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Abstract: In this paper we introduce a deep learning method for pricing and hedging American-style
options. It first computes a candidate optimal stopping policy. From there it derives a lower
bound for the price. Then it calculates an upper bound, a point estimate and confidence intervals.
Finally, it constructs an approximate dynamic hedging strategy. We test the approach on different
specifications of a Bermudan max-call option. In all cases it produces highly accurate prices and
dynamic hedging strategies with small replication errors.

Keywords: American option; Bermudan option; optimal stopping; lower bound; upper bound;
hedging strategy; deep neural network

1. Introduction

Early exercise options are notoriously difficult to value. For up to three underlying risk factors,
tree based and classical PDE approximation methods usually yield good numerical results; see,
e.g., Forsyth and Vetzal (2002); Hull (2003); Reisinger and Witte (2012) and the references therein.
To treat higher-dimensional problems, various simulation based methods have been developed; see,
e.g., Tilley (1993); Barraquand and Martineau (1995); Carriere (1996); Andersen (2000); Longstaff
and Schwartz (2001); Tsitsiklis and Van Roy (2001); García (2003); Broadie and Glasserman (2004);
Bally et al. (2005); Kolodko and Schoenmakers (2006); Egloff et al. (2007); Broadie and Cao (2008);
Berridge and Schumacher (2008); Jain and Oosterlee (2015). Haugh and Kogan (2004) as well as
Kohler et al. (2010) have already used shallow1 neural networks to estimate continuation values.
More recently, in Sirignano and Spiliopoulos (2018) optimal stopping problems in continuous time
have been solved by approximating the solutions of the corresponding free boundary PDEs with deep
neural networks. In Becker et al. (2019a, 2019b), deep learning has been used to directly learn optimal
stopping strategies. The main focus of these papers is to derive optimal stopping rules and accurate
price estimates.

The goal of this article is to develop a deep learning method which learns the optimal exercise
behavior, prices and hedging strategies from samples of the underlying risk factors. It first learns a
candidate optimal stopping strategy by regressing continuation values on multilayer neural networks.
Employing the learned stopping strategy on a new set of Monte Carlo samples gives a low-biased
estimate of the price. Moreover, the candidate optimal stopping strategy can be used to construct an
approximate solution to the dual martingale problem introduced by Rogers (2002) and Haugh and
Kogan (2004), yielding a high-biased estimate and confidence intervals for the price. In the last step,

1 meaning feedforward networks with a single hidden layer.
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our method learns a dynamic hedging strategy in the spirit of Han et al. (2018) and Buehler et al. (2019).
However, here, the continuation value approximations learned during the construction of the optimal
stopping strategy can be used to break the hedging problem down into a sequence of smaller
problems that learn the hedging portfolio only from one possible exercise date to the next. Alternative
ways of computing hedging strategies consist in calculating sensitivities of option prices (see, e.g.,
Bally et al. 2005; Bouchard and Warin 2012; Jain and Oosterlee 2015) or approximating a solution to
the dual martingale problem (see, e.g., Rogers 2002, 2010).

Our work is related to the preprints Lapeyre and Lelong (2019) and Chen and Wan (2019). Lapeyre
and Lelong (2019) also use neural network regression to estimate continuation values. However,
the networks are slightly different. While they work with leaky ReLU activation functions, we use tanh
activation. Moreover, Lapeyre and Lelong (2019) study the convergence of the pricing algorithm as the
number of simulations and the size of the network go to infinity, whereas we calculate a posteriori
guarantees for the prices and use the estimated continuation value functions to implement efficient
hedging strategies. Chen and Wan (2019) propose an alternative way of calculating prices and hedging
strategies for American-style options by solving BSDEs.

The rest of the paper is organized as follows. In Section 2 we describe our neural network version
of the Longstaff–Schwartz algorithm to estimate continuation values and construct a candidate optimal
stopping strategy. In Section 3 the latter is used to derive lower and upper bounds as well as confidence
intervals for the price. Section 4 discusses two different ways of computing dynamic hedging strategies.
In Section 5 the results of the paper are applied to price and hedge a Bermudan call option on the
maximum of different underlying assets. Section 6 concludes.

2. Calculating a Candidate Optimal Stopping Strategy

We consider an American-style option that can be exercised at any one of finitely2 many times
0 = t0 < t1 < · · · < tN = T. If exercised at time tn, it yields a discounted payoff given by a
square-integrable random variable Gn defined on a filtered probability space (Ω,F ,F = (Fn)N

n=0,P).
We assume that Fn describes the information available at time tn and Gn is of the form g(n, Xn) for a
measurable function g : {0, 1, . . . , N} ×Rd → [0, ∞) and a d-dimensional F-Markov process3 (Xn)N

n=0.
We assume X0 to be deterministic and P to be the pricing measure. So that the value of the option at
time 0 is given by

V = sup
τ∈T

EGτ ,

where T is the set of all F-stopping times τ : Ω→ {0, 1, . . . , N}. If the option has not been exercised
before time tn, its discounted value at that time is

Vtn = ess supτ∈Tn
E[Gτ | Fn], (1)

where Tn is the set of all F-stopping times satisfying n ≤ τ ≤ N.
Obviously, τN ≡ N is optimal for VT = GN . From there, one can recursively construct the

stopping times

τn :=

{
n if Gn ≥ E[Gτn+1 | Xn]

τn+1 if Gn < E[Gτn+1 | Xn].
(2)

Clearly, τn belongs to Tn, and it can be checked inductively that

2 This covers Bermudan options as well as American options that can only be exercised at a given time each day. Continuously
exercisable options must be approximated by discretizing time.

3 That is, Xn is Fn-measurable, and E[ f (Xn+1) | Fn] = E[ f (Xn+1) | Xn] for all n ≤ N − 1 and every measurable function
f : Rd → R such that f (Xn+1) is integrable.
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Vtn = E[Gτn | Fn] = Gn ∨E[Vtn+1 | Xn] for all n ≤ N − 1.

In particular, τn is an optimizer of (1).
Recursion (2) is the theoretical basis of the Longstaff and Schwartz (2001) method. Its main

computational challenge is the approximation of the conditional expectations E[Gτn+1 | Xn]. It is
well known that E[Gτn+1 | Xn] is of the form c(Xn), where c : Rd → R minimizes the mean

squared distance E
[{

Gτn+1 − c(Xn)
}2
]

over all Borel measurable functions from Rd to R; see, e.g.,
Bru and Heinich (1985). The Longstaff–Schwartz algorithm approximates E[Gτn+1 | Xn] by projecting
Gτn+1 on the linear span of finitely many basis functions. However, it is also possible to project on a
different subset. If the subset is given by cθ(Xn) for a function family cθ : Rd → R parametrized by θ,
one can apply the following variant4 of the Longstaff–Schwartz algorithm:

(i) Simulate5 paths (xk
n)

N
n=0, k = 1, . . . , K, of the underlying process (Xn)N

n=0.
(ii) Set sk

N ≡ N for all k.
(iii) For 1 ≤ n ≤ N − 1, approximate E

[
Gτn+1 | Xn

]
with cθn(Xn) by minimizing the sum

K

∑
k=1

(
g(sk

n+1, xk
sk

n+1
)− cθ(xk

n)

)2
over θ. (3)

(iv) Set

sk
n :=

{
n if g(n, xk

n) ≥ cθn(xk
n)

sk
n+1 otherwise.

(v) Define θ0 := 1
K ∑K

k=1 g(sk
1, xk

sk
1
), and set cθ0 constantly equal to θ0.

In this paper we specify cθ as a feedforward neural network, which in general, is of the form

aθ
I ◦ ϕqI−1 ◦ aθ

I−1 ◦ · · · ◦ ϕq1 ◦ aθ
1, (4)

where

• I ≥ 1 denotes the depth and q0, q1, . . . , qI the numbers of nodes in the different layers;
• aθ

1 : Rq0 → Rq1 , . . . , aθ
I : RqI−1 → RqI are affine functions;

• For j ∈ N, ϕj : Rj → Rj is of the form ϕj(x1, . . . , xj) = (ϕ(x1), . . . , ϕ(xj)) for a given activation
function ϕ : R→ R.

The components of the parameter θ consist of the entries of the matrices A1, . . . , AI and vectors
b1, . . . , bI appearing in the representation of the affine functions aθ

i x = Aix + bi, i = 1, . . . , I. So, θ lives
in Rq for q = ∑I

i=1 qi(qi−1 + 1). To minimize (3) we choose a network with qI = 1 and employ a
stochastic gradient descent method.

4 The main difference between this algorithm and the one of Longstaff and Schwartz (2001) is the use of neural networks
instead of linear combinations of basis functions. In addition, the sum in (3) is over all simulated paths, whereas in Longstaff
and Schwartz (2001), only in-the-money paths are considered to save computational effort. While it is enough to use
in-the-money paths to determine a candidate optimal stopping rule, we need accurate approximate continuation values for
all x ∈ Rd to construct good hedging strategies in Section 4.

5 As usual, we simulate the paths (xk
n), k = 1, . . . , K, independently of each other.
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3. Pricing

3.1. Lower Bound

Once θ0, θ1, . . . , θN−1 have been determined, we set Θ = (θ0, . . . , θN−1) and define

τΘ := min
{

n ∈ {0, 1, . . . , N − 1} : g(n, Xn) ≥ cθn(Xn)
}

, where min ∅ is understood as N.

This defines a valid F-stopping time. Therefore, L = E g(τΘ, Xτθ ) is a lower bound for the optimal
value V. However, typically, it is not possible to calculate the expectation exactly. Therefore,
we generate simulations gk of g(τΘ, XτΘ) based on independent sample paths6 (xk

n)
N
n=0, k =

K + 1, . . . , K + KL, of (Xn)N
n=0 and approximate L with the Monte Carlo average

L̂ =
1

KL

K+KL

∑
k=K+1

gk.

Denote by zα/2 the 1− α/2 quantile of the standard normal distribution and consider the sample
standard deviation

σ̂L =

√√√√ 1
KL − 1

K+KL

∑
k=K+1

(
gk − L̂

)2.

Then one obtains from the central limit theorem that[
L̂− zα/2

σ̂L√
KL

, ∞
)

(5)

is an asymptotically valid 1− α/2 confidence interval for L.

3.2. Upper Bound, Point Estimate and Confidence Intervals

Our derivation of an upper bound is based on the duality results of Rogers (2002); Haugh and
Kogan (2004) and Becker et al. (2019a). By Rogers (2002) and Haugh and Kogan (2004), the optimal
value V can be written as

V = E
[

max
0≤n≤N

(Gn −Mn)

]
,

where (Mn)N
n=0 is the martingale part of the smallest F-supermartingale dominating the payoff process

(Gn)N
n=0. We approximate (Mn)N

n=0 with the F-martingale (MΘ
n )

N
n=0 obtained from the stopping

decisions implied by the trained continuation value functions cθn , n = 0, . . . , N − 1, as in Section 3.2 of
Becker et al. (2019a). We know from Proposition 7 of Becker et al. (2019a) that if (εn)N

n=0 is a sequence
of integrable random variables satisfying E [εn | Fn] = 0 for all n = 0, 1, . . . , N, then

U = E
[

max
0≤n≤N

(
Gn −MΘ

n − εn

)]
is an upper bound for V. As in Becker et al. (2019a), we use nested simulation7 to generate realizations
mk

n of MΘ
n + εn along independent realizations (xk

n)
N
n=0, k = K + KL + 1, . . . , K + KL + KU , of (Xn)N

n=0
sampled independently of (xk

n)
N
n=0, k = 1, . . . K, and estimate U as

6 generated independently of (xk
n)

N
n=0, k = 1, . . . , K

7 The use of nested simulation ensures that mk
n are unbiased estimates of MΘ

n , which is crucial for the validity of the upper
bound. In particular, we do not directly approximate MΘ

n with the estimated continuation value functions cθn .
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Û =
1

KU

K+KL+KU

∑
k=K+KL+1

max
0≤n≤N

(g(n, xk
n)−mk

n).

Our point estimate of V is

V̂ =
L̂ + Û

2
.

The sample standard deviation of the estimator Û, given by

σ̂U =

√√√√ 1
KU − 1

K+KL+KU

∑
k=K+KL+1

(
max

0≤n≤N
(g(n, xk

n)−mk
n)− Û

)2
,

can be used together with the one-sided confidence interval (5) to construct the asymptotically valid
two-sided 1− α confidence interval[

L̂− zα/2
σ̂L√
KL

, Û + zα/2
σ̂U√
KU

]
(6)

for the true value V; see Section 3.3 of Becker et al. (2019a).

4. Hedging

We now consider a savings account together with e ∈ N financial securities as hedging instruments.
We fix a positive integer M and introduce a time grid 0 = u1 < u2 < · · · < uNM such that unM = tn

for all n = 0, 1, . . . , N. We suppose that the information available at time um is described by Hm,
where H = (Hm)MN

m=0 is a filtration satisfying HnM = Fn for all n. If any of the financial securities
pay dividends, they are immediately reinvested. We assume that the resulting discounted8 value
processes are of the form Pum = pm(Ym) for measurable functions pm : Rd → Re and an H-Markov
process9 (Ym)NM

m=0 such that YnM = Xn for all n = 0, . . . , N. A hedging strategy consists of a sequence
h = (hm)

NM−1
m=0 of functions hm : Rd → Re specifying the time-um holdings in P1

um , . . . , Pe
um . As usual,

money is dynamically deposited in or borrowed from the savings account to make the strategy
self-financing. The resulting discounted gains at time um are given by

(h · P)um :=
m−1

∑
j=0

hj(Yj) ·
(

pj+1(Yj+1)− pj(Yj)
)

:=
m−1

∑
j=0

e

∑
i=1

hi
j(Yj)

(
pi

j+1(Yj+1)− pi
j(Yj)

)
.

4.1. Hedging Until the First Possible Exercise Date

For a typical Bermudan option, the time between two possible exercise dates tn − tn−1 might
range between a week and several months. In case of an American option, we choose tn = n∆ for
a small amount of time ∆ such as a day. We assume τΘ does not stop at time 0. Otherwise, there is
nothing to hedge. In a first step, we only compute the hedge until time t1. If the option is still
alive at time t1, the hedge can then be computed until time t2 and so on. To construct a hedge from
time 0 to t1, we approximate the time-t1 value of the option with Vθ1

t1
= vθ1(X1) for the function

vθ1(x) = g(1, x) ∨ cθ1(x), where cθ1 : Rd → R is the time-t1 continuation value function estimated in

8 Discounting is done with respect to the savings account. Then, the discounted value of money invested in the savings
account stays constant.

9 That is, Ym isHm-measurable and E[ f (Ym+1) | Hm] = E[ f (Ym+1) | Ym] for all m ≤ NM− 1 and every measurable function
f : Rd → R such that f (Ym+1) is integrable.



J. Risk Financial Manag. 2020, 13, 158 6 of 12

Section 2. Then we search for hedging positions hm, m = 0, 1, . . . , M − 1, that minimize the mean
squared error

E
[(

V̂ + (h · P)t1 −Vθ1
t1

)2
]

.

To do that we approximate the functions hm with neural networks hλ : Rd → Re of the form (4) and try
to find parameters λ0, . . . , λM−1 that minimize

KH

∑
k=1

(
V̂ +

M−1

∑
m=0

hλm(yk
m) ·

(
pm+1(yk

m+1)− pm(yk
m)
)
− vθ1(yk

M)

)2

(7)

for independent realizations of (yk
m)

M
m=0, k = 1, . . . , KH of (Ym)M

m=0. We train the networks
hλ0 , . . . , hλM−1 together, again using a stochastic gradient descent method. Instead of (7), one could
also minimize a different deviation measure. However, (7) has the advantage that it yields hedging
strategies with an average hedging error close to zero10.

Once λ0, . . . , λM−1 have been determined, we assess the quality of the hedge by simulating new11

independent realizations (yk
m)

M
m=0, k = KH + 1, . . . , KH + KE of (Ym)M

m=0 and calculating the average
hedging error

1
KE

KH+KE

∑
k=KH+1

(
V̂ +

M−1

∑
m=0

hλm(yk
m) ·

(
pm+1(yk

m+1)− pm(yk
m)
)
− vθ1(yk

M)

)
(8)

and the empirical hedging shortfall

1
KE

KH+KE

∑
k=KH+1

(
V̂ +

M−1

∑
m=0

hλm(yk
m) ·

(
pm+1(yk

m+1)− pm(yk
m)
)
− vθ1(yk

M)

)−
(9)

over the time interval [0, t1].

4.2. Hedging Until the Exercise Time

Alternatively, one can precompute the whole hedging strategy from time 0 to T and then use it
until the option is exercised. In order to do that we introduce the functions

vθn(x) := g(n, x) ∨ cθn(x), Cθn(x) := 0∨ cθn(x), x ∈ Rd,

and hedge the difference vθn(YnM) − Cθn−1(Y(n−1)M) on each of the time intervals [tn−1, tn],
n = 1, . . . , N, separately. vθn describes the approximate value of the option at time tn if it has not
been exercised before, and the definition of Cθn takes into account that the true continuation values
are non-negative due to the non-negativity of the payoff function g. The hedging strategy can be
computed as in Section 4.1, except that we now have to simulate complete paths (yk

m)
NM
m=0 of (Ym)NM

m=0,
k = 1, . . . , KH , and then for all n = 1, . . . , N, find parameters λ(n−1)M, . . . , λnM−1 which minimize

KH

∑
k=1

Cθn−1(yk
(n−1)M) +

nM−1

∑
m=(n−1)M

hλm(yk
m) ·

(
pm+1(yk

m+1)− pm(yk
m)
)
− vθn(yk

nM)

2

.

Once the hedging strategy has been trained, we simulate independent samples (yk
m)

NM
m=0, k = KH +

1, . . . , KH + KE, of (Ym)NM
m=0 and denote the realization of τΘ along each sample path (yk

m)
NM
m=0 by τk.

The corresponding average hedging error is given by

10 see Table 2 and Figure 1 below.
11 independent of (yk

m)
M
m=0, k = 1, . . . , KH .
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1
KE

KH+KE

∑
k=KH+1

(
V̂ +

τk M−1

∑
m=0

hλm(yk
m) ·

(
pm+1(yk

m+1)− pm(yk
m)
)
− g(τk, Xτk )

)
(10)

and the empirical hedging shortfall by

1
KE

KH+KE

∑
k=KH+1

(
V̂ +

τk M−1

∑
m=0

hλm(yk
m) ·

(
pm+1(yk

m+1)− pm(yk
m)
)
− g(τk, Xτk )

)−
. (11)

5. Example

In this section we study12 a Bermudan max-call option13 on d financial securities with risk-neutral
price dynamics

Si
t = si

0 exp
(
[r− δi − σ2

i /2]t + σiWi
t

)
, i = 1, 2, . . . , d,

for a risk-free interest rate r ∈ R, initial values si
0 ∈ (0, ∞), dividend yields δi ∈ [0, ∞), volatilities

σi ∈ (0, ∞) and a d-dimensional Brownian motion W with constant instantaneous correlations14 ρij ∈ R
between different components Wi and W j. The option has time-t payoff

(
max1≤i≤d Si

t − K
)+ for a

strike price K ∈ [0, ∞) and can be exercised at one of finitely many times 0 = t0 < t1 < · · · < tN = T.
In addition, we suppose there is a savings account where money can be deposited and borrowed at
rate r.

For notational simplicity, we assume in the following that tn = nT/N for n = 0, 1, . . . , N, and all
assets have the same15 characteristics; that is, si

0 = s0, δi = δ and σi = σ for all i = 1, . . . , d.

5.1. Pricing Results

Let us denote Xn = Stn , n = 0, 1, . . . , N. Then the price of the option is given by

sup
τ

E
[

e−r τT
N

(
max
1≤i≤d

Xi
τ − K

)+]
,

where the supremum is over all stopping times τ : Ω → {0, 1, . . . , N} with respect to the filtration
generated by (Xn)N

n=0. The option payoff does not carry any information not already contained
in Xn. However, the training of the continuation values worked more efficiently when we used
it as an additional feature. So instead of Xn we simulated the extended state process X̂n =

(X1
n, . . . , Xd

n, Xd+1
n ) for

Xd+1
n = e−r nT

N

(
max
1≤i≤d

Xi
n − K

)+

12 The computations were performed on a NVIDIA GeForce RTX 2080 Ti GPU. The underlying system was an AMD Ryzen 9
3950X CPU with 64 GB DDR4 memory running Tensorflow 2.1 on Ubuntu 19.10.

13 Bermudan max-call options are a benchmark example in the literature on numerical methods for high-dimensional
American-style options; see, e.g., Longstaff and Schwartz (2001); Rogers (2002); García (2003); Broadie and Glasserman
(2004); Haugh and Kogan (2004); Broadie and Cao (2008); Berridge and Schumacher (2008); Jain and Oosterlee (2015);
Becker et al. (2019a, 2019b).

14 That is, E[(Wi
t −W i

s)(W
j
t −W i

s)] = ρij(t− s) for all i 6= j and s < t.
15 Simulation based methods work for any price dynamics that can efficiently be simulated. Prices of max-call options on

underlying assets with different price dynamics were calculated in Broadie and Cao (2008) and Becker et al. (2019a).
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to train the continuation value functions cθn , n = 1, . . . , N − 1. The network cθ : Rd+1 → R was chosen
of the form (4) with depth I = 3 (two hidden layers), d + 50 nodes in each hidden layer and activation
function ϕ = tanh. For training we used stochastic gradient descent with mini-batches of size 8192 and
batch normalization (Ioffe and Szegedy 2015). At time N − 1 we used Xavier (Glorot and Bengio 2010)
initialization and performed 6000 Adam (Kingma and Ba 2015) updating steps16. For n ≤ N − 2,
we started the gradient descent from the trained network parameters θn+1 and made 3500 Adam
updating steps16. To calculate L̂ we simulated KL = 4,096,000 paths of (Xn)N

n=0. For Û we generated
KU = 2048 outer and 2048 × 2048 inner simulations.

Our results for L̂, Û, V̂ and 95% confidence intervals for different specifications of the model
parameters are reported in Table 1. To achieve a pricing accuracy comparable to the more direct
methods of Becker et al. (2019a, 2019b), the networks used in the construction of the candidate
optimal stopping strategy had to be trained for a longer time. But in exchange, the approach yields
approximate continuation values that can be used to break down the hedging problem into a series of
smaller problems.

5.2. Hedging Results

Suppose the hedging portfolio can be rebalanced at the times um = mT/(NM), m = 0, 1, . . . , NM,
for a positive integer M. We assume dividends paid by shares of Si held in the hedging portfolio are
continuously reinvested in Si. This results in the adjusted discounted security prices

Pi
um = s0 exp

(
σWi

um − σ2um/2
)

, m = 0, 1, . . . , NM.

We set Yi
m = Pi

um . To learn the hedging strategy, we trained neural networks hλm : Rd → Rd, m =

0, . . . , NM − 1, of the form (4) with depth I = 3 (two hidden layers), d + 50 nodes in each hidden
layer and activation function ϕ = tanh. As in Section 5.1, we used stochastic gradient descent with
mini-batches of size 8192 and batch normalization (Ioffe and Szegedy 2015). For m = 0, . . . , M− 1,
we initialized the networks according to Xavier (Glorot and Bengio 2010) and performed 10,000 Adam
(Kingma and Ba 2015) updating steps16, whereas for m ≥ M, we started the gradient trajectories from
the trained network parameters λm−M and made 3000 Adam updating steps16.

Table 2 reports the average hedging errors (8) and (10) together with the empirical hedging
shortfalls (9) and (11) for different numbers M of rebalancing times between two consecutive exercise
dates tn−1 and tn. They were computed using KE = 4,096,000 simulations of (Ym)NM

m=0.
Figure 1 shows histograms of the total hedging errors

V̂ +
τk M−1

∑
m=0

hλm(yk
m) ·

(
pm+1(yk

m+1)− pm(yk
m)
)
− g(τk, Xτk ), k = KH + 1, . . . , KE,

for d ∈ {5, 10} and M ∈ {12, 96}.

16 The hyperparamters β1, β2, ε were chosen as in Kingma and Ba (2015). The stepsize α was specified as 10−1, 10−2, 10−3 and
10−4 according to a deterministic schedule.
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Table 1. Price estimates for max-call options on 5 and 10 symmetric assets for parameter values of
r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100, T = 3, N = 9. tL is the number of seconds it took to
train τΘ and compute L̂. tU is the computation time for Û in seconds. 95% CI is the 95% confidence
interval (6). The last column lists the 95% confidence intervals computed in Becker et al. (2019a).

d s0 L̂ tL Û tU Point Est. 95% CI DOS 95% CI

5 90 16.644 132 16.648 8 16.646 [16.628, 16.664] [16.633, 16.648]
5 100 26.156 134 26.152 8 26.154 [26.138, 26.171] [26.138, 26.174]
5 110 36.780 133 36.796 8 36.788 [36.758, 36.818] [36.745, 36.789]

10 90 26.277 136 26.283 8 26.280 [26.259, 26.302] [26.189, 26.289]
10 100 38.355 136 38.378 7 38.367 [38.335, 38.399] [38.300, 38.367]
10 110 50.869 135 50.932 8 50.900 [50.846, 50.957] [50.834, 50.937]

Table 2. Average hedging errors and empirical hedging shortfalls for 5 and 10 underlying assets and
different numbers M of rehedging times between consecutive exercise times tn−1 and tn. The values
of the parameters r, δ, σ, ρ, K, T and N were chosen as in Table 1. IHE is the intermediate average
hedging error (8), IHS the intermediate hedging shortfall (9), HE the total average hedging error (10)
and HS the total hedging shortfall (11). V̂ is our price estimate from Table 1. T1 is the computation time
in seconds for training the hedging strategy from time 0 to t1 = T/N. T2 is the number of seconds it
took to train the complete hedging strategy from time 0 to T.

d s0 M IHE IHS IHS/V̂ T1 HE HS HS/V̂ T2

5 90 12 0.007 0.190 1.1% 102 −0.001 0.676 4.1% 379
5 90 24 0.007 0.139 0.8% 129 −0.002 0.492 3.0% 473
5 90 48 0.007 0.104 0.6% 234 −0.001 0.367 2.2% 839
5 90 96 0.007 0.081 0.5% 436 −0.001 0.294 1.8% 1546

5 100 12 0.013 0.228 1.4% 102 0.006 0.785 4.7% 407
5 100 24 0.013 0.163 1.0% 131 0.006 0.569 3.4% 512
5 100 48 0.013 0.118 0.7% 252 0.007 0.423 2.5% 931
5 100 96 0.013 0.089 0.5% 470 0.006 0.335 2.0% 1668

5 110 12 0.002 0.268 1.6% 102 −0.012 0.881 5.3% 380
5 110 24 0.002 0.192 1.2% 130 −0.012 0.638 3.8% 511
5 110 48 0.002 0.139 0.8% 262 −0.013 0.474 2.9% 950
5 110 96 0.002 0.105 0.6% 471 −0.010 0.374 2.3% 1673

10 90 12 −0.015 0.192 0.7% 111 −0.010 0.902 3.4% 414
10 90 24 −0.014 0.147 0.6% 145 −0.011 0.704 2.7% 534
10 90 48 −0.015 0.136 0.5% 269 −0.011 0.611 2.3% 958
10 90 96 −0.015 0.121 0.5% 506 −0.012 0.551 2.1% 1792

10 100 12 0.008 0.230 0.9% 111 0.015 1.025 3.9% 414
10 100 24 0.008 0.176 0.7% 152 0.014 0.797 3.0% 531
10 100 48 0.008 0.150 0.6% 271 0.016 0.682 2.6% 978
10 100 96 0.008 0.132 0.5% 512 0.014 0.672 2.6% 1803

10 110 12 −0.029 0.249 1.0% 112 −0.026 1.146 4.4% 410
10 110 24 −0.029 0.189 0.7% 146 −0.027 0.908 3.5% 530
10 110 48 −0.029 0.160 0.6% 269 −0.026 0.782 3.0% 965
10 110 96 −0.029 0.151 0.6% 507 −0.024 0.666 2.5% 1777
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Figure 1. Total hedging errors for s0 = 100, M ∈ {12, 96}, d = 5 (top) and d = 10 (bottom) along
4,096,000 sample paths of (Ym)NM

m=0. The values of the parameters r, δ, σ, ρ, K, T and N were as in
Tables 1 and 2.

6. Conclusions

In this article, we used deep learning to price and hedge American-style options. In a first step
our method employs a neural network version of the Longstaff–Schwartz algorithm to estimate
continuation values and derive a candidate optimal stopping rule. The learned stopping rule
immediately yields a low-biased estimate of the price. In addition, it can be used to construct
an approximate solution of the dual martingale problem of Rogers (2002) and Haugh and Kogan
(2004). This gives a high-biased estimate and confidence intervals for the price. To achieve the same
pricing accuracy as the more direct approaches of Becker et al. (2019a, 2019b), we had to train the
neural network approximations of the continuation values for a longer time. However, computing
approximate continuation values has the advantage that they can be used to break the hedging problem
into a sequence of subproblems that compute the hedge only from one possible exercise date to the next.

Author Contributions: S.B., P.C. and A.J. have contributed equally to this work. All authors have read and agreed
to the published version of the manuscript.

Funding: A.J. acknowledges support from the DFG through Germany’s Excellence Strategy EXC 2044-390685587,
Mathematics Münster: Dynamics - Geometry - Structure.

Conflicts of Interest: The authors declare no conflict of interest.



J. Risk Financial Manag. 2020, 13, 158 11 of 12

References

Andersen, Leif. 2000. A simple approach to the pricing of Bermudan swaptions in the multifactor LIBOR market
model. The Journal of Computational Finance 3: 5–32. [CrossRef]

Bally, Vlad, Gilles Pagès, and Jacques Printems. 2005. A quantization tree method for pricing and hedging
multidimensional American options. Mathematical Finance 15: 119–68. [CrossRef]

Barraquand, Jérôme, and Didier Martineau. 1995. Numerical valuation of high dimensional multivariate American
securities. The Journal of Financial and Quantitative Analysis 30: 383–405. [CrossRef]

Becker, Sebastian, Patrick Cheridito, and Arnulf Jentzen. 2019a. Deep optimal stopping. Journal of Machine
Learning Research 20: 1–25.

Becker, Sebastian, Patrick Cheridito, Arnulf Jentzen, and Timo Welti. 2019b. Solving high-dimensional optimal
stopping problems using deep learning. arXiv arXiv:1908.01602.

Berridge, Steffan J., and Johannes M. Schumacher. 2008. An irregular grid approach for pricing high-dimensional
American options. Journal of Computational and Applied Mathematics 222: 94–111. [CrossRef]

Bouchard, Bruno, and Xavier Warin. 2012. Monte-Carlo valuation of American options: Facts and new algorithms
to improve existing methods. In Numerical Methods in Finance. Berlin and Heidelberg: Springer, pp. 215–255.

Broadie, Mark, and Menghui Cao. 2008. Improved lower and upper bound algorithms for pricing American
options by simulation. Quantitative Finance 8: 845–61. [CrossRef]

Broadie, Mark, and Paul Glasserman. 2004. A stochastic mesh method for pricing high-dimensional American
options. Journal of Computational Finance 7: 35–72. [CrossRef]

Bru, Bernard, and Henri Heinich. 1985. Meilleures approximations et médianes conditionnelles. Annales de l’I.H.P.
Probabilités et Statistiques 21: 197–224.

Buehler, Hans, Lukas Gonon, Josef Teichmann, and Ben Wood. 2019. Deep hedging. Quantitative Finance
19: 1271–91. [CrossRef]

Carriere, Jacques F. 1996. Valuation of the early-exercise price for options using simulations and nonparametric
regression. Insurance: Mathematics and Economics 19: 19–30. [CrossRef]

Chen, Yangang, and Justin W.L. Wan. 2019. Deep neural network framework based on backward stochastic
differential equations for pricing and hedging American options in high dimensions. arXiv arXiv:1909.11532.

Egloff, Daniel, Michael Kohler and Nebojsa Todorovic. 2007. A dynamic look-ahead Monte Carlo algorithm for
pricing Bermudan options. Annals of Applied Probability 17: 1138–71. [CrossRef]

Forsyth, Peter A., and Ken R. Vetzal. 2002. Quadratic convergence for valuing American options using a penalty
method. SIAM Journal on Scientific Computing 23: 2095–122. [CrossRef]

García, Diego. 2003. Convergence and biases of Monte Carlo estimates of American option prices using a
parametric exercise rule. Journal of Economic Dynamics and Control 27: 1855–79. [CrossRef]

Glorot, Xavier, and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural
networks. Paper Presented at Thirteenth International Conference on Artificial Intelligence and Statistics,
PMLR, Sardinia, Italy, May 13–15; vol. 9, pp. 249–256.

Han, Jiequn, Arnulf Jentzen, and Weinan E. 2018. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences of the United States of America 115: 8505–10.
[CrossRef]

Haugh, Martin B., and Leonid Kogan. 2004. Pricing American options: a duality approach. Operations Research
52: 258–70. [CrossRef]

Hull, John C. 2003. Options, Futures and Other Derivatives. London: Pearson; Upper Saddle River: Prentice Hall.
Ioffe, Sergey, and Christian Szegedy. 2015. Batch normalization: accelerating deep network training by reducing

internal covariate shift. Paper presented at 32nd International Conference on Machine Learning, ICML 2015,
Lille, France, July 6–11; vol. 37, pp. 448–456.

Jain, Shashi, and Cornelis W. Oosterlee. 2015. The stochastic grid bundling method: efficient pricing of Bermudan
options and their Greeks. Applied Mathematics and Computation 269: 412–31. [CrossRef]

Kingma, Diederik P., and Jimmy Ba. 2015. Adam: A method for stochastic optimization. Paper Presented at
International Conference on Learning Representations, San Diego, CA, USA, May 7–9.
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