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Abstract: We address a number of technical problems with the popular Practitioner Black-Scholes
(PBS) method for valuing options. The method amounts to a two-stage procedure in which fitted
values of implied volatilities (IV) from a linear regression are plugged into the Black-Scholes formula
to obtain predicted option prices. Firstly we ensure that the prediction from stage one is positive
by using log-linear regression. Secondly, we correct the bias that results from the transformation
applied to the fitted values (i.e., the Black-Scholes formula) being a highly non-linear function of
implied volatility. We apply the smearing technique in order to correct this bias. An alternative
means of implementing the PBS approach is to use the market option price as the dependent variable
and estimate the parameters of the IV equation by the method of non-linear least squares (NLLS).
A problem we identify with this method is one of model incoherency: the IV equation that is estimated
does not correspond to the set of option prices used to estimate it. We use the Monte Carlo method to
verify that (1) standard PBS gives biased option values, both in-sample and out-of-sample; (2) using
standard (log-linear) PBS with smearing almost completely eliminates the bias; (3) NLLS gives biased
option values, but the bias is less severe than with standard PBS. We are led to conclude that, of the
range of possible approaches to implementing PBS, log-linear PBS with smearing is preferred on the
basis that it is the only approach that results in valuations with negligible bias.

Keywords: option pricing; Practitioner Black-Scholes method; smearing; non-linear least squares;
Monte Carlo

JEL Classification: C58; G12

1. Introduction

The Practitioner Black-Scholes (PBS) method (Dumas et al. 1998; Christoffersen and Jacobs 2004)
has become a very popular as a benchmark option pricing method, against which other pricing methods
can usefully be compared.1 The method amounts to the use of a cross-section sample of market option
prices to estimate the implied volatility surface, that is, to estimate the parameters of an equation
showing implied volatility (IV) as a function of strike price and time to expiry. The estimated IV
equation can then be used to predict option prices, either within-sample or out-of-sample. The purpose

1 Examples of option pricing models for which a comparison against the benchmark of PBS is likely to be very useful
are: Bakshi et al. (1997) SVSI-J model which allows volatility, interest rates, and jumps all to be stochastic; Heston and
Nandi (2000) model built on the assumption of a GARCH process in the underlying index; and Duan et al. (2006) models
built on even more general assumptions such as GJR-GARCH (TGARCH) and EGARCH.
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of this paper is to raise a number of technical problems arising with the PBS method, and to propose
methods for overcoming them.

There are a number of possible ways of implementing the PBS method. One, which we shall
call “standard PBS”, is a two-stage approach: (1) use the cross-section of options to estimate a linear
regression model with IV as the dependent variable, and strike price, time to expiry, and their squares
and cross-product, as explanatory variables; (2) plug the fitted values from this regression into the
Black-Scholes formula to obtain predicted option prices.

One immediate problem is that while IV is always positive, there is no guarantee that the prediction
of IV from the stage-one regression will be positive. We address this problem by using a log-linear
regression in stage one. A possibly more serious problem relates to stage two: as pointed out by
Christoffersen and Jacobs (2004), the two-stage method yields biased predictions of option valuations,
for the simple reason that the transformation being applied to the fitted values (i.e., the Black-Scholes
formula) is a non-linear function of implied volatility. In this paper, we apply the smearing technique
(Duan 1983) in order to correct this bias. The smearing technique makes use of the residuals from the
IV regression as well as the fitted values and is classified as a non-parametric technique since it is valid
whatever the actual distribution of the error term in the IV equation.

An alternative means of implementing the PBS approach is to use the market option price as the
dependent variable and estimate the parameters of the IV equation by the method of non-linear least
squares (NLLS). A problem we identify with this method is one of model incoherency. The model that
underlies the method of NLLS can be shown to be incoherent in the sense that the IV equation that is
estimated does not correspond to the set of option prices used to estimate it. Hence NLLS estimation
of the IV equation is inconsistent. This may be verified by applying the Hausman test to establish that
the IV equation estimated using NLLS is systematically different from that estimated using OLS with
IV data.

In this paper, the Monte Carlo method is used to verify that: standard PBS gives biased
option values; using standard (log-linear) PBS with smearing corrects the bias, both in-sample and
out-of-sample; NLLS gives biased option values, but the bias is less severe than with standard PBS.
We also compare other standard measures of performance (MAE and MSE) for each of these prediction
measures. We are led to conclude that, of the range of possible approaches to implementing PBS,
standard (log-linear) PBS with smearing is preferred on the basis that it is the only approach that
results in unbiased valuations, and also performs well in terms of precision.

In Section 2, we outline the PBS method. In Section 3, we outline Duan (1983) smearing method,
and explain how it can be applied to the PBS method. In Section 4, we consider how the IV equation
can be estimated by NLLS applied to option prices. In Section 5 we consider the problem of estimating
the IV equation using data from a cross-section of options traded on a particular day. In Section 6 we
use estimates from one of the IV equations estimated in Section 5 to design a data generating process
(DGP) for a Monte Carlo experiment whose purpose is to evaluate the relative performance of the
various prediction methods considered earlier. The principal focus is on which method yields unbiased
predictions. Section 7 concludes.

2. The PBS Method

There are three steps in the implementation of the PBS model. The first step is to compute the
implied volatility of each option in the sample using (the inverse of) the Black-Scholes formula. That is,
to find the implied volatility of call option i, we compute the value of σi that causes the following
equality to be satisfied:

Ci = CBS
i (σi) (1)
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where Ci is the market price of call option i, and CBS
i (·) is the Black-Scholes valuation of call option i.2

Second, simple ordinary least squares (OLS) is used to run a regression of implied volatilities on
different polynomials in time-to-expiry and strike price. This regression model is sometimes referred
to as the “DFW implied volatility (IV) equation”, having been introduced by Dumas et al. (1998).
The most general IV equation appearing in the literature is

σ(θ) = θ0 + θ1K + θ2K2 + θ3τ+ θ4τ
2 + θ5Kτ+ εIV (2)

where σ is implied volatility, K is the strike price, and τ is time to expiry.
Finally, the fitted values for IV are obtained as

σ(θ̂) = θ̂0 + θ̂1K + θ̂2K2 + θ̂3τ+ θ̂4τ
2 + θ̂5Kτ (3)

where hats indicate OLS estimates. These fitted values are plugged back into the Black-Scholes formula
to obtain the PBS prices.

CPBS = CBS(σ(θ̂)) (4)

There is a logical problem with (2), since it does not restrict the implied volatility to be positive.
Hence there is a possibility that the fitted values (3) take negative values and this would result in
meaningless predictions of option prices when (4) is applied. We will address this problem by assuming
a log-linear form for the IV equation3:

ln[σ(θ)] = θ0 + θ1K + θ2K2 + θ3τ+ θ4τ
2 + θ5Kτ+ εIV (5)

Let the vector of estimates from (5) be θ̂log IV. Given fitted values from (5), ln [σ(θ̂log IV)], an obvious
procedure for obtaining predicted option prices is to use the following analogue of (4);

CPBS,log IV = CBS
[
exp

(
ln

[
σ(θ̂log IV)

])]
(6)

Christoffersen and Jacobs (2004, p. 298), make a very important point when outlining the PBS
procedure: “It is clear that simply plugging σ(θIV) into the Black-scholes formula will yield a biased
estimate of the observed call price. While OLS will ensure that E[εIV] = 0, the non-linearity of the
dollar option price in volatility and thus in εIV implies that E[C] , CBS(σ(θIV)).” This problem arises
if either (4) or (6) is used, and is because (4) and (6) are both non-linear functions of the predicted
implied volatility.

To our knowledge, no correction has ever been made for this problem. This motivates us to apply
the smearing technique (Duan 1983) to correct the bias. This approach to correcting the bias was first
suggested by Yin (2018).

3. The Smearing Method in Prediction

Consider the regression model:

yi = xi
′β+ ui i = 1, . . . , n (7)

2 The Black-Scholes formula (Hull 2011) also contains as arguments: current price of the underlying; strike price; time-to-expiry,
risk-free rate. Since the focus here is on volatility, we suppress these arguments and express the option value as a function of
only the volatility of the underlying, σ.

3 The log-linear form (5) is clearly a new and untested class of implied volatility function. However, since ln(·) is a monotonically
increasing function, any non-monotonic pattern in the original IV function (such as the well-known “volatility smile”) is
obviously reproduced (albeit with a different shape) when the log of IV is used. Other authors (e.g., Andreou et al. 2014)
address the negativity problem by applying a lower bound on predicted IV, using for example max(σ(θ̂), 0.01) in place of
σ(θ̂) in (4). On Monte Carlo evidence, we find that this approach tends to exacerbate biases in option values. For this reason,
and also because the lower-bound correction is ad-hoc, we prefer the log-linear approach.
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Suppose that Equation (7) is estimated by OLS, resulting in predictions ŷi and residuals ûi. But assume
that we are interested in predicting not y, but some non-linear function f (y) of y. We could just use
f (ŷ) for this. However, this gives biased predictions unless the function f (·) is linear.

Duan (1983) proposed the “smearing” formula which is as follows:

f̂i =
1
n

n∑
j=1

f (ŷi + û j) (8)

The important feature of the smearing formula (8) is that each observation (i) is predicted using the
mean of a quantity involving the OLS prediction of yi and all of the n residuals (û j, j = 1, . . . , n).
Consistency of the smearing estimator (8) is proved by Duan (1983). It is classified as a non-parametric
method, since it gives rise to consistent predictions whatever the distribution of the error term (u) in
the regression model.

To see exactly how smearing may be applied to the PBS model, consider regression Equation (2)
above. The fitted values from this regression, σi(θ̂), are given by (3). Further, let the residuals be ε̂i.
The prediction of the price of option i, with smearing, is given by

CPBS,SM
i =

1
n

∑n

j=1
CBS

i (σi(θ̂) + ε̂ j) (9)

As noted in Section 2, a problem with (3) is that it is possible for the predicted IV to be negative, giving
rise to meaningless predictions. With (9), this problem is more serious. Even in a situation in which all
of the predicted IV’s are positive, it is highly likely that the lowest predicted IV’s become negative
when negative residuals are added to them, making some terms of the sum in (9) meaningless.

This problem is avoided if smearing is instead applied to (5) and (6). Letting the residuals from (5)
be ε̂i, the prediction with smearing is

CPBS,log IV,SM
i =

1
n

∑n

j=1
CBS

i

[
exp (ln

[
σi(θ̂log IV)

]
+ ε̂ j)

]
(10)

In (10) all terms contained in the outermost brackets are positive, as required. In Appendix B, we provide
the STATA code that is required to implement (10) using a cross-section sample of call options.

The smearing technique can also be applied to the problem of out-of-sample prediction. Consider
option n + 1 that does not appear in the estimation sample. Equation (10) can be extended to predict
the value of option n + 1, as follows:

CPBS,log IV,SM
n+1 =

1
n + 1

∑n+1

j=1
CBS

n+1

[
exp (ln

[
σn+1(θ̂log IV)

]
+ ε̂ j)

]
(11)

where ε̂n+1 = 0, that is, the residual for the out-of-sample option is set to zero in the smearing formula.

4. Estimation of the IV Equation by NLLS on Option Price Data

An alternative method for estimating the parameters of the IV equation, (2) or (5), is to apply
non-linear least squares to the option price data. Again consider a cross section of call option prices
Ci, i = 1, . . . , n. The NLLS estimator of the IV equation parameters, θ, defined in (2) above, is given by

θ̂NLLS = argmin
θ

n∑
i=1

[
Ci −CBS

i (σi(θ))
]2

(12)

A problem we identify with this method is one of model incoherency. The model that underlies the
method of NLLS can be shown to be incoherent in the sense that the IV equation that is estimated
does not correspond to the set of option prices used to estimate it. Hence NLLS estimation of the IV
equation is inconsistent.
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The problem is explained as follows. The non-linear regression model underlying (12) is

Ci = CBS
i (σi(θ)) + εi (13)

The essential difference between (13) and the standard PBS model based around (2) is that while in (2)
a stochastic term is applied to the IV equation, in (13) IV is treated as deterministic and the stochastic
term is instead applied to the option value.

The problem with (13) is that, unless the error term (εi) is identically zero, it violates the identity
that defines implied volatility, namely,

Ci ≡ CBS
i (σi(θ)) (14)

Put differently, as soon as a non-zero error term is applied to an option price, the option price becomes
inconsistent with the implied volatility appearing in brackets on the RHS of (13).

This means that the implied volatility surface estimated using NLLS will not provide implied
volatilities that correspond to the option prices used to estimate it. Hence the NLLS estimator of the
volatility surface is inconsistent.

This may be verified by applying the Hausman (Hausman 1978) test to establish that the IV equation
estimated using NLLS is systematically different from that estimated using log-linear regression on IV
data. The formula for the Hausman test statistic is

H = (θ̂log IV − θ̂NLLS)
′
(V̂log IV − V̂NLLS)

−1
(θ̂log IV − θ̂NLLS) (15)

where V̂log IV and V̂NLLS are the estimated variance matrices of the two estimators. Let k be the
dimension of θ. If H > χ2

k,0.05, there is evidence that θ̂NLLS is systematically different from θ̂log IV.

5. Estimation of IV Equations Using Real Data

In this section, we apply the various models to estimate the IV equation using data on S&P500 call
options from a single arbitrarily chosen day. The chosen day is 27 July 2000. Data on 51 call options
traded on this day are available.4 The full data set is presented in Appendix A.

In Table 1, we report the estimated IV equations resulting from four different models. In Model 1
it is simply assumed that all options have the same IV, equal to the mean of IV taken over all options;
this mean is 0.182. Note that this is actually a standard PBS model with no explanatory variables in the
IV equation, and is therefore a flat implied volatility surface.

One reason for selecting the chosen day as the data source is that it gives rise to an interesting
implied volatility surface in the sense that most of the coefficients in the implied volatility equation are
estimated as significantly different from zero. In particular, the coefficients of K and K2 (respectively
significantly negative and significantly positive in all models in which they appear) represent strong
evidence of the well-known “volatility smile”.

Model 2 is the IV equation used in the standard PBS method, that is, an equation with IV as
the dependent variable, and K, K2, τ, τ2, and Kτ as explanatory variables. Model 3 is the same as
Model 2 but with log(IV) as the dependent variable. Figure 1 compares predicted IV from Models 2
and 3. The two curves are broadly similar, both displaying the “smile”, although perhaps interestingly,
the lowest point of the latter is somewhat to the right of that of the former. Model 3 is the model in
which we are most interested, since this is the model whose estimates we use as the basis of the DGP
for the Monte Carlo study reported in the next section.

4 The data is extracted from OptionMetrics http://www.optionmetrics.com/.

http://www.optionmetrics.com/
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Table 1. Estimation Results. Implied volatility (IV) equations from various models: (1) Linear regression
with IV as dependent variable and no explanatory variables; (2) Linear regression with IV as dependent
variable and standard set of explanatory variables; (3) log-linear regression with log(IV) as dependent
variable and standard set of explanatory variables; (4) non-linear least squares estimation of log(IV)
equation with option price as the dependent variable. Hausman test tests for systematic difference
between estimates from Models 3 and 4. Data is from 51 options traded on 27 July 2000 (See Appendix A
for complete data set).

Variable
Model 1 Model 2 Model 3 Model 4

IV Mean Only IV (Standard PBS) Log(IV) (Log-Linear PBS) NLLS (Log IV)

K −0.00414 *** −0.0168 *** −0.00626 ***
(−8.91) (−8.85) (−4.55)

K2 0.00000131 *** 0.00000517 *** 0.00000159 **
(7.98) (7.72) (3.27)

τ 1.104 *** 3.978 *** −0.256
(4.34) (3.83) (−0.38)

τ2 0.0262 −0.136 −0.421 **
(0.49) (−0.62) (−3.48)

K * τ −0.000668 *** −0.00222 ** 0.000594
(−3.76) (−3.06) (1.24)

constant 0.182 *** 3.426 *** 11.72 *** 4.003 ***
(50.33) (10.42) (8.73) (4.10)

σ 0.0259 0.00692 0.0282
n 51 51 51 51

R2 0 0.936 0.954

Hausman χ2(5) (p-value)
516.0

(0.0000)

t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 1) and Log-linear PBS (Model 3 in Table 1). τ and τ2 fixed at sample means. Vertical line drawn at
current underlying price.

It is informative to examine the residuals from Model 3. A histogram of these residuals is presented
in Figure 2, with a normal distribution superimposed. The histogram suggests that the distribution
of residuals is negatively skewed. With this in mind, the Monte Carlo study reported in the next
section includes a DGP with a negatively skewed error. For good measure, we also include DGPs with
symmetric and positively skewed errors.
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Figure 2. Histogram of residuals from log-linear model (Model 3 in Table 1). Normal density superimposed.

Model 4 applies NLLS to the problem of estimating the parameters of the log(IV) equation the
using option price data. It is noted that the estimates from Model 4 appear somewhat different from
those of Model 3. One reason for this difference was explained in Section 4: an incorrect equation for
log(IV) is being estimated when NLLS is used. The Hausman test statistic has been obtained using (15)
and confirms the difference: there is overwhelming evidence of a systematic difference between the
two sets of estimates (Models 3 and 4), which confirms that NLLS provides an inconsistent estimate of
the true implied volatility surface.

6. A Monte Carlo Analysis of PBS with Smearing

In this section, we set out to verify using the Monte Carlo method that the standard PBS is biased
and that PBS with smearing corrects the bias.

For the design matrix (the matrix whose columns are the model’s explanatory variables) we use
the same set of 51 S&P 500 (call) options as used in Section 5. We vertically concatenate this matrix
with itself to give a total of 102 rows: the first block of 51 rows is used for estimation and in-sample
prediction; the second block of 51 observations is used for out-of-sample prediction.

For the data generation process, we use the estimates from the third column of Table 1. That is,
the data generating process for IV is

ln (IVi) = 11.72− 0.0168Ki + 0.000005K2
i + 3.98τi − 0.136τ2

i − 0.0022Kiτi + εi
V(εi) = 0.02822

i = 1, . . . , 102
(16)

We make three different assumptions about the distribution of the error term in (16): normal; positive
skew; negative skew. For the skewed errors, we use a suitably standardised chi-squared (3) distribution.5

Having generated a sample of Implied Volatilities, the Black-Scholes formula is then applied to
each of them to generate the sample of option prices.

Table 2 presents the results from the Monte Carlo analysis. For each of the three distributional
assumptions, we perform 10,000 replications. We then compute the mean of the following three

5 For the positively skewed error, we simulate εi = 0.0282× (χ2(3) − 3)/ √6 . For the negatively skewed error, we apply the
same formula with the sign reversed. Note that these skewed distributions have the same mean and variance as the normal
error N(0, 0.02822) used for the symmetric case.
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quantities over the 10,000 replications, where predictions (Ĉi) for each model have been obtained both
in-sample and out-of-sample:

BIAS : 1
n
∑n

i=1 (Ĉi −Ci)

MAE : 1
n
∑n

i=1

∣∣∣Ĉi −Ci
∣∣∣

MSE : 1
n
∑n

i=1 (Ĉi −Ci)
2

(17)

Table 2. Monte Carlo Results. Models correspond to Models 1–4 in Table 1. The data generating
process (DGP) combines Equation (15) and design matrix presented in Appendix A. Distribution of
error is explained in footnote 5. There are 10,000 Replications for each result set. Means over 10,000
replications taken: bias (of predicted option prices); mean absolute error (MAE); mean squared error
(MSE). Results were obtained using simulate command in STATA with random number seed 87654321.

(1) PBS MEAN (2) PBS IV (Standard PBS) (3) PBS LogIV SMEARING (4) NLLS

Symmetric error:

In sample:
BIAS 0.0972 0.0127 0.0005 −0.0031
MAE 2.4102 0.6714 0.6428 0.6324
MSE 9.5759 0.9086 0.8262 0.7435

Out of sample:
BIAS 0.0937 0.0092 −0.0033 −0.0067
MAE 2.4147 0.7640 0.7413 0.7681
MSE 9.6238 1.2787 1.1951 1.2787

Negatively skewed error:

In sample:
BIAS 0.0965 0.0129 0.0007 −0.0028
MAE 2.4081 0.6269 0.5983 0.5891
MSE 9.5111 0.8620 0.7798 0.7017

Out of sample:
BIAS 0.0979 0.0143 0.0018 −0.0015
MAE 2.4132 0.7096 0.6891 0.7118
MSE 9.5551 1.2064 1.1290 1.1948

Positively skewed error:

In sample:
BIAS 0.0974 0.0127 0.0005 −0.0033
MAE 2.4137 0.6510 0.6188 0.6113
MSE 9.6282 0.9629 0.8786 0.7908

Out of sample:
BIAS 0.0959 0.0112 −0.0013 −0.0049
MAE 2.4176 0.7385 0.7119 0.7120
MSE 9.6708 1.3516 1.2623 1.3573

Because the focus of the paper is correcting the bias of PBS, we will start by focusing on the bias.
We first see in Table 2 that standard PBS (PBS IV) always has a considerably smaller bias than the PBS
mean. This simply tells us, unsurprisingly, that a model that assumes that the volatility surface is flat
(i.e., PBS mean) leads to severely biased prediction of option prices. However, we also see that the bias
of PBS with smearing is–again in every case—considerably lower than the bias of standard PBS. This is
exactly the result we set out to verify.

Turning to NLLS, we see that the bias of NLLS is also lower than that of standard PBS, but the
bias of NLLS is larger than that of PBS with smearing in every case but one. Broadly, on the criterion of
unbiasedness, PBS with smearing is the best method of the ones considered.
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Clearly we are not only interested in the bias—we are also interested in precision. Standard
measures of precision are MAE and MSE defined in (17) above. In Table 2, we see that the MSE of
PBS with smearing is—yet again in every case–lower than that of standard PBS. NLLS, when used to
predict in-sample, tends to have the smallest MAE and MSE. However, in the perhaps more important
setting of out-of-sample prediction, PBS with smearing has the smallest MAE and MSE.

Overall, we may conclude that, of the prediction methods considered, PBS with smearing is
preferred because it is the closest to being unbiased, and it also has the highest precision when used to
predict out-of-sample.

Finally, we can use the Monte Carlo experiment to verify that NLLS estimates the incorrect IV
surface, as postulated in Section 4. In Section 5, in the context of a single sample, the Hausman test
was used to establish that the NLLS estimate was systematically different from the estimate from
log-linear regression. In the context of the Monte Carlo study, a more direct test is possible. We
apply Wald Testing procedure6 to test the null hypothesis that the parameters estimated by NLLS
equal the “true” parameters of the IV equation which appear in (16). Such a test is performed for
each replication, and then we compute the proportion of the tests that result in rejection of the null
hypothesis. The results are presented in Table 3.

Table 3. Further Monte Carlo Results. Proportion of replications in which null hypothesis is rejected by
Wald Test. Null Hypothesis is that each parameter equals its true value under the DGP. Nominal test
size 0.05, with 10,000 replications.

Distributional Assumption P(Reject H0) with Log-Linear Regression P(Reject H0) with NLLS

Symmetric error 0.052 0.473
Negatively skewed error 0.053 0.396
Positively skewed error 0.054 0.399

For good measure, we conduct a similar test (F-test) using the estimates from the log-linear
regression model. The first column contains the proportion of rejections of this test, and the numbers
in this column simply tells us that the F-test has actual size close to nominal size (0.05), whether or
not the error is normally distributed. The second column contains the proportion of rejections of the
Wald Test when NLLS is used. These numbers are clearly much higher, and tell us that in nearly half
of the simulated samples, there was sufficient evidence to conclude that the NLLS estimates were
significantly different from the true values. These numbers can be interpreted in terms of test power.
Clearly power is limited by the low sample size of 52, and power could be increased by raising the
sample size.

The numbers in the second column of Table 3 tell us that it is reasonably likely that the NLLS
estimates will be significantly different from the “true” parameters of the IV equation, even with a
modest sample size.

7. Conclusions

This paper has, for the first time, addressed the problem of bias in the standard application of the
Practitioner Black-Scholes method. The bias arises from the fact that the method uses a non-linear
transformation of predictions from a linear regression model. The method used to correct this bias is
the smearing method introduced by Duan (1983). The smearing method is non-parametric and has
been proved by Duan to yield consistent predictions under a range of distributional assumptions.

The Monte-Carlo method has been used to verify that the application of smearing to the PBS
method does indeed correct the bias. The bias of the predictions from PBS with smearing is considerably

6 The Wald test can be applied following estimation of a NLLS model in STATA by using the test command immediately after
the nl command.
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lower than that of standard PBS, both in-sample and out-of-sample, and we have verified that this
result is robust to distributional assumptions.

The Monte Carlo approach is clearly very useful for addressing the type of question of interest
here. This is partly because the “true” model determining option prices is known, enabling clear
measurement of the prediction bias from the models of interest.

It must be said that NLLS applied to option prices is another approach that performs well on the
criteria considered. However, in Section 4 we raised a separate problem with NLLS—incoherency. This
problem arises because the manner in which the random error term is introduced causes the option
prices to be inconsistent with the implied volatilities appearing in the same model. This essentially
means that the implied volatility surface estimated under NLLS is incorrect. This was verified in the
Monte Carlo study. However, despite this problem, NLLS results in option price predictions that are
close to being unbiased and relatively precise.

This leads us to the recommendation that if the implied volatility surface is the focus of the
analysis, NLLS on option prices should be avoided, and log-linear regression should be used. If the
focus is instead on accurate prediction of option prices, NLLS can reliably be used. However, log-linear
PBS with smearing has been shown to perform even better under most of the situations considered.
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Appendix A Data Used for Single Day Estimation in Section 5

Table A1. Data on 51 call options traded on 27 July 2000. C is price of option (mid-point between bid
and ask); S is current price of underlying (S&P 500 index); K is strike price; rf is risk-free rate; tau is
time to expiry in years; IV is implied volatility. Data Source: https://optionmetrics.com/data-products/.

t Date Expirydate C S K rf tau iv

1 27 July 2000 16 December 2000 40.5 1449.62 1550 0.0598 0.3890411 0.18459306
2 27 July 2000 16 September 2000 2.875 1449.62 1600 0.0598 0.139726 0.16379156
3 27 July 2000 19 August 2000 8.125 1449.62 1500 0.0598 0.0630137 0.16414911
4 27 July 2000 16 December 2000 7 1449.62 1700 0.0598 0.3890411 0.16543757
5 27 July 2000 19 August 2000 12.625 1449.62 1485 0.0598 0.0630137 0.16855563
6 27 July 2000 19 August 2000 157.125 1449.62 1300 0.0598 0.0630137 0.29000379
7 27 July 2000 19 August 2000 133 1449.62 1325 0.0598 0.0630137 0.26658718
8 27 July 2000 19 August 2000 26.375 1449.62 1455 0.0598 0.0630137 0.18138442
9 27 July 2000 16 September 2000 14.75 1449.62 1525 0.0598 0.139726 0.17296152

10 27 July 2000 16 September 2000 47.25 1449.62 1450 0.0598 0.139726 0.19113849
11 27 July 2000 19 August 2000 18.625 1449.62 1470 0.0598 0.0630137 0.1738262
12 27 July 2000 16 September 2000 36.125 1449.62 1470 0.0598 0.139726 0.18486601
13 27 July 2000 21 October 2000 6.25 1449.62 1625 0.0598 0.2356164 0.16558332
14 27 July 2000 19 August 2000 109.125 1449.62 1350 0.0598 0.0630137 0.24189121
15 27 July 2000 19 August 2000 1.625 1449.62 1545 0.0598 0.0630137 0.15661302
16 27 July 2000 19 August 2000 11.125 1449.62 1490 0.0598 0.0630137 0.16827447
17 27 July 2000 16 December 2000 31.75 1449.62 1575 0.0598 0.3890411 0.18067305
18 27 July 2000 19 August 2000 14.5 1449.62 1480 0.0598 0.0630137 0.17055967
19 27 July 2000 19 August 2000 3.6875 1449.62 1525 0.0598 0.0630137 0.1615991
20 27 July 2000 17 March 2001 61.375 1449.62 1575 0.0598 0.6383561 0.19218853
21 27 July 2000 16 December 2000 13.5 1449.62 1650 0.0598 0.3890411 0.17021512

https://optionmetrics.com/data-products/
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Table A1. Cont.

t Date Expirydate C S K rf tau iv

22 27 July 2000 19 August 2000 1.3125 1449.62 1550 0.0598 0.0630137 0.15584699
23 27 July 2000 16 September 2000 63.625 1449.62 1425 0.0598 0.139726 0.20124521
24 27 July 2000 16 September 2000 38.875 1449.62 1465 0.0598 0.139726 0.18695045
25 27 July 2000 19 August 2000 16.5 1449.62 1475 0.0598 0.0630137 0.17231101
26 27 July 2000 17 March 2001 5.125 1449.62 1850 0.0598 0.6383561 0.16320811
27 27 July 2000 16 December 2000 62.625 1449.62 1500 0.0598 0.3890411 0.19390107
28 27 July 2000 16 September 2000 23 1449.62 1500 0.0598 0.139726 0.17839537
29 27 July 2000 19 August 2000 31.875 1449.62 1445 0.0598 0.0630137 0.18350645
30 27 July 2000 16 September 2000 1.5 1449.62 1625 0.0598 0.139726 0.1619217
31 27 July 2000 19 August 2000 35 1449.62 1440 0.0598 0.0630137 0.18568564
32 27 July 2000 16 December 2000 4.75 1449.62 1725 0.0598 0.3890411 0.16223686
33 27 July 2000 16 December 2000 3.125 1449.62 1750 0.0598 0.3890411 0.15914554
34 27 July 2000 16 December 2000 9.5 1449.62 1675 0.0598 0.3890411 0.16608682
35 27 July 2000 16 September 2000 19.375 1449.62 1510 0.0598 0.139726 0.17603378
36 27 July 2000 19 August 2000 2.0625 1449.62 1540 0.0598 0.0630137 0.15860899
37 27 July 2000 16 December 2000 18.125 1449.62 1625 0.0598 0.3890411 0.17263715
38 27 July 2000 19 August 2000 29.125 1449.62 1450 0.0598 0.0630137 0.18295443
39 27 July 2000 16 September 2000 81.125 1449.62 1400 0.0598 0.139726 0.20730415
40 27 July 2000 21 October 2000 20.625 1449.62 1550 0.0598 0.2356164 0.17530438
41 27 July 2000 16 September 2000 33.875 1449.62 1475 0.0598 0.139726 0.1846462
42 27 July 2000 16 September 2000 100.625 1449.62 1375 0.0598 0.139726 0.21527798
43 27 July 2000 16 December 2000 24.25 1449.62 1600 0.0598 0.3890411 0.1764836
44 27 July 2000 19 August 2000 64.75 1449.62 1400 0.0598 0.0630137 0.2074976
45 27 July 2000 19 August 2000 3 1449.62 1530 0.0598 0.0630137 0.15969375
46 27 July 2000 21 October 2000 65.625 1449.62 1450 0.0598 0.2356164 0.19772039
47 27 July 2000 16 September 2000 5.125 1449.62 1575 0.0598 0.139726 0.16519108
48 27 July 2000 16 September 2000 8.875 1449.62 1550 0.0598 0.139726 0.16814606
49 27 July 2000 19 August 2000 45.25 1449.62 1425 0.0598 0.0630137 0.19296223
50 27 July 2000 17 March 2001 35.625 1449.62 1650 0.0598 0.6383561 0.18229888
51 27 July 2000 16 September 2000 41.5 1449.62 1460 0.0598 0.139726 0.18801008

Appendix B

The STATA code required to apply smearing to PBS is as follows. The first three commands
perform the (log-linear) IV regression and obtain the fitted values (log_ivhat), and the residuals (uhat).
The main part of the code is a loop over the sample (using the forvalues command). The predicted
option price is stored in the variable pbs_smearing.

regress log_iv K K2 tau tau2 Ktau

predict log_ivhat, xb

predict uhat, resid

gen d1=.

gen d2=.

gen pbs_smearing=.

quietly{

local N=_N

forvalues j=1(1)‘N’ {

scalar log_ivhat_temp=log_ivhat in ‘j’

scalar S_temp=S in ‘j’

scalar K_temp=K in ‘j’
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scalar r_temp=r in ‘j’

scalar tau_temp=tau in ‘j’

replace d1=(ln(S_temp/K_temp)+(r_temp+(exp(log_ivhat_temp+uhat))ˆ2/2) ///

*tau_temp)/(exp(log_ivhat_temp+uhat)*sqrt(tau_temp))

replace d2=d1-(exp(log_ivhat_temp+uhat))*sqrt(tau_temp)

egen w=mean(S_temp*normal(d1)-exp(-r_temp*tau_temp)*K_temp*normal(d2))

quietly replace pbs_smearing=w if _n==‘j’

drop w

}

}
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