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Abstract: Systematic traders employ algorithmic strategies to manage their investments. As a result
of the deterministic nature of such strategies, it is possible to determine their exact responses to
any conceivable set of market conditions. Consequently, sensitivity analysis can be conducted to
systematically uncover undesirable strategy behavior and enhance strategy robustness by adding
controls to reduce exposure during periods of poor performance/unfavorable market conditions, or
to increase exposure during periods of strong performance/favorable market conditions. In this study,
we formulate both a simple systematic trend-following strategy (i.e., trading model) to simulate
investment decisions and a market model to simulate the evolution of instrument prices. We then
map the relationship between market model parameters under various conditions and strategy
performance. We focus, in particular, on identifying the performance impact of changes in both serial
dependence in price variability and changes in the trend. The long-range serial dependence of the
true range worsens performance of the simple classic trend-following strategy. During periods of
strong performance, the dispersion of trading outcomes increases significantly as long-range serial
dependence increases.

Keywords: trend-following; Monte Carlo; sensitivity analysis

1. Introduction

For the class of market participants employing fully systematic approaches to manage their
investments, it is possible to estimate the outcomes of their strategies in response to any conceivable
set of market conditions. Sensitivity analysis may uncover undesirable strategy behavior and can be
used to enhance strategy robustness.

Systematic traders often use sensitivity analysis to identify the set conditions under which the
trading system will operate within acceptable bounds. In this study, we refer to this set of conditions as
the operational domain of the strategy (for a specific set of trading model parameters). The broader the
spectrum of market conditions over which a trading system can perform within acceptable performance
bounds (i.e., the broader the operational domain of the strategy), the more robust the trading system.

In general, the operational domain of a trading strategy can be broadened through the introduction
of feedback and feed-forward risk controls. Feedback risk controls operate to reduce the impact of
unpredictable phenomena or events on strategy performance, while feed-forward controls exploit
regularities in market structure to make local predictions that aid in the enhancement of strategy
performance. We use feedback controls when poor trading performance is not driven by something
we can predict. We use feed-forward controls when we understand the drivers of poor performance
and there is enough persistence in the market conditions for us to effectively anticipate future
poor performance.

In the following sections, a simple systematic investment approach—a so called trend-following
strategy (Hurst et al. 2017)—is explored through the use of Monte Carlo simulation. In particular, a
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market model is specified and used to generate realistic realizations of financial instrument prices
across of broad spectrum of market conditions. Sensitivity analysis is then conducted, mapping the
relationship between market model parameters and the strategy performance under a particular set of
trading model parameters.

The market model (i.e., the model used to simulate instrument prices) has been designed to
capture a set of essential stylized facts believed to be critical to the effective functioning of the strategy.
As a model is a simplification of reality by definition, we do not attempt to reproduce all empirical
stylized facts. We limit the complexity and scope of the work by focusing on the instrument-level
strategy. Portfolio-level meta-strategies that determine how to allocate across instrument-level strategy
instances are not explored.

Typically, systematic traders backtest the strategies that they employ (i.e., they use historical
data to evaluate potential performance). Such backtesting allows systematic traders to determine the
response of a strategy to the exact mix of market conditions that actually occurred, but not the response
of a strategy to conditions that have not yet occurred, or that may occur in different proportions in the
future (De Prado 2018). Typically, the longer the historical period used, the more varied the market
conditions, and the more likely that historical data can be used to build a relatively complete picture of
the operational domain.

There are two main ways to supplement the historical data available for testing, namely market
model-based Monte Carlo simulation, and Monte Carlo resampling. In this study, we focus on the
former approach to explore the characteristics of a simple trend-following strategy.

In order to simulate financial prices, a market model is designed, implemented, and calibrated to
financial market data. The market model reproduces key well-established stylized facts, particularly
focusing on time-varying, serially dependent price variability. Trading strategy sensitivities are created
by simulating price and true range scenarios—consisting of many realizations—for a range of key
market model parameters, then computing the performance of the trading strategy for all realizations
under each scenario.

The paper is motivated by the need for decision support tools that can be used to improve the
robustness of systematic trading systems and by the lack of literature addressing this key aspect of the
work of systematic investors. By using the methods in this study, a systematic investor may evaluate
the performance of different trading strategies against varying market conditions. The application of
this technique is likely to lead to improved systems that are more robust to market changes.

Stylized Facts

There exists a vast literature on the empirical characteristics of financial markets, documenting
extensively the basic stylized facts. A similarly broad literature also exists on the derivation of financial
derivative sensitivities. To price and risk manage products with path-dependent payoffs similar to
a trend-following strategy, Monte Carlo simulation is often required. Despite a seemly obvious link
between the analysis of systematic trading strategies and the analysis of replication strategies used to
manufacture financial derivative products, little published work exists leveraging the findings in these
two areas of research to the analysis of systematic trading strategies.

Although the scope of this study does not allow for a detailed exploration of the stylized facts, a
number of comprehensive surveys exist (Bollerslev et al. 1992; Brock and de Lima 1996; Pagan 1996;
Cont 2001; Farmer and Geanakoplos 2009; Gourieroux and Jasiak 2001; Rao and Maddala 1996; Pagan
1996; Shephard 1996). The most basic and commonly agreed upon facts upon which we rely in this
study are as follows: (1) price returns of financial instruments are not serially correlated whereas return
variability is; (2) the unconditional distributions of returns are heavy-tailed, and; (3) price variability
for all financial instruments is time-varying.

Figure 1 provides an example of the insignificant log return serial correlation with significant
true-range serial correlation (first stylized fact). Notice that the autocorrelation of the true range decays
very slowly. A similar pattern is found for all common measures of price variability. In the model
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calibration section, we outline the scaling law that describes the pattern in the autocorrelation and
specify a model to simulate this behavior.
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Heavy right-tailed distributions, P(X > x), are those distributions with tails that decay slower than
an exponential distribution. The definition for a heavy left-tail distribution is analogous, P(X < −x). A
log-normal distribution is a heavy-tailed distribution. Figure 2 illustrates for three instruments in the
data set that their shapes are approximately log-normal. A similar pattern is found for the log returns
of all global futures instruments studied herein.
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The third stylized fact indicates that price variability of instruments is time-varying. Figure 3
shows the true range of the same instruments in Figure 2. That variability is non-constant over time,
and the pattern persists across the global futures instruments studied.
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2. Materials and Methods

2.1. Data Acquisition and Transformation

Futures contracts for 115 distinct markets over the period between 1 January 1999 and 5 May 2017
were acquired from Commodity Systems Incorporated (CSI). For each instrument, a back-adjustment
process was used to build a continuous series, then a volatility-normalized total return index accounting
for changes in prices and the impact of ‘rolls’ was constructed. It is important to note that the total
return of a long-term position taken using futures instruments must account for so-called ’rolls’.
As futures contracts have finite maturities, to take a long-term position, a trader must trade a series
of individual futures contracts. Traders must repeatedly extend the maturity of their positions by
executing spread trades that close positions nearing expiry and open equivalent positions in contracts
with greater maturity. The process of converting a position about to expire into a position with an
expiry further into the future (thereby extending the maturity) is commonly referred to as a ’roll’.
The maturity profile associated with particular roll parameters is an important determinant of total
return in futures-based strategies.

Figure 4 depicts the total return index for each of the global futures markets in the upper half
of the figure and the corresponding true range for the volatility-normalized total return indices in
the lower half. The true range is a commonly used measure of the daily price range of a financial
instrument that accounts for gaps from the close of the previous period to the opening of the current
period (Equation (1)) where Pt,H and Pt,L are the current daily high and low prices respectively, and
Pt−1 is the previous closing price.

Rt = max[Pt,H − Pt,L, |(Pt,H − Pt−1)|, |(Pt,L − Pt−1)|] (1)

The index for each instrument represents the total return on a re-balanced position sized to equate
a move of four units of price variability (i.e., average true range) to a 1% loss. Positions are rebalanced at
each roll. Use of the volatility-normalized total return index facilitates comparison of model parameters
across the instrument universe and was also used to meet the data agreement conditions of the vendor.
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2.2. Software

This study leveraged the R bookdown package (Xie 2016), which was built on top of R Markdown
and knitr (Xie 2015). All of the code used to generate this study is available on the project github page:
https://github.com/dgn2/IS609. The file descriptions follow.

1. buildGlobalFuturesDataset.R: Extracts data from a MySQL database and builds the R data set.
2. establishStylizedFacts.R: Used to explore the stylized facts.
3. calibrateMarketModelLRD_log.R: Calibrates the market model.
4. selectTradingModelParameters.R: Used to explore the trading model parameters via brute

force search.
5. simulateMarketModelLRD_rerun_2.R: Simulates the market model and computes the sensitivities.

As a single run of the simulation produces nearly 28 gigabytes of data, it is not possible to make
the full result set available on github. Key results and data have been uploaded to github. The project
R Markdown files (.Rmd) assemble the visualization and text comprising the study.

2.3. Market Model Specifications

We define and use a simple discrete time model to simulate a broad set of market conditions. Each
scenario consists of realizations of both price and true range. Equation (2) is the discrete time process used
to generate price realizations for a single instrument. In this equation, t = 1 . . . T, ∆t = 1/T, εt ~ N(0,1), σt is
the time-varying volatility, and µis the constant drift for the instrument over time period, T.

Pt = Pt−1exp(µ∆t + σtεt) (2)

The volatility is a function of the observed true range, Rt (Chou 2005) as shown in Equation (3).

σt = (π/8)5
× Rt (3)

Similar to the work of (Chou 2005; Brunetti and Lildholdt 2007), we extend a model originally
designed for the modeling of duration time series to a time-varying price range. Following (Beran et al.
2015), the true range at time, t, is given by Equation (4). In this equation, v is a scale parameter (v >

0), λt is the conditional mean of the true range (λt > 0) divided by v, and ηt is an independent and
identically distributed (i.i.d) log-normal random variable.

Rt = vλtηt (4)

After subtracting the unconditional mean, log(v), the log true range is represented as a zero
mean FARIMA(p,d,q) process (Equation (5)) with innovations e = log(ηt), given by Equation (6).
In Equation (6), d is the long memory parameter (0 < d < 0.5); B is the back-shift (or lag operator);
and φ(z) =1 − φ1z − . . . φpzp, ψ(z) = 1 + ψ1 + . . . + ψqzq are MA- and AR-polynomials with all roots
outside the unit circle. The back-shift operator is used for notational convenience where Bmxt = xt=m.
This notation allows (even infinite) distributed lags to be represented concisely.

Zt = log(Rt) − log(v) = log(λt) + et (5)

(1 − B)dφ(B)Zt = ψ(B)et (6)

Denoting log(λt) as ζt and rearranging, we can see that the conditional mean of Zt yields
Equation (7), where E(ζt) = 0.

ζt = log(λt) = [φ−1(B)ψ(B)(1 − B)−d − 1]et (7)

https://github.com/dgn2/IS609
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The autocorrelations of Zt exhibit a hyperbolic decay (Figure 2), the speed of which depends upon
the parameter d as in Equation (8) where cp

Z > 0 is a constant.

ρ(k) ~ cp
Z|k|2d − 1 (8)

The general class of models defined by Equations (5) and (6) are referred to as exponential FARIMA
(EFARIMA) models (Beran et al. 2015). Where et are normally distributed, the model is referred to
as a Gaussian EFARIMA model. Setting p = 0 and q = 0, the innovations, e = log(ηt), simplifies to
Equation (9).

(1 − B)dZt = et (9)

This simpler specification is particularly useful for sensitivity analysis.
Our market model has two sources of uncertainty, namely ε and e. Bursts in volatility driven

by the true range process can generate price momentum that looks very similar to that observed in
real markets.

2.4. Market Model Calibration

For each instrument in the universe under study, we fit an EFARIMA(0,d,0) model with log-normal
errors. We then use the cross-section of parameters to define the starting range of parameters for use in
our sensitivity analysis.

Given the definition of our market model (defined above), we observe two processes: Pt and Rt.
We assume that Rt (t = 1, 2, . . . , T) is generated by an EFARIMA process with an unknown parameter
vector in Equation (10).

θ = (v, σe
2, d, φ1, . . . , φp, ψ1, . . . , ψq)T (10)

For the EFARIMA(0,d,0) model, this parameter set reduces to Equation (11).

θ = (v, σe
2, d)T (11)

Since Zt = log(Rt)− log(v) is a centered Gaussian FARIMA process, maximum likelihood estimation
(MLE) can be used to estimate the parameters (Mills 1999; Fox and Taqqu 1986; Giraitis and Surgailis
1990; Beran 1995; Haslett and Raftery 1989). This allows us to use standard, widely-available, estimation
software to calibrate the model (McLeod et al. 2007; Veenstra and McLeod 2015). We assume that the
price process is a function of the volatility, which is in turn a function of Rt and employ the ARFIMA R
package (Veenstra and McLeod 2015) to estimate the parameters of true range for each instrument in
the universe under study (Appendix A). For the vast majority of the instruments in the universe under
study, the estimated d parameter is between 0.15 and 0.35. All parameters are highly significant.

The EFARIMA(0,d,0) model for the true range provides a framework for forecasting the conditional
mean true range. These predictions could replace the EMA smoothed true range in the simple
trend-following system, potentially significantly improving the effectiveness of the position-sizing and
trailing stop loss components of the trading system.

From Figure 5, it is evident that model residuals retain some short-term memory, suggesting that a
EFARIMA(p,d,q) model could provide a better fit. To reduce the dimension of our sensitivity analysis,
we use the simpler model (recognizing that it captures the broader long memory but could likely be
improved with a higher order model).

Using the market model, we simulate a single price and true range path for each instrument
and plot the results to provide an intuitive means of checking the realism of the model (Figure 6).
The simulated paths appear similar to the actual paths depicted previously.
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2.5. Trading Model Specifications

We implement a very simple version of a common systematic trend-following strategy (Curtis 2007).
The instrument-level logic of the trading system has several core components: (1) The entry
signal, determines timing for initiating a position (either long or short) in a particular instrument;
(2) The position sizing algorithm determines the size of a position; and, (3) The trailing stop loss
determines the timing of an exit from a position. Both the position size and the distance of the trailing
stop from the current price level are functions of the true range, Rt. Filters are commonly used to
smooth price series. We use exponentially weighted moving averages (EMAs) to smooth both price
and the true range time series. The core rules of our simple trading model are detailed briefly in the
next two sub-sections.
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2.5.1. Long Position

At t, if the fast EMAt−1,F is above the slow EMAt−1,S and we have no position, we enter a long
position of pt units (Equation (12)).

pt = floor[f At−1 ÷max[ATRt−1 ×M, L]] (12)

Here, f is the fraction of account size plus accrued realized P&L risked per bet (A), ATRt−1 is the
EMA of the true range for the previous time step, M is the risk multiplier, and L is the ATR floor.

We set our initial stop loss level M units of ATR below the entry price level, pt. For each subsequent
time, t, we update our stop level as in Equation (13).

st = max[Pt − ATRt−1 ×M, st−1] (13)

We exit our long position if the price, pt moves below the stop loss level, st−1.

2.5.2. Short Position

At t, if the fast EMAt−1,F is below the slow EMAt−1,S and we have no position, we enter a short
position of pt units (Equation (14)).

pt = −floor[f At−1 ÷max[ATRt−1 ×M, L]] (14)

We set our initial stop loss level M units of ATR above the entry price level, pt. For each subsequent
time, t, we update our stop level as in Equation (15).

st = min[Pt + ATRt−1 ×M, st−1] (15)

Regardless of whether we are long or short, for each trade we budget for a loss of f percent of
our account size plus accrued realized P&L. The effectiveness of this crude risk budgeting system is a
function of the characteristics of the true range. Serial dependence in the true range can transform this
simple mechanism from a feedback control to a feed-forward control.

3. Results

3.1. Parameter Selection

The selection of robust trading model parameters is a complex process. Typically, bootstrapping
inputs, determining the trading model performance for each bootstrapped path for each coordinate
in the parameter space, then averaging the results for each coordinate in the parameter space, vastly
improves the continuity of the space for visualization. Given the computationally intensive nature of
such a task, this type of process can only be achieved through the use of parallel processing. We use a
brute force grid search to get a course understanding of the parameter space.

We first examine the impact of the ATR multiplier on the geometric mean return (Figure 7). Our
interest is not in finding the absolute highest performance, but in selecting a parameter that both
performs well and is located in a reasonably stable part of the parameter space. We select a multiplier
of 4, then search the EMA lookback space. We also select a fast lookback of 120 and a slow lookback of
180 days based on careful evaluation of the results based on graphical analysis.
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3.2. Sensitivity Analysis

Previously, we specified a market model and calibrated it to each instrument in the global futures
universe under study. We then outlined the rules of a simple trading strategy and explored the
parameter space. Now, we use the market and trading models to create sensitivities.

The parameter space of the combined market and trading models is vast. To reduce the dimension
of the problem, an initial study was conducted to coarsely explore the impact of different trading
model parameters on the strategy backtest results (Section 3.1). A set of trading model parameters was
selected from stable areas of the response curves.

Following the selection of the trading model parameters, the range of market parameters observed
over the entire instrument universe under study was examined and used to determine realistic starting
parameter ranges for sensitivity analysis. These ranges were then extended to account for realistic
conditions that may be observed in in the future. Once ranges were selected, another coarse study
was conducted to determine which market model parameters had the largest impact on performance.
Based on these results, the drift (µ) and d parameters were selected for the final sensitivity analysis.
Exactly 1000 paths, each with a 1250 day length (roughly 5 years), were used for all simulations.
The strategy performance measure (TWR) is defined in Appendix B. A single sensitivity simulation
run varying only the drift and d parameters, but holding all other variables constant, generates just
under 28 gigabytes of simulated market model input and trading model output.

Table 1 shows the parameters that are held fixed for the simulations in this Chapter. The drift (µ)
is varied by 0.005 between −0.1 and 0.1. The long memory parameter (d) is varied by 0.05 between 0.05
and 0.45.

3.2.1. Trend Sensitivity

Trend-following strategies operate on the premise that the emergence of a trend in a particular
instrument cannot be predicted. The system is designed to maintain a position in an instrument as
long as it is trending and exit the position when the trend has reversed beyond a multiple of the
typical daily range. Any predictability in the characteristics of true range, is thus expected to enable
strategy enhancement.

First we use our market model defined above to determine the sensitivity of the strategy to
trends of different magnitudes by computing trading model performance under different drift rates
(µ). The profile that emerges from this sensitivity analysis of the strategy performance with respect to
changes in the drift (µ) illustrates the essence of the strategy (Figure 8). From the profile, it is clear that
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as the price moves up or down strongly, the strategy performance increases. The less variability around
the trend, the better the strategy’s performance. Choppy, sideways movement in prices produces a
condition where the strategy repeatedly enters and gets stopped out, generating losses for roughly half
of the paths. Increasing the strength of long range dependence in true range by increasing d increases
the dispersion of results, particularly for very favorable trend conditions (i.e., high drift, µ).

Table 1. Parameter values.

Parameter Value

atrLookback 20
atrMultiplier 4
fastLookback 120

slowLookback 180
longOnly 0

commissionPerShare 0
accountSize 100,000

fPercent 0.01
minRisk 0.001
stopTWR 0.7

nRowsScenario 1250
nPathsScenario 1000

S0 1
T 5

xMean −6.2146
xSigma2 0.15
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Examining sample price paths with the trailing stop and signal superimposed, it is possible to get
some intuition about the result. As we increase the strength of long memory in the true range, the
price paths get visibly more volatile (Figure 9). The stop is the blue line that ratchets behind the price
depicted in black. The red line shows the fast EMA, while the purple line depicts the slow EMA. As
we reduce the drift (in absolute value terms), the strategy gets stopped out more often. Performance
is better on the long side than the short side because price is unbounded on the positive side, but
bounded by zero on the negative side.
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Focusing on the terminal wealth relative curves (See Appendix B for details), one can see that
increasing variation around the trend reduces performance (Figure 10). The impact of increasing d is
largest during strong trend conditions.

3.2.2. Serial Dependence in True Range Sensitivity

Given the observed long range serial dependence in the true range, a natural question arises as
to the sensitivity of the performance of our simple trading model to the strength of autocorrelation.
To determine the link between strategy performance and autocorrelation we perturb the d parameter,
generate price and true range scenarios, then evaluate strategy performance under each scenario.

Counter-intuitively, increasing the long range dependence in the true range increases the dispersion
of outcomes, and for the most part worsens performance. There is a slight improvement in both median
and mean performance as long range dependence decreased. Although it is difficult to determine
the source of this effect without a significant amount of additional research, it seems likely that it is
possible to redesign components of the trading system to exploit the regularity in true range driven by
long range dependence. The model that has been developed in this report should provide a reasonable
starting point for such an endeavor.
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4. Discussion

In this study, we formulated both a simple systematic trend-following strategy (i.e., trading
model) to simulate investment decisions, and a market model to simulate the evolution of instrument
prices. We explored the sensitivity of our strategy to different market conditions (for a particular
set of trading model parameters) and provided a map between the market model parameters for
each scenario representing a particular market condition and strategy performance. In particular, we
focused on identifying the performance impact of changes in (1) serial dependence in price variability,
and; (2) changes in the trend.

The sensitivities derived provide an effective visual depiction of the fundamental profile of the
simple trading strategy and suggest an explanation for the functions of trading model components
commonly found in trend-following strategies. The long-range serial dependence in the true range
appears to worsen performance of the simple classic trend-following strategy. During periods of
strong performance, the dispersion of trading outcomes increases significantly as long-range serial
dependence increases.
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In this study, we are evaluating only one trading strategy based on paths generated by a particular
market model formulation. This is a clear limitation of the work. A systematic trader is likely to evaluate
multiple strategies against both simulated and actual market conditions to evaluate performance and
then conduct robustness checks under various simulated and observed market conditions.

More research is required to determine whether a slightly more complex feed-forward controller
could be created to improve the performance of the strategy by exploiting long memory in the true
range. An extension of our simple single instrument market model to a multiple instrument model
could provide useful sensitivity analysis relating to the cross-dependence between instruments.

The methods and overall algorithm provided in this study may be used by investors to evaluate any
systematic trading strategy. In doing so, investors may compare the performance of different trading
systems under varying market conditions—including those that have not been observed historically.
Application of this technique is likely to improve the robustness of an investor’s trading system.

Author Contributions: Conceptualization, D.N. Validation: L.F.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Item # Instrument Name d log(V) var(e) mu

1 Brent Crude Oil 0.2355 −6.2819 0.1489 0.0092
2 Crude Oil 0.2209 −6.3405 0.17 0.0122
3 Ethanol 0.2809 −6.7159 0.4139 0.0571
4 Gas Oil 0.2198 −6.3044 0.1542 0.0096
5 Gas-RBOB 0.2011 −6.1794 0.1672 0.0022
6 Heating Oil 0.2449 −6.2499 0.1439 0.0099
7 Nat Gas 0.2886 −6.14 0.1594 −0.0022
8 WTI Crude Oil 0.2177 −6.2201 0.3278 −0.0024
9 ECX EUA Emissions 0.3822 −5.7152 0.1031 −0.0142
10 Nat Gas 0.372 −5.8487 0.4072 −0.0386
11 AUDUSD 0.2638 −6.185 0.14 0.0067
12 CADUSD 0.2694 −6.1393 0.1334 0.002
13 CHFUSD 0.2222 −6.1448 0.1587 0.0034
14 EURUSD 0.2132 −6.1638 0.1455 0.0014
15 GBPUSD 0.2373 −6.1258 0.1397 0.0004
16 JPYUSD 0.2847 −6.0951 0.1754 −0.0058
17 NZDUSD 0.183 −6.2719 0.3233 0.0123
18 US Dollar Index 0.183 −6.0317 0.1807 −0.0018
19 EURCHF 0.3317 −6.1226 0.5683 −0.0181
20 EURGBP 0.203 −5.9885 0.4755 −0.0013
21 EURJPY 0.2507 −6.35 0.4758 0.0084
22 BRLUSD 0.2252 −6.5292 0.7088 0.0223
23 CZKUSD 0.0844 −6.5137 1.1831 −0.0043
24 HUFUSD 0.0897 −6.4835 1.1712 −0.0073
25 MXNUSD 0.3382 −6.1907 0.1611 0.005
26 PLNUSD 0.1315 −6.5222 1.1359 0.0062
27 RUBUSD 0.2953 −6.163 0.3264 0.0046
28 ZARUSD 0.1748 −6.2179 0.6859 −0.0049
29 USDKRW 0.273 −6.0789 0.2116 −0.0022
30 Corn 0.3198 −6.0545 0.172 −0.0009
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Item # Instrument Name d log(V) var(e) mu

31 Oats 0.3307 −6.2312 0.2129 0.0118
32 Rough Rice 0.286 −6.0389 0.208 −0.0084
33 Soybean Meal 0.3132 −6.322 0.1647 0.0203
34 Soybean Oil 0.244 −6.1338 0.1459 0.0053
35 Soybeans 0.2783 −6.2305 0.1561 0.0164
36 Wheat 0.2748 −6.0158 0.1416 −0.0066
37 Corn 0.286 −6.5743 0.6159 0.0274
38 Milling Wheat 0.3447 −6.5546 0.6575 0.0339
39 Rapeseed 0.2804 −6.5859 0.5275 0.0166
40 Wheat 0.3195 −6.2202 0.4898 0.0065
41 Dow Jones Industrial (mini) 0.3304 −6.1172 0.1621 0.0105
42 MSCI EAFE (mini) 0.3136 −6.1508 0.2195 0.01
43 Nasdaq 100 (e-mini) 0.3325 −6.1532 0.1491 0.0136
44 Russell 2000 (mini) 0.3029 −6.1539 0.1477 0.0125
45 SP 500 (e-mini) 0.3359 −6.1039 0.1596 0.0089
46 Belgian 20 0.239 −6.0888 0.2724 0.0123
47 CAC 40 0.293 −6.1944 0.1899 0.007
48 DAX 0.2998 −6.2708 0.2117 0.0081
49 DJ Euro STOXX 50 0.309 −6.0845 0.1636 0.0058
50 EOE (Amsterdam) 0.2994 −5.9945 0.1449 0.0028
51 FTSE 100 0.3368 −5.9297 0.1181 0.004
52 IBEX 35 0.2771 −6.2074 0.1749 0.0072
53 MIB FTSE 0.3057 −6.2135 0.1974 0.0011
54 Nikkei 225 0.2941 −6.3303 0.3148 0.0055
55 OMX 0.386 −6.9382 0.165 0.0124
56 SPTSE 60 0.2485 −6.0678 0.1485 0.0113
57 SMI 0.3235 −5.9756 0.1364 0.008
58 SPI 200 0.2745 −6.3048 0.2375 0.0099
59 TOPIX 0.2845 −6.2746 0.2545 0.0074
60 MSCI EM (mini) 0.2801 −6.0982 0.1943 −0.0027
61 MSCI Taiwan 0.2195 −6.1515 0.1817 0.0092
62 SP CNX Nifty 0.1867 −6.3298 0.4275 0.0175
63 Hang Seng 0.1864 −6.2192 0.1769 0.0128
64 Hang Seng (mini) 0.1814 −6.1844 0.1782 0.0128
65 Hang Seng China Enterprises 0.2633 −6.2258 0.153 0.0158
66 IPC 0.3258 −5.8855 0.1262 0.0064
67 KOSPI 200 0.2357 −6.5445 0.4424 0.0126
68 Feeder Cattle 0.2522 −6.1331 0.1549 0.0109
69 Lean Hogs 0.2451 −5.9264 0.1445 −0.0064
70 Live Cattle 0.2083 −6.1276 0.1491 0.0088
71 Copper 0.2635 −6.1975 0.1522 0.0091
72 Gold 0.3005 −6.18 0.1894 0.0108
73 Palladium 0.3813 −6.2387 0.2212 0.0111
74 Platinum 0.3442 −6.2491 0.1652 0.011
75 Silver 0.3047 −6.1876 0.1795 0.0066
76 USD Deliverable Swap 10 year 0.299 −6.0867 0.208 0.0123
77 USD Deliverable Swap 5 year 0.2849 −6.0717 0.2412 0.007
78 USD Govt 10yr 0.2797 −6.2127 0.1532 0.0173
79 USD Govt 15–30yr 0.2606 −6.1806 0.1457 0.0141
80 USD Govt 2yr 0.2951 −6.2539 0.1923 0.0209
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Item # Instrument Name d log(V) var(e) mu

81 USD Govt 30yr 0.3198 −6.1727 0.1455 0.0156
82 USD Govt 5yr 0.2751 −6.2401 0.1649 0.0176
83 AUD Govt 10yr 0.1748 −6.3502 0.3921 0.0076
84 AUD Govt 3yr 0.1689 −6.3336 0.4123 0.0084
85 CAD Govt 10yr 0.2198 −6.1027 0.2192 0.0182
86 CHF Govt 10yr 0.2652 −6.3925 0.3511 0.02
87 DEM Govt 10yr 0.2364 −6.4194 0.2785 0.0172
88 DEM Govt 2yr 0.2896 −6.3881 0.3155 0.0179
89 DEM Govt 5yr 0.2472 −6.4036 0.2799 0.0186
90 FRF Govt 10yr 0.3146 −6.098 0.1477 0.0307
91 GBP Govt 10yr 0.2338 −6.0316 0.1308 0.0132
92 ITL Govt 10yr 0.4065 −5.9488 0.1303 0.0201
93 ITL Govt 2yr 0.4559 −6.019 0.2678 0.0294
94 JPY Govt 10yr (mini) 0.3342 −6.3402 0.2904 0.0182
95 KRW Govt 10yr 0.295 −6.3422 0.2746 0.0275
96 Butter 0.2603 −6.0707 0.8538 0.0164
97 Cocoa 0.2437 −6.11 0.1751 0.0011
98 Coffee 0.2895 −6.0532 0.1854 −0.0044
99 Cotton 2 0.3031 −6.1075 0.181 −0.0023

100 Lumber 0.2773 −5.9161 0.1449 −0.0138
101 Milk-Class III Fluid 0.3337 −6.1052 0.3525 0.0072
102 Orange Juice 0.2462 −6.1736 0.2549 0.0069
103 Robusta Coffee 0.3565 −6.0909 0.2177 0.0004
104 Sugar 11 0.3112 −6.2256 0.1673 0.0063
105 Sugar 5 0.2975 −6.2787 0.2071 0.0126
106 TSR20 Rubber 0.3321 −6.1874 0.3907 0.0106
107 Cocoa 0.3086 −5.9108 0.1417 0.0039
108 USD STIR 0.4512 −6.1231 0.2431 0.0303
109 AUD STIR 0.2282 −6.0767 0.3378 0.0081
110 CAD STIR 0.3843 −5.9982 0.2806 0.0265
111 CHF STIR 0.4136 −6.0595 0.2454 0.0332
112 EUR STIR 0.4227 −5.7489 0.2022 0.0162
113 GBP STIR 0.33 −5.9621 0.2374 0.0244
114 VIX 0.4345 −5.9535 0.237 −0.0443
115 VSTOXX (mini) 0.4162 −5.9015 0.1454 −0.0248

Appendix B

Evaluation Measures

In order to meet our objectives, we must have measures to quantify both strategy performance
and the breadth of the operational domain.

We can define the terminal wealth relative as the multiplier that we apply to our starting equity to
get our pending equity. In other words, the terminal wealth relative is the product of the accumulation
rates (1 + return rate, Equation (A1)).

TWRT =
T∏

t=1

(1 + rt) =
T∏

t=1

(HPRt) (A1)
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Here, rt is our return over period t, HPRt is our holding period return or one plus our return over
the tth period, and TWRT is our terminal wealth relative or one plus our total return over T periods.
We can approximate the return with Equation (A2).

aTWRT =
(√(

AHPR2
T − SDHPR2

T

))T
= EGMT (A2)

Here, N is the number of sub-periods over which we have returns, aTWRT is the approximate
terminal wealth relative (i.e., one plus the approximate total return over the T periods), and HPRt is
the holding period return (i.e., the return over the tth period).

AHPRT is arithmetic average of the holding period returns over the T periods (Equation (A3)).

AHPRT =
1
T

T∑
t=1

(HPRt) (A3)

SDHPRT is the standard deviation of the holding period returns over the T periods (Equation (A4)).

SDHPRT =
1

T − 1

T∑
t=1

(AHPRT −HPRt)
2 (A4)

EGMT is the estimated geometric mean (EGM) over the T periods (Equation (A5)).

EGMT =
√(

AHPR2
T − SDHPR2

T

)
(A5)

Equation (A2) illustrates that:

1. If AHPRT is less than or equal to 1, then regardless of the other two variables, SDHPRT and T,
our result can be no greater than 1 (i.e., our total return will be less than or equal to zero).

2. If AHPRT is less than 1, then as T approaches infinity, TWRT approaches zero. This means that if
AHPRT is less than 1, we will eventually go broke.

3. If AHPRT is greater than 1, increasing T increases our TWRT.
4. If we reduce our SDHPRT more than we reduce our AHPRT our TWRT will rise.

Reducing variability or increasing average return by the same amount has an identical impact on
compound return.

We can use Equation (A2) to understand how changes in the average return, return variability, or
both impact our compounded return.

EGMT—which is composed of AHPR2 and SDHPR2—is our primary measure of trading strategy
performance. All other performance metrics are a function of these three metrics.

The breadth of the operational domain will be measured as the span of parameters over which
strategy performance is acceptable, where acceptable is defined using a vector of strategy performance
metrics, including EGMT, AHPR2, and SDHPR2.

We can also extend this result to show how the cross-dependence between strategies/investments—
which ultimately drives portfolio variation—impacts compound return. Portfolio return rP,t is a
function of the weights and the returns of portfolio investment components. We define the portfolio
return for I component investments for the period t given the period returns ri,t and portfolio weights
wi,t for each component investment i in Equation (A6).

rP,t =
I∑

i=1

(ri,twi,t) (A6)
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Letting Wt be a vector of portfolio component weights for period t, ’ denote the transpose operator,
and Rt be a vector of the period t component returns, we can use matrix notation to define the portfolio
return as shown in Equation (A7).

rP,t = W′R (A7)

The holding period return (HPR) for the portfolio is one plus the portfolio return for the period t
(Equation (A8)).

HPRP,t = 1 + rP,t (A8)

The portfolio holding period return is the factor by which we multiply the starting value of
the portfolio to get the ending value of the portfolio, given the period returns and weights of each
component investment. Similarly, we define the terminal wealth relative (TWR) as the factor by which
we multiply the starting value of the portfolio to get the ending value of the portfolio given the return
streams and weights for a sequence of periods between one and T (Equation (A9)).

TWRP,T =
T∏

1=t

1 +

 I∑
i=1

(ri,twi,t)


 = T∏

t=1

HPRP,t (A9)

We define the portfolio compounded return for the interval from period 1 to T as the portfolio
terminal wealth relative minus one (Equation (A10)).

rP,T =

 T∏
1=t

1 +

 I∑
i=1

(ri,twi,t)



− 1 =

 T∏
1=t

(1 + rP,t)

− 1 =

 T∏
1=t

HPRP,t

− 1 = TWRP,T − 1 (A10)

Assuming that standardized component returns are normally distributed, and thus that portfolio
returns are multivariate normally distributed, we can define the standard deviation of the portfolio
standardized returns using matrix notation as Equation (A11).

σP,T =
√

Var(Wt′Rt) =
√

Wt′ΣWt (A11)

where Wt is a vector of portfolio component weights for period t, ’ denotes the transpose operator, Rt

is avector of the period t component returns, and Σ is the return covariance matrix. In the portfolio
context, EGMT is also a function of the return covariance. Reducing the return covariance-keeping all
other return properties the same—thus reduces portfolio variation, increasing EGMT.
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