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Abstract: We investigate the default probability, recovery rates and loss distribution of a portfolio of
securitised loans granted to Italian small and medium enterprises (SMEs). To this end, we use loan
level data information provided by the European DataWarehouse platform and employ a logistic
regression to estimate the company default probability. We include loan-level default probabilities and
recovery rates to estimate the loss distribution of the underlying assets. We find that bank securitised
loans are less risky, compared to the average bank lending to small and medium enterprises.

Keywords: credit scoring; probability of default; small and medium enterprises; asset-backed securities

1. Introduction

The global financial crisis (GFC) exacerbated the need for greater accountability in evaluating
structured securities and thus has required authorities to implement policies aimed at increasing
the level of transparency in the asset-backed securities (ABS) framework. In fact, ABS represents
a monetary policy instrument which has been largely used by the European Central Bank (ECB) after
the financial crisis. On this ground, in 2010 the ECB issued the ABS Loan-Level Initiative which
defines the minimum information requirement at loan level for the acceptance of ABS instruments as
collateral in the credit operations part of the Eurosystem. This new regulation is based on a specific
template1 and provides market participants with more timely and standardised information about the
underlying loans and the corresponding performance.

After the GFC, a large amount of ABS issued by banks has been used as collateral in repurchase
agreement operation (repo) via the ABS Loan Level Initiative in order to receive liquidity. A repo
represents a contract where a cash holder agrees to purchase an asset and re-sell it at a predetermined
price at a future date or in the occurrence of a particular contingency. One of the main advantages of
repo is the guarantee offered to the lender since the credit risk is covered by the collateral in the case of
the borrower’s default.

To collect, validate and make available the loan-level data for ABS, in 2012 the Eurosystem
designated the European DataWarehouse (ED) as the European securitisation repository for ABS data.
As stated on the website, the main purpose of the ED is to provide transparency and confidence in the
ABS market.

1 The list of the ECB templates is available at https://www.ecb.europa.eu/paym/coll/loanlevel/transmission/html/index.
en.html.
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The ED was founded by 17 market participants (large corporations, organizations and banks) and
started to operate in the market in January 2013. To be eligible for repurchase agreement transactions
with the ECB, securitisations have to meet solvency requirements: for instance, if the default rates in the
pool of underlying assets reach a given level, the ABS is withdrawn as collateral. Clearly, this repository
allows for new research related to ABS providing more detailed information at loan level.

In this paper, we consider the credit scoring in ABS of small and medium enterprises (SMEs) by
using a database of loan-level data provided by ED. The aim of our analysis is to compare the riskiness
of securitised loans with the average of bank lending in the SME market in terms of probability
of default.

We consider the SME market since it plays an important role in the European economy. In fact,
SMEs constitute 99% of the total number of companies, they are responsible for 67% of jobs and generate
about 85% of new jobs in the Euro area (Hopkin et al. 2014). SMEs are largely reliant on bank-related
lending (i.e., credit lines, bank loans and leasing) and, despite their positive growth, they still suffer
from credit tightening since lending remains below the pre-crisis level in contrast to large corporates.
Furthermore, SMEs do not have easy access to alternative channels such as the securitisation one
(Dietsch et al. 2016). In this respect, ECB intended to provide credit to the Eurozone’s economy in
favour of the lending channel by using the excess of liquidity of the banking system2 due to the
Asset-Backed Purchase Program (ABSPP) to ease the borrowing conditions for households and firms.
Consequently, securitisation represents an interesting credit channel for SMEs to be investigated in a
risk portfolio framework. In particular, SMEs play even a more important role in Italy than the in the
rest of the European Union. The share of SME value added is 67% compared to an EU average of 57%
and the share of SME employment is 79%. Therefore, the ABS of Italian SMEs represents an interesting
case to be investigated since Italy is the third largest economy in the Eurozone.

In this regard, we collect the exposures of Italian SMEs and define as defaulted those loans that are
in arrears for more than 90 days. We define the 90-day threshold according to article 178 of Regulation
(EU) No 575/2013 (European Parliament 2013), which specifies the definition of a default of an obligor
that is used for the IRB Approach3. We exploit the informational content of the variables included
in the ECB template and compute a score for each company to measure the probability of default of
a firm. Then, we analyse a sample of 106,257 borrowers of SMEs and we estimate the probability of
default (PD) at individual level through a logistic regression based on the information included in the
dataset. The estimated PD allows us to have a comparison between the average PD in the securitised
portfolio and the average PD in the bank lending for SMEs.

The variables included in the analysis, which will be presented in Section 3, are: (i) interest rate
index; (ii) business type; (iii) Basel segment; (iv) seniority; (v) interest rate type; (vi) nace industry
code; (vii) number of collateral securing the loan; (viii) weighted average life; (ix) maturity date;
(x) payment ratio; (xi) loan to value and (xii) geographic region. Using the recovery rate provided by
banks, we estimate the loss distribution of a global portfolio composed by 20,000 loans at different
cut-off date using CREDITRISK+™ model proposed by Credit Suisse First Boston (CSFB 1997).

2 The ECB and the national central banks of the Eurosystem have been lending unlimited amounts of capital to the bank
system as a response to the financial crisis. For more information see: https://www.ecb.europa.eu/explainers/tell-me-
more/html/excess_liquidity.en.html.

3 A default shall be considered to have occurred with regard to a particular obligor when either or both of the following have
taken place: (a) the institution considers that the obligor is unlikely to pay its credit obligations to the institution, the parent
undertaking or any of its subsidiaries in full, without recourse by the institution to actions such as realising security; (b) the
obligor is past due more than 90 days on any material credit obligation to the institution, the parent undertaking or any of
its subsidiaries. Relevant authorities may replace the 90 days with 180 days for exposures secured by residential or SME
commercial real estate in the retail exposure class (as well as exposures to public sector entities).

https://www.ecb.europa.eu/explainers/tell-me-more/html/excess_liquidity.en.html
https://www.ecb.europa.eu/explainers/tell-me-more/html/excess_liquidity.en.html
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Our findings show that the default rates for securitised loans are lower than the average bank
lending for the Italian SMEs’ exposures, in accordance with the studies conducted on the Italian market
by CRIF Ratings4 (Caprara et al. 2015).

The remaining of the paper is structured as follows. Section 2 provides a literature review
about SMEs and default estimates while Section 3 illustrates the empirical analysis and our findings.
Finally Section 4 concludes the paper.

2. Literature Review

According to Van Gestel et al. (2003), the default of a firm occurs when it experiences sustained
and prolonged losses or when it becomes insolvent having the weight of liabilities disproportionately
large with respect to its total assets. Different methods have been developed in literature to predict
company bankruptcy. From 1967 to 1980, multivariate discriminant analysis (MDA) has been one of the
main techniques used in risk assessment. Altman (1968) was the first to implement this technique on
a sample of sixty-six manufacturing corporations. The author used a set of financial and economic ratios
for bankruptcy prediction and showed that 95 percent of all firms in the defaulted and non-defaulted
groups were correctly assigned to their actual group of classification. Aftewards, he applied the
same technique to bankruptcy prediction for saving and loan associations and commercial banks
(Altman 1977; Sinkey 1975; Stuhr and Van Wicklen 1974). Beaver (1968) showed that illiquid asset
measures predict failure better than liquid asset measures; Blum (1974) tested discriminant analysis
on a sample of 115 failed and 115 non failed firms showing that the model can distinguish defaulting
firms correctly with an accuracy of 94 percent. Using the same approach, Deakin (1972) and
Edmister (1972) focused on default prediction with financial ratios. The main limitations that affect
MDA are linearity and indipendence among the variables (Karels and Prakash 1987). Barnes (1982)
explored the importance of non-normality in the statistical distribution of financial ratios and shows
that where financial ratios are inputs to certain statistical models (Regression Analysis and Multiple
Discriminant Analysis) normality is irrelevant. Hamer (1983) compared a linear discriminant model,
a quadratic discriminant model and a logit model demonstrating that the performance of the linear
discriminant analysis and the logit model are equivalent. Other approaches focus on logistic regression.
Martin (1977) described the first application of a logit analysis to bank early warning problems
and Chesser (1974) applied a logit model to predict non-compliance by commercial loan customers.
These statistical techniques share the same idea of dividing defaulted and non-defaulted firms as
a dependent variable attempting to explain the classification as a function of several independent
variables. eference Ohlson (1980) used a logit approach to test financial ratios as predictors of corporate
failures and identified four basic factors as significant in affecting the probability of default: (i) size
of the company; (ii) measures of the financial structure; (iii) measures of performance; (iv) measures
of current liquidity. Odom and Sharda (1990) compared the discriminant analysis technique with
the neural network approach and discovered that the neural network was able to better predict
bankruptcy, taking into account the ratios used by Altman (1968). Tam and Kiang (1992) presented a
new approach to bank bankruptcy prediction using neural networks, stating that it can be a supplement
to a rule-based expert system in real-time applications. Wilson and Sharda (1994) showed that the
neural network outperformed the discriminant analysis in predicting accuracy both bankrupt and
non-bankrupt firms while Zhang et al. (1999) compared artificial neural networks (ANNs) with
logistic regression showing in a sample of 220 firms that ANNs perform better than logistic regression
models in default prediction. Kim and Sohn (2010) and Min and Lee (2005) used support vector
machines (SVM) to predict SMEs default and show that this model provides better prediction results

4 CRIF Ratings is an Italian credit rating agency authorized to assign ratings to non-financial companies based in the European
Union. The agency is subject to supervision by the ESMA (European Securities and Markets Authority) and has been
recognized as an ECAI (External Credit Assessment Institution).
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compared to neural networks and logistic regression. Van Gestel et al. (2003) analyzed linear and
non-linear classifiers and demonstrated that better classification performance were obtained using
Least Square Support Vector Machine (LS-SVM). LS-SVM are a modified version of SVMs resulting
into a set of linear equations instead of a QP problem. Cortes and Vapnik (1995) constructed a new
type of learning machine, the so-called support-vector network, that maps the input vectors in an high
dimensional feature space Z through some non-linear mapping chosen a priori and in this space a
linear decision surface is constructed with special properties. Bryant (1997) examined the usefulness of
an artificial intelligence method, case based reasoning (CBR), to predict corporate bankruptcy in order
to show that the CBR is not more accurate than the Ohlson (1980) logit model, which attains a much
higher accuracy rate and appears to be more stable over time. Also Buta (1994), Jo et al. (1997) and
Park and Han (2002) applied it successfully to default prediction thanks to their ability of identifying
a non-linear and non-parametric relationship. In this paper, we make use of the logistic regression
since it provides a clear economic interpretation of the indicators that have an influence on the default
probability of a firm.

3. Empirical Analysis

In this section, we analyze at loan level a SME ABS portfolio issued by an Italian bank during 2011
and 2012. We carry out the analysis by following the loans included in the sample at different pool
cut-off dates, from 2014 to 2016, close to or coinciding with the semester. However, it is not possible to
track all loans in the various periods due to the revolving nature of the operations which allows the
SPV to purchase other loans during the life of the operation.

We examine those variables that may lead to the definition of a system for measuring the risk of
a single counterpart that are included in the ECB template. In particular we select: (i) interest rate
index (field AS84 of the ECB SMEs template); (ii) business type (AS18); (iii) Basel segment (AS22);
(iv) seniority (AS26); (v) interest rate type (AS83); (vi) nace industry code (AS42); (vii) number of
collateral securing the loan (CS28); (viii) weighted average life (AS61); (ix) maturity date (AS51);
(x) payment ratio; (xi) loan to value (LTV) and (xii) geographic region (AS17). We compute payment
ratio as the ratio between the installment and the outstanding amount and loan to value as the ratio
between the outstanding loan amount and the collateral value. Interest rate index includes: (1) 1 month
LIBOR; (2) 1 month EURIBOR; (3) 3 month LIBOR; (4) 3 month EURIBOR; (5) 6 month LIBOR;
(6) 6 month EURIBOR; (7) 12 month LIBOR; (8) 12 month EURIBOR; (9) BoE Base Rate; (10) ECB
Base Rate; (11) Standard Variable Rate; (12) Other. Business type assumes: (1) Public Company;
(2) Limited Company; (3) Partnership (4); Individual; (5) Other. Basel segment is restricted to (1)
Corporate and (2) SME treated as Corporate. Seniority can be: (1) Senior Secured; (2) Senior Unsecured;
(3) Junior (4); Junior Unsecured; (5) Other. Interest rate type is divided in: (1) Floating rate loan (for
life); (2) Floating rate loan linked to Libor, Euribor, BoE reverting to the Bank’s SVR, ECB reverting to
Bank’s SVR; (3) Fixed rate loan (for life); (4) Fixed with future periodic resets; (5) Fixed rate loan with
compulsory future witch to floating; (6) Capped; (7) Discount; (8) Switch Optionality; (9) Borrower
Swapped; (10) Other. Nace Industry Code corresponds to the European statistical classification of
economic activities. Number of collateral securing the loan represents the total number of collateral
pieces securing the loan. Weighted Average Life is the Weighted Average Life (taking into account the
amortization type and maturity date) at cut-off date. Maturity date represents the year and month
of loan maturity. Finally the geographic region describes where the obligor is located based on the
Nomenclature of Territorial Units for Statistics (NUTS). Given the NUTS code we group the different
locations into North, Center and South of Italy5.

5 The complete list of fields definitions and criteria can be found at https://www.ecb.europa.eu/paym/coll/loanlevel/
shared/files/RMBS_Taxonomy.zip?bc2bf6081ec990e724c34c634cf36f20.

https://www.ecb.europa.eu/paym/coll/loanlevel/shared/files/RMBS_Taxonomy.zip?bc2bf6081ec990e724c34c634cf36f20
https://www.ecb.europa.eu/paym/coll/loanlevel/shared/files/RMBS_Taxonomy.zip?bc2bf6081ec990e724c34c634cf36f20
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The final panel dataset used for the counterparties’ analysis contains 106,257 observations.
Table 1 shows the number of non-defaulted and defaulted loans for each pool cut-off date.

Table 1. The table shows the amount of non-defaulted and defaulted exposures for each pool cut-off
date. We observe that the average default rate per each reference date remains constant and is equal
to 2.84% over the entire sample. We account only for the loans that are active in the pool cut-off date
and include the loans that defaulted between two pool cut-off dates. In the case of the first report date,
we consider the defaults that occurred from 2011, the date of securitization of the pool, until the first
half of 2014, due to missing information on the performance of the securitized pool prior to this date.
We analyze in total 106,257 loans granted to SMEs.

Pool Cut-Off Date Non-Defaulted Defaulted %
Default Tot.

2014H1 31,930 904 2.75 32,834
2014H2 26,851 813 2.94 27,664
2015H1 21,724 679 3.03 22,403
2015H2 12,651 372 2.86 13,023
2016H1 10,076 257 2.49 10,333

Tot. 103,232 3025 2.84 106,257

In the process of computing a riskiness score for each borrower, we consider the default date
to take into account only the loans that are either not defaulted or that are defaulted between two
pool cut-off dates (prior to the pool cut-off date in the case of 2014H1). In the considered sample,
the observed defaulted loans are equal to 2.84% of the total number of exposures (Table 1).

We analyze a total of 159,641 guarantees related to 117,326 loans. For the score and the associated
default probability, we group the individual loan information together to associate it with a total of
106,257 borrowers over five pool cut-off dates (Table 2). In order to move from the level of individual
loans to the level of individual companies, we calculate the average for all loans coming from the same
counterparty, otherwise we retain the most common value for the borrower.

Table 2. The table shows the amount of collaterals, loans and borrowers included in the sample for each
pool cut-off date. The dataset links together borrower, loan and collateral. In total 159,641 collaterals
are associated with 117,326 loans belonging to 106,257 companies.

Pool Cut-Off
Date

Collateral
Database

Loan
Database

Borrower
Database

2014H1 53,418 36,812 32,834
2014H2 45,694 30,774 27,664
2015H1 34,583 24,640 22,403
2015H2 14,472 14,000 13,023
2016H1 11,474 11,100 10,333

Tot. 159,641 117,326 106,257

We analyze the variables included in the ECB template individually through the univariate
selection analysis which allows to measure the impact of each variable on loan’s riskiness. We group
each variable’s observations according to a binning process in order to: (i) reduce the impact of outliers
in the regression; (ii) better understand the impact of the variable on the credit risk through the study
of the Weight of Evidence (WOE); (iii) study the variable according to a strategic purpose.

Operators suggest taking the WOE as a reference to test the model predictivity (Siddiqi 2017),
a measure of separation between goods (non-defaulted) and bads (defaulted), which calculates the
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difference between the portion of solvents and insolvents in each group of the same variable.
Specifically, the Weight of Evidence value for a group consisting of n observations is computed as:

Weight of Evidence Wi =

[
ln

DistrGood
DistrBad

]
∗ 100 (1)

and could be written as:

Wi = ln
(

Ni

∑ N

/
Pi

∑ P

)
(2)

The value of WOE will be zero if the odds of DistrGood/DistrBad is equal to one. If the DistrBad
in a group is greater than the DistrGood, the odds ratio will be less than one and the WOE will be
a negative number; if the number of Goods is greater than the DistrBad in a group, the WOE value
will be a positive number.

To create a predictive and robust model we use a Monotonous Adjacent Pooling Algorithm
(MAPA), proposed by Thomas et al. (2002). This technique is a pooling routine utilized for
reducing the impact of statistical noise. An interval with all observed values is split in smaller
sub-intervals, bins or groups, each of them gets assigned the central value characterizing this
interval (Mironchyk and Tchistiakov 2017). Pooling algorithms are useful for coarse classing when
individual’s characteristics are represented in the model. There are three types of pooling algorithm:
(i) non-adjacent, for categorical variable; (ii) adjacent, for numeric, ordinal and discrete characteristics;
and (iii) monotone adjacent, when a monotonic relationship is supposed with respect to the target
variable. While non-adjacent algorithms do not require any assumptions about the ordering of
classes, adjacent pooling algorithms require that only contiguous attributes can be grouped together,
which applies to ordinal, discrete and continuous characteristic (Anderson 2007). In this context,
MAPA is a supervised algorithm that allows us to divide each numerical variable into different classes
according to a monotone WOE trend, either increasing or decreasing depending from the variable
considered. For categorical variables we maintain the original classification, as presented in the ECB
template. The starting point for the MAPA application is the calculation of the cumulative default rate
(bad rate) for each score level:

Cumulative Bad Rate k,v =

v

∑
i=Vk−1+1

Bi

v

∑
i=Vk−1+1

(Bi + Gi)

(3)

where G and B are the good (non-defaulted) and bad (defaulted) counts, V is a vector containing the
series of score breaks being determined; v is a score above the last score break; and i and k are indices
for each score and score break respectively. We calculate cumulative bad rates for all scores above the
last breakpoint, and we identify the score with the highest cumulative bad rate; this score is assigned
to the vector as shown in Equation (4).

MAPAk,v = max{v|Ck,v = max{Ck,v}}, ∀v > Vk−1 (4)

with C representing the cumulative bad rate. This iterative process terminates when the maximum
cumulative bad rate is the one associated with the highest possible score. To test the model predictivity
together with the WOE we use a further measure: the Information Value (IV). The Information Value is
widely used in credit scoring (Hand and Henley 1997; Zeng 2013) and indicates the predictive power of
a variable in comparison to a response variable, such as borrower default. Its formulation is expressed
by the formula:

IV =
n

∑
i=1

(DistrGoodi − DistrBadi) ∗ ln
DistrGoodi
DistrBadi

(5)
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where Distr refers to the proportion of Goods or Bads in the respective group expressed as relative
proportions of the total number of Goods and Bads and can be rewritten by inserting the WOE as follows:

n

∑
i=1

[(
Ni

∑(N)
− Pi

∑(P)

)
∗WOEi

]
(6)

with N representing the non-defaulted loans (Negative to default status), P the defaulted (Positive
to default), the WOE is calculated on the i-th characteristic and n corresponds to the total number of
characteristics analyzed, as shown in Equations (1) and (2). As stated in Siddiqi (2017), there is no
precise rule of discrimination of the variables through the information value. It is common practice
among operators to follow an approximate rule that consists in considering these factors: (i) an IV
smaller than 0.02 shows an unpredictable variable; (ii) from 0.02 to 0.1 power is weak; (iii) from 0.1
to 0.3 average; (iv) above 0.3 strong. Table 3 shows the indication of the information value for each
variable within the dataset in the first pool cut-off date.

Table 3. The table shows the information value computed for each variable included in the sample.
We report the statistic associated to the variable for each pool cut-off date. Since not all the variables
inserted in the regression can be considered strong predictors of borrower’s default we decide to insert
in the regression those variables that have a IV superior to 0.01, in the lack of other, better information.

Variable 2014H1 2014H2 2015H1 2015H2 2016H1

Interest Rate Index 0.04 0.08 0.01 0.00 0.00
Business Type 0.02 0.05 0.02 0.03 0.02
Basel Segment 0.00 0.01 0.00 0.00 0.01
Seniority 0.09 0.08 0.02 0.12 0.29
Interest Rate Type 0.00 0.00 0.00 0.00 0.00
Nace Code 0.05 0.01 0.01 0.01 0.07
Number of Collateral 0.00 0.00 0.03 0.00 0.00
Weighted Average Life 0.26 0.27 0.22 0.16 0.37
Maturity 0.00 0.08 0.00 0.08 0.00
Payment ratio 0.11 0.08 0.14 0.09 0.10
Loan To Value 0.10 0.08 0.07 0.06 0.11
Geographic Region 0.01 0.00 0.02 0.01 0.03

According to Siddiqi (2017), logistic regression is a common technique used to develop scorecards
in most financial industry applications, where the predicted variable is binary. Logistic regression uses
a set of predictor characteristics to predict the likelihood of a defined outcome, such as borrower’s
default in our study. The equation for the logit transformation is described as:

Logit(pi) = β0 +
k

∑
j=1

β jxj + e (7)

where pi represent the posterior probability of the “event” given different input variables for the i-th
borrower; x are input variables; β0 corresponds to the intercept of the regression line; β j are parameters
and k is the total number of parameters.

The result logit(pi) in the equation represents a logarithmic transformation of the output, i.e.,
log(p[event]/p[nonevent]), necessary to linearize posterior probability and limit outcome of estimated
probabilities in the model between 0 and 1. The parameters β1 . . . βk measure the rate of change in
the model as the value of the independent variable varies unitary. Independent variables must be
standardized to be made as independent as possible from the input unit or proceed by replacing
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the value of the characteristic with the WOE for each class created for the variable. The final
formulation becomes:

Logit(pi) = β0 +
k

∑
j=1

β jWOEj(i) + e (8)

The regression is made on a cross sectional data for each pool cut-off date. We measure the
impact of the variables on credit risk through the WOE. If we consider the LTV when the ratio between
the outstanding loan amount and collateral value increases, the default rate increases as well while
the WOE decreases. This indicates that an increment in the LTV is a sign of a deterioration in the
creditworthiness of the borrower. The relation is reported in Table 4.

Table 4. The table shows per each LTV class (column 1) the amount of non-defaulted loans (column 2),
defaulted loans (column 3); probability, computed as the ratio between non-defaulted and defaulted
(column 4) and Weight of Evidence (column 5). As we can see the application of the MAPA algorithm
allows to cut the variable into classes with a monotone WOE. The table confirms the relation between
LTV and WOE. We show that as the LTV increases the WOE decreases as well as the probability (odds
ratio) meaning that the borrower is riskier. For each computed class we associate a score, meaning that
a borrower with a lower LTV, i.e., in the third class (0.333–0.608) is associated with a score higher (less
risky) compared to a borrower in the fourth class. For sake of space we report the results only for the
third pool cut-off date but the same considerations could also be carried out for the other report dates.

LoanToValue 2015H1 Non-Defaulted Defaulted Probability WOE

0–0.285 3383 67 50.49 0.35
0.285–0.333 1523 31 49.12 0.33
0.333–0.608 3531 89 39.67 0.11
0.608–0.769 3357 95 35.33 0.002
0.769–1 2074 77 26.93 −0.26
1–inf 2904 117 24.82 −0.35

Tot. 16,772 476 35.23

We report in Equation (9) the obtained regression for the first pool cut-off date, for sake of space
we include only the first regression. The output of the other pool cut-off date regression is reported
in Appendix A. It should be noted that not all the variables included in the sample are considered
significant. The LTV due to a high number of missing values, even if predictive according to the criteria
of the information value, has not been included in the regression:

de f ault 2014 H1 = β0 + β1WeightedAverageLi f e + β2Payment_Ratio (9)

+ β3Seniority + β4Code_Nace

+ β5Geographic_Region + β6 InterestRateIndex + e

Table 5 reports the coefficients of the considered variables along with the significance level,
marked by *** at 1% confidence level and by ** at 5%.
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Table 5. We illustrate in the table the coefficient and the significance of the variables included in the
regression. We denote by *** the significance level of 1%, with ** the level of 5%. The table reports the
number of observations, Chi2-statistic vs. constant model and p-value.

Variable 2014H1 2014H2 2015H1 2015H2 2016H1

Coefficient Coefficient Coefficient Coefficient Coefficient
(int.) 3.550 *** 3.481 *** 3.456 *** 3.523 *** 3.652 ***
InterestRateIndex 0.698 ***
Seniority 1.489 *** 1.493 *** 0.598 1.325 *** 0.944 ***
Code_Nace 1.048 *** 0.952 *** 0.798 ** 0.927 ** 0.947 ***
WeightedAverageLife 1.007 *** 0.953 *** 1.168 *** 0.912 *** 0.798 ***
Payment_Ratio 2.456 *** 2.296 *** 1.482 *** 2.300 *** 2.253 ***
Geographic_Region 1.675 *** 1.405 *** 1.432 *** 0.903 ***

Observations 32,834 27,664 22,403 13,023 10,333
Chi2-statistic vs. constant model 670 541 373 190 222
p-value 0.000 0.000 0.000 0.000 0.000

Figure 1a indicates the default probability associated with each score level for the first pool cut-off
date. In the Appendix A we report the relationship for the other pool cut-off dates. We choose a score
scale ranging from 500 (worst counterparties) to 800 points (best counterparties). We can see that as
the score decreases, the associated default probability increases.
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Figure 1. Panel (a) illustrates the relationship between score and PD. For each company we compute
a score based on the logistic regression output that is an indication of individual PD. Panel (b) shows
the master scale. This is an indicator of the counterparty’s riskiness level. For its creation, we follow the
approach presented by Siddiqi (2017). The default probability is linearized through the calculation of
the natural logarithm, then the vector of the logarithms of the PD is divided into 10 equal-sized classes
and the logarithms of the cut-offs of each class is converted to identify the cut-offs to be associated with
each scoring class with an exponential function.

Validation statistics have the double purpose of measuring: (i) the power of the model,
i.e., the ability to identify the dependence between the variables and the outputs produced and (ii) the
divergence from the real results. We use Kolmogorov-Smirnov (KS) curve and Receiver Operating
Characteristic (ROC) curve to measure model prediction capacity.

Kolmogorov-Smirnov (KS) The KS coefficient according to Mays and Lynas (2004) is the most
widely used statistic within the United States for measuring the predictive power of rating systems.
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The Kolmogorov-Smirnov curve plots the cumulative distribution of non-defaulted and defaulted
against the score, showing the percentage of non-defaulted and defaulted below a given score threshold,
identifying it as the point of greatest divergence. According to Mays and Lynas (2004), KS values
should be in the range 20%–70%. The goodness of the model should be highly questioned when
values are below the lower bound. Value above the upper bound should be also considered with
caution because they are ‘probably too good to be true’. The Kolmogorov-Smirnov statistic for a given
cumulative distribution function F(x) is:

Dn = supx|Fn(x)− F(x)| (10)

where supx is the supremum of the set of distances. The results on the dataset are included in Figure 2
and show values within the threshold for the first pool cut-off date. In the first report date with
a 623 points score the KS value is 23.8%. The statistics for the other pool cut-off dates are reported in
Appendix A.

Lorenz curve and Gini coefficient In credit scoring, the Lorenz curve is used to analyze the
model’s ability to distinguish between “good” (non-defaulted) and “bad” (defaulted), showing the
cumulative percentage of defaulted and non-defaulted on the axes of the graph (Müller and Rönz 2000).
When a model has no predictive capacity, there is perfect equality. The Gini Coefficient is widely used
in Europe (Řezáč and Řezáč 2011), is derived from the Lorenz curve and calculates the area between the
curve and diagonal in the Lorenz curve.
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Figure 2. Panel (a) illustrates the Kolmogorov-Smirnov curve and the associated statistics for the first
pool cut-off date. We show that the KS statistic associated to a score of 623.21 is 23.8%. Panel (b) reports
the ROC curve and the AUROC value for the first report date. Table 6 reports AUROC, KS statistic and
KS score for the entire sample.

Gini coefficient The Gini coefficient is computed as:

D = 1−
n

∑
i=1

((cpYi − cpYi−1)(cpXi + cpXi−1)) (11)

where cpY is the cumulative percentage of defaulters and cpX is the cumulative percentage of
non-defaulters. The result is a coefficient that measures the separation between the curve and the
diagonal. Gini’s coefficient is a statistic used to understand how well the model can distinguish
between “good” and “bad”.
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This measure has the following limitations: (i) can be increased by increasing the range of
indeterminates, i.e., who is neither “good” nor “bad” and (ii) is sensitive to the definition of the
categories of variables both in terms of numbers and types. Operators’ experience, according to
Anderson (2007), suggests that the level of the Gini coefficient should range between 30% and 50%,
in order to have a satisfactory model.

Receiver Operating Characteristic (ROC) As reported by Satchel and Xia (2008), among the
methodologies for assessing discriminatory power described in the literature the most popular one is
the ROC curve and its summary index known as the area under the ROC (AUROC) curve. The ROC
curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various
threshold settings. The true-positive rate is also known as sensitivity and the false-positive rate is
also known as the specificity. Specificity represents the ability to identify true negatives and can be
calculated as 1 minus the specificity. The ROC therefore results from:

ROC X = Pr[SFP ≤ SCut o f f ] and Y = Pr[STP ≤ SCut o f f ] (12)

The curve is concave only when the relationship p+i /p−i has a monotonous relationship with the
event being studied. When the curve goes below the diagonal, the model is making a mistake in the
prediction for both false positive and false negative but a reversal of the sign could correct it. This is
very similar to the Gini coefficient, except that it represents the area under the ROC curve (AUROC),
as opposed to measuring the part of the curve above it. The commonly used formula for the AUROC,
as reported in (Anderson 2007, p. 207) is:

AUROC cP,N = Pr[STP < STN ] + 0.5Pr[STP = STN ] (13)

and shows that the area below the curve is equal to the probability that the score of a true positive
(defaulted, STP) is less than that of a true negative (non-defaulted, STN), plus 50% of the probability
that the two scores are equal. A 50% value of AUROC implies that the model is making nothing more
than a random guess. Table 6 shows the values of the statistics for the analyzed pool cut-off dates.

Table 6. The table reports Kolmogorov-Smirnov statistic, KS score and the area under the ROC curve
for the analyzed pool cut-off dates. We can observe that the statistics differs over the sample, due to the
different loans included in the pool that changed over the period.

Statistics 2014H1 2014H2 2015H1 2015H2 2016H1

Area under ROC curve 0.66 0.62 0.62 0.60 0.68
KS statistic 0.23 0.18 0.18 0.15 0.27
KS score 623.21 621.4 636.43 545.84 632.18

Once the predictive ability of the model is tested, it is possible to calculate the probability of
default for classes of counterparties. In this respect, we create a master scale to associate a default
probability to each score. As stated in Siddiqi (2017), a common approach is to have discrete scores
scaled logarithmically. In our analysis, we set the target score to 500 with the odds doubling every
50 points which is commonly used in practice (Refaat 2011). The way to define the rating classes
is through the creation of a cut-off defined with classes extension. Using the relationship between
logarithm and exponential function it is possible to create the ranges for each rating class. The default
probability vector by counterparty is linearized through the calculation of their natural logarithm,
then this is divided into 10 equal classes and the logarithms of the cut-off of each class have been
converted to identify the cut-off to be associated with each scoring class with an exponential function.
With this procedure we calculate an average default probability for each range created (Figure 1b).
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We validate the results obtained in the logistic regression with an out of sample analysis. In our
analysis the validation has been performed by following directly Siddiqi (2017) which illustrated the
standard procedure adopted in credit scoring. The industry norm is to use a random 70% (or 80%) of
the development sample for building the model, while the remaining sample is kept for validation.
When the scorecard is being developed on a small sample as in our case, it is preferred to use all
the samples and validate the model on randomly selected samples of 50–80% length. Accordingly,
we decided to use the second approach by selecting an out of sample of 50% of the total observations.
We proceed as in the in-sample to analyze the statistics of separation and divergence for the out of
sample, we report the statistics in Table 7. We observe that statistics do not differ substantially between
the out of sample and the whole sample.

Table 7. The table reports Kolmogorov-Smirnov statistic, KS score and the area under the ROC curve
for the out-of-sample. We can observe that the statistics differs over the sample, due to the different
loans included in the pool that changed over the period.

Statistics 2014H1 2014H2 2015H1 2015H2 2016H1

Area under ROC curve 0.68 0.62 0.62 0.63 0.68
KS statistic 0.27 0.17 0.17 0.18 0.27
KS score 610.76 654.45 662.80 673.09 628.56

We carry out the analysis of the portfolio composition in all the pool cut-off dates analyzed.
The revolving nature of the ABS may cause the composition of the portfolio under study to vary,
even significantly. In general, the classes that include most of the counterparties are the central classes,
as can be seen in Figure 3b. It is clear that the counterparties included in the ABS have an intermediate
rating. For sake of completeness we report in Table 8 the actual default frequency in the sample per
each rating class.

(a) (b)

Fr
eq
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y

Figure 3. Panel (a) reports the final master scale obtained for the first pool cut-off date. To create the
master scale we linearize the PD vector through the calculation of the natural logarithm, then this is
divided into 10 equal classes and we convert the log of the cut-off of each class in order to identify the
cut-off to be associated with each score with the exponential function. Panel (b) confirms the frequency
of borrowers for each class. In the right y-axis we indicate the default probability associated for each
class and in the left y-axis is indicated the frequency of the loans.
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Table 8. The table indicates rating (column 1 and 6), amount of non-defaulted exposures (column 2),
amount of defaulted loans (column 3), sample default frequency (column 4) and total loan amount in
the first pool cut-off date. Column 7 reports the default probability derived from the logistic regression
and column 8 reports the actual frequency of default and is equal to column 4. What we can observe
is that the model is able to compute the cut-offs in a way that the default frequencies are monotone
increasing from A-rated to L-rated. We report the statistics for the entire sample in Appendix A.

Rating
2014H1 Non-Defaulted Defaulted pd_actual (%) Total pd_estimate pd_actual

A 4 0 0.00 4 A 0.02 0.00
B 30 0 0.00 30 B 0.04 0.00
C 298 3 1.00 301 C 0.11 1.00
D 707 9 1.26 716 D 0.23 1.26
E 3452 46 1.32 3498 E 0.52 1.32
F 7169 103 1.42 7272 F 1.23 1.42
G 15,264 415 2.65 15,679 G 2.78 2.65
H 4810 174 3.49 4984 H 5.34 3.49
I 134 19 12.42 153 I 13.77 12.42
L 62 135 68.53 197 L 35.87 68.53

To estimate the recovery rate of a default exposure it is necessary to have information regarding
the market value of the collateral, the administrative costs incurred for the credit recovery process
and the cumulative recoveries. Since those data are not available in the dataset, we analyze the
recovery rates starting directly from the data provided by the banks in the template under “AS37”
with the name of “Bank internal Loss Given Default (LGD) estimate” which estimates the LGD of the
exposure in normal economic conditions. The RR of the loan was calculated by applying the equation:
RR(%) = 100%− LGD(%).

The average recovery rate through all the collaterals related to one loan calculated by the bank is
different depending on the level of protection offered, as evidenced by Figure 4.

(a)

20 40 60 80 100
Recovery rate

garantito
Recovery rate per livello di protezione

(b)

20 40 60 80 100
Recovery rate

non-garantito
Recovery rate per livello di protezione

Figure 4. Considering the variable Seniority (field AS26 in the ECB template) we divide secured from
unsecured loans. Panel (a) reports the box plot for the secured loans included in the total sample
(taking into account all the pool cut-off dates), Panel (b) shows the box plot for unsecured loans. It is
clear that banks expect to recover more from secured loans compared to unsecured ones.

As can be seen in Figure 4, the originator estimates a lower recovery rate for unsecured exposures
than for secured loans. The average RR for secured exposures is 80.3%, while for unsecured exposures
on average the bank expects to recover 66.8% of the amount granted. Figure 5 and Table 9 show
the recovery rate calculated by the bank by rating level, it can be seen that the average recovery
rate calculated by the bank tends to decrease as the counterparty’s rating deteriorates, even if
not monotonously.
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Rating

Figure 5. The Figure shows the box plot of the recovery rates computed by the banks divided into the
rating classes. We note that the RR decreases from A to L, even though not monotonously.

Table 9. The table shows the average recovery rate derived from the field AS37 of the ECB template.
We can see that the RR are decreasing from A-rated to L-rated companies, even though not monotonously.

Rating Average Recovery
Rate (%)

A 87.5
B 86.6
C 86.7
D 83.8
E 75.6
F 72.5
G 75.7
H 77.4
I 70.3
L 62.5

To investigate portfolio loss distribution we implement CREDITRISK+™ model on a representative
sample of approximately 20,000 counterparties, of which 10,000 refer to loans terminated (repaid or
defaulted) before the first pool cut-off date while the remaining 10,000 are active at the latest pool
cut-off dates and are used to provide a forecast of the future loss profile of the portfolio.

CREDITRISK+™ can be applied to different types of credit exposure including corporate and retail
loans, derivatives and traded bonds. In our analysis we implement it on a portfolio of SMEs credit
exposures. It is based on a portfolio approach to modelling credit risk that makes no assumption about
the causes of default, this approach is similar to the one used in market risk, where no assumptions
are made about causes of market price movements. CREDITRISK+™ considers default rates as
continuous random variables and incorporates the volatility of default rates to capture default rates
level uncertainty. The data used in the model are: (i) credit exposures; (ii) borrower default rates;
(iii) borrower default rate volatilities and (iv) recovery rates. In order to reduce the computational
difficulties, the exposures are adjusted by anticipated recovery rates in order to calculate the loss in
case of default event. We consider recovery rates provided by ED and include them in the database.
The exposures, net of recovery rates, are divided into bands with similar exposures. The model assumes
that each exposure has a definite known default probability over a specific time horizon. Thus

pA = Annual probability o f de f ault f or obligor A (14)

We introduce the probability generating function (PGF) defined in terms of an auxiliary variable z
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F(z) =
∞

∑
n=0

p(n de f aults)zn. (15)

An individual borrower either defaults or does not default, therefore the probability generating
function for a single borrower is6:

FA(z) = 1− pA + pAz = 1 + pA(z− 1) (16)

CREDITRISK+™ assumes that default events are independent, hence, the probability generating
function for the whole portfolio is the product of the individual PGF, as shown in Equation (17)

F(z) = ∏
A

FA(z) = ∏
A

(
1 + pA(z− 1)

)
(17)

and could be written as:
logF(z) = ∑

A
log

(
1 + pA(z− 1)

)
. (18)

The Credit Risk Plus model CSFB (1997) assumes that a borrower’s default probabilities are
uniformly small, therefore powers of those probabilities can be ignored and the logarithm can be
replaced using the expression7

log
(
1 + pA(z− 1)

)
= pA(z− 1) (19)

and, in the limit, Equation (18) becomes

F(z) = e∑A pA(z−1) = eµ(z−1) (20)

where
µ = ∑

A
pA (21)

represents the expected number of default events in one year from the whole portfolio. F(z) is expanded
in its Taylor series in order to identify the distribution corresponding to this PGF:

F(z) = eµ(z−1) = e−µeµz =
∞

∑
n=0

e−µµn

n!
zn (22)

thus considering small individual default probabilities from Equation (22) the probability of realising
n default events in the portfolio in one year is given by:

Probability (n defaults) =
e−µµn

n!
(23)

where we obtain the Poisson distribution for the distribution of the number of defaults. The distribution
has only one parameter, the expected number of defaults µ. The distribution does not depend on the
number of exposures in the portfolio or the individual probabilities of default provided that they are
uniformly small. Real portfolio loss differs from the Poisson distribution, historical evidence shows
in fact that the standard deviation of default event frequencies is much larger than

√
µ, the standard

6 The Credit Risk Plus model assumes independence between default events. Therefore, the probability generating function
for the whole portfolio corresponds to the product of the individual probability generating functions.

7 The approximation ignores terms of degree 2 and higher in the default probabilities. The expression derived from this
approximation is exact in the limit as the PD tends to zero, and five good approximations in practice.
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deviation of the Poisson distribution with mean µ. We can espress the expected loss in terms of the
probability of default events

ε j = vj × µj; hence µj =
ε j

vj
= ∑

A:vA=vj

εA
vA

(24)

where

µ =
m

∑
j=1

µj =
m

∑
j=1

ε j

vj
(25)

vj is the common exposure in the exposure band, ε j is the expected loss in the exposure band and µj is
the expected number of defaults in the exposure band. We can derive the distribution of default losses
as with G(z) as the PGF for losses expressed in multiples of an unit of exposure L

G(z) =
∞

∑
n=0

p(aggregate losses = nxL) zn. (26)

The inputs that we include are therefore the average of the estimate of the probability of default
calculated through the logistic regression and the relative volatility calculated through the pool cut-off
dates. The exposure included in the model was calculated net of the recovery rates estimated by
the bank. As stated previously, since the data to obtain the recovery rate are not available, we test
the model with bank own recovery rates estimates. The mean and volatility values of the default
probabilities are shown in Table 10. For the sake of completeness, we have also reported the mean and
standard deviation of the default frequencies.

The model’s estimate on the historical data of the loans terminated in the first available pool
cut-off date provides an indication of the expected loss of 2,661,592 Euro against a total exposure of
48.92 million Euro with a standard deviation of 670,422 Euro (Table 11).

The real loss of the analysed portfolio calculated on all terminated loans is 2.10 million euro,
lower than the expected loss computed by the model but within the EL− σ threshold. The estimated
expected loss by the model is 5.44% of the capital exposed to risk which represents the outstanding
amount net of recovery rates.

Table 10. The table reports rating (column 1), mean and standard deviation of the estimated PD from
the logistic regression (column 2 and 3), mean and st.dev. of the default frequencies in the sample
(column 4 and 5). We use the estimated PD derived from the logistic regression and the Recovery Rates
to calculate the loss distribution of the portfolio with the CREDITRISK+™ model.

Rating
Estimate Frequency

Mean
(%)

st.dev
(%)

Mean
(%)

st.dev
(%)

A 0.27 0.26 0.19 0.38
B 0.43 0.41 0.94 0.77
C 0.74 0.64 1.54 0.45
D 1.15 0.92 1.85 0.79
E 2.06 1.51 1.83 0.55
F 3.15 1.94 2.25 0.55
G 5.43 2.52 3.02 0.98
H 8.70 3.15 2.51 1.42
I 17.45 4.41 26.57 21.84
L 33.93 4.02 68.96 8.61
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Table 11. The table illustrated the capital exposed to risk and the thresholds for loss of the portfolio
with unactive loans (either repaid or defaulted) at the pool cut-off date of 2014H1. The capital exposed
to risk is calculated as the sum of all the portfolio exposures net of recovery rates computed by banks
and reported by ED. The total net capital is therefore 48 million euro, with an expected loss (EL) of
2.66 million. The table reports the expected loss threshold (EL ± σ), 95th and 99th percentile loss.

Threshold Amount (€) Percentage (%)

Capital exposed to risk 48,922,828 100.00
EL − σ 1,991,170 4.07
EL 2,661,592 5.44
EL + σ 3,332,014 6.81
95th percentile 3,894,574 7.96
99th percentile 4,630,839 9.46

The analysis shows that the portfolio before the first pool cut-off date lost a total of 4.29%
of its value against an estimated loss of 5.44%. Even though the model with the input data used
overestimates the expected loss, it is in the EL− σ range. Due to the small number of counterparts
and the lack of homogeneity of the data, an estimation error is possible. With a view to analyzing
future performance, only loans active in the last pool cut-off date are kept in the portfolio and
estimates of PD and volatility have been used as an approximation of the probability of future
default. In a sample of 10,000 current counterparties in last pool cut-off date the capital exposed to
the total risk of loss is 247 million with an expected loss of 5.7 million corresponding to 2.31% of
the total (Table 12). This means that after the last available report the portfolio would have lost an
additional 2.3% of the capital exposed to risk before the withdrawal.

The average loss in the sample is 2.14% while the estimate of the future loss in the pool cut-off
dates is a further 2.31%. Figure 6a shows the loss distribution for terminated loans and Figure 6b
illustrates the loss distribution for active exposures.

In accordance with the studies conducted by CRIF8, Italian company specialized in credit bureau
and business information, the default rates of Italian SMEs are around 6%, above those calculated in
the analyzed sample. Assuming that recovery rates are similar to those of companies not included in
the portfolio of securitized exposures, we can assume that the loss profiles for securitized portfolios
are less severe than for exposures retained in the bank’s balance sheet and not securitized.

8 Available at https://www.crifratings.com/media/1264/short_default-rates-report-for-publishing_07012016_ita.pdf.

https://www.crifratings.com/media/1264/short_default-rates-report-for-publishing_07012016_ita.pdf
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Figure 6. The figure illustrates the loss distribution for unactive loans at the pool cut-off date 2014H1
(Panel (a)) and for active loans at the report date 2016H1 (Panel (b)). We indicate in the figure loss
distribution (black solid line), real loss portfolio loss (black dash-dot line), EL − σ (blue dotted line),
EL (blue dash-dot line), EL + σ (thick blue dash-dot line), 99th percentile (red solid line) and 95th
percentile (red dotted line). It is possible to calculate the real portfolio loss only on inactive loans,
therefore this threshold is present only in Panel (a).

Table 12. The table reports the capital exposed to risk and the thresholds for loss of the portfolio
with active loans at the pool cut-off date of 2016H1. The capital exposed to risk is calculated as the
sum of all the portfolio exposures net of recovery rates. The total net capital is 447 million Euro,
with an expected loss (EL) of 5.72 million. The table reports the expected loss threshold (EL ± σ),
95th and 99th percentile loss.

Threshold Amount (€) Percentage (%)

Capital exposed to risk 247,841,024 100.00
EL − σ 4,026,790 1.62
EL 5,729,076 2.31
EL + σ 7,431,362 2.99
95th percentile 8,828,005 3.56
99th percentile 10,608,768 4.28

4. Conclusions

Small and medium enterprises play a main role in the European Union in terms of jobs and added
value in the real economy. These enterprises are largely reliant on bank-related lending channels and
do not have easy access to alternative channels such as the securitisation mechanism.

In this paper, we investigated the default probability, recovery rates and loss distribution of
a portfolio of securitised loans granted to Italian small and medium enterprises. SMEs have a share in
Italy that is larger than the average of the European Union and thus represent an interesting market to
be investigated. We make use of loan level data information provided by the European DataWarehouse
and employ a logistic regression to estimate their default probability.

The aim of our analysis focused on the comparison of the riskiness of securitised loans with the
average of bank lending in the SME market. We collected the SME’s exposures from the European
DataWarehouse and exploited the informational content of the variables to compute a credit score to
estimate the probability of default at a firm level.

Our results indicate that the default rates for securitised loans are lower than the average bank
lending for the Italian SMEs’ exposures as shown in Caprara et al. (2015). The investigation should
be extended to the European level in order to compare the different SME markets using the same
timeframe as in the proposed Italian analysis. We leave these aspects for future research.
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Appendix A

Equation (A1) reports the regression output for all the analyzed pool cut-off dates. Figure A1
illustrates the relationship between Score and default probability, Figure A2 shows the masterscale
and Figure A3 shows masterscale and borrower distribution. Table A1 reports portfolio composition
per rating class, Table A2 shows default frequencies in the sample and Table A3 compares default
probabilities estimated by regression model and default frequencies in the sample.
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+ β5Geographic_Region + e
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Figure A1. The figure illustrates the relationship between Score (x-axis) and default probability (y-axis)
for 2014H1 (Panel (a)), 2014H2 (Panel (b)), 2015H1 (Panel (c)), 2015H2 (Panel (d)), 2016H1 (Panel (e)).
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Figure A2. Master scale for the sample. We illustrate 2014H1 (Panel (a)), 2014H2 (Panel (b)), 2015H1
(Panel (c)), 2015H2 (Panel (d)), 2016H1 (Panel (e)).
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Figure A3. Master scale and borrower distribution for 2014H1(Panel (a,b)), 2014H2 (Panel (c,d)),
2015H1 (Panel (e,f)), 2015H2 (Panel (g,h)), 2016H1 (Panel (i,j)).
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Table A1. The table shows the portfolio composition per rating across the pool cut-off dates. The distribution of counterparties is mainly concentrated in the
intermediate rating classes.

2014H1 2014H2 2015H1 2015H2 2016H1

Rating Freq. Perc. Cum. Rating Freq. Perc. Cum. Rating Freq. Perc. Cum. Rating Freq. Perc. Cum. Rating Freq. Perc. Cum.

A 4 0.01 0.01 A 31 0.11 0.11 A 57 0.25 0.25 A 106 0.81 0.81 A 42 0.41 0.41
B 30 0.09 0.10 B 1250 4.52 4.63 B 1919 8.57 8.82 B 1306 10.03 10.84 B 95 0.92 1.33
C 301 0.92 1.02 C 2519 9.11 13.74 C 8002 35.72 44.54 C 1506 11.56 22.41 C 523 5.06 6.39
D 716 2.18 3.20 D 1288 4.66 18.39 D 7610 33.97 78.51 D 502 3.85 26.26 D 1562 15.12 21.50
E 3498 10.65 13.85 E 7355 26.59 44.98 E 1775 7.92 86.43 E 1413 10.85 37.11 E 1149 11.12 32.62
F 7272 22.15 36.00 F 12,165 43.97 88.95 F 2060 9.20 95.63 F 6877 52.81 89.92 F 2988 28.92 61.54
G 15,679 47.75 83.75 G 2660 9.62 98.57 G 751 3.35 98.98 G 1163 8.93 98.85 G 3148 30.47 92.01
H 4984 15.18 98.93 H 150 0.54 99.11 H 72 0.32 99.30 H 30 0.23 99.08 H 711 6.88 98.89
I 153 0.47 99.40 I 82 0.30 99.41 I 115 0.51 99.81 I 39 0.30 99.38 I 32 0.31 99.20
L 197 0.60 100.00 L 164 0.59 100.00 L 42 0.19 100.00 L 81 0.62 100.00 L 83 0.80 100.00
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Table A2. The table shows rating (column 1), amount of non-defaulted loans (column 2), amount of defaulted (column 3), default frequency (column 4) and total
number of loans included in the sample per rating class (column 5). We report the statistics for the different pool cut-off dates.

2014H1 Non-Defaulted Defaulted pd_actual
(%) Total 2014H2 Non-Defaulted Defaulted pd_actual

(%) Total

A 4 0 0.00 4 31 0 0.00 31
B 30 0 0.00 30 1229 21 1.68 1250
C 298 3 1.00 301 2482 37 1.47 2519
D 707 9 1.26 716 1267 21 1.63 1288
E 3452 46 1.32 3498 7186 169 2.30 7355
F 7169 103 1.42 7272 11,819 346 2.84 12,165
G 15,264 415 2.65 15,679 2587 73 2.74 2660
H 4810 174 3.49 4984 146 4 2.67 150
I 134 19 12.42 153 58 24 29.27 82
L 62 135 68.53 197 46 118 71.95 164

2015H1 Non-Defaulted Defaulted pd_actual
(%) Total 2015H2 Non-Defaulted Defaulted pd_actual

(%) Total

A 57 0 0.00 57 105 1 0.94 106
B 1890 29 1.51 1919 1286 20 1.53 1306
C 7825 177 2.21 8002 1478 28 1.86 1506
D 7366 244 3.21 7610 491 11 2.19 502
E 1742 33 1.86 1775 1377 36 2.55 1413
F 2015 45 2.18 2060 6681 196 2.85 6877
G 715 36 4.79 751 1142 21 1.81 1163
H 69 3 4.17 72 30 0 0.00 30
I 37 78 67.83 115 36 3 7.69 39
L 8 34 80.95 42 25 56 69.14 81

2016H1 Non-Defaulted Defaulted pd_actual
% Total

A 42 0 0.00 42
B 95 0 0.00 95
C 517 6 1.15 523
D 1547 15 0.96 1562
E 1136 13 1.13 1149
F 2929 59 1.97 2988
G 3050 98 3.11 3148
H 695 16 2.25 711
I 27 5 15.63 32
L 38 45 54.22 83
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Table A3. The table compares default probabilities estimated by the regression model (pd_model) and default frequencies (pd_actual) across the pool cut-off dates.
The values of the two statistics are close, especially for the intermediate rating classes.

2014H1 2014H2 2015H1 2015H2 2016H1

pd_model pd_actual pd_model pd_actual pd_model pd_actual pd_model pd_actual pd_model pd_actual

A 0.02 0.00 0.23 0.00 0.69 0.00 0.31 0.94 0.08 0.00
B 0.04 0.00 0.38 1.68 1.05 1.51 0.55 1.53 0.11 0.00
C 0.11 1.00 0.63 1.47 1.72 2.21 0.95 1.86 0.27 1.15
D 0.23 1.26 1.00 1.63 2.54 3.21 1.53 2.19 0.46 0.96
E 0.52 1.32 2.11 2.30 4.31 1.86 2.51 2.55 0.86 1.13
F 1.23 1.42 2.95 2.84 6.37 2.18 3.02 2.85 2.15 1.97
G 2.78 2.65 6.55 2.74 8.90 4.79 5.74 1.81 3.19 3.11
H 5.34 3.49 9.09 2.67 13.12 4.17 9.92 0.00 6.02 2.25
I 13.77 12.42 17.85 29.27 24.81 67.83 16.26 7.69 14.54 15.63
L 35.87 68.53 38.72 71.95 35.17 80.95 28.42 69.14 31.45 54.22
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