
Yüzbaşı, Bahadır; Ahmed, Syed E.

Article

Ridge type shrinkage estimation of seemingly unrelated
regressions and analytics of economic and financial data
from "Fragile Five" countries

Journal of Risk and Financial Management

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Yüzbaşı, Bahadır; Ahmed, Syed E. (2020) : Ridge type shrinkage estimation of
seemingly unrelated regressions and analytics of economic and financial data from "Fragile Five"
countries, Journal of Risk and Financial Management, ISSN 1911-8074, MDPI, Basel, Vol. 13, Iss. 6,
pp. 1-19,
https://doi.org/10.3390/jrfm13060131

This Version is available at:
https://hdl.handle.net/10419/239219

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/jrfm13060131%0A
https://hdl.handle.net/10419/239219
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Journal of

Risk and Financial
Management

Article

Ridge Type Shrinkage Estimation of Seemingly
Unrelated Regressions And Analytics of Economic
and Financial Data from “Fragile Five” Countries

Bahadır Yüzbaşı 1,* and S. Ejaz Ahmed 2

1 Department of Econometrics, Inonu University, 44280 Malatya, Turkey
2 Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada;

sahmed5@brocku.ca
* Correspondence: b.yzb@hotmail.com

Received: 26 April 2020; Accepted: 16 June 2020; Published: 18 June 2020
����������
�������

Abstract: In this paper, we suggest improved estimation strategies based on preliminarily test
and shrinkage principles in a seemingly unrelated regression model when explanatory variables
are affected by multicollinearity. To that end, we split the vector regression coefficient of each
equation into two parts: one includes the coefficient vector for the main effects, and the other is
a vector for nuisance effects, which could be close to zero. Therefore, two competing models per
equation of the system regression model are obtained: one includes all the regression of coefficients
(full model); the other (sub model) includes only the coefficients of the main effects based on the
auxiliary information. The preliminarily test estimation improves the estimation procedure if there is
evidence that the vector of nuisance parameters does not provide a useful contribution to the model.
The shrinkage estimation method shrinks the full model estimator in the direction of the sub-model
estimator. We conduct a Monte Carlo simulation study in order to examine the relative performance
of the suggested estimation strategies. More importantly, we apply our methodology based on
the preliminarily test and the shrinkage estimations to analyse economic data by investigating the
relationship between foreign direct investment and several economic variables in the “Fragile Five”
countries between 1983 and 2018.

Keywords: shrinkage estimator; seemingly unrelated regression model; multicollinearity; ridge regression

1. Introduction

A seemingly unrelated regression (SUR) system, originally proposed by Zellner (1962), comprises
multiple individual regression equations that are correlated with each other. Zellner’s idea was to
improve estimation efficiency by combining several equations into a single system. Contrary to
SUR estimation, the ordinary least squares (OLS) estimation loses its efficiency and will not produce
best linear unbiased estimates (BLUE) when the error terms between the equations in the system
are correlated. This method has a wide range of applications in economic and financial data and
other similar areas (Shukur 2002; Srivastava and Giles 1987; Zellner 1962). For example, Dincer and
Wang (2011) investigated the effects of ethnic diversity on economic growth. Williams (2013) studied
the effects of financial crises on banks. Since it considers multiple related equations simultaneously,
a generalized least squares (GLS) estimator is used to take into account the effect of errors in these
equations. Barari and Kundu (2019) reexamined the role of the Federal Reserve in triggering the
recent housing crisis with a vector autoregression (VAR) model, which is a special case of the
SUR model with lagged variables and deterministic terms as common regressors. One might also
consider the correlations of explanatory variables in SUR models. Alkhamisi and Shukur (2008)
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and Zeebari et al. (2012, 2018) considered a modified version of the ridge estimation proposed by
Hoerl and Kennard (1970) for these models. Alkhamisi (2010) proposed two SUR-type estimators by
combining the SUR ridge regression and the restricted least squares methods. These recent studies
demonstrated that the ridge SUR estimation is superior to classical estimation methods in the presence
of multicollinearity. Srivastava and Wan (2002) considered the Stein-rule estimators from James and
Stein (1961) in SUR models with two equations.

In our study, we consider preliminarily test and shrinkage estimation, more information on which
can be found in Ahmed (2014), in ridge-type SUR models when the explanatory variables are affected by
multicollinearity. In a previous paper, we combined penalized estimations in an optimal way to define
shrinkage estimation (Ahmed and Yüzbaşı 2016). Gao et al. (2017) suggested the use of the weighted ridge
regression model for post-selection shrinkage estimation. Yüzbaşı et al. (2020) gave detailed information
about generalized ridge regression for a number of shrinkage estimation methods. Srivastava and Wan
(2002) and Arashi and Roozbeh (2015) considered Stein-rule estimation for SUR models. Erdugan and
Akdeniz (2016) proposed a restricted feasible SUR estimate of the regression coefficients.

The organization of this paper is as follows: In Section 2, we briefly review the SUR model and
some estimation techniques, including the ridge type. In Section 3, we introduce our new estimation
methodology. A Monte Carlo simulation is conducted in Section 4, and our economic data are analysed
in Section 5. Finally, some concluding remarks are given in Section 6.

2. Methodology

Consider the following model:

Yi = Xiβi + εi, i = 1, 2, . . . , M, (1)

the ith equation of an M seemingly unrelated regression equation with T number of observations per
equation. Yi is a T× 1 vector of T observations; Xi is a T× pi full column rank matrix of T observations
on pi regressors; and βi is a pi × 1 vector of unknown parameters.

Equation (1) can be rewritten as follows:

Y = Xβ + ε, (2)

where Y =
(
Y′1, Y′2, . . . , Y′M

)′ is the vector of responses and ε =
(
ε′1, ε′2, . . . , ε′M

)′ is the vector of
disturbances with dimension TM × 1, X = diag (X1, X2, . . . , XM) of dimension TM × p, and β =(

β′1, β′2, . . . , β′M
)′ of dimension p× 1, for p = ∑M

i=1 pi.
The disturbances vector ε satisfies the properties:

E(ε) = 0

and:

E(εε′) =

 σ11I . . . σ1MI
...

. . .
σM1I . . . σMMI

 = Σ⊗ I,

where Σ = [σij], i, j = 1, 2, . . . , M is an M×M positive definite symmetric matrix, ⊗ stands for the
Kronecker product, and I is an identity matrix of order of T × T. Following Greene (2019), we assume
strict exogeneity of Xi,

E [ε|X1, X2, . . . , XM] = 0,

and homoscedasticity:
E
[
εiε
′
i|X1, X2, . . . , XM

]
= σiiI.
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Therefore, it is assumed that disturbances are uncorrelated across observations, that is,

E
[
εitεjs|X1, X2, . . . , XM

]
= σij, if t = s and 0 otherwise,

and it is assumed that disturbances are correlated across equations, that is,

E
[
εiε
′
j|X1, X2, . . . , XM

]
= σijI.

The OLS and GLS estimator of model (2) are thus given as:

β̂OLS = (X′X)−1X′Y

and:
β̂GLS = (X′(Σ−1 ⊗ I)X)−1X′(Σ−1 ⊗ I)Y.

β̂OLS simply consists of the OLS estimators computed separately from each equation and omits the
correlations between equation, as can be seen in Kuan (2004). Hence, it should use the GLS estimator
when correlations exist among equations. However, the true covariance matrix Σ is generally unknown.
The solution for this problem is a feasible generalized least squares (FGLS) estimation, which uses
covariance matrix Σ̂ of Σ in the estimation of GLS. In many cases, the residual covariance matrix is
calculated by:

σij =
ε̂′i ε̂j

T −max(pi, pj)
, i, j = 1, . . . , M,

where ε̂i = Yi − Xi β̂i represents residuals from the ith equation and β̂i may be the OLS or ridge
regression (RR) estimation such that (X′iXi + λI)−1X′iYi with the tuning parameter λ ≥ 0. Note that
we use the RR solution to estimate Σ in our numerical studies because we assume that two or more
explanatory variables in each equation are linearly related. Therefore, Ω̂ = Σ̂⊗ I, the FGLS of the SUR
system, is:

β̂FGLS = (X′Ω̂−1X)−1X′Ω̂−1Y.

By following Srivastava and Giles (1987) and Zeebari et al. (2012), we first transform Equation (2)
by using the following transformations, in order to retain the information included in the correlation
matrix of cross equation errors:

Y∗ =
(

Σ̂−1/2 ⊗ I
)

Y, X∗ =
(

Σ̂−1/2 ⊗ I
)

X and ε∗ =
(

Σ̂−1/2 ⊗ I
)

ε.

Hence, Model (2) turns into:
Y∗ = X∗β + ε∗. (3)

The spectral decomposition of the symmetric matrix X′∗X∗ is X′∗X∗ = PΛP′ with PP′ = I. Model (3)
can then be written as:

Y∗ = X∗PP′β + ε∗

= Zα + ε∗, (4)

with Z = X∗P, α = P′β and Z′Z = P′X′∗X∗P = Λ, so that Λ is a diagonal matrix of eigenvalues and P
is a matrix whose columns are eigenvectors of X′∗X∗.

The OLS estimator of model (4) is:

α̂OLS = (Z′Z)−1Z′Y∗.
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The least squares estimates of β in model (2) can be obtained by an inverse linear transformation as:

β̂OLS = (P′)−1α̂OLS = Pα̂OLS. (5)

Furthermore, by following Alkhamisi and Shukur (2008), the full model ridge SUR regression
parameter estimation is:

α̂RR = (Z′Z + K)−1Z′Y∗, (6)

where K = diag(K1, K2, . . . , KM), Ki = diag(ki1, ki2, . . . , kipi ) and kij =
1

(α̂OLS)
2
ij

> 0 for i = 1, 2, . . . , M

and j = 1, 2, . . . , pi.
Now let us assume that uncertain non-sample prior information (UNPI) on the vector of β

parameters is available, either from previous studies, expert knowledge, or researcher’s experience.
This information might be of use for the estimation of parameters, in order to improve the quality of
the estimators when the sample data have a low quality or may not be reliable Ahmed (2014). It is
assumed that the UNPI on the vector of parameters will be restricted by the equation for Model (2),

Rβ = r, (7)

where R = diag(R1, R2, . . . , RM), Ri, i = 1, . . . , M is a known mi × pi matrix of rank mi < pi and r is a
known ∑M

i mi × 1 vector. In order to use restriction (7) in Equation (2), we transform it as follows:

RPP′β = Hα = r, (8)

where H = RP and α = P′β, which is defined above. Hence, the restricted ridge SUR regression
estimation is obtained from the following objective function:

α̃RR = arg min
α

{
(Y∗ − Zα)′(Y∗ − Zα)

}
w.r.t Hα = r and αKα′ ≤ τ2,

= α̂RR − Z−1
K H′(HZ−1

K H′)−1(Hα̂RR − r), (9)

where ZK = (Z′Z + K).

Theorem 1. The risks of α̂RR and α̃RR are given by:

R
(

α̂RR; α
)

= tr
[
(Λ + K)−1 Λ (Λ + K)−1

]
+ α′K′ (Λ + K)−2 Kα,

R
(

α̃RR; α
)

= tr
[
(Λ + K)−1

(
Λ−H′

(
HΛ−1H′

)−1
H
)
(Λ + K)−1

]
+ α′K′ (Λ + K)−2 Kα + δ′Λ (Λ + K)−2 Λδ

+ 2δ′Λ (Λ + K)−2 Kα,

where δ = Λ−1H′
(
HΛ−1H′

)−1
(Hα− r).

Proof. For the risk of the estimators α̂RR and α̃RR, we consider:

R (α∗; α) = E
[
(α∗ − α)′ (α∗ − α)

]
= tr [M (α∗)] ,

where α∗ is the one of the estimators α̂RR and α̃RR and M (α∗) = E
[
(α∗ − α) (α∗ − α)′

]
. Since:

α̂RR = (Λ + K)−1 Z′Y∗
= (Λ + K)−1 Λα̂OLS

=
[
Λ−1 (Λ + K)

]−1
α̂OLS
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=
[
I + Λ−1K

]−1
α̂OLS

= Λ(K)α̂OLS and
α̂OLS = Λ−1Z′Y∗

= α + Λ−1Z′ε∗,

where Λ = Z′Z.

E
(

α̂RR − α
)

= E
(

Λ(K)α̂OLS − α
)

= [Λ(K)− I] α.

Using Λ(K) =
[
I + Λ−1K

]−1, kij ≥ 0, we get:

Λ−1(K) = I + Λ−1K
I = Λ(K) + Λ(K)Λ−1K

Λ(K)− I = −Λ(K)Λ−1K
= − (Λ + K)−1 K.

Hence,

E
(

α̂RR − α
)

= − (Λ + K)−1 Kα

Var
(

α̂RR − α
)

= Var
(

Λ(K)α̂OLS
)

= (Λ + K)−1 Λ (Λ + K)−1 .

Therefore, the risk of α̂RR is directly obtained by definition. Similarly,

α̃RR = Λ(K)α̃OLS

= Λ(K)

(
α̂OLS −Λ−1H′

(
HΛ−1H′

)−1 (
Hα̂OLS − r

))
= Λ(K)α̂OLS − (Λ + K)−1 H′

(
HΛ−1H′

)−1 (
Hα̂OLS − r

)
E
(

α̃RR − α
)

= E
(

Λ(K)α̂OLS − α
)
− E

(
(Λ + K)−1 H′

(
HΛ−1H′

)−1 (
Hα̂OLS − r

))
= − (Λ + K)−1 Kα−Λ(K)δ,

and,

Var
(

α̃RR − α
)

= Var
(

Λ(K)

(
α̂OLS −Λ−1H′

(
HΛ−1H′

)−1 (
Hα̂OLS − r

)))
= Λ(K)

(
Λ−1 −Λ−1H′

(
HΛ−1H′

)−1
HΛ−1H′

(
HΛ−1H′

)−1
HΛ−1

)
Λ′(K)

= (Λ + K)−1
(

Λ−H′
(

HΛ−1H′
)−1

H
)
(Λ + K)−1 .

Thus, the risk of α̃RR is directly obtained by definition. �

3. Preliminary Test and Shrinkage Estimation

Researchers have determined that restricted estimation (RE) generally performs better than the
full model estimator (FME) and leads to smaller sampling variance than the FME when the UNPI
is correct. However, the RE might be a noteworthy competitor of FME even though the restrictions
may, in fact, not be valid; we refer to Groß (2003) and Kaçıranlar et al. (2011). It is important that
the consequences of incorporating UNPI in the estimation process depends on the usefulness of the
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information. The preliminary test estimator (PTE) uses UNPI, as well as the sample information.
The PTE chooses between the RE and the FME through a pretest. We consider the SUR-PTE of α

as follows:
α̂PTE = α̃RR I(Fn < Fm,M·T−p(α)) + α̂RR I(Fn ≥ Fm,M·T−p(α)), (10)

where Fm,M·T−p(α) is the upper α-level critical value from the central F-distribution, I(A) stands for
the indicator function of the set A, and Fn is the F test for testing the null hypothesis of (8), given by:

Fn =

(
Hα̂OLS − r

)′ (H (Z′Z)−1 H′
)−1 (

Hα̂OLS − r
)

/m

ε̂∗
′ ε̂∗/ (M · T − p)

, (11)

where m is the number of restrictions and p is the total number of estimated coefficients. Under the null
hypothesis (8), Fn is F distributed with n and M · T − p degrees of freedom (Henningsen et al. 2007).
The PTE selects strictly between FME and RE and depends strongly on the level of significance. Later,
we will define the Stein-type regression estimator (SE) of α. This estimator is the smooth version of
PTE, given by,

α̂SE = α̂RR − d
(

α̂RR − α̃RR
)

F−1
n , (12)

where d = (m− 2)(T − p)/m(T − p + 2) is the optimum shrinkage constant. It is possible that the SE
may have the opposite sign of the FME due to small values of Fn. To alleviate this problem, we consider
the positive-rule Stein-type estimator (PSE) defined by:

α̂PSE = α̃RR +
(

1− dF−1
n

)
I(Fn > d)

(
α̂RR − α̃RR

)
. (13)

4. Simulation

In this section, the performance of the preliminary test and shrinkage SUR ridge estimators of β

are investigated via Monte Carlo simulations. We generate the response from the following model:
Y1

Y2
...

YM

 =


X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...

0 0
... XM




β1

β2
...

βM

+


ε1

ε2
...

εM

 .

The explanatory variables are generated from a multivariate normal distribution MVNpi (0, Σx), and
the random errors are generated from MVNM(0, Σε). We summarize the simulation details as follows:

1. Generate the ith explanatory matrix Xi from MVNpi (0, Σx) so that Xi is different from Xj for all
i, j = 1, 2, . . . , M, where diag(Σx) = 1 and off− diag(Σx) = ρx. The ρx regulates the strength of
collinearity among explanatory variables per equation. In this study, we consider ρx = 0.5, 0.9.
Further, the response is centred, and the predictors are standardized for each equation.

2. The variance-covariance matrix of errors for interdependency among equations is defined by
diag(Σε) = 1 and off− diag(Σε) = ρε = 0.5, 0.9, and the errors are generated from MVNM(0, Σε)

and M = 2, 3 for each replication.
3. We consider that an SUR regression model is assumed to be sparse. Hence, the vector of coefficients

can be partitioned as β′ =
(

β′1, β′2
)′ where β1 is the the coefficient vector of the main effects, while

β2 is the vector of nuisance, which means that it does not contribute to the model significantly.
We set β1 = (1,−3, 2)′ and β2 = 0. For the suggested estimations, we consider the restriction of
β2 = 0 and test it. We also investigate the behaviours of the estimators when the restriction is not
true. To this end, we add a ∆ value to one component of β2 so that it violates the null hypothesis.
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Here, we use ∆ values between zero and two and use α = 0.05. We also consider that the lengths
of the nuisance parameter β2 are two and four, respectively. Therefore, the restricted matrices are:

Ri =

[
0 0 0 1 0
0 0 0 0 1

]
, ri =

[
0
0

]
, if pi = 5 and

Ri =


0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 , ri =


0
0
0
0

 , if pi = 7,

where i = 2, 3 are the number of equation. Hence, R will be diag(R1, R2) and diag(R1, R2, R3).
Furthermore, r will be (r′1, r′2)

′ and (r′1, r′2, r′3)
′.

4. The performance of an estimator is evaluated by using the relative mean squared error (RMSE)
criterion. The RMSE of an estimator α̂∗ with respect to α̂RR is defined as follows:

RMSE (α̂∗) =
MSE

(
α̂RR)

MSE (α̂∗)
,

where α̂∗ is one of the listed estimators. If the RMSE of an estimator is larger than one, it indicates
that it is superior to α̂RR.

Table 1 provides notations and a symbol key for the benefit of the reader.

Table 1. Values and explanations of the symbols.

Symbol Description Design

M the number of equations 2,3
T the number of observations per equation 100
pi the number of covariates per equation 5,7
Σε the variance–covariance matrix of errors diag(Σε) = 1 and off− diag(Σε) = ρε

ρε off-diagonal elements of Σε 0.5,0.9
Σx the variance–covariance matrix of covariates diag(Σε) = 1 and off− diag(Σx) = ρx
ρx off-diagonal elements of Σx 0.5,0.9
∆ the magnitude of violation of the null hypothesis [0, 2]

We plot the simulation results in Figures 1 and 2. The simulation results for some other parameter
configurations were also obtained, but are not included here for the sake of brevity.
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∆
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(a) As pi = 5, i = 1, 2
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=(ρ

x , 0
.9)
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2.0

0

1

2

∆

R
M

S
E FME

RE
PTE
SE
PSE

(b) As pi = 7, i = 1, 2
Figure 1. RMSE of the estimators as a function of ∆ when M = 2, T = 100, ρx = 0.5, 0.9, and
ρε = 0.5, 0.9. FME, full model estimator; RE, restricted estimation; PTE, preliminary test estimator; PSE,
positive-rule Stein-type estimator.
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(b) As pi = 7, i = 1, 2
Figure 2. RMSE of the estimators as a function of ∆ when M = 3, T = 100, ρx = 0.5, 0.9, and
ρε = 0.5, 0.9.

According to these results:

1. When ∆ = 0, which means that the null hypothesis is true or that the restrictions are consistent,
the RE estimator always performs competitively when compared to other estimators. The PTE
mostly outperforms the SE and PSE when pi = 5, while it looses its efficiency when pi = 7 when
compared to PSE. The SE may perform worse than the FME due its sign problem, as is indicated in
Section 3.
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2. When ∆ > 0, which means that the null hypothesis is violated or the restrictions are invalid, the RE
looses its efficiency, and its RMSE goes to zero, meaning that it becomes inconsistent. The RMSE of
PTE decreases and remains below one for some values of ∆, but approaches one for larger values
of ∆. The performance of PSE decreases, but its efficiency remains above the FME, for intermediate
values of ∆, while it acts as the FME for larger values of ∆. It can be concluded that the PSE is a
robust estimator even if the restriction is not true.

3. We examined both medium and high correlation between disturbance terms. The results showed
that the performance of suggested estimators was consistent with its theory; see Ahmed (2014).

4. We examined both medium and high correlation between regressors across different equations.
The results showed that the performance of suggested estimators was consistent with its theory;
see Yüzbası et al. (2017).

5. Application

In the following section, we will apply the proposed estimation strategies to a financial dataset
to examine the relative performance of the listed estimators. To illustrate and compare the listed
estimators, we will study the effect of several economic and financial variables on the performance
of the “Fragile Five” countries (coined by Stanley 2013) in terms of their attraction of direct foreign
investment (FDI) over the period between 1983 and 2018. The “Fragile Five” include Turkey (TUR),
South Africa (ZAF), Brazil (BRA), India (IND), and Indonesia (IDN). Agiomirgianakis et al. (2003),
Hubert et al. (2017), and Akın (2019) used the FDI as the dependent variable across countries. With five
countries, we have M = 5 blocks in our SUR model, with measurements of T = 36 years per equation.
Table 2 provides information about prediction variables, and the raw data are available from the
World Bank1.

Table 2. Descriptions of variables.

Variables Descriptions

Dependent Variables
FDI Foreign direct investment, net inflows (% of GDP)

Covariates
GROWTH GDP per capita growth (annual %)
DEFLATOR Inflation, GDP deflator (annual %)
EXPORTS Exports of goods and services (% of GDP)
IMPORTS Imports of goods and services (% of GDP)
GGFCE General government final consumption expenditure (% of GDP)
RESERVES Total reserves (includes gold, current US$)/GDP (current US$)
PREM Personal remittances, received (% of GDP)
BALANCA Current account balance (% of GDP)

We suggest the following model:

FDIit = β0i + β1iGROWTH + β2iDEFLATOR + β3iEXPORTS + β4iIMPORTS +

β5iGGFCE + β6iRESERVES + β7iPREM + β8iBALANCE + εit, (14)

where i denotes countries (i = TUR, ZAF, BRA, IND, IDN) and t is time (t = 1, 2, . . . , T). Following
Salman (2011), the errors of each equation are assumed to be normally distributed with mean zero,
homoscedastic, and serially not autocorrelated. Furthermore, there is contemporaneous correlation
between corresponding errors in different equations. We test these assumptions along with the
assumptions in Section 2. We first check the following assumptions of each equation:

1 https://data.worldbank.org.

https://data.worldbank.org
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Nonautocorrelation of errors: There are a number of viable tests in the reviewed literature for testing the
autocorrelation. For example, the Ljung–Box test is widely used in applications of time series analysis,
and a similar assessment may be obtained via the Breusch–Godfrey test and the Durbin–Watson test.
We apply the Ljung–Box test of (Ljung and Box 1978). The null hypothesis of the Ljung–Box Test, H0, is
that the errors are random and independent. A significant p-value in this test rejects the null hypothesis
that the time series is not autocorrelated. Results reported in Table 3 suggest a rejection of H0 for the
equations of both TUR and IND at any conventional significance level. Thus, the estimation results
will be clearly unsatisfactory for these two equation models. To tackle this problem, we performed
the first differences procedure to transform the variables. After transformation, the test statistics and
p-values of the equation TUR and IND were χ2

(1) = 1.379, p = 0.240 and χ2
(1) = 0.067, p = 0.794,

respectively. Hence, each equation satisfied the assumption of nonautocorrelation. We confirmed our
result using the Durbin–Watson test.

Table 3. Ljung-Box test.

Equation Test Statistic p-Value

TUR χ2
(1) = 6.853 0.008

ZAF χ2
(1) = 0.704 0.401

BRA χ2
(1) = 0.489 0.483

IND χ2
(1) = 6.301 0.012

IDN χ2
(1) = 1.061 0.302

Homoscedasticity of errors: To test for heteroscedasticity, we used the Breusch–Pagan test (Breusch
and Pagan 1979). The results in Table 4 failed to reject the null hypothesis in each equation.

Table 4. Breusch–Pagan test.

Equation Test Statistic p-Value

TUR χ2
(8) = 3.686 0.884

ZAF χ2
(8) = 10.003 0.264

BRA χ2
(8) = 7.544 0.479

IND χ2
(8) = 6.455 0.596

IDN χ2
(8) = 8.328 0.402

The assumption homoscedasticity in each equation was thus met.
Normality of errors: To test for normality, there are various tests such as Shapiro–Wilk,

Anderson–Darling, Cramer–von Mises, Kolmogorov–Smirnov, and Jarque–Bera. In this study, we
performed the Jarque–Bera goodness-of-fit test (Jarque and Bera 1980).

Table 5. Jarque–Bera test.

Equation Test Statistic p-Value

TUR χ2
(2) = 3.969 0.137

ZAF χ2
(2) = 72.852 0.000

BRA χ2
(2) = 2.355 0.308

IND χ2
(2) = 1.815 0.403

IDN χ2
(2) = 2.794 0.247

The null hypothesis for the test is that the data are normally distributed. The results reported in
Table 5 suggested a rejection of H0 only for ZAF. We also performed the Kolmogorov–Smirnov test for
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ZAF, and the results showed that the errors were normally distributed. Thus, each equation satisfied
the assumption of normality.

Cross-sectional dependence: To test whether the estimated correlation between the sections was
statistically significant, we applied the Breusch and Pagan (1980) Lagrange multiplier (LM) statistic
and the Pesaran (2004) cross-section dependence (CD) tests. The null hypothesis of these tests claims
there is no cross-section dependence. Both tests in Table 6 suggested a rejection of the null hypothesis
that the residuals from each equation were significantly correlated with each other. Consequently, the
SUR model would be the preferred technique, since this model assumed contemporaneous correlation
across equations. Therefore, the joint estimation of all parameters rather than OLS, on each equation,
was more efficient (Kleiber and Zeileis 2008).

Table 6. Cross-section dependence test results. LM, Lagrange multiplier; CD, cross-section dependence.

Correlation Matrix of Residuals

TUR ZAF BRA IND

ZAF −0.207
BRA 0.066 −0.187
IND 0.414 −0.107 −0.016
IDN 0.128 −0.334 −0.064 0.235

Breusch and Pagan LM and Pesaran CD tests

Test Test Statistic p-Value

LM χ2
(2) = 29.516 0.001

CD Z = −4.353 0.000

Specification test: The regression equation specification error test (RESET) designed by
Ramsey (1969) is a general specification test for the linear regression model. It tests the exogeneity
of the independent variables, that is the null hypothesis is E [εi|Xi] = 0. Thus, rejecting the null
hypothesis indicates that there is a correlation between the error term and the regressors or that
nonlinearities exist in the functional form of the regression. The results reported in Table 7 suggested a
rejection of H0 only for IDN.

Table 7. The regression equation specification error test (RESET) test.

Equation Test Statistic p-Value

TUR F(8, 18) = 0.458 0.869
ZAF F(8, 19) = 1.185 0.357
BRA F(8, 19) = 1.062 0.428
IND F(8, 18) = 1.648 0.180
IDN F(8, 19) = 7.788 0.000

Multicollinearity: We calculated the variance inflation factor (VIF) values among the predictors.
A VIF value provides the user with a measure of how many times larger the Var(β j) will be for
multicollinear data than for orthogonal data. Usually, the multicollinearity is not a problem, as the
VIFs are generally not significantly larger than one (Mansfield and Helms 1982). In the literature,
values of VIF that exceed 10 are often regarded as indicating multicollinearity, but in weaker models,
values above 2.5 may be a cause for concern. Another measure of multicollinearity is to calculate the
condition number (CN) of X′iXi, which is the square root of the ratio of the largest characteristic root of
X′iXi to the smallest. Belsley et al. (2005) suggested that a CN greater than fifteen poses a concern, a CN
in excess of 20 is indicative of a problem, and a CN close to 30 represents a severe problem. Table 8
displays the results from a series of multicollinearity diagnostics. In general, EXPORTS, IMPORTS, and
BALANCE were found to be problematic with regard to VIF values, while the others may be a little
concerning. On the other hand, the results from the CN test suggested that there was a very serious
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concern about multicollinearity for the equations of ZAF, BRA, and IDN. In light of these results, it
was clear that the problem of multicollinearity existed in the equations. According to Greene (2019),
the SUR estimation is more efficient when the less correlation exists between covariates. Therefore, the
ridge-type SUR estimation will be a good solution of this problem.

Table 8. Variance inflation factor (VIF) and CN values.

Equation GROWTH DEFLATOR EXPORTS IMPORTS GGFCE RESERVES PREM BALANCE CN

TUR 4.039 2.638 16.289 13.959 2.055 1.791 1.462 19.073 11.122
ZAF 3.070 7.354 69.891 191.248 3.891 12.918 5.847 60.728 248.221
BRA 1.204 1.614 18.324 32.159 6.329 3.131 3.938 13.301 85.336
IND 1.745 1.757 6.545 6.653 1.517 1.527 1.378 2.712 6.535
IDN 7.835 7.786 44.842 34.152 5.564 8.274 3.072 15.022 127.099

Structural change: To investigate the stability of the coefficients in each equation, we used the
CUSUM (cumulative sum) test of Brown et al. (1975) that checks for structural changes. The null
hypothesis is that of coefficient constancy, while the alternative suggests inconsistent structural change
in the model over time. The results in Table 9 suggested the stability of coefficients over time.

Table 9. CUSUM test.

Equation Test Statistic p-Value

TUR T = 0.734 0.653
ZAF T = 0.417 0.995
BRA T = 0.496 0.966
IND T = 0.413 0.995
IDN T = 0.401 0.997

Following Lawal et al. (2019), we selected important variables in each equation of the SUR model
and implemented the stepwise AIC forward regression by using the function ols_step_forward_aic
from the olsrr package in the R project. The statistically significant variables are shown in Table 10.
After that, the sub-models were constituted by using these variables per equation.

Table 10. Important variables per equation.

Equation GROWTH DEFLATOR EXPORTS IMPORTS GGFCE RESERVES PREM BALANCE

TUR X

ZAF X

BRA X X X

IND X X X

IDN X X X

In light of the selected variables in Table 10, we construct the matrices of restrictions as follows:

R1 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, R2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


, r1 = r2 =



0
0
0
0
0
0
0


,



J. Risk Financial Manag. 2020, 13, 131 14 of 19

R3 =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

 , R4 =


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 ,

R5 =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

 and r3 = r4 = r5 =


0
0
0
0
0

 ;

thus, the reduced models are given by:

TUR : FDIt = β0 + β3EXPORTS + εt, (15)

ZAF : FDIt = β0 + β7PREM + εt, (16)

BRA : FDIt = β0 + β2DEFLATOR + β4IMPORTS + β8BALANCE + εt, (17)

IND : FDIt = β0 + β4IMPORTS + β7PREM + β8BALANCE + εt, (18)

IDN : FDIt = β0 + β3EXPORTS + β4IMPORTS + β7PREM + εt, (19)

Next, we combined Model (14) and Models (15)–(19) using the shrinkage and preliminarily test
strategies outlined in Section 3. Before we performed our analysis, the response was centred, and
the predictors were standardized for each equation so that the intercept term was omitted. We then
split the data by using the time series cross-validation technique of Hyndman and Athanasopoulos
(2018) into a series of training sets and a series of testing sets. Each test set consisted of a single
observation for the models that produced one step-ahead forecasts. In this procedure, the observations
in the corresponding training sets occurred prior to the observation of the test sets. Hence, it was
ensured that no future observations could be used in constructing the forecast. We used the function
createTimeSlices from the caret package in the R project here. The listed models were applied to the
data, and predictions were made based on the divided training and test sets. The process was repeated
15 times, and for each subset’s prediction, the mean squared error (MSE) and the mean absolute
error (MAE) were calculated. The means of the 15 MSEs and MAEs were then used to evaluate the
performance for each method. We also report the relative performances (RMAE and RMSE) with
respect to the full model estimator for easier comparison. If a relative value of an estimator is larger
than one, it is superior to the full model estimator.

In Table 11, we report the MSE and MAE values and their standard errors to see the stability of
the algorithm. Based on this table, as expected, the RE had the smallest measurement values since the
insignificant variables were selected as close to correct as possible. We saw that the performance of the
PSE after the RE was best by following the SE and the PTE. Moreover, the performance of the OLS was
the worst due to the problem of multicollinearity.

Table 11. Comparison of forecasting performance.

RE FME PTE SE PSE OLS

MAE 0.572 (0.114) 1.076 (0.148) 0.656 (0.139) 0.649 (0.124) 0.646 (0.122) 1.166 (0.165)
RMAE 1.879 1 1.639 1.656 1.664 0.922

MSE 0.598 (0.061) 0.800 (0.062) 0.624 (0.067) 0.624 (0.069) 0.622 (0.068) 0.831 (0.064)
RMSE 1.338 1 1.283 1.282 1.287 0.963

The numbers in parenthesis are the corresponding standard errors of the MAE and MSE.
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In order to test whether the two competing models had the same forecasting accuracy, we used
the two-sided statistical Diebold–Mariano (DM) test (Diebold and Mariano 1995) when the forecasting
horizon was extended to one year, and the loss functions were both squared errors and absolute errors.
A significant p-value in this test rejected the null hypothesis that the models had different forecasting
accuracy. The results based on the absolute-error loss in Table 12 suggested that the FME had different
prediction accuracy with all methods except RE. Additionally, the forecasting accuracy of the OLS differed
from the listed estimators. On the other hand, the results of the DM test based on the squared error loss
suggested that the observed differences between the RE and shrinkage estimators were significant.

Table 12. Diebold–Mariano test for the forecasting results.

LF FME RE PTE SE PSE

RE −1.308 (0.191)
PTE −2.601 (0.009 ***) −0.608 (0.543)
SE −2.146 (0.032 **) −0.733 (0.463) 0.276 (0.783)
PSE −2.163 (0.031 **) −0.702 (0.483) 0.33 (0.741) 0.551 (0.582)

MAE

OLS 3.734 (0.000 ***) 1.700 (0.089 *) 2.972 (0.003 ***) 2.543 (0.011 **) 2.56 (0.010 **)

SM −0.187 (0.852)
PTE −1.968 (0.049 **) −2.165 (0.030 **)
SE −1.444 (0.149) −2.392 (0.017 **) 1.443 (0.149)
PSE −1.474 (0.140) −2.374 (0.018 **) 1.436 (0.151) −1.496 (0.135)

MSE

OLS 3.528 (0.000 ***) 0.691 (0.490) 2.379 (0.017 **) 1.904 (0.057 *) 1.933 (0.053 *)

The numbers in parenthesis are the corresponding p-values; LS is the “loss function” of the method to compute;
* p < 0.1, ** p < 0.05, *** p < 0.01.

Finally, the estimates of coefficients of all countries are given in Table 13.
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Table 13. Estimated coefficients.

Estimation Country GROWTH DEFLATOR EXPORTS IMPORTS GGFCE RESERVES PREM BALANCE

TUR 0 (0) 0 (0) 0.102 (0.003) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
ZAF 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.509 (0.007) 0 (0)
BRA 0 (0) −0.231 (0.005) 0 (0) 0.912 (0.005) 0 (0) 0 (0) 0 (0) −0.377 (0.006)
IND −0.113 (0.002) 0 (0) 0 (0) 0.122 (0.003) 0 (0) 0.052 (0.002) 0 (0) 0 (0)

RE

IDN 0 (0) 0 (0) −1.903 (0.015) 1.341 (0.014) 0 (0) 0 (0) 0.427 (0.004) 0 (0)

TUR −0.369 (0) −0.064 (0) 0.327 (0.003) −0.187 (0) −0.140 (0) 0.036 (0) 0.061 (0) −0.543 (0)
ZAF −0.120 (0) −0.397 (0) 0.521 (0) −0.139 (0) 0.012 (0) −0.810 (0) 0.551 (0.007) −0.420 (0)
BRA 0.059 (0) −0.18 (0.005) 0.999 (0) −0.265 (0.005) 0.859 (0) 0.004 (0) −0.210 (0) −1.042 (0.006)
IND −0.071 (0.002) 0.018 (0) −0.091 (0) 0.253 (0.003) −0.002 (0) −0.024 (0.002) 0.149 (0) 0.150 (0)

FME

IDN 0.280 (0) 0.177 (0) −2.348 (0.015) 1.689 (0.014) −0.009 (0) −0.233 (0) 0.475 (0.004) 0.242 (0)

TUR −0.151 (0) −0.026 (0) 0.188 (0.003) −0.072 (0) −0.058 (0) 0.014 (0) 0.026 (0) −0.219 (0)
ZAF −0.048 (0) −0.140 (0) 0.184 (0) −0.014 (0) 0.012 (0) −0.318 (0) 0.514 (0.007) −0.160 (0)
BRA 0.024 (0) −0.215 (0.005) 0.420 (0) 0.404 (0.005) 0.350 (0) 0.011 (0) −0.073 (0) −0.664 (0.006)
IND −0.094 (0.002) 0.006 (0) −0.032 (0) 0.174 (0.003) 0.003 (0) 0.021 (0.002) 0.059 (0) 0.062 (0)

PTE

IDN 0.126 (0) 0.064 (0) −2.072 (0.015) 1.475 (0.014) −0.002 (0) −0.087 (0) 0.445 (0.004) 0.094 (0)

TUR −0.110 (0) −0.019 (0) 0.166 (0.003) −0.053 (0) −0.042 (0) 0.010 (0) 0.018 (0) −0.160 (0)
ZAF −0.036 (0) −0.108 (0) 0.142 (0) −0.022 (0) 0.006 (0) −0.237 (0) 0.517 (0.007) −0.119 (0)
BRA 0.017 (0) −0.218 (0.005) 0.299 (0) 0.554 (0.005) 0.253 (0) 0.005 (0) −0.057 (0) −0.579 (0.006)
IND −0.100 (0.002) 0.005 (0) −0.025 (0) 0.160 (0.003) 0.001 (0) 0.029 (0.002) 0.043 (0) 0.045 (0)

SE

IDN 0.088 (0) 0.048 (0) −2.031 (0.015) 1.442 (0.014) −0.002 (0) −0.065 (0) 0.440 (0.004) 0.070 (0)

TUR −0.112 (0) −0.019 (0) 0.168 (0.003) −0.055 (0) −0.043 (0) 0.010 (0) 0.019 (0) −0.164 (0)
ZAF −0.037 (0) −0.112 (0) 0.146 (0) −0.023 (0) 0.006 (0) −0.243 (0) 0.517 (0.007) −0.122 (0)
BRA 0.018 (0) −0.217 (0.005) 0.307 (0) 0.546 (0.005) 0.260 (0) 0.005 (0) −0.059 (0) −0.584 (0.006)
IND −0.099 (0.002) 0.005 (0) −0.026 (0) 0.161 (0.003) 0.001 (0) 0.029 (0.002) 0.044 (0) 0.046 (0)

PSE

IDN 0.090 (0) 0.050 (0) −2.033 (0.015) 1.444 (0.014) −0.002 (0) −0.067 (0) 0.441 (0.004) 0.071 (0)

TUR −0.400 (0) −0.071 (0) 0.379 (0.003) −0.230 (0) −0.147 (0) 0.042 (0) 0.066 (0) −0.618 (0)
ZAF −0.142 (0) −0.443 (0) 0.648 (0) −0.291 (0) 0.007 (0) −0.916 (0) 0.613 (0.007) −0.515 (0)
BRA 0.067 (0) −0.171 (0.005) 1.078 (0) −0.327 (0.005) 0.909 (0) −0.018 (0) −0.225 (0) −1.110 (0.006)
IND −0.074 (0.002) 0.020 (0) −0.105 (0) 0.275 (0.003) −0.004 (0) −0.029 (0.002) 0.156 (0) 0.163 (0)

OLS

IDN 0.270 (0) 0.179 (0) −2.468 (0.015) 1.768 (0.014) −0.016 (0) −0.246 (0) 0.478 (0.004) 0.281 (0)

The numbers in parenthesis are the corresponding standard errors.
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6. Conclusions

In this paper, we proposed the shrinkage and preliminary test estimation methods in a system
of regression models when the disturbances were dependent and correlations existed among
regressors in each equation. To build the model, we first multiplied both sides of Model (1) by
the inverse variance–covariance matrix of the disturbances and transformed the values using spectral
decomposition. We defined the full model estimator by following Alkhamisi and Shukur (2008) and
the restricted estimator by assuming a UNPI on the vector of parameters. Finally, we combined them
in an optimal way by applying the shrinkage and preliminary test strategies. To illustrate and compare
the relative performance of these methods, we conducted a Monte Carlo simulation. The simulated
results demonstrated that the RE outperformed all other estimators when there was sufficient evidence
that the vector nuisance parameters were a zero vector, that is ∆ = 0. However, the RE lost its efficiency
as ∆ increased and became unbounded when ∆ was large. The PSE dominated the FME at the small
values of ∆, while the SE and PSE outshone the FME in the entire parametric space. However, the PSE
was better than the SE because it controlled for the over-shrinking problem in SE. We also investigated
the performance of the suggested estimations via a real-world example using financial data for the
“Fragile Five” countries. The results of our data analysis were consistent with the simulated results.

For further research, one can use the other penalized techniques for the SUR model such as the
smoothly clipped absolute deviation (SCAD) by Fan and Li (2001), the least absolute shrinkage and
selection operator (LASSO) by Tibshirani (1996), and the adaptive LASSO estimators by Zou (2006),
as well as our preliminary and shrinkage estimations.
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