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Abstract: This paper extends Horowitz’s smoothed maximum score estimator to discrete-time
duration models. The estimator’s consistency and asymptotic distribution are derived. Monte Carlo
simulations using various data generating processes with varying error distributions and shapes of the
hazard rate are conducted to examine the finite sample properties of the estimator. The bias-corrected
estimator performs reasonably well for the models considered with moderately-sized samples.

Keywords: maximum score estimator; discrete duration models; efficient semiparamteric estimation

1. Introduction

Parametric discrete-time duration models are used extensively within econometrics and the
other statistical sciences. Since misspecification of these models can lead to invalid inferences,
a variety of semiparametric alternatives have been proposed. However, even these alternative
semiparametric estimators exploit certain smoothness and moment conditions, which may be
untenable in some circumstances. To address these shortcomings, we propose a new estimator,
based on Horowitz (1992)’s smoothed maximum score estimator of single-period binary choice models,
which relaxes these assumptions. To motivate and contextualize this estimator, we use this Introduction
to review the relevant literature on discrete duration and binary choice models and indicate how our
proposed estimator fills a gap in the literature.

In econometrics, discrete-time duration models are typically framed as a sequence of binary
choices. The probability of remaining in a state at time s (the continuation probability) is denoted
Fs(β0), and the hazard rate is simply hs(β0) = 1 − Fs(β0). Many parametric forms have been
employed for the hazard rate in these models including extreme value, logistic, normal and other
parsimonious specifications. Examples using a logistic specification include: Huff-Stevens (1999),
Finnie and Gray (2002), Bover et al. (2002) and D’Addio and Rosholm (2005); normal distribution:
Meghir and Whitehouse (1997) and Chan and Huff-Stevens (2001); extreme value (also known as
the complementary log-log model): Baker and Rea (1998), Cooper et al. (1999), Holmas (2002),
Fennema et al. (2006) and Gullstrand and Tezic (2008). These and others were reviewed in Allison (1982)
and Sueyoshi (1995). Hess (2009) has suggested using the generalized Pareto distribution, which
nests the extreme value and logistic distributions. These specifications lead naturally to maximum
likelihood estimation of β0, although it is useful to note that there are alternative ways to estimate β0

including nonlinear regression, treating Fs(β0) as a conditional mean. As with any parametric approach,
misspecification of the hazard rate can lead to invalid inferences. In this regard, we consider various
relevant semiparametric alternatives, which relax the parametric assumptions.

We note first that semiparametric estimation of continuous-time models has been the focus of
substantial research in the discipline. Numerous authors have developed distribution theory for
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semiparametric estimation of various continuous-time duration models including Horowitz (1999),
Nielsen et al. (1998), Van der Vaart (1996) and Bearse et al. (2007). While these and other semiparametric
estimators allow for the relaxation of some parametric assumptions associated with continuous-time
duration models, they are not generally appropriate when the duration random variable has a
discrete distribution.

We adopt the standard approach in econometrics of constructing the continuation probability
from an underlying latent regression structure. In a standard single-period basic binary choice model,
we would observe Y = 1[Y∗ ≥ 0] with Y∗ = Z + U where 1[·] is the usual indicator function, Z is an
index function of observable random variables and unknown parameters and U has a distribution
function F. With discrete-time duration models, the observed duration is the sum of a sequence of
indicators so that T = ∑S

s=1 Ys, where Ys = Ys−11[Zs + Us > 0] with Y0 = 1, and the distribution
function of Us is denoted by Fs.

There is a large literature on semiparametric estimation of single-period binary choice models.
We briefly review this, highlighting how it has been adapted for certain multivariate discrete
choice and/or discrete-duration models and finally how our proposed estimator fills a gap in
this research. Since in some cases, the conditional mean of Y in the single-period case can be
written as F(β0), the parameter of interest, β0, can be estimated from a semi-parametric regression.
This was suggested by Ichimura (1993) to obtain a

√
N-consistent estimator of β0. With respect to

duration models and exploiting the fact that Fs can also be written as the conditional mean of the
choice variable, Reza and Rilstone (2014) minimized a sum of squared semiparametric residuals
to estimate the parameters of interest. In a similar vein, Klein and Spady (1993) developed a
semi-parametric maximum likelihood estimator of β0 with the single observation likelihood function
written as l(β) = F(β)Y(1− F(β))1−Y. Klein and Spady’s (1993) estimator essentially consists of
replacing F with a nonparametric conditional mean function. Reza and Rilstone (2016) adapted
Klein and Spady’s (1993) estimator to the discrete duration case. They also derived the efficiency
bounds and showed that their estimator obtained these bounds. We note that the approaches in
Ichimura (1993) and Klein and Spady (1993) require continuity of F in the underlying covariates and
are limited with respect to the forms of allowable heteroskedasticity (for example, heteroskedasticity
from time-varying parameters is precluded). Another problem is simply that identification may not
be possible under the mean-independence restriction that E[U|Z] = 0.1 By extension, the estimators of
Reza and Rilstone (2014, 2016) suffer the same shortcomings as applied to duration models.

With respect to single-period binary choice models, Manski’s (1975, 1985) Maximum Score
(MS) estimator circumvents these limitations using simply the median-independence restriction that
Median[U|Z] = 0. The MS estimator can be written as the maximizer of:

Ψ∗N(β) =
1
N

N

∑
i=1

(2Yi − 1)1[Zi(β) > 0] (1)

where Zi(β) is an index function of the observable covariates. As is usually the case, a normalization
of β is necessary. For the estimator to be consistent, a few restrictions need to be imposed,
in particular with respect to the distribution of U. The shortcomings of the estimator are that it
is only N1/3-consistent, and its asymptotic distribution, a form of Brownian motion, is not amenable
for use in the applied work.

From one perspective, the shortcomings of the MS estimator derive from its use of the
non-differentiable indicator function. Horowitz (1992) largely circumvented its limitations in
this regard by replacing the indicator function with a smoothed indicator function, K†(Zi(β)/γ).
The objective function for the Smoothed Maximum Score (SMS) estimator is:

1 Horowitz (1998) gave a discussion of these issues.
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ΨN(β) =
1
N

N

∑
i=1

(2Yi − 1)K†(Zi(β)/γ). (2)

The SMS is typically better than N1/3-consistent, but slower than
√

N, the speed of convergence
depending on the smoothness of K† and the distribution of the random components of the
model. Note that the

√
N-convergence of the estimators such as Klein and Spady’s (1993) is

linked to the manner in which they use kernels. These estimators are a form of double averages.
However, the objective functions for MS and SMS are nonparametric point estimators, which are single
averages. With some caveats, the SMS estimator reflects the fact that the only exploitable information
is at or close to the median of the U’s. The

√
N estimators effectively use all the data points.

The main objective of this paper is to show how to extend SMS to estimate discrete duration
models. The MS and SMS estimators have been used in other situations such as Lee (1992) and
Melenberg and Van Soest (1996), who extended the MS and SMS, respectively, to ordered-response
models. De Jong and Woutersen (2011) have extended the SMS estimator to binary choices
with dynamic time series data. Fox (2007) adapted the MS estimator to multinomial choices.
Charlier et al. (1995) extended the SMS to panel data. Other researchers have modified the MS and SMS
estimators to improve their sampling properties. Kotlyarova and Zinde-Walsh (2010) suggested using
a weighted average of different SMS estimators to reduce mean squared error. Iglesias (2010) derived
the second-order bias, which can be used to reduce the bias of the SMS estimator. Jun et al. (2015)
proposed a Laplace estimator alternative to improve on the N1/3-consistency of the MS estimator.
To our knowledge, neither the MS nor SMS estimators have been extended to duration models.

Sections 2 and 3 discuss the class of models considered and present the basic estimator along with
its main asymptotic properties. Section 4 provides some simulation results concerning the sampling
distribution of the estimator, and Section 5 concludes.

2. Modelling

As mentioned, a standard approach for modelling a discrete duration process is to construct it
as a sequence of binary choice models, with observed and unobserved heterogeneity. The standard
binary choice model is adapted such that in each time period, s, a choice is made by individual i to
continue in a state if the latent variable:

Y∗is = Zis(β0) + Uis, s = 1, 2, . . . , S (3)

is greater than zero. Here, Zis(β) = X∗is + X>is β2 is an index where X∗is is a scalar random variable and
Xis is a k× 1 vector, which may include a function of s, while β is a k× 1 vector of constants.

We assume the Uis’s and X∗is, Xis’s are jointly i.i.d. We observe Yis = 1[Y∗is > 0]Yis−1 and
X∗is, Xis, s = 1, . . . , S. A natural adaptation of Manski’s setup is the additional assumption that
Median[Us|Xs, Ys−1] = 0, s = 1, . . . , S. We estimate the parameters by effectively estimating the
density of Zis(β0) at zero by nonparametric methods. For notational convenience, we often suppress
the i subscripts. Another way to view the modelling is that in any given period s with Ys−1 = 1, this
is a standard binary choice variable with the key difference being that the index Z is a function of
some covariates and the number of completed periods, s. The duration variable for period s is simply
Ts = ∑s−1

j=0 Yj with Y0 = 1, YS+1 = 0.3 The evolution of the Ys’s, conditional on the covariates and
duration, is given by:

Ys = 1[Zs(β0) + Us ≥ 0]Ys−1, s = 1, . . . , S. (4)

2 Some normalization of the parameter space is necessary. We find it most convenient to impose a unit coefficient on
X∗is immediately.

3 The model is easily reformulated to incorporate functions of the Yj’s, j ≤ s as conditioning variables.
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Note that this representation is such that Ys is zero if the subject left the state prior to period s and
becomes a standard binary choice model in period s if the subject elected to continue in the state in
period s− 1.

We put an upper limit, S, on the length of spells. This is common in empirical
work.4 Allowing for unbounded S introduces technical difficulties that are not readily resolved.
Put Zs = {X∗ij, Xij, Yi,j−1}s

j=1. It is useful to note that by iterated expectations:

E[Ys|Zs] = E[Ys|Zs(β0), Ys−1] = FsYs−1 (5)

so that, tautologically, Fs, the continuation probability function, is:

Fs = E[Ys|Zs(β0), Ys−1 = 1] = Pr[Ys = 1|Zs(β0), Ys−1 = 1]. (6)

3. The Estimator

Adapting the SMS estimator to the discrete duration model as outlined in Section 2, the objective
function is:

ΨN(β) =
1
N

N

∑
i=1

S

∑
s=1

Yis−1(2Yis − 1)K†(Zis(β)/γ). (7)

K†(w), a smoothed indicator function, is the anti-derivative of K(w) = dK†(w)/dw and has
the properties: |K†(w)| ≤ M < ∞, limw→−∞ K†(w) = 0, limw→∞ K†(w) = 1. In most kernel
density estimation, K is a density function and K† is its associated cumulative distribution function.
The technical requirements here sometimes require use of a higher order kernel.

Note that the objective function is of the same form as the usual SMS estimator with the
modifications that there is a double summand over individuals and time periods and each of the
summands at period s is multiplied by Ys−1, so that after exit, there is no further contribution to the
objective function by that individual.

Implicitly, we impose the identification condition that the coefficient on X∗is is unity5 (e.g.,
Li and Racine 2007). Horowitz (1992) discussed the identification issue. X∗is is assumed to have a
continuous distribution, conditional on Xis and Yis−1. Let:

Yi =

Yi1
...

YiS

 , Xi =

Xi1
...

XiS

 , X∗i =

X∗i1
...

X∗iS

 , Zi =

Zi1
...

ZiS

 . (8)

The estimator solves the first-order conditions ψN(β̂) = 0, which are given by:

ψN(β) =
1
N

N

∑
i=1

qi(β), qi(β) =
S

∑
s=1

qis(β),

qis(β) = Yis−1(2Yis − 1)
1
γ

K
(

Zis(β)

γ

)
Xis.

(9)

Concerning notation, when a function’s argument β is suppressed, it is evaluated at β0, e.g.,
qi = qi(β0). q(1)i (β) = ∂qi(β)/∂β>, a k× k matrix. Thus,

4 For example, Cameron and Heckman (1998) defined S as the upper limit to years of education. In practice, for programming
purposes, it suffices to set S equal to the longest duration in the dataset being used. In the simulations reported in Section 4,
the maximum duration was 37.

5 This has two aspects: one is that it implies that estimates of the other β’s are all to scale and that we know the sign of the
first coefficient.
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ψ
(1)
N (β) =

1
N

N

∑
i=1

q(1)i (β), q(1)i (β) =
S

∑
s=1

q(1)is (β),

q(1)is (β) = Yis−1(2Yis − 1)
1

γ2 K(1)
(

Zis(β)

γ

)
XisX>is .

G(us|zs, xs, ys−1) and g(us|zs, xs, ys−1) denote the cumulative distribution and density functions of
Us conditional on Zs, Xs, Ys−1 = 1, and f (zs|xs, ys−1) denotes the density functions of Zs conditional on
Xs, Ys−1. The superscript [j] indicates the jth derivative of a function with respect to zs, and in particular,
we have G[j](−zs|zs, xs, ys−1) = djG(−zs|zs, xs, ys−1)/dzj

s. 0 ≤ M < ∞ is a generic constant. Put:

B = −2
µm

m!
E
[

S

∑
s=1

m

∑
j=1

(
m
j

)
G[j](0|0, Xs, Ys−1) f [m−j](0|Xs, Ys−1)XsYs−1

]
,

C = E
[

S

∑
s=1

f (0|Xs, Ys−1)XsX>s Ys−1

] ∫
K(w)2dw,

Q = 2E
[

S

∑
s=1

G[1](0|0, Xs, Ys−1) f (0|XsYs−1)XsX>s Ys−1

]
.

(10)

Let Pr[us, xs, x∗s |Zs−1] denote the probability distribution of Uis, Xis, X∗is given Zi,s−1.
The distributional assumptions we make are as follows.

Assumption 1. {Yi, Xi, X∗i }N
i=1 is a random sample where Yis = 1[Zis(β0) + Uis ≥ 0]Yis−1.

Pr[us, xs, x∗s |Zs−1] = Pr[us, xs, x∗s |Ys−1]. Zis(β) = X∗is + X>is β. Yi0 = 1 for all i.

Assumption 2. For s = 1, . . . , S, (a) the support of the distribution of x∗s , xs is not contained in any proper
linear subspace of Rk+1, (b) 0 < Pr(ys = 1|x∗s , xs, ys−1 = 1) < 1 for almost every x∗s , xs and (c) for almost
every xs, ys−1, the distribution of x∗s conditional on xs, ys−1 has everywhere positive density with respect to the
Lebesgue measure.

Assumption 3. Median(us|x∗s , xs, Ys−1) = 0 for almost every xs, Ys−1, s = 1, . . . , S.

Assumption 4. β0 ∈ B, a compact subset of Rk.

Assumption 5. The elements of Xs have finite fourth moments, s = 1, . . . , S .

Assumption 6. (log N)/(Nγ4)→ 0 as N → ∞

Assumption 7. (a) K† is twice differentiable everywhere; K and K[1] are uniformly bounded; and each of the
following integrals over (−∞, ∞) is finite:

∫
K(w)4dw ,

∫
[K[1](w)]2dw,

∫
lw2K[1](w)|dw. (b) For some

integer m > 2 and each integer j, j = 2, . . . , m − 1
∫

wjK(w)dw = 0,
∫

wmK(w)dw = µm, |µm| < ∞.
(c) For j = 2, . . . , m− 1, γ→ 0, any η > 0, γj−m ∫

|γw|>η |w
jK(w)|dw→ 0, γ−1

∫
|γw|>η |K

[1](w)|dw→ 0

Assumption 8. f (zs|xs, ys−1) is m-times continuously differentiable with respect to z in a neighbourhood of
zero, almost every xs, ys−1, and | f [j](−zs|zs, xs, ys−1)| ≤ M, s = 1, . . . , S.

Assumption 9. G(−zs|zs, xs, ys−1) is m-times continuously differentiable with respect to zs in a
neighbourhood of zero, almost every xs, ys−1 and |G[j](−zs|zs, xs, ys−1)| < M, j = 1, . . . , m, s = 1, . . . , S.

Assumption 10. β0 is an interior point of B.

Assumption 11. Q is negative definite.
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These assumptions adapt those in Horowitz (1992) to allow for the dependency structure.
They also embed Manski’s (1985) assumptions with S = 1. Notice that the random sampling
assumption refers to N random draws within each being the potentially S observations.

Identification (see Proof of Proposition 1 in Appendix A) follows by adapting Manski’s (1985)
proof for the MS estimator. Of interest here is that we wish to allow for time dependence. Note that
for the MS/SMS case, nothing precludes the inclusion of a constant in the index so long as, say,
xs is not co-linear6 (in fact, simulation and empirical results such as in Horowitz (1998) indicate
good results for intercept estimates). For the m-multinomial choice model, Lee (1992) included m
non-stochastic threshold parameters (including a constant). In our case, the same applies for including
certain non-stochastic functions of s in xs, such as including indicators for each s or a polynomial in s.
For parsimony in our numerical/empirical work, we have included quadratics to allow for increasing,
decreasing and non-monotonic time dependency. This allows for straight-forward testing. In this
regard, we note that the semiparametric information matrix derived in Reza and Rilstone (2016) was
singular for this class of models. There is no contradiction here, since the singularity indicates that
those parameters are not estimable at the

√
N-rate; it does not imply that they cannot be identified or

estimated at a less than
√

N-rate, which we do here.
We have the following lemma, which permits simple derivation of the asymptotic properties of

the estimator.

Lemma 1. Let Assumptions 1–11 hold. Then, (a) E[q(1)i (β0)] = Q + o(1), (b) γmE[qi(β0)] = B + o(1) and
(c) γE[qi(β0)qi(β0)

>] = C + o(1).

The asymptotic distribution of the estimator can be summarized easily using the following result.

Proposition 1. Let Assumptions 1–11 hold. Then, (a) β̂ is consistent and (b)
√

Nγ(β̂− β0 − γmQ−1B) d→
N(0, Q−1CQ−1).

The proofs are in Appendix A. In the statement of the proposition, note the presence of the
first-order bias, γmQ−1B, for which it may be advisable to adjust the raw estimator. One of the
benefits of this estimator is that one can effectively ignore the dependence of the observations, pool
all the observations across individuals for whose Yi,s−1 = 1 and use standard SMS optimization
procedures. This is what we have done in the simulations. Reza and Rilstone’s (2016) setup
(extension of Klein and Spady 1993) allows for estimation of the hazard rate, 1− Fs, with a natural
estimate of time dependence from the semiparametric estimates of ∆hs = Fs−1 − Fs. Note that
Reza and Rilstone’s (2016) estimator of ∆hs only has a

√
Nγ-rate of convergence.

As for the SMS estimator, we can consider the optimal choice of window width. As with
Horowitz (1992), we consider choices that minimize an MSE criterion. Therefore, if we consider
that the asymptotic results correspond to the distribution of a random variable, say W, with mean
γmQ−1B and variance Q−1CQ−1/(Nγ), we can consider minimizing, say, the inner product MSE of
Ω1/2W, where Ω is a positive definite weighting matrix, i.e., minimize E[W>ΩW] with respect to γ.
This results in:

γ∗ = arg min MSE(γ), MSE(γ) = γ2mB>Q−1>ΩQ−1B +
1

Nγ
Trace

[
ΩQ−1CQ−1

]
(11)

γ∗ = N−1/(2m+1)
(

Trace[ΩQ−1CQ−1]

2mB>Q−1>ΩQ−1B

)1/(2m+1)

. (12)

6 In this case, the random sampling assumption should be interpreted as referring to the stochastic elements of xs.
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For inferences it is necessary to obtain consistent estimates of the components of the first-order
bias and variance. These cannot be directly estimated as they depend on the distribution of the
unobservable U’s. However, by extension of the arguments in Horowitz (1992), they may be obtained
through various derivatives of the objective function. Specifically, put:

B̂(β̂) =
1

γm ψN(β̂), Q̂(β̂) = ψ
(1)
N (β̂)

Ĉ(β̂) =
1

Nγ

N

∑
i=1

S

∑
s=1

qis(β̂)X>is K(Zis(β̂)/γ).
(13)

By the uniform law of large numbers, B̂(β̂)
p→ B, Q̂(β̂)

p→ Q and Ĉ(β̂)
p→ C.

It is well known that the first-order asymptotic results may provide a poor approximation to
the sampling distribution of the SMS estimator. Thus, it may be preferable to use some higher order
method to approximate the distribution. Apart from Iglesias (2010) who applied the results in Rilstone
et al. (1996) to derive the second-order bias of β̂, little is known (explicitly) about the second-order
properties of the SMS estimator. Estimates can be bootstrapped. In this regard, we note that one should
resample individuals. That is, bootstrap estimates should be based on resamples: {Z∗iS}N

i=1, where
the ∗’s indicate random draws from the original data. Horowitz (2002) documents some of the issues
associated with bootstrapping the distribution of β̂. In particular, the corresponding re-estimates: β̂∗j ,
say, and corresponding standard errors should be calculated using an under-smoothing window-width
such as γ ∈ [.5γ∗, γ∗].

4. Simulation Exercise

To examine the estimator’s performance in finite samples, we conducted Monte Carlo simulations
with several Data Generating Processes (DGPs). We adapted simulations in Horowitz (1992) by
augmenting the models with duration dependence, and a variety of error distributions. The latent
processes we considered included those with homoskedastic errors:

Y∗is = 1.5 + 2(s/100)− (s/100)2 + X1is + X2is − uis, (14)

uis ∼ N(0, 1)

and those with heteroskedastic errors:

Y∗is = 1.5 + 2(s/100)− (s/100)2 + X1is + X2is − vis,

vis = 0.25(1 + (X1is + X2is)
2) · uis,

uis ∼ N(0, 1).

(15)

We conducted the simulations for two sample sizes, N = 500 and N = 1000. The X’s were drawn
as i.i.d. N(0, 1). For the DGP with homoskedastic normal errors, this resulted in duration times with
averages of 5.7 (N = 500, 1000) and standard deviations also 5.7 (N = 500, 1000). With heteroskedastic
errors, the average duration times were 8.7 (N = 500, 1000) with standard deviations of 9.6 (N = 500)
and 9.5 (N = 1000). For identification purposes, the coefficient on X1 was normalized to one,
and our key parameter of interest was the coefficient on X2, with a true value of one. We conducted
500 replications for each specification. We followed Horowitz (1992) to estimate the parameters in
two steps: first using simulated annealing to find the approximate maximizer of ΨN(β) followed by
gradient methods for greater precision. We then used the bias correction described in the previous
section to bias-adjust the parameter estimates. We used a Gaussian kernel with a window-width
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γ = N−1/6.7 Standard errors and the bias correction were based on the consistent estimators B̂(β̂),
Q̂(β̂) and Ĉ(β̂) from Equation (13).

Tables 1–3 report the summary statistics of the simulations for the estimates of the coefficients
on X2, (s/100) and (s/100)2, respectively. We also conducted corresponding probit estimates as
benchmarks. Note that, with normal errors, the probit estimates were fully efficient. The summary
statistics indicated that the semiparametrically-estimated coefficients on X2 were very close to the
true parameter. The bias and standard deviation both decreased with sample size. This is particularly
true compared to the (misspecified) probit estimator when the errors were heteroskedastic. As for the
coefficient on the linear duration dependence term (s/100), there appeared to be some bias, particularly
in the presence of heteroskedasticity. However, the bias and RMSE of the SMS estimators diminished
with sample size. This was not the case with the probit estimators. As indicated earlier, estimating
duration dependence term at the

√
N-rate was not possible. The estimates of the coefficient on the

quadratic term of the duration dependence were somewhat biased, although the bias decreased with
the sample as did the RMSE. Larger sample sizes than used here may be required to estimate, with
precision, more nuanced forms of duration dependence using the proposed SMS in these contexts.

Table 1. Simulation summary statistics—parameter: coefficient on X2.

No. of Observations

Spec (1) Spec (2)
Normal Error Normal, Heteroscedastic Error

500 1000 500 1000

Using second order kernel

True value 1.000 1.000 1.000 1.000
Estimates

Mean 1.013 0.982 1.034 1.001
Standard dev. 0.114 0.081 0.094 0.063
RMSE 0.115 0.083 0.100 0.063
Skewness 0.452 0.481 0.491 0.308
Kurtosis 3.167 3.305 4.226 3.652

Using normal cdf as continution probability

True value 1.000 1.000 1.000 1.000
Estimates

Mean 1.017 1.003 0.937 0.939
Standard dev. 0.093 0.032 0.063 0.045
RMSE 0.094 0.032 0.090 0.076
Skewness 0.260 0.114 0.163 −0.082
Kurtosis 2.712 2.924 2.900 2.970

7 Estimates using a fourth-order kernel as in Horowitz (1992) yielded very similar results. The non-stochastic window-width
was used, rather than, say, a plug-in window-width, to keep the simulations manageable.
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Table 2. Simulation summary statistics—parameter: coefficient on (s/100).

No. of Observations

Spec (1) Spec (2)
Normal Error Normal, Heteroscedastic Error

500 1000 500 1000

Using second order kernel

True value 2.000 2.000 2.000 2.000
Estimates

Mean 2.359 2.112 1.737 1.790
Standard dev. 3.426 2.356 1.854 1.340
RMSE 3.441 2.356 1.871 1.355
Skewness 0.126 0.181 −0.280 −0.065
Kurtosis 4.233 3.986 8.149 4.617

Using normal cdf as continution probability

True value 2.000 2.000 2.000 2.000
Estimates

Mean 2.577 2.343 1.813 1.633
Standard dev. 1.544 1.010 0.830 0.623
RMSE 1.647 1.066 0.850 0.722
Skewness 0.126 −0.042 0.304 0.433
Kurtosis 3.150 3.092 2.894 3.344

Table 3. Simulation summary statistics—parameter: coefficient on (s/100)2.

No. of Observations

Spec (1) Spec (2)
Normal Error Normal, Heteroscedastic Error

500 1000 500 1000

Using second order kernel

True value −1.000 −1.000 −1.000 −1.000
Estimates

Mean −2.147 −1.554 0.685 0.042
Standard dev. 14.302 9.805 6.804 3.911
RMSE 14.334 9.810 7.003 4.043
Skewness 0.182 −3.846 2.400 1.283
Kurtosis 7.844 43.237 21.338 8.266

Using normal cdf as continution probability

True value −1.000 −1.000 −1.000 −1.000
Estimates

Mean −4.032 −2.678 −1.435 −0.922
Standard dev. 6.113 3.609 1.798 1.273
RMSE 6.819 3.977 1.848 1.274
Skewness −0.929 −0.655 −1.135 −1.576
Kurtosis 4.467 4.051 5.005 9.012

We also examined the distribution of the estimates. Figures 1–3 graph the QQ-plots of the
standardized SMS estimates of the coefficients on X2, s/100 and (s/100)2, respectively. Most of the
standardized estimates appeared to be close to the standard normal quantiles, except for a few extreme
values. The extreme values are potentially due to difficulties with numerical optimization. This would
seem to indicate that the sampling distributions of the estimators in our simulation exercise were
reasonably well approximated by a normal distribution.
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Figure 3. QQ plot of estimated coefficient on ( s
100 )

2.

5. Conclusions

This paper has shown that the SMS estimator can be readily adapted to consistently estimate the
parameters of a popular class of discrete duration models, while relaxing the distributional assumptions
of parametric models and certain semiparametric models. The asymptotic distribution of the estimators
was derived and can be readily approximated using standard software. Simulations illustrated the
viability of the approach. We are currently working on an empirical application of the estimator.
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Appendix A

Proof of Lemma 1 (a). To derive the expected value of q(1)is (β0), suppress the i subscripts, and write:

E[q(1)s |Xs, Ys−1] = E[Ys−1(2Ys − 1)K(1)(Zs/γ)XsX>s ]/γ2

= E[As|Xs, Ys−1]XsX>s Ys−1

(A1)

where As = (21[Zs + Us ≥ 0] − 1) 1
γ2 K(1)(Zs/γ), suppressing the Xs and Ys−1 arguments in

g(us|zs, xs, ys−1) and h(zs|xs, ys−1).

E[As|Zs] =
∫
(21[Zs + us ≥ 0]− 1)K(1)(Z/γ)g(us|Zs)dus/γ2

=

(∫ ∞

−Zs
+
∫ −Zs

−∞

)
(21[Zs + us ≥ 0]− 1)K(1)(Zs/γ)g(us|Zs)dus/γ2

= K(1)(Zs/γ)

(∫ ∞

−Zs
−
∫ −Zs

−∞

)
g(us|Zs)dus.

(A2)

E[As] =
∫

K(1)(zs/γ)

(∫ ∞

−zs
−
∫ −zs

−∞

)
g(us|zs)dus/γ2 f (zs)dzs

=
∫

K(1)(w)

(∫ ∞

−wγ
−
∫ −wγ

−∞

)
g(us|wγ) f (wγ)dusdw/γ

=
∫

K(1)(w) ((1− G(−wγ|wγ)− G(−wγ|wγ)) f (wγ)dw/γ

=
∫

K(1)(w) ((1− 2G(−wγ|wγ)) f (wγ)dw/γ

= −
∫

K(w)(((1− 2G(−wγ|wγ)) f (wγ))[1]dw

→ −(((1− 2G(−zs|zs)) f (zs))
[1]
zs=0

= 2G[1](0|0) f (0)

(A3)

To prove Part (b), make substitutions as in (a), with:

E[qs|Xs, Ys−1] = E[As|Xs, Ys−1]XsYs−1 (A4)

where As = (21[Zs + Us ≥ 0]− 1)K(Zs/γ)/γ.

E[As|Zs] =
∫
(21[Zs + us ≥ 0]− 1)K(Zs/γ)g(us|Zs)dus/γ

= K(Zs/γ)

(∫ ∞

−Zs
+
∫ −Zs

−∞

)
(21[Zs + us ≥ 0]− 1)g(us|Zs)dus/γ

= K(Zs/γ)

(∫ ∞

−Zs
−
∫ −Zs

−∞

)
g(us|Zs)dus/γ

= K(Zs/γ) (1− 2G(−Zs|Zs)) /γ

(A5)

so that:

E[As] =
∫

K(zs/γ) (1− 2G(−zs|zs)) f (zs)dzs/γ

=
∫

K(w)Ā(wγ)dw
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where Ā(γ) = (1− 2G(−wγ|wγ)) f (wγ) and:

∫
K(w)Ā(wγ)dw =

∫
K(w)

(
Ā(0) +

s−1

∑
j=1

Ā[j](0)(wγ)j

j!
+

Ā[m](γ̄)(wγ)m

m!

)
dw. (A6)

Note that Ā(0) = 0 and all the middle terms in Equation (A6) are zero from
∫

wjK(w)dw = 0,
j = 1, . . . , m− 1. As for the third term, first note that:∫

K(w)
(

Ā[m](γ̄)− Ā[m](0)
)

wmdwĀ[m](γ) = o(1) (A7)

by dominated convergence, uniformly on xs, Ys−1. There are a few ways to write Ā[m](0). It is simplest
to note first that: ∫

K(w)A[m](0)wjdw = µm A[m](0) (A8)

and by the binomial theorem:

A[m](0) =
m

∑
j=1

(
m
j

)
(1− 2G(−u|u))[m−j] f [j](z)

∣∣∣
u=0

= −2
m−1

∑
j=1

(
m
j

)
G[m−j](−z|z) f [j](u)

∣∣∣
z=0

.

(A9)

To prove Part (c):

γE[qsq>τ |Xs, Ys−1, Xτ , Yτ−1] = E[Asτ |Xs, Ys−1, Xτ , Yτ−1]XsYs−1X>τ Yτ−1 (A10)

where Asτ = (21[Zs + Us ≥ 0]− 1)K(Zs/γ)(21[Zτ + Uτ ≥ 0]− 1)K(Zτ/γ)/γ2. From Assumption 1,
we have:

E[Asτ |Xs, Ys−1, Xτ , Yτ−1] =

{
E[(21[Zs + Us ≥ 0]− 1)2K(Zs/γ)2)/γ2|Xs, Ys−1], s = τ

(E[(21[Zs + Us ≥ 0]− 1)2K(Zs/γ)/γ|Xs, Ys−1])
2 = O(1), s 6= τ.

(A11)

It suffices to only consider when s = τ, as it converges at a slower rate than when s 6= τ.

E[Asτ |Zs] = K(Zs/γ)2
∫
(21[Zs + us ≥ 0]− 1)2g(us|Zs)dus/γ2

= K(Zs/γ)2
(∫ −Zs

−∞
+
∫ ∞

−Zs

)
(21[Zs + us ≥ 0]− 1)2g(us|Zs)dus/γ2

= K(Zs/γ)2
(∫ −Zs

−∞
+
∫ ∞

−Zs

)
g(us|Zs)dus/γ2

(A12)

so that:

E[Asτ ] =
∫

K(zs/γ)2
(∫ −zs

−∞
+
∫ ∞

−zs

)
g(us|zs)dus/γ2 f (zs)dzs/γ2

=
∫

K(zs/γ)2 ((1− G(us|ss) + G(us|zs))) f (zs)dzs/γ2

=
∫

K(w)2 f (wγ)dw/γ

and γE[Asτ ]→ f (0)
∫

K(w)2dw.
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Lemma A1. Assume β̄
p→ β0. Then, under Assumptions 1–11, ψ

(1)
N (β̄) = Q + op(1).

Proof of Lemma A1. For ψ
(1)
N (β̄), note that by the uniform law of large numbers and Slutsky’s theorem,

ψ
(1)
N (β̄)→ limN→∞ E[q(1)i (β0)] = Q.

Proof of Proposition 1. (a) Consistency is shown by combining and extending the results of
Manski (1985) and Horowitz (1992). Following Manski, define a population objective function
Ψ∗(β) = ∑S

s−1(2 Pr(Ys = 1, Zs(β) ≥ 0|Ys−1)− Pr(Zs(β) ≥ 0|Ys−1))Pr(Ys−1 = 1). 8 As per Manski,
Ψ∗(β) is maximized uniquely at β = β0, is continuous and Ψ∗N(β) converges uniformly to Ψ∗(β).

Extending Horowitz, we have |Ψ∗N(β) − ΨN(β)| p→ 0 uniformly in β, and hence, β̂ is consistent.
(b) To derive the asymptotic distribution, use a Taylor series expansion of the first-order conditions,
rearranging them so that:√

Nγ(β̂− β0) = (ψ
(1)
N (β̄))−1

√
Nγ(ψN(β0)−EψN(β0)) (A13)

and from Lemmas 1 and A1:√
Nγ(β̂− β0 − γmQ−1B) = (Q−1 + oP(1))

√
Nγ

1
N ∑ q̃i + oP(

√
Nγγm). (A14)

Application of the central limit theorem completes the result.

References

Allison, Paul D. 1982. Discrete-Time Methods for the Analysis of Event Histories. In Sociological Methodology 1982.
Edited by S. Leinhardt. San Francisco: Jossey-Bass Publishers, pp. 61–98.

Baker, Michael, and Samuel A. Rea. 1998. Employment Spells and Unemployment Insurance Eligibility
Requirements. Review of Economics and Statistics 80: 80–94. [CrossRef]

Bearse, Peter, José Canals-Cerda, and Paul Rilstone. 2007. Efficient Semiparametric Estimation of Duration Models
with Unobserved Heterogeneity. Econometric Theory 23: 281–308. [CrossRef]

Bover, Olympia, Manuel Arellano, and Samuel Bentolila. 2002. Unemployment Duration, Benefit Duration and
the Business Cycle. Economic Journal 112: 223–65.

Cameron, Stephen V., and James J. Heckman. 1998. Life cycle schooling and dynamic selection bias: Models and
evidence for five cohorts of American males. Journal of Political Economy 106: 262–333. [CrossRef]

Chan, Sewin, and Ann Huff-Stevens. 2001. Job Loss and Employment Patters of Older Workers. Journal of
Labor Economics 19: 484–521. [CrossRef]

Charlier, Erwin, Bertrand Melenberg, and Arthur H. O. van Soest. 1995. A Smoothed Maximum Score estimator
for the Binary Choice Data Model with an Application to Labour Force Participation. Statistica Neerlandica
49: 324–42. [CrossRef]

Cooper, Russell, John Haltiwanger, and Laura Power. 1999. Machine Replacement and the Business Cycle: Lumps
and Bumps. American Economic Review 89: 921–46. [CrossRef]

D’Addio, Anna C., and Michael Rosholm. 2005. Exits from Temporary Jobs in Europe: A competing Risks Analysis.
Labour Economics 12: 449–68. [CrossRef]

De Jong, Robert M., and Tiemen Woutersen. 2011. Dynamic Time Series Binary Choice. Econometric Theory 27:
673–702.

Fennema, Julian, Wilko Letterie, and Gerard Pfann. 2006. The Timing of Investment Episodes in the Netherlands.
De Economist 154: 373–88. [CrossRef]

Finnie, Ross, and David Gray. 2002. Earnings Dynamics in Canada: An Econometric Analysis. Labour Economics 9:
763–800. [CrossRef]

8 This corresponds to Manski for S = 1.

http://dx.doi.org/10.1162/003465398557357
http://dx.doi.org/10.1017/S0266466607070120
http://dx.doi.org/10.1086/250010
http://dx.doi.org/10.1086/319568
http://dx.doi.org/10.1111/j.1467-9574.1995.tb01473.x
http://dx.doi.org/10.1257/aer.89.4.921
http://dx.doi.org/10.1016/j.labeco.2005.05.002
http://dx.doi.org/10.1007/s10645-006-9015-0
http://dx.doi.org/10.1016/S0927-5371(02)00104-5


J. Risk Financial Manag. 2019, 12, 64 16 of 16

Fox, Jeremy T. 2007. Semiparametric estimation of multinomial discrete–choice models using a subset of choices.
Rand Journal of Economics 38: 1002–19. [CrossRef]

Gullstrand, Joakim, and Kerem Tezic. 2008. Who Leaves After Entering the Primary Sector? Evidence from
Swedish Micro-level Data. European Review of Agricultural Economics 35: 1–28. [CrossRef]

Hess, Wolfgang. 2009. A Flexible Hazard Rate Model for Grouped Duration Data. Mimeo. Lund: Lund University.
Holmas, Tor H. 2002. Keeping Nurses at Work: A Duration Analysis. Health Economics 11: 493–503. [CrossRef]
Horowitz, Joel L. 1992. A Smoothed Maximum Score Estimator for the Binary Response Model. Econometrica 60:

505–31. [CrossRef]
Horowitz, Joel L. 1998. Semiparametric Methods in Econometrics. New York: Springer.
Horowitz, Joel L. 1999. Semiparametric Estimation of a Proportional Hazard Model with Unobserved

Heterogeneity. Econometrica 67: 1001–28. [CrossRef]
Horowitz, Joel L. 2002. Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator.

Journal of Econometrics 111: 141–67. [CrossRef]
Huff-Stevens, Ann. 1999. Climbing out of Poverty, Falling Back in - Measuring the Persistence of Poverty over

Multiple Spells. The Journal of Human Resources 34: 534–56.
Ichimura, Hidehiko. 1993. Semiparametric least squares (SLS) and weighted SLS estimation of single-index

models. Journal of Econometrics 58: 71–120. [CrossRef]
Iglesias, Emma M. 2010. First and Second Order Asymptotic Bias Correction of Nonlinear Estimators in a

Non-Parametric Setting and an Application to the Smoothed Maximum Score Estimator. Studies in Nonlinear
Dynamics and Econometrics 14: 1–30. [CrossRef]

Jun, Sung Jae, Joris Pinkse, and Yuanyuan Wang. 2015. Classical Laplace estimation for N1/3-consistent estimators:
Improved convergence rates and rate-adaptive inference. Journal of Econometrics 187: 201–16. [CrossRef]

Klein, Roger W., and Richard H. Spady. 1993. An Efficient Semiparametric Estimator for Binary Response Models.
Econometrica 61: 387–421. [CrossRef]

Kotlyarova, Yulia, and Victoria Zinde-Walsh. 2010. Robust estimation in binary choice models. Communications in
Statistics–Theory and Methods 39: 266–79. [CrossRef]

Lee, Myoung-Jae. 1992. Median regression for ordered discrete response. Journal of Econometrics 51: 59–77. [CrossRef]
Li, Qi, and Jeffrey S. Racine. 2007. Nonparametric Econometrics. Princeton: Princeton University Press.
Manski, Charles F. 1975. Maximum Score Estimation of the Stochastic Utility Model of Choice.

Journal of Econometrics 3: 205–28. [CrossRef]
Manski, Charles F. 1985. Semiparametric Analysis of Discrete Response: Asymptotic Properties of the Maximum

Score Estimator. Journal of Econometrics 32: 65–108 .
Meghir, Costas, and Edward Whitehouse. 1997. Labour Market Transitions and Retirement of men in the UK.

Journal of Econometrics 79: 327–54. [CrossRef]
Melenberg, Bertrand, and Arthur H. O. Van Soest. 1996. Parametric and semi-parametric modelling of vacation

expenditures. Journal of Applied Econometrics 11: 59–76. [CrossRef]
Nielsen, Jens P., Oliver Linton, and Peter J. Bickel. 1998. On a semiparametric survival model with flexible

covariate effect. The Annals of Statistics 26: 215–41. [CrossRef]
Reza, Sadat, and Paul Rilstone. 2014. A simple root-N-consistent semiparametric estimator for discrete duration

models. Statistics and Probability Letters 95: 150–54. [CrossRef]
Reza, Sadat, and Paul Rilstone. 2016. Semiparametric efficiency bounds and efficient estimation of discrete

duration models with unspecified hazard rate. Econometric Reviews 35: 693–726. [CrossRef]
Rilstone, Paul, Virendra K. Srivastava, and Aman Ullah. 1996. The Second-Order Bias, and Mean Squared Error of

Nonlinear Estimators. Journal of Econometrics 75: 369–95. [CrossRef]
Sueyoshi, Glenn T. 1995. A Class of Binary Response Models for Grouped Duration Data. Journal of

Applied Econometrics 10: 411–31. [CrossRef]
Van der Vaart, Aad. 1996. Efficient Maximum Likelihood Estimation in Semiparametric Mixture Models.

The Annals of Statistics 24: 862–78. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.0741-6261.2007.00123.x
http://dx.doi.org/10.1093/erae/jbn009
http://dx.doi.org/10.1002/hec.747
http://dx.doi.org/10.2307/2951582
http://dx.doi.org/10.1111/1468-0262.00068
http://dx.doi.org/10.1016/S0304-4076(02)00102-1
http://dx.doi.org/10.1016/0304-4076(93)90114-K
http://dx.doi.org/10.2202/1558-3708.1736
http://dx.doi.org/10.1016/j.jeconom.2015.01.005
http://dx.doi.org/10.2307/2951556
http://dx.doi.org/10.1080/03610920902737092
http://dx.doi.org/10.1016/0304-4076(92)90029-Q
http://dx.doi.org/10.1016/0304-4076(75)90032-9
http://dx.doi.org/10.1016/S0304-4076(97)00026-2
http://dx.doi.org/10.1002/(SICI)1099-1255(199601)11:1<59::AID-JAE371>3.0.CO;2-A
http://dx.doi.org/10.1214/aos/1030563983
http://dx.doi.org/10.1016/j.spl.2014.08.017
http://dx.doi.org/10.1080/07474938.2014.966637
http://dx.doi.org/10.1016/0304-4076(96)89457-7
http://dx.doi.org/10.1002/jae.3950100406
http://dx.doi.org/10.1214/aos/1032894470
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Modelling 
	The Estimator
	Simulation Exercise
	Conclusions
	
	References

