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Abstract: In 1983, Meese and Rogoff showed that traditional economic models developed since the
1970s do not perform better than the random walk in predicting out-of-sample exchange rates when
using data obtained after the beginning of the floating rate system. Subsequently, whether traditional
economical models can ever outperform the random walk in forecasting out-of-sample exchange
rates has received scholarly attention. Recently, a combination of fundamental models with machine
learning methodologies was found to outcompete the predictability of random walk (Amat et al. 2018).
This paper focuses on combining modern machine learning methodologies with traditional economic
models and examines whether such combinations can outperform the prediction performance of
random walk without drift. More specifically, this paper applies the random forest, support vector
machine, and neural network models to four fundamental theories (uncovered interest rate parity,
purchase power parity, the monetary model, and the Taylor rule models). We performed a thorough
robustness check using six government bonds with different maturities and four price indexes, which
demonstrated the superior performance of fundamental models combined with modern machine
learning in predicting future exchange rates in comparison with the results of random walk. These
results were examined using a root mean squared error (RMSE) and a Diebold–Mariano (DM) test.
The main findings are as follows. First, when comparing the performance of fundamental models
combined with machine learning with the performance of random walk, the RMSE results show that
the fundamental models with machine learning outperform the random walk. In the DM test, the
results are mixed as most of the results show significantly different predictive accuracies compared
with the random walk. Second, when comparing the performance of fundamental models combined
with machine learning, the models using the producer price index (PPI) consistently show good
predictability. Meanwhile, the consumer price index (CPI) appears to be comparatively poor in
predicting exchange rate, based on its poor results in the RMSE test and the DM test.

Keywords: exchange rates; fundamentals; prediction; random forest; support vector machine;
neural network

1. Introduction

Despite the existence of various economic theories explaining the fluctuation of future exchange
rates, as shown in Meese and Rogoff (1983a, 1983b), the random walk often produces better predictions
for future exchange rates. More specifically, it has been shown that traditional economical models
developed since the 1970s do not perform better than the random walk in predicting the out-of-sample
exchange rate when using data obtained after the beginning of the floating rate system. Since the
publication of these papers, many researchers have investigated this puzzle. Cheung et al. (2005)
confirmed the work of Meese and Rogoff (1983a, 1983b), and demonstrated that the interest rate parity,
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monetary, productivity-based, and behavioral exchange rate models do not outperform the random
walk for any time-period. Similarly, Rossi (2013) could not find a model with strong out-of-sample
forecasting ability. On the contrary, Mark (1995) showed that the economic exchange-rate models
perform better than the random walk in predicting long term exchange rates. Amat et al. (2018)
also found that combining machine learning methodologies, traditional exchange-rate models, and
Taylor-rule exchange rate models could be useful in forecasting future short-term exchange rates in the
case of 12 major currencies.

There have been similar attempts by researchers using stock market data. These studies show the
predictability of future stock price using machine learning methodologies (Cervelló-Royo et al. 2015;
Chong et al. 2017), and stock market trends (Chang et al. 2012; García et al. 2018). Hamori et al. (2018)
also analyzed the default risk using several machine learning techniques.

Following on from these previous studies, this paper focuses on a combination of modern machine
learning methodologies and economic models. The purpose of this paper is to determine whether
such combinations outperform the prediction performance of random walk without drift. This model
has been used as the comparison in most studies in this field since Meese and Rogoff (1983a, 1983b).
The most profound study in this field is Amat et al. (2018). What distinguishes the present paper from
previous studies is that instead of using an exponential weighted average strategy and sequential ridge
regression with discount factors, this paper applies the random forest, support vector machine (SVM),
and neural network models to four fundamental theories (uncovered interest rate parity, purchase
power parity, the monetary model, and the Taylor rule models). Furthermore, the robustness of the
results is thoroughly examined using six government bonds with different maturities (1, 2, 3, 5, 7, and
10 years) and four price indexes (the producer price index (PPI), the consumer price index (CPI) of
all items, CPI excluding fresh food, and CPI excluding fresh food and energy) individually in three
machine learning models. Together, these elements should provide concrete evidence for the results
that were obtained.

In the empirical analysis, a rolling window analysis was used for a one-period-ahead forecast
for the JPY/USD exchange rate. The sample data range from August 1980 until August 2019. The
window size was set as 421. Hence, in total, the rolling window analysis was conducted 47 times for the
individual fundamental models. The main findings of this study are as follows. First, when comparing
the performance of the fundamental models combined with machine learning to that of the random
walk, the root mean squared error (RMSE) results show that the fundamental models with machine
learning outperform the random walk (the mean absolute percentage error (MAPE) also confirmed this
result). In the Diebold–Mariano (DM) test, most of the results show significantly different predictive
accuracies compared to the random walk, while some of the random forest results show the same
accuracy as the random walk. Second, when comparing the performance of the fundamental models
combined with machine learning, the models using the PPI show fairly good predictability in a
consistent manner. This is indicated by both the RMSE and the DM test results. However, the CPI
is not appropriate for predicting exchange rates, based on its poor results in the RMSE test and DM
test. This result seems reasonable given that the CPI includes volatile price indicators such as food,
beverages and energy.

The rest of the paper is organized as follows. Section 2 explains the fundamental models, Section 3
describes the data used in the empirical studies, Section 4 describes the methodology of machine
learning, Section 5 shows the results and evaluation, and Section 6 summarizes the main findings of
the paper.

2. Fundamental Models

Following Rossi (2013) and Amat et al. (2018), this paper uses four basic methods to predict the
exchange rate. These methods are uncovered interest rate parity (UIRP), purchase power parity (PPP),
the monetary model, and the Taylor rule models.
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2.1. Uncovered Interest Rate Parity

The UIRP theorem used in the following section was proposed by Fisher (1896). This theorem
analyzes how interest rates can be altered due to expected changes in the relative value of the objected
units. UIRP is based on the following assumption; in a world with only two currencies and where
market participants possess perfect information, investors can buy 1 = St units of foreign government
bonds using one unit of their home currency. When investors buy a foreign bond between time t and
time t + h, the earnings from the foreign bond are the bond premium plus the foreign interest rate:
i∗t+h. At the end of the period, investors can collect the return converted to the home currency, which is

shown as St+h
[(

1 + i∗t+h

)
/St

]
in expectation. Additional transaction costs during the whole process are

ignored in this analysis, and the bond return should be the same whether the investors buy the home
bond or the foreign bond. Hence, the following equation is given:(

1 + i∗t+h

)
Et(St+h/St) = 1 + it+h (1)

By taking logarithms, the previous UIRP equation can be rewritten as

Et(st+h − st) = α+ β
(
it+h − i∗t+h

)
(2)

where St is the logarithm of the exchange rate, and h is the horizon.
Another uncovered interest rate parity equation used in Taylor (1995) is as follows:

∆kse
t+k = it − i∗t (3)

where st denotes the logarithm of the spot exchange rate (domestic price for foreign currency) at time
t, and it is the nominal interest for domestic and foreign securities, respectively (with k periods to
maturity).

It is worth noting that in both equations, maturity is denoted as k, meaning that if we follow
the equation faithfully to predict the one-month ahead exchange rate, we should use the one-month
maturity of the government bond to predict that rate. However, the focus here is on the relationship
between interest rate differences and the exchange rate. Thus, the above equations are rewritten as

st+1 − st = it − i∗t . (4)

The above equation is used in the following empirical analysis.
Meese and Rogoff (1983a, 1983b), who used Equation (1) to forecast sample real exchange rates

using the real interest rates and compared their performance with the predictions using random walk,
found that the latter provided better forecasting results.

2.2. Purchasing Power Parity

The PPP was first proposed in Cassel (1918). The concept of PPP is that the same amount of goods
or services can be purchased in either currency with the same initial amount of currency. That is, a unit
of currency in the home country would have the same purchasing power in the foreign country.

The absolute purchase power parity can be expressed as the following equation:

S =
P
P∗

(5)

where S denotes the exchange rate in period t, P denotes the price level in the home country, and P∗

denotes the price level in the foreign country.
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Assuming that the absolute purchasing power parity holds in period t + 1, we can obtain the
following equation:

St+1 =
Pt+1

P∗t+1
. (6)

Assuming that the inflation rate from period t to period t + 1 is π, we can obtain following
equation:

St+1 =
(1 + π)Pt

(1 + π∗)P∗t
=

1 + π
1 + π∗

St, (7)

which means that
St+1

St
=

1 + π
1 + π∗

. (8)

Assuming that the rate of the change in the exchange rate is ρ, then

St+1

St
= ρ+ 1. (9)

Using Equations (8) and (9), we can obtain

ρ+ ρπ∗ + 1 + π∗ = 1 + π. (10)

Since ρπ∗ is a very small value, it is ignored in the following analysis. Then, we obtain

St+1 − St

St
= π−π∗. (11)

From Equation (11), we can see that there is a clear relationship between the rate of change in the
exchange rate and the inflation rate. This paper use four indexes to calculate the inflation rate. These
indexes are the PPI, the CPI of all items, the CPI excluding fresh food, and the CPI excluding fresh
food and energy. Most papers use the CPI when describing the PPP theorem. However, Hashimoto
(2011) mainly uses PPI for purchase power parity, since it includes business activities in both home
and foreign markets.

2.3. Monetary Model

The monetary model was first introduced by Frenkel (1976) and Mussa (1976). The monetary
approach determines the exchange rate as a relative price of two currencies and models the exchange
rate behavior in terms of the relative demand for and the supply of money in the two countries.
The long-run money market equilibrium in the domestic and foreign country is given by

mt = pt + kyt − hit (12)

m∗t = p∗t + ky∗t − hi∗t . (13)

From Equations (12) and (13), we can obtain

mt −m∗t = pt − p∗t + k
(
yt − y∗t

)
− h

(
it − i∗t

)
(14)

where mt denotes the logarithms of the money supply, pt denotes the logarithms of the price level, yt

denotes the logarithms of income, and it denotes the logarithms of the interest rates. k denotes the
income elasticity. Assuming that k is 1 and using an uncovered interest rate parity of it − i∗t = St+1 − St,
we get

St+1 − St = pt − p∗t + yt − y∗t − (mt −m∗t). (15)
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This paper mainly focuses on the relationship between the change rate of the exchange rate and
other variables. Thus, the following equation is used:

St+1 − St = f
(
pt − p∗t , yt − y∗t , mt −m∗t

)
. (16)

2.4. Taylor Rule Models

Engel and West (2005, 2006) and Molodtsova and Papell (2009) improved the original Taylor rule
for monetary policy (Taylor 1993), which describes the change in the exchange rate.

The concept in the original Taylor model (Taylor 1993) is that the monetary authority sets the real
interest rate as a function of the difference between the real inflation and the target level and also as a
function of the output gap yt.

Taylor (1993) proposed the following equation:

iTt = πt + φ(πt −π
∗) + γyt + r∗ (17)

where iTt denotes the target for the short-term nominal interest rate, πt is the inflation rate, π∗ is the
target level of inflation, yt is the output gap, and r∗ is the equilibrium level of the real interest rate.

Following Molodtsova and Papell (2009), assuming that µ = r∗ −φπ∗, and λ = 1+φ, the following
equation is obtained:

iTt = µ+ λπt + γyt. (18)

Since the monetary policy also depends on the real exchange rate, the real exchange rate variable
qt is added into the previous equation:

iTt = µ+ λπ+ γyt + δqt. (19)

On top of Equation (19), we added another feature so that the interest rate adjusts gradually to
achieve its target level (Clarida et al. 1998). This means that the actual observable interest rate it is
partially adjusted to the target, as follows:

it = (1− ρ)iTt + ρit−1 + vt (20)

where ρ is the smoothing parameter, and vt is a monetary shock.
By substituting Equation (19) into Equation (20), we get the following equation:

it = (1− ρ)(µ+ λπt + γyt + δqt) + ρit−1 + vt (21)

where for the US, δ = 0, and vt is the monetary policy shock. Thus, we can obtain the following two
equations using asterisks to denote foreign country variables:

it = (1− ρ)(µ+ λπt + γyt) + ρit−1 + vt (22)

i∗t = (1− ρ∗)
(
µ∗ + λ∗π∗t + γ∗y∗t + δ∗qt

)
+ ρ∗i∗t−1 + v∗t (23)

By taking the difference of Equations (22) and (23), using the UIRP model and re-defining the
coefficients, we get

St+1 − St = µ̃+ δ̃qt + λ̃πt + γ̃yt − λ̃
∗π∗t − γ̃

∗y∗t + ρit−1 − ρ
∗i∗t−1. (24)

In Molodtsova and Papell (2009), the strongest result was found in the symmetric Taylor rule model,
which means that the coefficient of the real exchange rate δ̃ = 0. Therefore, the Taylor fundamentals
take the inflation, output gaps, and lagged interest rate into consideration.



J. Risk Financial Manag. 2020, 13, 48 6 of 16

In Rossi (2013), Giacomini and Rossi (2010), and Jamali and Yamani (2019), lagged interest rates
are not included, while the coefficient is defined as in Equation (24), so

St+1 − St = µ̃+ λ̃
(
πt −π

∗

t

)
+ γ̃(yt − y∗t). (25)

Since Meese and Rogoff (1983a, 1983b) used Equation (24), while Rossi used Equation (25), this
paper uses both equations for the Taylor rule models.

3. Data

The data used to describe macroeconomies were taken from the DataStream database. All data
describe monthly frequency. This paper used government bonds with different maturities (1, 2, 3, 5, 7,
and 10 years) for each country. The producer price index (PPI) and consumer price index (CPI) of all
items, the CPI excluding fresh food, and the CPI excluding fresh food and energy were used to calculate
the inflation rate. For the money stock, we used each country’s M1. To measure the output, we used
the industrial production index, as GDP is only available quarterly. Following Molodtsova and Papell
(2009), we used the Hodrick–Prescott filter to calculate the potential output to obtain the output gap.
The exchange rates were taken from the BOJ Time-Series Data Search. The data is from the period
ranging from August 1980 to August 2019. Data are described in Table 1.

Table 1. Data description.

Variable Data Data Source

Exchange rate Exchange rate (yen/dollar) BOJ Time-Series
Bond (US) US treasury yield DataStream

Bond (Japan) JAPAN treasury yield Ministry of Finance, JAPAN
PPI Producer Price Index DataStream
CPI Consumer Price Index DataStream

M1
The amount of money in circulation in

notes, coin, current accounts, and deposit
accounts transferable by cheque

DataStream

Industrial production Index The index which shows the growth rates
in different industry groups DataStream

This paper used a rolling window analysis for the one-period-ahead forecast. A rolling window
analysis runs an estimation iteratively, while shifting the fixed window size by one period in each
analysis. The whole sample dataset ranges from the first period of August 1980 until August 2019.
Here, the window size was set as 421. For example, the first window taken from August 1980 to August
2015 was used to estimate September 2015. Hence, the model uses the training data from period 1 to
421 to predict period 422 and then uses the training data from period 2 to 422 to predict period 423.
This is repeated until the end of the time-series. In total, the rolling window analysis is run 47 times for
one model.

There are two reasons why we used the end of month exchange rate rather than the monthly
average exchange rate. First, the end of month exchange rate is often used in this field of study. Second,
as mentioned in Engel et al. (2019), although replacing the monthly average exchange rate with the
end of month exchange rate reduces the forecasting power of the Taylor rule fundamentals compared
to that of the random walk (Molodtsova and Papell 2009), it is highly possible that changes in the
monthly average exchange rate are serially correlated. Thus, following Engel et al. (2019), this study
also used the end of month exchange rate.

4. Methodologies

Here, we use the result from random walk as the benchmark test and compare its performance to
three types of machine learning: random forest, support vector machine, and neural network. The
results are examined using the RMSE and a DM test.
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4.1. Random Forest

Random forest (Breiman 2001) is an ensemble learning method that builds multiple decision
trees by analyzing data features and then merges them together to improve prediction performance.
This method enables us to avoid an overfitting problem when more trees are added to the forest and
improves prediction performance because each tree is drawn from the original sample using bootstrap
resampling and is grown based on a randomly selected feature. The uncorrelated models obtained
from this method improve prediction performance, as the feature mentioned above protects individual
errors from each other. In this way, an individual error will not interfere with the entire group moving
toward the correct direction. The random forest produces regression trees through the following steps
(Figure 1):J. Risk Financial Manag. 2020, 13, 48 7 of 16 

 

 
Figure 1. Mechanism of random forest. 

Assume that there is a dataset 𝐷 = {(𝑥 , 𝑦 ) … … (𝑥 , 𝑦 )} and the target is to find the function 𝑓: 𝑋 → 𝑌, where 𝑋 is the inputs, and 𝑌 is the produced outputs. Let 𝑀 be the number of features. 

1. Random forest randomly selects 𝑛 observations from the sample 𝐷 with a replacement to form 
a bootstrap sample. 

2. Multiple trees are grown by subsets of 𝑚 features from the overall 𝑀 features. For each subset, 𝑚 features are selected at random. 

A prediction is produced by taking the average of the predictions from all trees in the forest (in 
the case of a classification problem, a prediction is decided by the majority). 

In this paper, X indicates the fundamental economic features, and Y is the exchange rate. D refers 
to all data. 

4.2. Support Vector Machine 

The original SVM algorithm was introduced by Vapnik and Lerner (1963). Boser et al. (1992) 
suggested an alternative way to create nonlinear classifiers by applying the kernel functions to 
maximum-margin hyperplanes. 

The primary concept of SVM regression is discussed first with a linear model and then is 
extended to a non-linear model using the kernel functions. Given the training data {(𝑥 , 𝑦 ), … , (𝑥 , 𝑦 ), 𝑋𝜖𝑅 , 𝑌𝜖𝑅}, the SVM regression can be given by 𝑓(𝑥) = 𝑤 𝑥 + 𝑏, 𝜔𝜖𝑋, 𝑏𝜖𝑅 (26) 𝜉 is the insensitive loss function considered in SVM from the loss function described as |𝜉| =  |𝑦 − 𝑓(𝑥)| =    0                           𝑖𝑓    |𝑦 − 𝑓(𝑥)| ≤ 𝜀.               |𝑦 − 𝑓(𝑥)| ≤ 𝜀                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 (27) 

Figure 1. Mechanism of random forest.

Assume that there is a dataset D =
{
(x1, y1) . . . . . . (xn, yn)

}
and the target is to find the function

f : X→ Y , where X is the inputs, and Y is the produced outputs. Let M be the number of features.

1. Random forest randomly selects n observations from the sample D with a replacement to form a
bootstrap sample.

2. Multiple trees are grown by subsets of m features from the overall M features. For each subset,
m features are selected at random.

A prediction is produced by taking the average of the predictions from all trees in the forest (in the
case of a classification problem, a prediction is decided by the majority).

In this paper, X indicates the fundamental economic features, and Y is the exchange rate. D refers
to all data.
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4.2. Support Vector Machine

The original SVM algorithm was introduced by Vapnik and Lerner (1963). Boser et al. (1992)
suggested an alternative way to create nonlinear classifiers by applying the kernel functions to
maximum-margin hyperplanes.

The primary concept of SVM regression is discussed first with a linear model and then
is extended to a non-linear model using the kernel functions. Given the training data{
(x1, y1), . . . , (x1, y1), XεRn, YεR

}
, the SVM regression can be given by

f (x) = w>x + b, ωεX, bεR (26)

ξ is the insensitive loss function considered in SVM from the loss function described as

|ξ|ε =
∣∣∣y− f (x)

∣∣∣
ε
=

0 i f
∣∣∣y− f (x)

∣∣∣ ≤ ε∣∣∣y− f (x)
∣∣∣ ≤ ε otherwise

. (27)

The principal objective of SVM regression is to find function f (x) with the minimum value of the
loss function and also to make it as flat as possible. Thus, the model can be expressed as the following
convex optimization problem:

min
1
2
‖w‖2 + C

(∑l

i
ξ∗i +

∑l

i=1
ξi

)
, (28)

subject to
yi −w>x− b ≤ ε+ ξi (29)

w>x + b− yi ≤ ε+ ξ∗i (30)

ξi, ξ∗i ≥ 0 (31)

where C determines the trade-off between the flatness of f (x) and the amount up to which deviations
larger than ε are tolerable (ξi, ξ∗i ).

After solving the Lagrange function from Equations (29)–(31) and using the kernel function, the
SVM model using the kernel function can be expressed as follows:

max−
1
2

l∑
i, j=1

(αi − α
∗

i )
(
α j − α

∗

j

)
k
(
xi, x j

)
+

l∑
i=1

yi
(
αi − α

∗

i

)
− ε

l∑
i=1

(
αi − α

∗

i

)
(32)

subject to ∑l

i=1

(
αi − α

∗

i

)
= 0, (33)

αi, α∗iε [0, C]. (34)

where k
(
xi, x j

)
is the kernel function, and αi, α∗i are the Lagrangian multipliers. SVM can be performed

by various functions, such as the linear, polynomial, or radial basis function (RBF), and sigmoid
functions. This paper uses the radial basis function SVM model. The radial basis function can be
expressed as follows:

k
(
xi, x j

)
= exp

(
−σ

∣∣∣xi − x j
∣∣∣2). (35)

Here, the best C and sigma are determined using a grid search. Depending on the size of the C
parameter, there is a trade-off between the correct classification of training examples and a smooth
decision boundary. A larger C does not tolerate misclassification, offering a more complicated decision
function, which a smaller C does tolerate. In this way, a simpler decision function is given. The sigma
parameter defines how far the influence of a single training example reaches, with low values meaning
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‘far’ and high values meaning ‘close’. A larger sigma gives a great deal of weight to the variables nearby,
so the decision boundary becomes wiggly. For a smaller sigma, the decision boundary resembles a
linear boundary, since it also takes distant variables into consideration.

4.3. Neural Network

The feedforward neural network is the first and simplest type of neural network model. General
references for this model include Bishop (1995), Hertz et al. (1991), and Ripley (1993, 1996). This paper
uses one hidden layer model, which is the simplest model, as shown in Figure 2.J. Risk Financial Manag. 2020, 13, 48 9 of 16 
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Figure 2. The mechanism of a neural network.

As shown in Figure 2, the information moves forward from the input nodes, through the hidden
nodes, and then reaches the output nodes.

Inputs are summed by individual nodes. Then, adding a bias (wi j in the Figure 2), the result is
substituted into a fixed function φh (Equation (37)). The results of the output units are produced in the
same process with output function φo. Thus, the equation of a neural network is written as follows:

yk = φo

αk +
∑

h

whkφh

αh +
∑

i

wihxi


. (36)

The activation function φh of the hidden layer units usually takes a logistic function as

l(z) =
1

1 + e−z , (37)

and the output function φo usually takes a linear function in regression (in the case of a classification
problem, the output function often takes a logistic form.)

Here, we adjust two hyper-parameters, which are the number of the units in the hidden layer C
and the parameter for weight decay, using a grid search. The latter is a regularization parameter to
avoid the over-fitting problem (Venables and Ripley 2002).

5. Results and Evaluation

5.1. Root Mean Squared Error

Random walk uses the following equation:
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 46∑
s=0

[A (t + s + 1) −A (t + s)]2/47


1
2

. (38)

For the other machine learning models, the following equation is used:

{
46∑

s=0
[F (t + s + 1) −A (t + s + 1)]2/47

} 1
2

(39)

where A(t) denotes the actual value of the change rate in the exchange rate, and F(t) is the predicted
value. If S = 0, then S is a prediction for September 2015.

5.2. Modified Diebold–Mariano Test

The DM test was proposed by Diebold and Mariano (1995). This test examines whether the null
hypothesis (that the competing model has the same predictive accuracy) is statistically true. Let us
define the forecast error eit as

eit = ŷit − yt, i = 1, 2 (40)

where ŷit and yt are the predicted and actual values at time t, respectively.
Let g(eit) denote the loss function. In this paper, it is defined as the following

g(eit) = e2
it. (41)

Then, the loss differential dt can be written as

dt = g(e1t) − g(e2t). (42)

The statistic for the DM test is defined as follows:

DM =
d√

s
N

(43)

where d, s, and N represent the sample mean, the variance of dt, and the sample size, respectively. The
null hypothesis is that H0 : E[dt] = 0 ∀t, which means that the two forecasts have the same accuracy,
while the alternative hypothesis is that H1 : E[dt] , 0 ∀t, meaning that the two forecasts have different
levels of accuracy. If the null hypothesis is true, then the DM statistic is asymptotically distributed as
N(0, 1), the standard normal distribution.

A modified DM test was proposed by Harvey et al. (1997), who found that the modified DM test
performs better than the original one. They defined the statistic for the modified DM test as follows:

DM∗ =
[

n + 1− 2h + n−1h(h− 1)
n

] 1
2

DM (44)

where h denotes the horizon, and the DM represents the original statistic, as in Equation (43). In this

study, we predict one period ahead, meaning that h = 1, so DM∗ =
(

n−1
n

) 1
2 DM.

Tables 2–6 indicate the following. According to the RMSE, the fundamental models using machine
learning outperform the random walks with regard to their error size. This is also confirmed by the
MAPE (Appendix A, Table A1). Since this is confirmed regardless of the government bonds’ time
to maturity and the price level measurements used, these findings are robust. Furthermore, models
using PPI always show better predictability compared to CPI. This empirical result is in line with
that of Hashimoto (2011). Because of the close trading relationship between Japan and the US, the
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fluctuation of JPY/USD tends to be influenced by PPI rather than CPI. The poor performance of CPI in
terms of its error size and the significance of its predictive accuracy could be explained by the inclusion
of volatile price indicators, such as food, beverages, and energy, w makes it difficult to measure an
accurate inflation rate gap. In addition, in the case of the Taylor rule models, both Equations (24) and
(25) present reasonable results for this empirical study. This demonstrates that either equation can be
used to predict the exchange rate.

Table 2. Results for the uncovered interest rate parity (UIRP) model.

Features Evaluation Random Forest SVM Neural Network Random Walk

bond_1y
RMSE 2.842 2.552 2.516 3.552

DM −2.101 −2.481 −2.515
p-value 0.02 0.008 0.008

bond_2y
RMSE 3.391 2.495 2.525 3.552

DM −0.391 −2.496 −2.520
p-value 0.349 0.008 0.008

bond_3y
RMSE 3.011 2.578 2.509 3.552

DM −0.886 −2.500 −2.512
p-value 0.19 0.008 0.008

bond_5y
RMSE 3.151 2.636 2.489 3.552

DM −0.997 −2.508 −2.595
p-value 0.162 0.008 0.006

bond_7y
RMSE 2.769 2.478 2.517 3.552

DM −1.725 −2.527 −2.557
p-value 0.046 0.007 0.007

bond_10y
RMSE 2.856 2.525 2.525 3.552

DM −1.809 −2.565 −2.539
p-value 0.038 0.007 0.007

Note. “UIRP” indicates uncovered interest rate parity, “SVM” indicates support vector machine, “DM” indicates
the modified Diebold–Mariano test statistic as in Equation (44), “bond_1y” indicates the government bond with
1 year to maturity. “bond_2y” indicates the government bond with two years to maturity. “bond_3y” indicates
the government bond with three years to maturity. “bond_5y” indicates the government bond with five years
to maturity. “bond_7y” indicates the government bond with seven years to maturity. “bond_10y” indicates the
government bond with ten years to maturity.

Table 3. Results for the purchasing power parity (PPP) model.

Features Evaluation Random Forest SVM Neural Network Random Walk

PPP_PPI
RMSE 2.759 2.493 2.469 3.552

DM −1.771 −2.632 −2.652
p-value 0.042 0.006 0.005

PPP_CPI
RMSE 3.187 2.528 2.510 3.552

DM −0.870 −2.633 −2.576
p-value 0.194 0.006 0.007

PPP_CPI_CORE
RMSE 2.554 2.561 2.516 3.552

DM −2.340 −2.566 −2.568
p-value 0.012 0.007 0.007

PPP_CPI_CORECORE
RMSE 3.303 2.533 2.508 3.552

DM −0.744 −2.541 −2.580
p-value 0.230 0.007 0.007

Note. “PPP” indicates purchasing power parity, “DM” indicates modified Diebold–Mariano test statistic as in
Equation (44), “PPI” indicates producer price index, “CPI” indicates the CPI of all items, “CPI_CORE” indicates the
CPI excluding fresh food, and “CPI_CORECORE” indicates the CPI excluding fresh food and energy.
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Table 4. Results for the monetary model.

Features Evaluation Random Forest SVM Neural Network Random Walk

monetary_PPI
RMSE 2.619 2.530 2.514 3.552

DM −2.203 −2.588 −2.639
p-value 0.016 0.006 0.006

monetary_CPI
RMSE 2.960 2.647 2.530 3.552

DM −1.622 −2.472 −2.541
p-value 0.056 0.009 0.007

monetary_CPI_CORE
RMSE 2.817 2.479 2.535 3.552

DM −1.895 −2.192 −2.518
p-value 0.032 0.005 0.008

monetary_CPI_CORECORE
RMSE 2.899 2.614 2.515 3.552

DM −1.723 −2.467 −2.566
p-value 0.046 0.009 0.007

Note. “DM” indicates modified Diebold–Mariano test statistic, as in Equation (44), “PPI” indicates producer
price index, “CPI” indicates the CPI of all items, “CPI_CORE” indicates the CPI excluding fresh food, and
“CPI_CORECORE” indicates the CPI excluding fresh food and energy.

Table 5. Results for the Taylor model (Equation (25)).

Features Evaluation Random Forest SVM Neural Network Random Walk

Taylor1_PPI
RMSE 2.515 2.493 2.492 3.552

DM −2.457 −2.620 −2.666
p-value 0.009 0.006 0.005

Taylor1_CPI
RMSE 2.822 2.544 2.523 3.552

DM −2.142 −2.612 −2.565
p-value 0.019 0.006 0.007

Taylor1_CPI_CORE
RMSE 2.785 2.473 2.504 3.552

DM −2.136 −2.649 −2.559
p-value 0.019 0.006 0.007

Taylor1_CPI_CORECORE
RMSE 2.683 2.557 2.520 3.552

DM −2.131 −2.503 −2.529
p-value 0.019 0.008 0.007

Note. “SVM” indicates support vector machine, “DM” indicates modified Diebold–Mariano test statistic as in
Equation (44), “Taylor1” indicates using Equation (25), “PPI” indicates producer price index, “CPI” indicates the
CPI of all items, “CPI_CORE” indicates the CPI excluding fresh food, and “CPI_CORECORE” indicates the CPI
excluding fresh food and energy.

From the perspective of the modified DM test, we can see that most of the results show significantly
different predictive accuracies compared to the random walk, while some of the random forest results
show the same predictive accuracy as the random walk. Random forest is a weak tool for predicting the
out-of-sample exchange rate compared with the other machine learning models. This seems reasonable,
as the random forest model ignores two characteristics of time series data, that is, inherent time trend
and the interdependency among variables. However, random forest can be useful in predicting time
series data in some cases, such as that in Dudek (2015).
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Table 6. Result for the Taylor model (Equation (24)).

Features Evaluation Random Forest SVM Neural Network Random Walk

Taylor2_PPI_2y
RMSE 2.564 2.492 2.499 3.552

DM −2.312 −2.512 −2.440
p-value 0.013 0.008 0.009

Taylor2_PPI_3y
RMSE 2.541 2.491 2.468 3.552

DM −2.263 −2.522 −2.554
p-value 0.014 0.008 0.007

Taylor2_PPI_5y
RMSE 2.498 2.482 2.497 3.552

DM −2.563 −2.537 −2.517
p-value 0.007 0.007 0.008

Taylor2_PPI_7y
RMSE 2.455 2.464 2.522 3.552

DM −2.601 −2.547 −2.435
p-value 0.006 0.007 0.009

Taylor2_PPI_10y
RMSE 2.457 2.451 2.537 3.552

DM −2.556 −2.584 −2.518
p-value 0.007 0.006 0.008

Taylor2_CPI_2y
RMSE 2.733 2.554 2.513 3.552

DM −2.149 −2.495 −2.564
p-value 0.018 0.008 0.007

Taylor2_CPI_3y
RMSE 2.664 2.559 2.525 3.552

DM −2.211 −2.492 −2.534
p-value 0.016 0.008 0.007

Taylor2_CPI_5y
RMSE 2.661 2.544 2.491 3.552

DM −2.274 −2.541 −2.597
p-value 0.014 0.007 0.006

Taylor2_CPI_7y
RMSE 2.687 2.537 2.507 3.552

DM −2.223 −2.557 −2.559
p-value 0.016 0.007 0.007

Taylor2_CPI_10y
RMSE 2.652 2.548 2.500 3.552

DM −2.333 −2.576 −2.550
p-value 0.012 0.007 0.007

Taylor2_CPI_CORE_2y
RMSE 2.670 2.501 2.525 3.552

DM −2.193 −2.476 −2.537
p-value 0.017 0.009 0.007

Taylor2_CPI_CORE_3y
RMSE 2.736 2.502 2.513 3.552

DM −2.083 −2.495 −2.567
p-value 0.021 0.008 0.007

Taylor2_CPI_CORE_5y
RMSE 2.552 2.488 2.523 3.552

DM −2.500 −2.536 −2.541
p-value 0.008 0.007 0.007

Taylor2_CPI_CORE_7y
RMSE 2.575 2.468 2.509 3.552

DM −2.312 −2.587 −2.574
p-value 0.013 0.006 0.007

Taylor2_CPI_CORE_10y
RMSE 2.471 2.486 2.512 3.552

DM −2.677 −2.588 −2.564
p-value 0.005 0.006 0.007

Taylor2_CPI_CORECORE_2y
RMSE 2.601 2.547 2.543 3.552

DM −2.194 −2.423 −2.438
p-value 0.017 0.01 0.009

Taylor2_CPI_CORECORE_3y
RMSE 2.622 2.542 2.494 3.552

DM −2.160 −2.447 −2.601
p-value 0.018 0.009 0.006

Taylor2_CPI_CORECORE_5y
RMSE 2.565 2.531 2.533 3.552

DM −2.296 −2.499 −2.478
p-value 0.013 0.008 0.008

Taylor2_CPI_CORECORE_7y
RMSE 2.618 2.521 2.532 3.552

DM −2.171 −2.505 −2.470
p-value 0.018 0.008 0.009

Taylor2_CPI_CORECORE_10y
RMSE 2.505 2.525 2.492 3.552

DM −2.530 −2.545 −2.555
p-value 0.007 0.007 0.007

Note. “SVM” indicates support vector machine, “Taylor2” indicates using Equation (24), “DM” indicates modified
Diebold–Mariano test statistic as in Equation (44), “PPI” indicates producer price index, “CPI” indicates the CPI of all
items, “CPI_CORE” indicates the CPI excluding fresh food, and “CPI_CORECORE” indicates the CPI excluding fresh
food and energy. “Taylor2_PPI_2y” indicates using the PPI to calculate the inflation rate and using a government
bond with 2 year to maturity to calculate the lagged interest rate. “bond_2y” indicates the government bond with
two years to maturity. “bond_3y” indicates the government bond with three years to maturity. “bond_5y” indicates
the government bond with five years to maturity. “bond_7y” indicates the government bond with seven years to
maturity. “bond_10y” indicates the government bond with ten years to maturity.
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6. Conclusions

Since the work of Meese and Rogoff (1983a, 1983b), there have been many attempts by researchers
to solve the puzzle of why traditional economical models are not able to outperform the random walk in
predicting out-of-sample exchange rates. In recent years, Amat et al. (2018) found that in combination
with machine learning methodologies, traditional exchange-rate models and Taylor-rule exchange rate
models can be useful for forecasting future short-term exchange rates across 12 major currencies.

In this paper, we analyzed whether combining modern machine learning methodologies with
economic models could outperform the prediction performance of a random walk without drift. More
specifically, this paper sheds light on the application of the random forest method, the support vector
machine, and neural networks to four fundamental theories (uncovered interest rate parity, purchase
power parity, the monetary model, and the Taylor rule models). The robustness of the results was also
thoroughly examined using six government bonds with different maturities and four different price
indexes in three machine learning models. This provides concrete evidence for predictive performance.

In the empirical analysis, a rolling window analysis was used for the one-period-ahead forecast
for JPY/USD. Using sample data from between August 1980 and August 2019, there were two main
findings. First, comparing the performance of the fundamental models combining machine learning
with the performance obtained by the random walk, the RMSE results show that the former models
outperform the random walk. In the DM test, most of the results show a significantly different predictive
accuracy with the random walk, while some of the random forest results show the same accuracy as
the random walk. Second, comparing the performance of the fundamental models combined with
machine learning, the models using PPI show fairly good predictability in a consistent manner, from
the perspective of both the size of their errors and their predictive accuracy. However, CPI does not
appear to be a useful index for predicting exchange rate based on its poor results in the RMSE test and
DM test.
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Appendix A

The results using mean absolute percentage error (MAPE) are shown in Table A1. As shown
below, the UIRP model also outperforms random walk in MAPE. The results for PPP, the monetary
model, and Taylor model are omitted here since they all show the same results.

Table A1. Mean absolute percentage error (MAPE) of UIRP Model.

Features Random Forest SVM Neural Network Random Walk

bond_1y 2.276 1.767 1.772 2.768
bond_2y 2.672 1.770 1.781 2.768
bond_3y 2.269 1.768 1.765 2.768
bond_5y 2.442 1.765 1.750 2.768
bond_7y 2.106 1.767 1.769 2.768

bond_10y 2.036 1.772 1.772 2.768

Note. “UIRP” indicates uncovered interest rate parity, “SVM” indicates support vector machine, “bond_1y” indicates
the government bond with 1 year to maturity. “bond_2y” indicates the government bond with two years to maturity.
“bond_3y” indicates the government bond with three years to maturity. “bond_5y” indicates the government bond
with five years to maturity. “bond_7y” indicates the government bond with seven years to maturity. “bond_10y”
indicates the government bond with ten years to maturity.
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