7. Risk factors impact—2021 (113 breaking scenarios): TSCR 6.5% threshold (average rating:
2019–2021 and cumulative million values: 2019–2021).

PILLAR 1 PILLAR 2

SOVEREIGN
RATING

BANK
RATING

CREDIT
RISK

MARKET
RISK

OPERATIONAL
RISK

SOVEREIGN
RISK

INTEREST
RATE
RISK

REPUTATIONAL
RISK

CUMULATIVE
NET TOTAL

LOSS

MEAN B+ B+ −58,026 −728 −2580 −15,713 −4333 −1663 −39,506

MEAN.DEV - - 953 677 970 947 259 429 585

95%
PERCENTILE BB BB− −55,880 455 −962 −13,225 −3760 −723 −38,481

5%
PERCENTILE B+ B+ −59,692 −2199 −4481 −16,993 −4734 −2460 −41,099

Data Elaboration: by Streeling.Simulator.
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Table 8. Reverse stress test scenario—2021 (259 breaking scenarios): OCR 9.54% threshold (average
million values: 2019–2021).

GDP ∆% BTP/BUND
SPREAD

EURIBOR
SWAP RATE

YoY% SX5E
VALUE

SX5E
VOL (360D)

MEAN −0.50% 3.03% 0.47% −8.12% 35.13%

MEAN.DEV 0.21% 0.48% 0.08% 2.53% 4.65%

95% PERCENTILE −0.14% 3.83% 0.61% −3.67% 43.34%

5% PERCENTILE −0.87% 2.17% 0.33% −13.13% 26.58%

Data Elaboration: by Streeling.Simulator.

Table 9. Risk factor impact—2021 (259 breaking scenarios): OCR 9.54% threshold (average rating:
2019–2021 and cumulative values in millions: 2019–2021).

PILLAR 1 PILLAR 2

SOVEREIGN
RATING

BANK
RATING

CREDIT
RISK

MARKET
RISK

OPERATIONAL
RISK

SOVEREIGN
RISK

INTEREST
RATE
RISK

REPUTATIONAL
RISK

CUMULATIVE
NET TOTAL

LOSS

MEAN BB BB− −39,516 −500 −2267 −12,297 −4109 −1504 −18,574

MEAN.DEV - - 2293 660 838 2510 294 384 1264

95%
PERCENTILE BB+ BB −35,789 768 −760 −8222 −3581 −780 −16,483

5%
PERCENTILE B+ B+ −43,601 −1736 −4017 −16,668 −4649 −2316 −20,877

Data Elaboration: by Streeling.Simulator.

Table 10. Reverse stress test scenario—2020 (333 breaking scenarios): OCR 9.54% threshold (average
values: 2019–2020).

GDP ∆% BTP/BUND
SPREAD

EURIBOR
SWAP RATE

YoY% SX5E
VALUE

SX5E
VOL (360D)

MEAN −1.42% 3.12% 0.48% −41.66% 35.62%

MEAN.DEV 0.30% 0.49% 0.08% 2.39% 4.74%

95% PERCENTILE −0.83% 3.89% 0.62% −37.04% 43.74%

5% PERCENTILE −1.90% 2.21% 0.34% −46.40% 26.62%

Data Elaboration: by Streeling.Simulator.

Table 11. Risk factor impact—2020 (333 breaking scenarios): OCR 9.54% threshold (average rating:
2019–2020 and cumulative values in millions: 2019–2020).

PILLAR 1 PILLAR 2

SOVEREIGN
RATING

BANK
RATING

CREDIT
RISK

MARKET
RISK

OPERATIONAL
RISK

SOVEREIGN
RISK

INTEREST
RATE
RISK

REPUTATIONAL
RISK

CUMULATIVE
NET TOTAL

LOSS

MEAN BB BB- −32,384 −639 −1590 −12,584 −2328 −1231 −18,928

MEAN.DEV - - 1983 530 619 2529 283 321 1294

95%
PERCENTILE BB+ BB −28,563 481 −434 −8292 −1779 −540 −16,829

5%
PERCENTILE B+ B+ −35,711 −1819 −2944 −16,582 −2857 −1871 −21,228

Data Elaboration: by Streeling.Simulator.

Table 12. Reverse stress test scenario—2019 (one breaking scenario): OCR 9.54% threshold.

GDP ∆% BTP/BUND
SPREAD

EURIBOR
SWAP RATE

YoY% SX5E
VALUE

SX5E
VOL (360D)

−1.90% 6.38% 1.21% −32.58% 42.42%

Data Elaboration: by Streeling.Simulator.
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Table 13. Risk factor impact—2019 (one breaking scenario): OCR 9.54% threshold (values in millions).

PILLAR 1 PILLAR 2

SOVEREIGN
RATING

BANK
RATING

CREDIT
RISK

MARKET
RISK

OPERATIONAL
RISK

SOVEREIGN
RISK

INTEREST
RATE RISK

REPUTATIONAL
RISK

NET
TOTAL
LOSS

B+ B+ −17,571 −2097 −406 −16,031 −1988 −4673 −17,122

Data Elaboration: by Streeling.Simulator.

The sovereign risk records include losses due to the impact on the government bond values and
the second round effect of the related DTA on capital deductions; for the sake of simplicity, we did
not include the impact on the cost of funding arising from the downgrade of the country’s and banks’
rating, that is, instead included in the interest rate risk. Reputational risk reports all the impacts related
to this factor including the related increase in the cost of funding.

The cumulative net total loss reported to the right of the tables (Tables 7, 9, 11 and 13) corresponds
to the cumulated net income and, of course, is lower than the sum of the impact of several risk factors,
since it takes into account the bulk of revenues generated by the bank (net of the operating costs).

In relation to the reverse stress test scenario assumptions, we note that the dispersion of the values
around the mean is quite low, making in this case the choice of the average as the selection criterion
less relevant. The same narrow dispersion can be observed for the risk factor impacts.

The most relevant risk factor, as expected, was credit risk; followed by sovereign risk,
notwithstanding the fact that we did not include the induced effect of increase in the cost of funding in
its impact. The third risk factor for relevance was given by interest rate risks. In any case, the total
impact of all Pillar 2 risks, albeit very relevant, was always lower than the credit risk impact alone. Not
surprisingly, market risk impact (leaving aside sovereign risk) was quite small, since for Italian banks,
this risk factor is not one of the most relevant. In fact, for the four banks considered, market trading
has historically never generated losses between 2010–2018; and the EBA EU-wide stress test 2018 also
reported no losses from trading income within the three years of the adverse scenario, but rather a
cumulative income of about €2.3 billion41.

The 6.5% TSCR threshold reverse stress test involved, in two years, a downgrade with respect
to the current ratings of two notches for the country rating and three notches for ITB bank; while in
three years, it involved a five notch downgrade for both the country and ITB. A five notch downgrade
also occurred for both the country and ITB in 2019 (one year) in the case of the 9.54% OCR threshold
reverse stress test.

The aggregated sample of the four banks at 31 December 2018 reported a CET1 capital of about
€97 billion, and existing business generated about €15 billion in revenue (net of operating costs, before
provision losses and trading income/losses) for a total theoretical buffer of available financial resources
of €112 billion under stable conditions. In order to reduce the capital profile below the 6.54% TSCR
threshold, there would have to be a cumulative negative impact of about €−65 billion (€−47 billion in
terms of CET1 capital), which would require extremely severe, but not implausible, adverse conditions;
consider that in the 2011–2013 period (the peak of the crisis), the four banks accumulated an overall
net loss of about €40 billion (including cumulated loan loss provisions of about €55 billion) and with a
maximum impact on AOCI of about €−7 billion (although the latter was only partially computed in
own funds because of the Basel 3 phase-in).

As a general comment on the reverse stress test exercise, we can note that the 9.54% OCR threshold
is almost certainly breached in the severe adverse scenarios simulated. Consider that the 3-year
probability of breach for that threshold assessed through the stress test was 97%, and that also in the
EBA EU-wide stress test for 2018, that threshold was almost triggered, with a transitional CET1 ratio

41 See “EBA: 2018 EU-Wide Stress Test”.
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reaching 9.57% in the third year of the adverse scenario42. Nevertheless, overall ITB seems to hold
up well enough against the 6.5% TSCR threshold. In fact, breaching that threshold requires a huge
cumulative loss that implies, in particular, extremely severe GDP drop and spread increase. In any case,
we should keep in mind that in the worst 3-year period (considering the combination of both GDP and
spread variables) of the recent crisis (2011–2013), the average real GDP drop was 1.3% (cumulative
growth −3.9%) and the spread reached a peak of 550 bps, records close to those highlighted by the
reverse stress test analysis. A GDP drop close to that necessary to breach the 6.5% threshold can be
found in the period 2007–2009, during which Italy’s real GDP suffered a yearly average drop over the
three years of −1.7% and a cumulative drop of −5.1%43.

In the 1-year breach reverse stress test (Table 13) focused on 2019, the optimization process found
only one breaking point solution, indicating a very low likelihood of breaching the threshold in a time
period of just one year on the basis of the range of assumptions adopted.

6.2.2. Reverse Stress Test Scenario Selection: The Criterion of Proximity

Once we have determined the m breaking point scenarios, we may also consider, as a valid criterion
to select the reverse stress test scenario, the one that is the closest to current market conditions. This is
because that breaking point may be considered to be in some way associated with the combination of
systemic risk factors that is the most likely to cause a reverse stress test scenario (although not in a
strict statistical sense)44, or at least the combination of systemic risk factors that may trigger the breach
before others. We can call this reverse stress test scenario selection criterion the criterion of proximity45.
In this section, we present a procedure that applies the criterion of proximity.

Considering that each risk factor may have a different unit of measurement, the first necessary
step is to normalize the data matrix related to the risk factors through a feature scaling technique. Here,
we can employ the “Min–Max Scaling” technique, thanks to which we can perform a linear rescaling
of the solution values ranging between zero and one:

zik =
xik − xmin

i

xmax
i − xmin

i

(16)

where zik is the normalized value of the i-th risk factor (with i = 1:n) in the k-th reverse stress test
scenario (with k = 1:m); xik is the value of the i-th risk factor in the k-th reverse stress test scenario; xmin

i
and xmax

i are the minimum and maximum value of the i-th risk factor, respectively 46. The minimum

42 Weighted average value recorded by the four banks in the exercise (Source “EBA: 2018 EU-Wide Stress Test”).
43 Consider that the EBA wide stress test originally scheduled for 2020 envisaged for Italy a cumulative three year drop in

GDP of −3.7%, with an average yearly drop of −1.2%.
44 In this regard, see also what the (UK) Financial Services Authority (2011) indicates: “Firms should start by considering a wide

number of scenarios that might potentially threaten their business model, despite credible management actions—subject
to those scenarios being plausible—and narrow them down to the ones most likely to cause the business model of the
firm to fail”. (Response n. 22, p. 7). “These should be the most likely scenarios, given that business model failure is a
prerequisite for a scenario to be considered, and not necessarily based on an assessment of the absolute probability of the
scenario occurring”. (Response n. 23, p. 8).

45 It follows the same logic adopted in other works; in this regard, see Breuer et al. (2009), Flood and Korenko (2015), Grundke
and Pliszka (2018).

46 An alternative technique could be rank normalization, through which each risk factor value is replaced by its rank in that
sample. Another common normalization method involves subtracting from each element of the data matrix the average of
the data series and dividing it by the corresponding standard deviation, that is:

zik =
xik − xi

σxi

(ix)

where xi represents the mean and σxi is the standard deviation of the i-th risk factor within the n scenarios generated. This
kind of normalization, unlike the Min–Max Scaling technique, is capable of correctly managing anomalous values but not
of returning normalized values in the same scale as in Min–Max Scaling. Some authors suggest using the mean absolute
deviation instead of the standard deviation, in order to express the denominator in the same unit of measurement of the
numerator (see Kaufman and Rousseeuw 2005).
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value corresponds to the starting point of the analysis, typically the latest available data (in our case
study, these are the records as of 31 December 2018), in relation to which we want to minimize the
distance in the reverse scenario. Therefore, for each risk factor, the smaller the values expressed by
Equation (16), the closer they are to the starting point economic conditions47.

We can adopt the Euclidean distance as a reference metric for determining the risk factor
combination that minimizes the distance from the origin or starting point (Gower 1982, 1985).
Considering that for each reverse stress test analysis we have n risk factors and m scenarios, in terms
of Euclidean space, this implies an n-dimensional space with m points representing all the reverse
breaking scenarios simulated; thus the problem of finding the nearest scenario to the starting point can
be reduced to a simple minimization process, through which we select the combination of risk factor
values that minimizes the Euclidean distance of m points from the origin; formally:

min


√√ n∑

i=1

(zik)
2, · · · ,

√√ n∑
i=1

(zik)
2

 with k = 1 : m (17)

Intuitively, the minimization process of finding the set of risk factor assumptions closest to the
starting point economic conditions identifies the scenario that can also be considered as the most likely
to occur among those selected through the optimization process.

The process described has been generalized as an n dimensional space, although in most cases,
it can be limited to just the few risk factors that determine the greatest part of the impact in the reverse
stress test. For the sake of simplicity, we provide a graphical representation of the selection process that
considers only the two main risk factors in the reverse stress test performed, GDP and the BTP-Bund
spread, which cover more than 80% of the impact on the CET1 ratio. In Figure 12, we plotted all
the combinations of GDP and spread values associated with the 113 breaking points found through
the optimization system for the 6.5% TSCR threshold reverse stress test48. The red dot indicates
the combination of GDP and spread changes that minimizes the Euclidean distance from the origin
(starting point market conditions) among all the breaking points. Consider that in order to make
records easily visualizable, we reduced the scale of the axes in the graph and did not set the origin at
zero, since the breaking points were quite concentrated in a narrow area. This may generate a sort of
biased perspective in the graph (i.e., the breaking points may look at first glance closer to the origin
than they effectively are).

In determining the closest scenario, we can also consider introducing risk factor weights into the
minimization process. To this end, all we need to do is add an additional parameter to the minimization
process formula given by the risk factor weight, so as to calculate the weighted Euclidean distance.
Thence, Equation (17) becomes:

min


√√ n∑

i=1

wi(zik)
2, · · · ,

√√ n∑
i=1

wi(zik)
2

 with k = 1 : m (18)

where wi is the weight attributed to the i-th risk factor. The weights could be assigned in relation to the
risk factor’s contribution to the target variable (in our case, the CET1 ratio) in determining the reverse
breaking points, or any other subjective criterion considered as eligible49.

47 If we had variables expressed in terms of rate of change such as GDP growth rate, the minimum would correspond by
definition to a zero rate (i.e., in practice we do not move from current conditions).

48 For a more immediate comprehension of the data, we reported non-normalized values; these are average values recorded
within the time period of the analysis.

49 Consider that, as Kaufman and Rousseeuw (2005) note, the weight attribution corresponds to a rescaling of the coordinates
through a factor

√
w1, · · · ,

√
wn.
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A special case of weighted Euclidean distance is given by the Mahalanobis distance. The advantage
of this kind of metric is that it takes into account the correlation between the variables and the standard
deviations of the risk factors; this feature makes the Mahalanobis distance particularly useful in all
cases in which risk factor correlation has not been adequately treated within the forecast model.

Considering that for each risk factor in the k-th scenario the weighted Euclidean distance can be
represented in matrix terms as:

dik = zik
′Wzik (19)

where zik represents the vector that defines the coordinates with respect to the origin for each of the
n risk factors and for the m scenarios, while W represents a n × n diagonal matrix that includes the
weights for the n risk factors. By substituting in the W matrix, the inverse of the covariance matrix S−1,
we obtained the Mahalanobis distance as:

dik = zik
′S−1zik (20)

A low value of the Mahalanobis distance implies a scenario that is close to the origin; therefore,
even in this case, the most plausible reverse scenario is the one that minimizes the Mahalanobis distance.
We should expect that explicative variables, which are highly correlated in stressed scenarios such
as those related to reverse stress test breaking points, have low Mahalanobis distances. In addition,
a characteristic of the Mahalanobis distance is that it is scale-invariant, being insensitive to the variance
of the underlying variables, which means that it can be calculated directly on the native variables50.

Ultimately, to select the most plausible reverse stress test scenario, we suggest adopting the
proximity criterion, which in our opinion is a sensible approach for this kind of exercise.
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Figure 12. GDP and BTP-BUND spread: the criterion of proximity. Data Elaboration: by
Streeling.Simulator.

50 In fact, it can be demonstrated that the Mahalanobis distance is also equal to the weighted Euclidean distance, calculated on
the standardized variables (see Footnote 45) and adopting the inverse correlation matrix for the weights. If all the variables
are uncorrelated, the Mahalanobis distance coincides with the Euclidean distance calculated on the standardized variables.
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6.3. Optimization System for Calibration of Thresholds of Early Warning Risk Indicator

The methodology described for reverse stress testing can also be used for calibrating the thresholds
of key risk indicators (KRI) for early warning purposes within the risk appetite framework. This can
be done by selecting the KRI to be optimized and by properly setting the relevant threshold to be
triggered in the reverse analysis process.

For example, assuming that sovereign risk is a relevant risk factor for an Italian bank to be
strictly monitored within its risk appetite through a KRI given by the BTP-Bund spread, in order to
set a threshold for the indicator that provides effective early warning signals capable of promptly
activating the escalation process and thus prevent potentially dangerous situations, we can proceed in
the following way. Once we have set the key capital indicator threshold whose breach we want to
prevent (e.g., the OCR CET1 ratio of 9.54%) and added a tolerance buffer (e.g., 0.46%) aimed at creating
an early warning area, we can run a reverse stress test on the 10% CET1 ratio threshold (9.54% + 0.46%)
as described that identifies the breaking points on the edge of that preset early warning area. For each
breaking point, we can obtain the associated spread value, then by applying the preferred selection
criteria (e.g., average spread in case the breaking points are quite close, the spread solution that is
closest to the market value at the starting point, the most likely spread solution, etc.), we can easily get
the spread value that indicates (with the desired tolerance level) the potential triggering of the CET1
ratio threshold. In other words, thanks to the results of the simulation process, we can expect that
when the spread reaches the value determined through reverse analysis, we enter into an area of high
risk of breaching the capital ratio in the next future.

This technique can be used to easily calibrate all the KRIs of the risk appetite framework according
to the desired tolerance level.

7. Conclusions

Prudential banking regulations and supervisors require banks to perform reverse stress tests
within their risk assessment framework. This kind of exercise can be a useful device to understand the
sources of risk and the triggering levels of some primary systemic risk drivers. To effectively assess a
bank’s overall risk (financial fragility degree), we should do something different and somehow simpler:
estimate its probability of breach. Notwithstanding the urgency for reverse stress testing, research and
best practices offer little methodological support to appropriately address the issue. Reverse stress
testing is a complex problem with multiple solutions as there are many ways in which a bank can
breach the relevant threshold of its key risk indicator. Moreover, while assessing the probability of
breach, we simply need to detect all the risk factors values that can cause the key risk indicator to fall
below the relevant threshold in the breach area; in the reverse stress test, we need to identify only
those solutions that trigger the threshold and lie on the edge of the breach area. In order to resolve
the reverse stress test problem, we need to find an efficient quantitative technique to determine all
those combinations of risk factors that can trigger the threshold, plus a criterion to select from those
solutions the one that we can consider the reverse stress test scenario.

In this article, we presented a stochastic simulation optimization system to perform bank reverse
stress tests aimed at detecting the reverse scenario (i.e., the set of assumptions of key systemic risk
drivers that triggers the bank’s breach, defined as capital ratios below the regulatory minimum
threshold). The quantitative technique employed was based on an optimization stochastic system:
simulated annealing with a multi-start strategy configuration.

The methodology identifies the conditions of the primary risk factors that determine all the
breaking points on the edge of the distress area, providing a meaningful set of critical assumptions that
aids in understanding the bank’s vulnerabilities and its sources of risk, thus enabling the user to define
the reverse stress test scenario.

Regarding the selection criteria to derive a scenario from the set of all possible solutions of the
reverse stress test, we suggest several possibilities and also provide a procedure based on the criterion
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of proximity to the starting point of the analysis, determined by minimizing the Euclidean distance
(or the Mahalanobis distance), which in our opinion may be the most reasonable generalized criterion.

The proposed framework is quite flexible and allows the user to easily introduce additional risk
factors, more refined satellite models, and a greater break-down of variables, providing a practical and
effective solution to a very challenging computational problem. The same methodology can also be
applied to calibrate early warning thresholds for key risk indicators by properly setting the breaching
conditions that the optimization system has to resolve.

Since in reverse stress testing we must simulate default or near-default scenarios, we must take
into account in the model all the relevant risk factors (including those that are difficult to quantify) and
their feedback and second round effects. Therefore, we also presented a possible way to model some
relevant Pillar 2 risks and their interlinkages such as sovereign, interest rate, and reputational risks.

We also provided a practical example of the methodology applied to the case of a ‘bank’, represented
by an aggregated financial statement of the main four Italian banks, showing how the main risk factors
can be managed within the proposed framework and the reverse stress test results interpreted.

The methodological approach presented, in our opinion, is well suited to be applied by banks’
risk managers and supervisors in all enterprise-wide bank risk assessment processes that require a
reverse stress test exercise: RAF, ICAAP, ILAAP, Recovery Plan, and SREP.
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Appendix A. Italian Bank Aggregated Financial Statement

Table A1. Balance sheet.

ASSETS 2015 2016 2017 2018

Cash and Cash Equivalents 21,066 23,711 75,635 42,999
Financial Assets at FVTPL 240,035 229,312 217,504 135,455
a. Financial Assets Held for Trading 151,713 136,553 120,040 108,966
b. Financial Assets Designated at Fair Value 88,321 92,759 97,464 219
c. Financial Assets Mandatorily at Fair Value 0 0 0 26,270
Financial Assets at FVTOCI 279,165 278,577 273,433 324,373
Financial Assets at Amortised Cost 1,157,947 1,124,032 1,240,383 1,283,404
a. Loans to Banks 121,991 136,117 156,445 158,345
b. Loans to Costumers 1,035,956 987,915 1,083,937 1,125,059
1. Performing Loans 939,620 913,706 1,023,313 1,086,445
2. Non Performing Loans 174,887 152,915 135,617 96,196
3. Reserve for Loan Losses 78,551 78,706 74,993 57,581
Hedging Derivatives 13,558 11,654 8062 7849
Change in Value of Macro-Hedged Financial Assets 2899 2769 2093 2702
Investments 10,073 8886 8482 8133
Reinsurer’s Technical Reserves 22 17 16 20
Tangible Assets 19,995 17,626 19,674 20,521
Intangible Assets 16,890 14,032 14,152 15,592
Tax Assets 37,663 36,327 38,236 39,554
a. Current 5988 5103 7545 6059
b. Deferred 31,675 31,224 30,691 33,495
Non-Current Assets and Discontinued Operations 2968 46,249 1845 4693
Other Assets 22,563 21,235 22,719 19,666
TOTAL ASSETS 1,824,843 1,814,428 1,922,234 1,904,961
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Table A1. Cont.

ASSETS 2015 2016 2017 2018

LIABILITIES AND SHAREHOLDERS’ EQUITY 2015 2016 2017 2018
Financial Liabilities Measured at Amortised Cost 1,351,022 1,320,035 1,444,892 1,446,227
a. Due to Banks 202,328 206,642 267,166 283,388
b. Due to Customers 842,406 859,193 942,621 961,507
c. Securities Issued 306,288 254,200 235,105 201,332
Financial Liabilities Held for Trading 121,730 122,097 105,422 91,920
Financial Liabilities Designated at Fair Value 59,709 66,417 74,636 77,920
Hedging Derivatives 16,172 15,481 11,923 14,090
Change in Value of Macro-Hedged Financial Liabilities 6138 5257 3529 3752
Tax Liabilities 4856 3944 4495 3925
Liabilities Associated to Disposal Groups Held for Sale 2222 36,142 449 801
Other Liabilities 34,391 31,803 34,577 32,503
Pension Liabilities 3289 3186 3086 2572
Funds for General Banking Risks 14,909 15,234 15,721 17,858
Insurance Provisions 88,173 91,424 86,653 82,674
TOTAL LIABILITIES 1,702,609 1,711,019 1,785,383 1,774,243
Accumulated Other Comprehensive Income −4337 −5938 −4979 −9038
Reimbursable Shares 0 0 0 0
Capital Instruments 2765 4500 8713 8713
Reserves 25,971 27,082 33,427 40,010
Paid Instruments 87,827 84,641 82,268 81,424
Preferred Stock −87 −88 −111 −131
Net Income 5269 −11,191 16,096 8309
GROUP SHAREHOLDERS’ EQUITY 117,409 99,007 135,415 129,287
Minority Interests 4825 4402 1436 1431
SHAREHOLDERS’ EQUITY 122,234 103,409 136,851 130,718
LIABILITIES AND SHAREHOLDERS’ EQUITY 1,824,843 1,814,428 1,922,234 1,904,961

Table A2. Income statement.

INCOME STATEMENT 2015 2016 2017 2018

Interest and Similar Income 40,115 33,316 32,318 30,787
Interest Expenses 15,209 11,578 9866 8427
NET INTEREST INCOME 24,905 21,738 22,451 22,361
Net Commission Income 18,045 14,895 17,318 17,903
Net Gains (Losses) on Financial Assets 2,305 2720 2505 1295
a. Dividends and Similar Income 842 900 726 584
b. Net Gains on Trading Activity 1542 1861 1735 818
c. Net Gains on Hedging Activities −79 −41 43 −107
Gains/Losses from Disposal of: 2339 1760 846 733
a. Financial Assets at Amortised Cost −37 −218 −651 −205
b. Financial Assets Available for Sale 2655 1969 1555 884
c. Financial Liabilities −280 9 −58 53
Net Gains (Losses) on Financial Assets/Liabilities at FVTPL 968 952 1188 3782
NET INTEREST AND OTHER BANKING INCOME 48,562 42,065 44,307 46,073
Net Adjustments for Impairment of (−/+): −9067 −20,262 −7841 −7533
a. Loans to Customers −8717 −19,088 −6737 −7482
b. Financial Assets at FVTOCI −350 −1174 −1104 −50
Net Gains/Losses on Contractual Changes 0 0 0 −53
NET INCOME FROM BANKING ACTIVITIES 39,495 21,803 36,466 38,487
Net Earned Premiums 12,418 8433 6972 8554
Net Gain (Loss) from Insurance Activities −14,680 −10,508 −9185 −10,364
NET GAINS FROM FINANCIAL AND INSURANCE ACTIVITIES 37,233 19,728 34,253 36,677
Administrative Expenses −30,009 −30,024 −28,799 −27,036
Net Adjustments to the Value of Tangible & Intangible Assets −2470 −2856 −2497 −2450
Other Operating Income (Expense) 1506 876 9331 861
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Table A2. Cont.

INCOME STATEMENT 2015 2016 2017 2018

OPERATING EXPENSES −30,974 −32,004 −21,965 −28,625
OPERATING INCOME 6259 −12,276 12,288 8052
Income (Loss) on Equity Investments 978 371 1928 434
Goodwill Impairment 0 −540 −393 0
Other Non-Operating Income/Losses 211 891 189 683
GAIN (LOSS) FROM CURRENT OPERATIONS BEFORE TAXES 7448 −11,554 14,013 9169
Taxes on Income for the Period from Current Operations −1508 −786 −993 −621
GAIN (LOSS) FROM CURRENT OPERATIONS AFTER TAXES 5940 −12,339 13,019 8549
Gain (Loss) on Fixed Assets due for Disposal, net of Taxes −243 1664 3444 14
INCOME BEFORE MINORITY INTEREST 5698 −10,676 16,463 8563
Income Attributable to Minority Interest −429 −515 −367 −254
NET INCOME 5269 −11,191 16,096 8309

Table A3. Regulatory capital and Risk Weighted Assets.

OWN FUNDS 2015 2016 2017 2018

Paid Instruments 86,660 86,875 80,992 80,758
Retained Earnings 20,826 22,512 26,228 30,422
Profit or Loss Eligible 1527 0 9124 4087
Accumulated Other Comprehensive Income (AOCI) 4649 3517 6691 −3227
Minority Interest given recognition in CET1 Capital 2849 2552 443 294
COMMON EQUITY TIER 1 BEFORE REGULATORY ADJUSTMENTS 116,511 115,455 123,478 112,334
CET1 Capital Instruments −342 −238 −149 −252
Goodwill & Other Intangibles Assets −16,617 −15,405 −13,262 −13,929
Regulatory Adjustments to AOCI 652 772 723 625
Cumulative Gains/Losses due to Chg. in Own Credit Risk on FV Liabilities −178 −183 −37 −490
Negative Amounts resulting from the calculation of Expected Losses −816 −78 −530 −417
Defined Benefit Pension Fund Assets −44 −37 −43 −40
CET1 Deductions −1344 −3696 −5493 −7682
a. Non Convertibles DTA Deductions −254 −1099 −2635 −3142
b. Significant Financial Holdings Deductions −1076 −1631 −2262 −2614
c. Holdings and DTA 15% and 17.65% Threshold Deductions −14 −965 −597 −1926
Transitional Adjustments for IFRS9 0 0 0 5043
Other CET1 adjustments −3896 −13,681 −623 1846
REGULATORY ADJUSTMENTS AT COMMON EQUITY TIER 1 −22,584 −32,547 −19,415 −15,297
COMMON EQUITY TIER 1 CAPITAL 93,927 82,909 104,064 97,037
Capital AT1 Instruments 6771 7906 11,855 10,623
AT1 Instruments of Subsidiaries 98 14 14 29
ADDITIONAL TIER 1 BEFORE REGULATORY ADJUSTMENTS 6868 7920 11,868 10,652
Decuctions of AT1 Instruments −43 −86 −70 −77
Other AT1 Adjustments −1115 −1023 −346 0
REGULATORY ADJUSTMENTS AT ADDITIONAL TIER 1 −1158 −1109 −416 −77
ADDITIONAL TIER 1 CAPITAL 5710 6811 11,452 10,575
TIER 1 CAPITAL 99,638 89,720 115,516 107,612
Capital T2 Instruments 22,575 21,864 21,214 17,699
T2 Instruments of Subsidiaries 1171 889 687 553
IRB Excess of Provisions over Expected Losses Eligible 19 1234 1302 1155
TIER 2 BEFORE REGULATORY ADJUSTMENTS 23,765 23,987 23,203 19,408
T2 Instruments Deductions −1297 −1303 −1793 −1803
Other T2 adjustments −553 −412 −94 0
REGULATORY TIER 2 ADJUSTMENTS −1850 −1716 −1887 −1803
TIER 2 CAPITAL 21,915 22,271 21,316 17,604
TOTAL REGULATORY CAPITAL 121,552 111,992 136,832 125,216
RISK WEIGHTED ASSETS 2015 2016 2017 2018
TOTAL RWA 816,037 805,038 774,994 771,985
Credit and Counterparty Risk RWA 704,069 694,652 661,662 634,281
Market Risk RWA 31,858 36,308 35,584 33,919
Operational Risk RWA 72,369 67,148 60,303 57,424
Other Risks RWA 7740 6930 17,445 46,361
REGULATORY CAPITAL RATIO 2015 2016 2017 2018
CET1 RATIO 11,510% 10,299% 13,428% 12,570%
T1 RATIO 12,210% 11,145% 14,905% 13,940%
TOTAL CAPITAL RATIO 14,895% 13,911% 17,656% 16,220%



J. Risk Financial Manag. 2020, 13, 174 40 of 43

Appendix B. Reverse Stress Testing Exercise—Other Assumptions

The assumptions made reflect the constraints of the limited set of data publicly available for the
four banks considered in the sample and therefore do not represent a generalized standard model.
Of course, a richer dataset would enable better assumptions.

Balance Sheet

According to the static balance sheet general assumption, almost all of the balance sheet
forecast variables were assumed to be constant and equal to the end-of-2018 records, with a few
exceptions, namely:

(1) Deposits (“Financial Liabilities Measured at Amortized Cost—Due to Customers”), which are
basically linked to the size of the bank’s business and assumed to be determined as a percentage
of total assets (50.47%), set on the basis of the 2018 ratio between the two items, and then exposed
to reputational risk and thus to a stochastic decrease factor.

(2) Liabilities Due to Banks (“Financial Liabilities Measured at Amortized Cost—Due to Banks”) and
Loans to Banks (“Financial Assets Measured at Amortized Cost—Loans to Banks”), which act as
plug-in variables in the forecast model, ensuring the balancing of total assets and liabilities.

All other financial liabilities issued (“Financial Liabilities Measured at Amortized Cost—Securities
Issued”) were stable in their total amount through the entire forecast time horizon, but, as already
explained in the interest rate risk section, their related interest expenses change according to their
renewal and fixed-variable rate mix. In this regard, we assumed a stable composition of 78.5% of
variable rate liabilities and 21.5% of fixed rate liabilities, while the amount of liability issue renewal
(based on the current maturities of securities issued of the four banks) was: €88,700 million in 2019;
€184,541 million in 2020; and €177,703 million in 202151.

The Minority Interests were assumed to be determined according to the same percentage of Total
Shareholders’ Equity reported in 2018, and kept constant over the entire forecast period.

Income Statement

The following forecast variables were fully determined by the dynamics of the risk factors
described above:

VARIABLES ASSUMPTIONS

Interest Income Determined through the interest rate risk model

Interest Expenses Determined through the interest rate risk model

Net Gains/Losses on Financial Assets/Liabilities At FVTPL Determined through the sovereign risk model

Net Gains/Losses on Trading Activity
Determined through the market risk model and
sovereign risk model

Net Adjustment for Impairment
Determined through the credit risk model and
sovereign risk model

Other Non-Operating Income/Losses Determined through the operational risk model

The following forecast variables were determined partly by connecting them with the size of the
bank’s business and partly by the dynamics of the risk factors:

51 Data source: “CAST <GO>” (Capital Structure) function in Bloomberg.
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VARIABLES ASSUMPTIONS

Net Commission Income
Determined as a percentage of total assets (0.94%), set on the basis of the
2018 ratio between the two items; and then exposed to reputational risk
and thus to a stochastic decrease factor.

Administrative Expenses
Determined as a percentage of total assets (1.42%), set on the basis of the
2018 ratio between the two items; and then exposed to reputational risk
and thus to a stochastic increase factor.

For the residual forecast variables, we applied the following assumptions:

VARIABLES ASSUMPTIONS

Dividends and Similar Income
We assumed an income expressed in terms of percentage of total
financial assets and equal to the record reported in 2018, kept constant
over the entire forecast year.

Net Gains on Hedging Activities
We assumed the value recorded in 2018 constant over the entire
forecast period.

Net Gains/Losses on Contractual Changes
We assumed the value recorded in 2018 constant over the entire
forecast period.

Net Earned Premiums
We assumed equal to average value of the last five years and constant
over the entire forecast period.

Net Gain (Loss) from Insurance Activities
We assumed equal to average value of the last five years and constant
over the entire forecast period.

Net Adjustments to the Value of Tangible &
Intangible Assets

0

Other Operating Income (Expense)
We assumed equal to average value of the last five years and constant
over the entire forecast period.

Income (Loss) on Equity Investments
We assumed equal to average value of the last five years and constant
over the entire forecast period.

Goodwill Impairment 0

Taxes Application of the Italian tax system (Ires and Irap)

Gains (Losses) on Fixed Assets Due for
Disposal, Net of Taxes

0

Income Attributable to Minority Interest
We assumed the same percentage of income reported in 2018 to be
constant over the entire forecast year.

Regulatory Capital and Risk Weighted Assets

Regulatory capital was determined in each forecast year by taking into account the impacts of all
risk factors on equity through P&L or directly on capital (e.g., impact of sovereign risk on AOCI).

Additional Tier 1 and Tier 2 capital instruments were considered constants through the entire
forecast time period, without considering any effect arising from new issues, maturity of existing
instruments, or regulatory amortization.

Deferred Tax Assets (DTAs) were determined according to the fiscal impact arising from the
scenario and taken into account for the capital deductions according to the treatment set by the
prudential regulation (deduction from CET1 for the amount exceeding the threshold and inclusion in
RWA for the amount below the threshold).

We considered the phasing-out of the positive prudential filter granted for the first time adoption
(FTA) of the accounting principle IFRS9, according to which banks can temporarily benefit from
the prudential sterilization of the negative impact of the FTA. More specifically, of the four banks
considered in the sample, Intesa Sanpaolo, Gruppo BPM, and Gruppo UBI decided to take advantage
of the transitional prudential filter, while Unicredit did not. Therefore, on the basis of the 2018 financial
statement Pillar 3 information set, we determined the evolution of the aggregated prudential filter
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through the forecast time period, adopting the following regulatory phasing-out timetable of 95% in
2018; 85% in 2019; 70% in 2020; and 50% in 2021.

With regard to capital requirements, we determined the credit risk RWA on the basis of a constant
risk weight on total net exposure, set equal to the value recorded in 2018 (49.42%) for performing loans,
while for non-performing loans, we applied a 100% risk weight. RWA related to the other risks (market
and operational) were set constant and equal to the 2018 records.
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