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Abstract: In Kwon and Satchell (2018), a theoretical framework was introduced to investigate the
distributional properties of the cross-sectional momentum returns under the assumption that the
vector of asset returns over the ranking and holding periods were multivariate normal. In this
paper, the framework is extended to derive the corresponding results when the asset returns are
multivariate Student’s t. In particular, we derive the probability density function and the moments of
the cross-sectional momentum returns and examine in detail the special case of two underlying assets
to demonstrate that many of the salient features reported in the empirical literature are consistent
with the theoretical implications.

Keywords: cross sectional momentum; student’s t distribution; investment strategy

1. Introduction

Empirical investigation of the observed patterns in asset returns has been an active area of research
in finance, with momentum, or persistence, in asset returns being one of the more popular examples
of this line of research. Of these, perhaps the most prominent is cross-sectional momentum (CSM),
which refers to the observation that the set of assets that outperform relative to another set over
a prior period tend to continue to outperform over a subsequent period. The existence of CSM is
usually tested empirically by sorting the assets according to their returns over a prior “ranking” period,
and constructing a portfolio over a subsequent “holding” period by taking a long position in the
“winners” and a short position in the “losers”. Statistically significant excess returns from following
such a strategy would then support the existence of cross-sectional momentum.

Cross sectional momentum strategies are popular with practitioners since they tend to generate
positive returns, while they are popular with academics due to the fact their existence would run
contrary to an implication of the efficient market hypothesis that there does not exist any discernible
patterns in asset returns. There is an extensive academic literature investigating the properties of
CSM returns covering various asset classes, markets, and jurisdictions. The most notable findings are
that CSM returns are generally slightly positive, but become highly negative during times of market
uncertainty, and that losses during such periods tend to cancel out, or at least significantly reduce,
the prior gains.

Various authors, including Fama and French (1992), Jegadeesh and Titman (1993 2001),
Asness (1994), and Israel and Moskowitz (2013), found that momentum strategies are profitable
in US equities markets over different time periods dating back to 1927. Analogous results were found
for country equity indices by Richards (1997), Asness et al. (1997), Chan et al. (2000), and Hameed and
Yuanto (2002), for emerging markets by Rouwenhorst (1998), for exchange rate markets in Okunev
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and White (2003) and Menkhoff et al. (2012), for commodities by Erb and Harvey (2006), for futures
contracts in Moskowitz et al. (2012), and in industries by Sefton and Scowcroft (2004). Similar results
were also found by Asness et al. (2013) and Daniel and Moskowitz (2016) for markets in the European
Union, Japan, the United Kingdom, and the United States, and across asset classes including fixed
income, commodities, foreign exchange, and equity from 1972 through 2013.

Despite the extensive literature on the empirical properties of momentum based returns, there are
relatively few that consider the distributional properties of these returns from a theoretical viewpoint,
with Kwon and Satchell (2018) being a notable exception that addresses the CSM returns as defined in
this paper. Most of the known theoretical results, obtained for example by Lo and MacKinlay (1990),
Jegadeesh and Titman (1993), Lewellen (2002), and Moskowitz et al. (2012), are concerned only with
the expected values and first order autocorrelations of returns from the so-called weighted relative
strength strategy in which the portfolio over the holding period is constructed from all underlying
assets weighted, essentially, in proportion to their absolute or relative returns over the ranking period.
The reason why we wish to calculate the distribution of CSM returns is that we can then calculate
percentiles, quantiles, and related quantities. We can deduce the degree to which moments of returns
exist and their precise form. Such information can be used, for example, to assess the fatness of the
tails of the distribution and this is valuable for risk management calculations as well as understanding
the benefits and limitations of portfolio construction.

By assuming that underlying asset returns are Gaussian, the distribution and the moments of the
CSM returns were derived in Kwon and Satchell (2018). In this paper, we extend their results to the
case where the underlying asset returns are Student’s t to derive the probability density function and
the moments of the CSM returns. The t distribution arises naturally, for example, in a framework where
asset volatility is stochastic, and conventional mean-variance analysis will create returns which are
very similar to t-distributed returns. The important distinction between Student’s t returns and normal
returns is that the distribution of Student’s t has an additional parameter which governs the fatness
of the tails of the distribution and can be used to assess tail risk. There is a trade-off between realism
and complexity; we would like to use a more complex distribution such as the skewed Student’s t
considered in Theodossiou (1998) and Hansen et al. (2010), but the analytical complexity that results
becomes prohibitive.

Although the individual asset returns do not exhibit skewness under the generalization to
Student’s t, they can be leptokurtic which is a well-established feature in the empirical literature.
Moreover, the CSM returns can, and do, exhibit skewness that depends on the statistical properties
of the underlying assets. A detailed analysis of the special case of two underlying assets reveals that
many of the salient features of the CSM returns reported in the empirical literature are consistent
with the theoretical implications from this framework. This analysis is of interest because Kwon and
Satchell (2018) were able to show that non-normality was a consequence of the momentum structure,
even when the underlying returns were normal. We therefore wish to assess what the impact of
assuming non-normality in the underlying returns will have on CSM returns. For example, will it
exacerbate non-normality or make very little difference? Answers to this question will shed light on
applying CSM to universes of assets which are fundamentally non-normal, such as emerging markets.

It should be pointed out that since we work under the assumption that asset returns over
the ranking and holding periods are jointly t-distributed, there are limitations in the properties
of momentum returns that can be addressed in the theoretical framework of this paper. For example,
it is not possible to adequately address properties that depend on certain firm specific, economic,
or financial factors such as liquidity, credit spread, market sentiment, business cycle, and information
asymmetry since these factors cannot easily be captured in the distributional assumption on asset
returns. Theoretical investigation of such properties would require an extension with the ability to
incorporate such factors.

Finally, it may be asked what the connection is between our analysis and the extensive linear
factor modelling that dominates the asset pricing literature. This literature essentially says that the time
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t mean of an asset, say the first, is a linear function of factor returns. In the framework of this paper,
we can accommodate such modelling by interpreting the asset mean to be conditional on factor returns.

The remainder of this paper is organized as follows: Section 2 introduces the notation and the
key results on multivariate normal distributions, and Section 3 provides a mathematically precise
definition of CSM returns. Although the expressions for the CSM return density and the associated
moments are quite complex in general, they simplify considerably in the case of two assets with one
winner and one loser, and this special case is examined in detail in Section 4, along with implications
to the empirically observed features reported in the literature, and the paper concludes with Section 5.

2. Notation and Preliminaries

For the convenience of the reader, we introduce in this section the notation that will be used
throughout the paper, and present some known results that will be relied upon in subsequent sections.

2.1. Notation

For any x ∈ Rn, we will write xi for the i-th coordinate of x, and given y ∈ Rn write x ≺ y if and
only if xi < yi for all 1 ≤ i ≤ n. Similarly, given a matrix M ∈ Rm×k, we will write Mi,j for the (i, j)-th
entry of M, and the transpose of a vector or a matrix will be denoted by the superscript ′. The vector in
Rn with all entries equal to 1 will be denoted 1n, and given a subset A ∈ Rn, we will denote by IA the
indicator function on A.

Given a random vector, X, with values in a regionDX ⊂ Rn, we will write fX(x) and FX(x) for the
probability density and the cumulative density functions of X, respectively. Moreover, given another
random vector Y , with values inDY ⊂ Rm, we will denote by fX|Y (x | y) and FX|Y (x | y) the conditional
probability density and conditional cumulative density functions of X given Y = y, respectively.

For any n ∈ N, let [n] = {1, 2, . . . , n} and let Sn be the set of permutations of [n]. We will denote
the permutation that maps 1 7→ i1, 2 7→ i2, . . . , n 7→ in by a sequence (i1, i2, . . . , in), and given any
τ ∈ Sn write τ(i) for the image of i under τ so that if τ = (1, 3, 2), for example, then τ(1) = 1, τ(2) = 3,
and τ(3) = 2. Given a permutation τ ∈ Sn, we will denote by Pτ ∈ Rn×n the permutation matrix
corresponding to τ and denote by Dn ∈ R(n−1)×n the matrix

Dn =


−1 1 0 0 · · · 0 0 0
0 −1 1 0 · · · 0 0 0

. . . . . . . . . . . . . . . . .
0 0 0 0 · · · 0 −1 1

 . (1)

The elements of the permutation group Sn act naturally on the set of polynomials, R[x1, . . . , xn] by
the rule

τp(x1, . . . , xn) = p(xτ1 , . . . , xτn)

for any polynomial p ∈ R[x1, . . . , xn] and τ ∈ Sn. For any n1, n2 ∈ N, let pn1,2n2 ∈ R[x1, . . . , xn1+2n2 ] be
the polynomial

pn1,2n2(x1, . . . , xn1+2n2) =

(
n1

∏
i=1

xi

)(
n2

∏
i=1

(xn1+2i − xn1+2i−1)
2

)
. (2)

Denote by Z(n1, 2n2) the stabilizer of pn1,2n2 under the action of Sn1+2n2 so that

Z(n1, 2n2) = {τ ∈ Sn1+2n2 | τpn1,2n2 = pn1,2n2}, (3)
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and let Q(n1, 2n2) = Sn1+2n2 /Z(n1, 2n2) be the quotient group,1 with elements of Q(n1, 2n2) identified
with their coset representatives τ ∈ Sn1+2n2 . Finally, define

[n]m =
m

∏
i=1
{1, 2, . . . , n} = {(i1, i2, . . . , im) | 1 ≤ ij ≤ n, 1 ≤ j ≤ m} (4)

as the m-fold Cartesian product of [n] = {1, 2, . . . , n}.

2.2. Multivariate Normal Distributions

The density of an n-dimensional normal distribution with mean µ and covariance Σ at x ∈ Rn will
be denoted φn(x; µ, Σ), and the corresponding cumulative density function will be denoted Φn(x; µ, Σ).
In general, given random variables X1, . . . , Xn, their joint probability density function will be denoted
fX1,··· ,Xn , and we will write FX1,··· ,Xn for the cumulative density function.

Theorem 1. Let n1, n2 ∈ N and suppose X ∼ Nn1+n2 (µ, Σ), where

X =

[
X1

X2

]
, µ =

[
µ1
µ2

]
, Σ =

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
, (5)

with X i, µi ∈ Rni and Σi,j ∈ Rni×nj for 1 ≤ i, j ≤ 2, and Σ positive definite. Then, the conditional distribution
of X1 given X2 is normal with mean and covariance

µX1|X2
= µ1 + Σ1,2Σ−1

2,2 (X2 − µ2), (6)

ΣX1|X2
= Σ1,1 − Σ1,2Σ−1

2,2 Σ2,1, (7)

respectively, and φn1+n2(x; µ, Σ) decomposes as

φn1+n2(x; µ, Σ) = φn1

(
x1; µX1|X2

, ΣX1|X2

)
φn2(x2; µ2, Σ2,2). (8)

Proof. Refer to Muirhead (1982) Theorem 1.2.11.

Given an n-dimensional random vector X and p = (p1, . . . , pm) ∈ {1, 2, . . . , n}m, we will denote
by µp (X) the p-th moment of X so that

µp (X) = E
[

m

∏
i=1

Xpi

]
. (9)

Note that the subscripts, pi, in (9) may be repeated so that the above definition is equivalent to
the more familiar definition of moments in which the powers of the components of X appear
inside the expectation on the right-hand side, viz. E

[
∏n

i=1 Xki
i

]
with 0 ≤ ki ∈ N for 1 ≤ i ≤ n.

For example, we have E
[
X2

1X3
2
]
= E [X1X1X2X2X2], and so in the notation of (9) we have m = 5,

d = (d1, d2, d3, d4, d5) = (1, 1, 2, 2, 2), and µ(1,1,2,2,2) (X) = E
[
X2

1X3
2
]
.

1 Refer to Rotman (1995) Chapter 2 for the details on quotient groups.
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Theorem 2. Let X ∼ Nn(µ, Σ), where n ∈ N, µ ∈ Rn and Σ ∈ Rn×n is positive definite. Then, for any
p = (p1, . . . , pm) ∈ {1, 2, . . . , n}m, we have

µp (X) = ∑
k,l∈N

k+2l=m

∑
τ∈Q(k,2l)

(
k

∏
i=1

µpτi

)(
l

∏
i=1

Σpτk+2i−1 , pτk+2i

)
. (10)

In particular, if µ = 0 and m is even, then

µp (X) = ∑
τ∈Q(0,m)

1
2 m

∏
i=1

Σpτ2i−1 , pτ2i
. (11)

Proof. Refer to Withers (1985) Theorem 1.1.

An alternative expression for µp(X), where X is multivarite normal, is given in Kan (2008)
Proposition 2.

Corollary 1. Let X ∼ N1(µ, σ2). Then, for any m ∈ N, the m-th moment of X is given by

µm(X) =
m

∑
i=0

i even

(
m
i

)
(i− 1)!! σiµm−i, (12)

where k!! = ∏
b k

2 c
i=0(k − 2i) is the double factorial of k ∈ N. In the special case where µ = 0 and m is even,

we have µm(X) = (m− 1)!!σm.

Proof. Follows from Theorem 2, since the inner sum in (10), for which 2l = i, consists of (m
i )(i− 1)!!

identical terms that are all equal to σiµm−i.

2.3. Multivariate Student’s t Distribution

Asset returns are often assumed to be normally distributed in the academic literature for
theoretical convenience, in which case they are completely determined by the location and the scale
parameters. However, it is widely reported in the empirical literature that the observed asset returns
exhibit excess kurtosis. Student’s t-distribution is a distribution from the elliptical family with an
additional parameter ν, viz. number of degrees of freedom that controls the kurtosis. The Student’s t
distribution reduces to the normal in the limit as ν→ ∞, and hence provides a convenient framework
under which to investigate the impact of excess kurtosis in the underlying asset returns on the
distributional properties of the CSM return. This subsection provides a brief summary of the key
properties of the Student’s t distribution that will be required in the remainder of this paper.

The t distribution has a long history in mathematical statistics. The univariate probability density
function (pdf), t (µ,σ2,ν), of a t-variate with mean µ, scale parameter σ, and degrees of freedom ν is
given by

t(µ, σ2, ν) =
Γ
(

ν+1
2

)
σ
√

νπΓ
(

ν
2
) (1 +

1
ν

(
x− µ

σ

)2
)− 1

2 (ν+1)

. (13)

From the origins of the t-test in mathematical finance, it is clear that we can write the corresponding
random variable as x = µ + z/Y, where z and Y are independent, z ∼ N (0, σ2), Y =

√
g/ν,

and g ∼ χ2(ν).
In extending the definition of the t distribution to the multivariate case, we are faced with a choice.

Although the choice z ∼ Nn (0, Σ) is clear, Y can be defined in various ways. For example:
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• each component, zi, of z is normalized by independent Yi =
√

gi/νi with same or differing νi,
• Yi could be jointly dependent,
• single common Y.

All three of these choices have a stochastic volatility interpretation corresponding to

• idiosyncratic shocks,
• common factor shocks,
• economy-wide or market-wide shock.

Although we have chosen the final characterization, cross sectional momentum could also be
analyzed under other characterizations.

Throughout this paper, the probability density function of n-dimensional Student’s t distribution,
Stn1+n2 (µ, Σ, ν), with ν degrees of freedom, location µ, and shape matrix Σ at x ∈ Rn will be denoted
tn(x; µ, Σ, ν), and we will write Tn(x; µ, Σ, ν) for the corresponding cumulative density function.
The next theorem shows that multivariate Student’s t distribution is closed under conditioning, in the
sense that the conditional density of a subset given its complement is again Student’s t. This property
will be crucial in the investigation of the CSM returns in later sections.

Theorem 3. Let n1, n2 ∈ N and suppose X ∼ Stn1+n2 (µ, Σ, ν), where ν ∈ R+,

X =

[
X1

X2

]
, µ =

[
µ1
µ2

]
, Σ =

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
, (14)

with X i, µi ∈ Rni and Σi,j ∈ Rni×nj for 1 ≤ i, j ≤ 2, and Σ positive definite. Then, the conditional distribution
of X1 given X2 is Student’s t with degrees of freedom νX1|X2

= ν + n2, and location and shape matrix

µX1|X2
= µ1 + Σ1,2Σ−1

2,2 (X2 − µ2), (15)

ΣX1|X2
=

ν + (X2 − µ2)
′ Σ−1

2,2 (X2 − µ2)

ν + n2

(
Σ1,1 − Σ1,2Σ−1

2,2 , Σ2,1

)
, (16)

respectively, and tn1+n2(x; µ, Σ, ν) decomposes as

tn1+n2(x; µ, Σ, ν) = tn1

(
x1; µX1|X2

, ΣX1|X2
, νX1|X2

)
tn2(x2; µ2, Σ2,2, ν). (17)

Proof. Refer to Roth (2013) Appendix A.6, or Muirhead (1982) Problems 1.29 and 1.30.

Although a Student’s t distribution does not have finite moments of all orders, the next theorem
provides an explicit expression for those that do exist.

Theorem 4. Let X ∼ Stn(µ, Σ, ν), where n ∈ N, ν ∈ R+, µ ∈ Rn and Σ ∈ Rn×n is positive definite.
Moreover, for any m ∈ N, denote by Pm the set of subsets of the set {1, 2, . . . , m} of size k such that m− k is
even, where 0 ≤ k ≤ m. Then, for any p = (p1, . . . , pm) ∈ {1, 2, . . . , n}m such that m < ν, we have

µp (X) = ∑
P∈Pm

Γ
(

ν
2 −

1
2 |Pc|

)
Γ
(

ν
2
) (ν

2

) 1
2 |P

c |
∏
k∈P

µpik ∑
τ∈Q(0,|Pc |)

 1
2 |P

c |

∏
j=1

Σpiτ2j−1
, piτ2j

 , (18)

where Pc = {i1, i2, . . . , ik+2l} in the final sum.

Proof. Refer to Appendix A.

Setting n = 1 gives the moments of the one-dimensional Student’s t distribution.
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Corollary 2. Let X ∼ St1(µ, σ2, ν). Then, for any m ∈ N such that m < ν, the m-th moment of X is given by

µm(X) =
m

∑
k=0

k even

(
m
k

)
(k− 1)!!

Γ
(

1
2 (ν− k)

)
Γ
(

ν
2
) (ν

2

) k
2

µm−kσk, (19)

where k!! is the double factorial defined in Corollary 1.

Proof. Follows from similar arguments to Theorem 4 noting that the indices pij are all equal in
this case.

For an alternative derivation of the moments of Student’s t distribution, refer to Kirkby et al. (2019).

2.4. Unified Skew t Family of Distributions

Multivariate skew-normal (SN) distributions were introduced in Azzalini and Valle (1985) to
generalize normal distributions to those that allow non-zero skewness, and the seemingly disparate
distributions related to the multivariate SN distributions were brought together under the umbrella of
the so-called unified skew-normal (SUN) family of distributions in Arellano-Valle and Azzalini (2006),
where it was shown that the SUN family contains many of these skew-normal variants as special cases.
The extension of the normal family to those with non-zero skewness was then extended to the elliptical
family of distributions in Arellano-Valle and Genton (2010). In what follows, we only summarize the
results on the extension for the multivariate Student’s t distributions that will be required in this paper,
and refer the reader to Arellano-Valle and Genton (2010) and Jamalizadeh and Balakrishnan (2012) for
the details.

Given ν ∈ R+, ni ∈ N, µi ∈ Rni , Σi,j ∈ Rn1×n2 for 1 ≤ i ≤ j, where Σ′2,1 = Σ1,2 and Σi,i are positive
definite, let [

X1

X2

]
∼ Stn1+n2

([
µ1
µ2

]
,

[
Σ1,1 Σ1,2

Σ′1,2 Σ2,2

]
, ν

)
. (20)

Then, the probability density function, fU(u), of an n1-dimensional unified skew t (SUT)
distributed random variable, U, associated with (X ′1, X ′2)

′ given by

fU(u) =
tn2(u; µ2, Σ2,2, ν)

Tn1 (0;−µ1, Σ1,1, ν)
Tn1

(
0;−µ1 − Σ1,2Σ−1

2,2 (u− µ2), Σ1,1;2(u), ν + n2

)
, (21)

where

Σ1,1;2(u) =
ν + (u− µ2)

′ Σ−1
2,2 (u− µ2)

ν + n2

(
Σ1,1 − Σ1,2Σ−1

2,2 Σ2,1

)
. (22)

The key characteristic of fU(u) is that it is a product of an n2-dimensional Student’s t density and an
n1-dimensional cumulative Student’s t density with the variable u appearing as the main variable in
the former and in the mean and variance parameters of the latter. As will be seen, the densities of cross
sectional momentum returns will be a weighted sum of these SUT distributions.

3. Cross-Sectional Momentum Returns with Student’s t Distributed Asset Returns

In this section, we derive the distributional properties of the cross sectional momentum (CSM)
returns under the assumption that the underlying asset returns are multivariate Student’s t. We begin
by recalling the mathematically precise definition of the CSM return from Kwon and Satchell (2018).
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Let 0 < m+, m−, n ∈ N such that m+ + m− ≤ n, and for each 1 ≤ i ≤ n denote by ri,t the return
on asset i at time t. Moreover, let

rt = (r1,t, . . . , rn,t)
′ ∈ Rn, (23)

and for any τ ∈ Sn, define

rτ,m± ,t =
1

m+

m+

∑
i=1

rτi ,t −
1

m−

m−

∑
i=1

rτn−m−+i ,t ∈ R, (24)

xτi ,t = rτi+1,t − rτi ,t ∈ R, 1 ≤ i ≤ n− 1, (25)

xτ,t = (xτ1,t, . . . , xτn−1,t)
′ ∈ Rn−1, (26)

zτ,t =
(
rτ,m± ,t+1, x′τ,t

)′ ∈ Rn. (27)

Note that any given τ ∈ Sn defines an ordering, rt,τ1 > rt,τ2 > · · · > rt,τn , of the components of rt.
Thus, rτ,m± ,t represents the return on a portfolio where the top m+ ranked assets are equally weighted
and held long while the bottom m− assets are equally weighted and held short. The assumption of
equal weighting is for notational simplicity only, and not crucial for the general theoretical results.
Note also that xτ,t is defined to allow the ranking of the components of rt corresponding to τ ∈ Sn to
be written succinctly as xτ,t ≺ 0n−1.

Definition 1. The (m+, m−)-cross sectional momentum return, rm± ,t+1, is defined by

rm± ,t+1 = ∑
τ∈Sn

I{xτ,t≺0n−1}rτ,m± ,t+1, (28)

where IA, for any subset A ⊂ Rn, denotes the indicator function on the set A.

For intuition behind the definition of rm± ,t+1, note that the components of rt, representing asset
returns over the ranking period, can be arranged in any of the n! orderings corresponding to the
permutations τ ∈ Sn. For each such ranking rt,τ1 > rt,τ2 > · · · > rt,τn , the m+ winner returns over the
holding period are rt+1,τ1 , . . . , rt+1,τm+

while the m− loser returns are rt+1,τn−m+1 , . . . , rt+1,τn . Equally
weighting the returns in the winner and the loser portfolios gives rτ,m± ,t+1, and since the ranking of
components of rt determined by τ ∈ Sn is equivalent to the condition xτ,t ≺ 0n−1, summing over all
possible rτ,m± ,t+1 and prefixing by the matching indicator function gives the expression for rm± ,t+1

in (28).
For the remainder of this paper, we make the following assumption on the distribution

of (r′t, rt+1)
′.

Assumption 1. The vector of returns, (r′t, r′t+1)
′, is multivariate Student’s t distributed so that[

rt+1

rt

]
∼ St2n

([
µt+1

µt

]
,

[
Σt+1,t+1 Σt+1,t

Σt,t+1 Σt,t

]
, ν

)
, (29)

with ν ∈ R+, µu ∈ Rn, and Σu,v ∈ Rn×n, where u, v ∈ {t, t + 1}.

Since the t-distribution is symmetric, there are limitations on the properties of asset returns that
can be captured adequately by the above assumption as already discussed in Section 1. Nevertheless,
the assumption is sufficiently general to accommodate linear factor models and econometric models
such as vector autoregressive moving average models where the factors and noise terms, respectively,
are t-distributed. Moreover, the framework also allows consideration of more general cases where
µt and µt+1 are conditional means linear in factors without requiring the factors themselves to be
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multivariate t. However, since the analysis in later sections will show that momentum returns are
nonlinear in the underlying asset returns, the common practise of regressing momentum returns on
the various factors must be interpreted as a best linear prediction rather than a conditional expectation
in such cases. We now derive the probability density function, fm± ,t+1(r), of the CSM return rm± ,t+1.

Theorem 5. Suppose that (r′t, r′t+1)
′ satisfies Assumption 1. Then, the probability density function, fm± ,t+1(r),

of the cross sectional momentum return, rm± ,t+1, is given by

fm± ,t+1(r) = ∑
τ∈Sn

t1
(
r; ι′Pτµt+1, ι′PτΣt+1,t+1P′τι, ν

)
Tn−1 (0; λτ(r), Λτ(r), ν + 1) , (30)

where ι =
(

1′m+
, 0′n−m+−m− ,−1′n−

)′
,

λτ(r) = DnPτµt +

(
r− ι′Pτµt+1

)
ι′PτΣt+1,t+1P′τι′

DPτΣt,t+1P′τι, (31)

Λτ(r) =
ν + (ι′PτΣt+1,t+1P′τι′)−1 (r− ι′Pτµt+1

)2

ν + 1(
DnPτΣt,tP′τ D′n −

DnPτΣt,t+1P′τιι′PτΣt+1,tP′τ D′n
ι′PτΣt+1,t+1P′τι′

)
,

(32)

and we define T0 ≡ 1. Alternatively,

fm± ,t+1(r) = ∑
τ∈Sn

∫
Rn−1
−

t1 (r; γτ(x), Υτ(x), ν + n− 1) tn−1
(
x; DnPτµt, DnPτΣt,tP′τ D′n, ν

)
dx, (33)

where

γτ(x) = ι′Pτµt+1 + ι′PτΣt+1,tP′τ D′n
(

DnPτΣt,tP′τ D′n
)−1

(x− DnPτµt) , (34)

Υτ(x) =
ν + (x− DnPτµt)

′ (DnPτΣt,tP′τ D′n)
−1 (x− DnPτµt)

ν + n− 1(
ι′PτΣt+1,t+1P′τι− ι′PτΣt+1,tP′τ D′n

(
DnPτΣt,tP′τ D′n

)−1 DnPτΣt,t+1P′τι
)

.
(35)

Proof. Refer to Appendix B.

Note that the summands that appear in the pdf of the CSM return in (30) have the characteristic
form of the SUT densities given in (21) other than for the omission of the normalization factor2 that
appears in the denominator of (21). It follows that pdf of the CSM return is a weighted sum of the
SUT densities. The next result gives the pdf in the special case where rt and rt+1 are independent,
which can be considered as the case where the market is efficient.

Corollary 3. If
(
r′t, r′t+1

)′ satisfies Assumption 1, and rt and rt+1 are independent, then

fm± ,t+1(r) = ∑
τ∈Sn

t1
(
r; ι′Pτµt+1, ι′PτΣt+1,t+1P′τι, ν

)
Tn−1 (0; DnPτµt, Λ◦τ(r), ν + 1) , (36)

where

Λ◦τ(r) =
ν + (ι′PτΣt+1,t+1P′τι′)−1 (r− ι′Pτµt+1

)2

ν + 1
DnPτΣt,tP′τ D′n, (37)

2 The normalization factor is, in fact, the probability of the event 0 ≺ X1, where X1 is as defined in (20).
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Proof. Follows from Theorem 5 since Σt,t+1 = On×n = Σt+1,t in this case.

We next derive the expressions for the non-central moments of the CSM returns. Since t
distributions do not have moments of all orders as noted in Theorem 4, the moments of CSM returns
will also only exist up to a certain order.

Theorem 6. Suppose (r′t, r′t+1)
′ satisfies Assumption 1, and let m ∈ N such that m < ν. Then, the m-th

non-central moment of rm± ,t+1 is given by

µm
(
rm± ,t+1

)
= ∑

τ∈Sn

m

∑
k=0

k even

(
m
k

)
(k− 1)!!

Γ
(

1
2 (ν + n− 1− k)

)
Γ
(

1
2 (ν + n− 1)

) (
ν + n− 1

2

) k
2

∫
Rn−1
−

γm−k
τ (x)Υ

k
2
τ (x) tn−1

(
x; DnPτµt, DnPτΣt,tP′τ D′n, ν

)
dx,

(38)

where γτ(x) and Υτ(x) are as defined in (34) and (35), respectively.

Proof. Refer to Appendix C.

4. Special Case of Two Assets

In this section, we examine in detail the special case of two assets, and begin by computing
the partial moments of one-dimensional Student’s t distributions that will be required. To reduce
notational burden, we define for η ∈ R, ς ∈ R+, and ν ∈ R+

c
(

η, ς2, ν
)
=

Γ
(

ν+1
2

)
ς
√

νπΓ
(

ν
2
) , (39)

so that from (13) we have

t1

(
x; η, ς2, ν

)
= c

(
η, ς2, ν

)(
1 +

1
ν

(
x− η

ς

)2
)− 1

2 (ν+1)

. (40)

Lemma 1. Let η ∈ R, ς ∈ R+ and 2 < ν ∈ R+. Then, for m ∈ N+, we have(
x− η

ς

)m
t1

(
x; η, ς2, ν

)
= −ς

√
ν

ν− 2

(
x− η

ς

)m−1 ∂ t1
(
x; η, ς2ν/(ν− 2), ν− 2

)
∂x

. (41)

Proof. Refer to Appendix D.

The next theorem will play a key role in the derivation of the non-central moments of the CSM returns.

Theorem 7. For any η ∈ R, ς ∈ R+, ν ∈ R+, and m ∈ N such that m < ν, let

κm(η, ς2, ν) =
∫ 0

−∞

(
x− η

ς

)m
t1(x; η, ς2, ν) dx. (42)

Then, κ0(η, ς2, ν) = T1(0; η, ς2, ν), κ1(η, ς2, ν) = −ς
√

ν/(ν− 2) t1
(
0; η, ς2ν/(ν− 2), ν− 2

)
, and

κm

(
η, ς2, ν

)
= (m− 1)

(
ν

ν− 2

) 1
2 (m−1)

κm−2

(
η,

ς2ν

ν− 2
, ν− 2

)
(43)
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for 2 ≤ m < ν. More explicitly, if m is even

κm

(
η, ς2, ν

)
=

(m− 1)!! ν
1
2 (m−1)

(ν− 2)(ν− 4) · · · (ν−m + 2)
√

ν−m
T1

(
0; η,

ς2ν

ν−m
, ν−m

)
, (44)

and if m is odd

κm

(
η, ς2, ν

)
=

−ς(m− 1)!! ν
1
2 (m−1)

(ν− 2)(ν− 4) · · · (ν− (m− 1))
√

ν− (m + 1)
t1

(
0; η,

ς2ν

ν− (m + 1)
, ν− (m + 1)

)
.

(45)

Proof. Firstly, the expression for κ0(η, ς2, ν) follows directly from the definition of κm(η, ς2, ν), and,
for κ1(η, ς2, ν), we obtain on setting m = 1 in Lemma 1 that

κ1(η, ς2, ν) = −ς

√
ν

ν− 2

∫ 0

−∞

∂ t1
(
x; η, ς2ν/(ν− 2), ν− 2

)
∂x

dx

= −ς

√
ν

ν− 2
t1

(
0; η,

ς2ν

ν− 2
, ν− 2

)
.

Next, for (43), using Lemma 1 and applying integration by parts gives

κm(η, ς2, ν) = −ς

√
ν

ν− 2

∫
x∈R−

(
x− η

ς

)m−1 ∂ t1
(
x; η, ς2ν/(ν− 2), ν− 2

)
∂x

dx

= (m− 1)
√

ν

ν− 2

∫
x∈R−

(
x− η

ς

)m−2
t1

(
x; η,

ς2ν

ν− 2
, ν− 2

)
dx

= (m− 1)
(

ν

ν− 2

) 1
2 (m−1) ∫

x∈R−

(
x− η

ς
√

ν/(ν− 2)

)m−2

t1

(
x; η,

ς2ν

ν− 2
, ν− 2

)
dx

= (m− 1)
(

ν

ν− 2

) 1
2 (m−1)

κm−2

(
η,

ς2ν

ν− 2
, ν− 2

)
,

which is (43). The explicit expressions for the odd and even cases follow by induction.

As it will be seen, the quantities that play a key role in the two asset case are the spreads, rt,2 − rt,1
and rt+1,2 − rt+1,1, and so we define

ηu = µu,2 − µu,1, σ2
u,i = var (ru,i) ,

ρu =
cov (ru,1, ru,2)

σu,1σu,2
, ρi,j =

cov
(
rt,i, rt+1,j

)
σt,iσt+1,j

,

ς2
u = σ2

u,1 + σ2
u,2 − 2ρuσu,1σu,2,

ςt,t+1 = ρ1,1σt,1σt+1,1 + ρ2,2σt,2σt+1,2 − ρ1,2σt,1σt+1,2 − ρ2,1σt,2σt+1,1,

$t,t+1 =
ςt,t+1

ςtςt+1
,

where 1 ≤ i, j ≤ 2 and u ∈ {t, t + 1}. Note that ς2
u is the variance of the spread ru,2 − ru,1, and $t,t+1 is

the correlation between rt,2 − rt,1 and rt+1,2 − rt+1,1. Next, we compute the terms γτ(x) and Υτ(x) that
appear in the expression (33) for the pdf of the CSM return. For u, v ∈ {t, t + 1} and τ ∈ S2, we have
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ι′P(1,2)µu = −ηu = −ι′P(2,1)µu,

D2P(1,2)µu = ηu = −D2P(2,1)µu,

D2PτΣu,uP′τ D′2 = ι′PτΣu,uP′τι = ς2
u,

ι′PτΣu,vP′τ D′2 = −ςu,v,

and so

γ(1,2)(x) = −ηt+1 −
ςt,t+1

ς2
t

(x− ηt) ,

γ(2,1)(x) = ηt+1 −
ςt,t+1

ς2
t

(x + ηt) ,

Υ(1,2)(x) =
ν + ς−2

t (x− ηt)
2

ν + 1

(
ς2

t+1 −
ς2

t,t+1

ς2
t

)
=

ς2
t+1

(
1− $2

t,t+1

)
ν + 1

(
ν +

(
x− ηt

ςt

)2
)

,

Υ(2,1)(x) =
ν + ς−2

t (x + ηt)
2

ν + 1

(
ς2

t+1 −
ς2

t,t+1

ς2
t

)
=

ς2
t+1

(
1− $2

t,t+1

)
ν + 1

(
ν +

(
x + ηt

ςt

)2
)

.

If we define the sign of permutations in S2 by ε((1, 2)) = 1 and ε((2, 1)) = −1, then the expressions for
γτ(x) and Υτ(x) can be written succinctly as

γτ(x) = −ε(τ)ηt+1 − $t,t+tςt+1

(
x− ε(τ)ηt

ςt

)
, (46)

Υτ(x) =
ς2

t+1

(
1− $2

t,t+1

)
ν + 1

(
ν +

(
x− ε(τ)ηt

ςt

)2
)

. (47)

The next lemma will provide the building blocks for the non-central moments of CSM returns.

Lemma 2. Let γτ(x) and Υτ(x) be as defined in (46) and (47) respectively, where τ ∈ S2. Then, for α, β ∈ N
such that α + 2β < ν, we have

∫ 0

−∞
γα

τ(x)Υβ
τ(x) t1

(
x; ε(τ)ηt, ς2

t , ν
)

dx

=
(−1)ας

2β
t+1

(
1− ρ2

t,t+1

)β

(ν + 1)β

α

∑
i=0

β

∑
j=0

(
α

i

)(
β

j

)
εα−i(τ)ηα−i

t+1$i
t,t+1ςi

t+1νβ−jκi+2j

(
ε(τ)ηt, ς2

t , ν
)

,

(48)

where κm
(
η, ς2, ν

)
is as defined in (42).

Proof. Follows from using the binomial formula to expand the powers of γτ(x) and Υτ(x),
and applying the definition of κm

(
η, ς2, ν

)
.

For notational convenience, given any τ ∈ S2, ν ∈ R+ and α, β ∈ N such that α + 2β < ν,
we define

κα,β,τ(η, ς, ν) =
∫ 0

−∞
γα

τ(x)Υβ
τ(x) t1

(
x; ε(τ)η, ς2, ν

)
dx, (49)

and note that κα,β,τ(η, ς, ν) can be computed explicitly using (48). We now present the non-central
moments of the CSM return r1± ,t+1.
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Theorem 8. Let η ∈ R, ς ∈ R+ and ν ∈ R+. Then, for m ∈ N+ such that m < ν, the m-th non-central
moment, µm

(
r1± ,t+1

)
, of r1± ,t+1 is given as follows:

µm
(
r1± ,t+1

)
= ∑

τ∈S2

m

∑
k=0

k even

(
m
k

)
(k− 1)!!

Γ
(

1
2 (ν− k + 1)

)
Γ
(

1
2 (ν + 1)

) (
ν + 1

2

) k
2

κm−k, k
2 ,τ(ηt, ςt, ν), (50)

where κα,β,τ(η, ς, ν) is as defined in (49). In particular, the first four non-central moments are

µ1
(
r1± ,t+1

)
= ∑

τ∈S2

κ1,0,τ(ηt, ςt, ν), (51)

µ2
(
r1± ,t+1

)
= ∑

τ∈S2

(
κ2,0,τ(ηt, ςt, ν) +

(ν + 1) κ0,1,τ(ηt, ςt, ν)

ν− 1

)
, (52)

µ3
(
r1± ,t+1

)
= ∑

τ∈S2

(
κ3,0,τ(ηt, ςt, ν) +

3(ν + 1) κ1,1,τ(ηt, ςt, ν)

ν− 1

)
, (53)

µ4
(
r1± ,t+1

)
= ∑

τ∈S2

(
κ4,0,τ(ηt, ςt, ν) +

6(ν + 1) κ2,1,τ(ηt, ςt, ν)

ν− 1
+

3(ν + 1)2 κ0,2,τ(ηt, ςt, ν)

(ν− 1)(ν− 3)

)
. (54)

Proof. Follows from the general expression (38) for the moments of r1± ,t+1 and the definition of
κα,β,τ(η, ς, ν).

We remark that the non-central moments of r1± ,t+1 given in Theorem 8 are sums indexed by
S2 that consists of two elements, and that each term that appears in these sums can be computed
recursively using (43), (48), and (49). Since the right-hand side of (48) consists of a finite number
of terms and (43) is equivalent to the explicit expressions (44) or (45) depending on the index m,
these moments of r1± ,t+1 can be computed without having to make any simplifying approximations.
For example, the first moment is given explicitly by

µ1 (r±1,t+1) = ηt+1

(
2 T1(0;−ηt, ς2

t , ν)− 1
)
+ 2ρt,t+1ςt+1

√
ν

ν− 2
t1

(
0; ηt,

νς2
t

ν− 2
, ν

)
,

which is reassuring since it has the same functional form as the following expression3

µ?
1 (r±1,t+1) = ηt+1

(
2Φ
(

ηt

ςt

)
− 1
)
+ 2$t,t+tςt+1φ

(
ηt

ςt

)
obtained for the normally distributed asset return case in Kwon and Satchell (2018) except for the
distribution functions being Student’s t rather than normal. The numerical calculations in this paper
were performed using code written in C++ that relied on the boost library4 to compute the functions t1

and T1.
Returning briefly to the linear factor structure discussed in Section 1, we could consider µt,1 and

µt,2 to be a linear combinations of factors, which in a Carhart (1997) model context would consist
of size, market, value, and momentum. Thus, if we were to go long asset 1 and short asset 2 in our
CSM momentum portfolio, we might expect a larger exposure to the momentum factor for asset 1 and
a smaller exposure for asset 2. We could carry out further detailed analysis to accommodate these
features but leave this for further research.

If we denote by µ1± ,t+1 the mean, σ2
1± ,t+1 the variance, γ1± ,t+1 the skewness, and κ1± ,t+1 the excess

kurtosis of the CSM return, then these quantities are easily computed from the non-central moments

3 Rewritten in the notation of this paper.
4 Refer to www.boost.org/doc/libs/1_72_0/boost/math/distributions/students_t.hpp

www.boost.org/doc/libs/1_72_0/boost/math/distributions/students_t.hpp
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given in Theorem 8. It should be noted that the quantities corresponding to the odd moments, viz.
µ1± ,t+1 and γ1± ,t+1 are approximately odd as functions of $t,t+1, and those associated with the even
moments, viz. σ2

1± ,t+1 and κ1± ,t+1, are approximately even as functions of $t,t+1. This is because the
return from a portfolio formed by taking a long position in the loser and a short position in the winner
when $t,t+1 < 0 would have the same distributional properties as the return from taking the opposite
positions when $t,t+1 > 0.

In the analysis that follows, we assume that the asset returns are stationary in order to reduce
the number of parameters. Moreover, we have set µt,1 = 6%, µt,2 = 4%, σ2

t,1 = 0.18(ν− 2)/ν and
σ2

t,2 = 0.14(ν − 2)/ν, where the asset variances have been scaled by a factor dependent on ν to
ensure that they are independent of the number of degrees of freedom. It should be noted that the
cross-sectional correlation, ρt, then determines the variance, ς2

t , of the spread, rt,2 − rt,1.
The mean of the CSM return is shown in Figure 1 as a function of the degrees of freedom ν,

and the spread autocorrelation, $t,t+1, for ρt = −0.9, ρt = 0.0, and ρt = 0.9. As expected, µ1± ,t+1 is an
increasing function of $t,t+1. For $t,t+1 > 0, the mean decreases slightly with ν, while the opposite
is the case when $t,t+1 < 0. In the region $t,t+1 ≈ 0, the mean is slightly positive. Since this is the
region corresponding to small autocorrelations in the underlying asset returns, and the situation most
commonly observed in practice, it is reassuring that the small positive CSM returns implied by the
model is consistent with the findings reported in the empirical literature. Moreover, we see that the
degrees of freedom parameter, ν, that controls the kurtosis of asset returns has very little impact on
r1pm ,t+1. Interpreting small ν as representative of assets from emerging markets, this is consistent
with findings from Rouwenhorst (1999) and Bekaert et al. (1997) that, although there is evidence
of momentum in emerging markets, it is not significantly different to those observed in developed
markets, despite the assets from the respective markets having different distributional properties. The
surface flattens out as the cross-sectional correlation increases from −0.9 to 0.9. Since an increase in ρt

corresponds to a decrease in the variance, ς2
t , of the spread rt,2 − rt,1, this behavior is consistent with

the positive relationship usually associated with risk and return in finance.

ν

$t,t+1

−0.3

0.3

5

25
−0.95

0.95

µ1± ,t+1 for ρt = −0.9

ν

$t,t+1

−0.3

0.3

5

25
−0.95

0.95

µ1± ,t+1 for ρt = 0

ν

$t,t+1

−0.3

0.3

5

25
−0.95

0.95

µ1± ,t+1 for ρt = 0.9

Figure 1. Expected CSM return, µ1± ,t+1, as a function of ν and $t,t+1.

The standard deviation of the CSM return as a function of ν and $t,t+1 is shown in Figure 2.
Although not clearly evident from the figure, σ1± ,t+1 is a decreasing function of ν, and for a fixed value
of ν the standard deviation is convex in $t,t+1 and takes the maximum value at $t,t+1 = 0. Finally,
since the variance of the spread decreases as ρt increases, σ1± ,t+1 likewise decreases with increasing ρt.

The skewness of the CSM return in Figure 3 shows that γ1± ,t+1 is negative when $t,t+1 < 0 and
positive otherwise. In fact, although it is not clearly evident from the figure, γ1± ,t+1 is negative even
for small positive values of $t,t+1. As discussed above, the autocorrelations in the asset returns tend to
be small in practice, and hence $t,t+1 will also be small. The corresponding model implied skewness
in the CSM return will then be slightly negative, which is consistent with the observations in the
empirical literature.
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Figure 2. Standard deviation, σ1± ,t+1, of CSM return as a function of ν and $t,t+1.
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Figure 3. Skewness, γ1± ,t+1, of CSM return as a function of ν and $t,t+1.

In contrast to the surfaces for other quantities that flatten to a large extent as ρt increases from
−0.9 to 0.9, the surface for κ1± ,t+1 in Figure 4 remains relatively unchanged. The excess kurtosis of
CSM returns is generally positive, in line with the findings reported in the literature, and increases
significantly when ν is small and |$t,t+1| is high. It should be noted that κ1± ,t+1 is largest when ν is
small. Since the deviation of the Student’s t distribution from the normal is greatest when ν is small,
it follows that the extension considered in this paper will be useful in situations where the observed
kurtosis in the CSM returns is higher than the value implied under the assumption of normal asset
returns. This would be the case, for example, when considering emerging markets.
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Figure 4. Excess kurtosis, κ1± ,t+1, of CSM return as a function of ν and $t,t+1.

5. Conclusions

In this paper, the theoretical framework introduced in Kwon and Satchell (2018) was extended
to investigate the distributional properties of cross-sectional momentum (CSM) returns under the
assumption that the vector of asset returns were multivariate Student’s t. The probability density
function and the moments of the CSM returns were derived, and investigated in detail for the special
case of two assets.

It was found that, in situations where the assets return, and hence the return spread,
autocorrelations are small, and the CSM return has a small positive mean, negative skewness,
and excess kurtosis. These are all consistent with the findings reported in the empirical literature.
Moreover, the skewness and the kurtosis both become more pronounced as the number of degrees
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of freedom in the Student’s t distribution decreases and the corresponding asset returns become
less normal.

In modeling asset returns that deviate significantly from being normal, such as those for emerging
markets, the extension to the Student’s t considered in this paper would address some of the limitations
of assuming normality. Since the Student’s t distribution approaches the normal in the limit as the
number of degrees of freedom approaches infinity, the extension also provides a framework under
which to analyze the implication and the limitations of the assumption of normality in asset returns to
CSM returns.
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Appendix A. Proof of Theorem 4

From the discussion in Section 2.3, see also Roth (2013) Appendix A.4, we have that X ∼
Stn(µ, Σ, ν) can be decomposed as

X d∼ µ +
1√
U

V ,

where U ∼ Gam
(

ν
2 , ν

2
)
, V ∼ Nn (0, Σ), and U and V are independent. Now, from (9), we obtain

µp(X) = ∑
P∈Pm

∏
k∈P

µpkE
[

U−
1
2 |P

c | ∏
l∈Pc

Vpl

]
,

where Pc = {1, 2, . . . , m}\P denotes the complement of P, and since U and X are independent,

µp(X) = ∑
P∈Pm

∏
k∈P

µpkE
[
U−

1
2 |P

c |
]
E
[

∏
l∈Pc

Vpl

]
.

The second expectation term can be computed using (10), and so it remains to compute the first
expectation term. However, from the properties of Gamma distributions, we have

E
[
U−

1
2 |P

c |
]
=
(ν

2

) 1
2 |P

c | Γ
(

ν
2 −

1
2 |Pc|

)
Γ
(

ν
2
)

provided |Pc| < ν, and so substituting into the expression for µp(X) gives (18).

Appendix B. Proof of Theorem 5

For any k ∈ N, let 1k = (1, 1, . . . , 1) ∈ Rk, and define ι ∈ Rn by ι =
(

1′m+
, 0′n−n+−n− ,−1′n−

)′
,

so that, for any τ ∈ Sn, we have that rτ,m± ,t+1 = ι′Pτrt+1. Then, since[
rτ,m± ,t+1

xτ,t

]
=

[
ι′Pτ O1×n

O(n−1)×n DnPτ

] [
rt+1

rt

]
,
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we have that
(
rτ,m± ,t+1, x′τ,t

)′ is a linear transformation of
(
r′t+1, r′t

)′, and so it follows from Roth (2013)
Equation (4.1) that[

rτ,m± ,t+1

xτ,t

]
∼ Stn

([
ι′Pτµt+1
DnPτrt

]
,

[
ι′PτΣt+1,t+1P′τι ι′PτΣt+1,tP′τ D′n
DnPτΣt,t+1P′τι DnPτΣt,tP′τ D′n

]
, ν

)
.

Now, the joint pdf, frτ,m± ,t+1,xτ,t(r, x), is given by

frτ,m± ,t+1,xτ,t(t, x) = fxτ,t |rτ,m± ,t+1
(x | r) frτ,m± ,t+1(r).

However, from Theorem 3, we have fxτ,t |rτ,m± ,t+1
(x | r) = tn−1 (x; λτ(r), Λτ(r), ν + 1), and so

frτ,m± ,t+1,xτ,t(t, x) = tn−1 (x; λτ(r), Λτ(r), ν + 1) t1
(
r; ι′Pτµt+1, ι′PτΣt+1,t+1P′τι, ν

)
.

If we define Dτ = {xτ ≺ 0}, then fm± ,t+1|Dτ
= IDτ

frτ,m± ,t+1 , and so

fm± ,t+1|Dτ
(r) =

∫
x∈Rn−1

IDτ
(x) frτ,m± ,t+1,xτ,t(t, x) dx

=
∫

x≺0
tn−1 (x; λτ(r), Λτ(r), ν + 1) t1

(
r; ι′Pτµt+1, ι′PτΣt+1,t+1P′τι, ν

)
dx

= t1
(
r; ι′Pτµt+1, ι′PτΣt+1,t+1P′τι, ν

)
Tn−1 (0; λτ,r, Λτ,r, ν + 1) ,

and summing over τ ∈ Sn gives (30). The alternative expression (33) for fm± ,t+1(r) follows from a
similar argument using the decomposition frτ,m± ,t+1,xτ,t(t, x) = frτ,m± ,t+1|xτ,t

(r | x) fxτ,t(x).

Appendix C. Proof of Theorem 6

In view of the expression for fm± ,t+1(r) in (33), we need to compute terms of the form

Im,τ =
∫
R

∫
Rn−1
−

rm t1 (r; γτ(x), Υτ(x), ν + n− 1) tn−1
(
x; DnPτµt, DnPτΣt,tP′τ D′n, ν

)
dx dr

for τ ∈ Sn. Now, since a one-dimensional Student’s t distribution with ν− n− 1 degrees of freedom
has finite moments for orders less than the number of degrees of freedom, and by assumption
m < ν ≤ ν + n− 1, the m-th moment of t1 (r; λτ(x), Υτ(x), ν + n− 1) exists. Next, interchanging the
order of integration gives

Im,τ =
∫
Rn−1
−

tn−1
(

x; DnPτµt, DnPτΣt,tP′τ D′n, ν
) ∫

R
rm t1 (r; γτ(x), Υτ(x), ν + n− 1) dr dx,

and applying Corollary 2 to the inner integral gives

Im,τ =
m

∑
k=0

k even

(
m
k

)
(k− 1)!!

Γ
(

1
2 (ν + n− 1− k)

)
Γ
(

1
2 (ν + n− 1)

) (
ν + n− 1

2

) k
2

∫
Rn−1
−

γm−k
τ (x)Υ

k
2
τ (x) tn−1

(
x; DnPτµt, DnPτΣt,tP′τ D′n, ν

)
dx.

Since γτ(x) and Υτ(x) are of orders 1 and 2 respectively in x, we have γm−k
τ (x)Γ

k
2
τ (x) is of order m

in x, and since tn−1 (x; DnPτµt, DnPτΣt,tP′τ D′n, ν) has finite moments of order up to ν by Theorem 4,
it follows that the integral in Im,τ is well-defined. Summing the Im,τ over τ ∈ Sn gives (38).
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Appendix D. Proof of Lemma 1

Setting the scale parameter to ς
√

ν/(ν− 2) and the degrees of freedom to ν− 2 in (40) gives

t1

(
x; η, ς2ν/(ν− 2), ν− 2

)
= c

(
η, ς2ν/(ν− 2), ν− 2

)(
1 +

1
ν

(
x− η

ς

)2
)− 1

2 (ν−1)

,

and differentiating both sides with respect to x gives

∂ t1(x;η,ς2ν/(ν−2),ν−2)
∂x = −c

(
η, ς2ν

ν−2 , ν− 2
)

(ν−1)
νς

(
x−η

ς

)(
1 + 1

ν

(
x−η

ς

)2
)− 1

2 (ν+1)

= − c(η,ς2ν/(ν−2),ν−2)(ν−1)
c(η,ς2,ν)νς

(
x−η

ς

)
t1
(
x; η, ς2, ν

)
.

(A1)

Now, using the definition of c(η, ς, ν), we have

c
(
η, ς2ν/(ν− 2), ν− 2

)
(ν− 1)

c (η, ς2, ν) νς
=

Γ
(

ν−1
2

)
ς
√
(ν− 2)πΓ

(
ν−2

2
) · ς
√

νπΓ
(

ν
2
)

Γ
(

ν+1
2

) · (ν− 1)
νς

,

and using the property Γ(z + 1) = zΓ(z), we obtain

c
(
η, ς2ν/(ν− 2), ν− 2

)
(ν− 1)

c (η, ς2, ν) νς
=

√
ν

ν− 2
·

1
2 (ν− 2)
1
2 (ν− 1)

· (ν− 1)
νς

=
1
ς

√
ν− 2

ν
.

Substituting back into (A1) and rearranging gives (41) for m = 1, and the general case follows from
multiplying both sides of the identity for the m = 1 case by powers of (x− η)/ς.
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