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Abstract: The paper addresses the forecasting of realised volatility for financial time series using
the heterogeneous autoregressive model (HAR) and machine learning techniques. We consider an
extended version of the existing HAR model with included purified implied volatility. For this
extended model, we apply the random forests algorithm for the forecasting of the direction and
the magnitude of the realised volatility. In experiments with historical high frequency data,
we demonstrate improvements of forecast accuracy for the proposed model.

Keywords: realised volatility; heterogeneous autoregressive model; purified implied volatility;
classification; random forests; machine learning

1. Introduction

In this paper, the estimation of historical volatility is considered for financial time series generated
by stock prices and indexes. This estimation is a necessary step for the volatility forecast which is crucial
for the pricing of financial derivatives and for optimal portfolio selection. The methods of estimation
and forecast of volatility have been intensively studied (see, e.g., the references in Andersen and
Bollerslev (1997) and in De Stefani et al. (2017); Dokuchaev (2014)).

In pricing of derivatives, option traders use volatility as the input for determining the value
of an option using underlying models such as the Black–Scholes’ (Black and Scholes 1973) and
Heston’s (1993) option pricing models. Hence, being able to forecast the direction and magnitude of
the future volatility on different time horizons will provide advantages in terms of pricing risks and
the development of trading strategies.

There is an enormous body of research on modelling and forecasting volatility. Engle (1982) and
Bollerslev (1986) first proposed the ARCH model and the GARCH model for forecasting volatility.
These models have been extended in a number of directions based on the empirical evidences that
the volatility process is non-linear, asymmetry, and has a long memory. Such extensions can be
referred to EGARCH—Nelson (1991), GJR-GARCH—Glosten et al. (1993), AGARCH—Engle (1990),
and TGARCH—Zakoian (1994). However, studies have found that those models cannot describe the
whole-day volatility information well enough because they were developed within low-frequency
time sequences.

With the appearance of high-frequency data, Andersen et al. (2003) introduced a new volatility
measure. This proxy was known as realized volatility (RV). In comparison with the GARCH-type
measures, realised volatility is preferred as it is a model-free measure. Hence, it provides convenience
for calculation. In addition, the realised volatility takes high-frequency data into consideration
and exhibits the long memory property. There have been many forecasting models that have been
developed to predict the realised volatility. Among those models, the heterogeneous autogressive
model for realised volatility (HAR) by Corsi (2003) is one to name. The HAR-RV model was developed
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in accordance with the heterogeneous market hypothesis proposed by Muller et al. (1997) and the long
memory character of realised volatility by Andersen et al. (2003). Empirical studies have shown that
the HAR model has high forecasting performance for future volatility, especially for out-of-sample
data with different time horizons (Corsi 2003; Khan 2011).

Another commonly used volatility measure is the implied volatility. The implied volatility is
often derived from the observed market option prices and is regarded as the fear gauge Whaley (2000).
The implied volatility fluctuates with stock movement, strike price, interest rate, time-to-maturity,
and option price. To reduce the impact of stock price movement, a so-called “purified” implied
volatility was introduced in Luong and Dokuchaev (2014). In the present paper, we show that that this
volatility measure contains some information about the future volatility.

To produce rules for prediction for the classes and the regression of the outcome variables,
classification and regression tree models and other machine learning techniques have been developed
in the literature (see the references in De Stefani et al. (2017)). This paper explores the related random
forests algorithm to improve the forecasting of realised volatility in the machine learning setting.

This algorithm is constructed to predict both the direction and the magnitude of realised volatility,
based on the HAR model framework with the inclusion of the purified implied volatility.

The paper is structured as follows. In Section 2, we provide the background of the volatility
measures, the classical HAR model, and the random forests algorithm. We then discuss our proposed
model and methodology and their results in Section 3. Section 4 provides discussion of the study,
and we conclude the results of this study in Section 5.

2. Materials and Methods

2.1. Random Forests Algorithm

Breiman (2001) introduced the random forests (RF) algorithm as an ensemble approach that can
also be thought of as a form of nearest neighbour predictor. The random forest starts with a standard
machine learning technique called “decision trees”. We provide a brief summary of this algorithm in
this section.

2.1.1. Decision Trees

The decision trees algorithm is an approach that uses a set of binary rules to calculate a target
class or value. Different from predictors like linear or polynomial regression where a single predictive
formula is supposed to hold over the entire data space, decision trees aim to sub-divide the data into
multiple partitions using a recursive method, and then fit simple models to each cell of the partition.
Each decision tree has three levels:

• Root nodes: entry points to a collection of data;
• Inner nodes: a set of binary questions where each child node is available for every possible answer;
• Leaf nodes: respond to the decision to take if reached.

For example, in order to predict a response or class Y from inputs X1, X2, ..., Xn, a binary tree is
constructed based on the information from each input. At the internal nodes in the tree, a test to one
of the inputs is run for a given criterion with logical outcomes: TRUE or FALSE. Depending on the
outcome, a decision is drawn to the next sub-branches corresponding to the TRUE or FALSE response.
Eventually, a final prediction outcome is obtained at the leaf node. This prediction aggregates or
averages all of the training data points which reach that leaf. Figure 1 illustrates the binary tree concept.

Algorithm 1 describes how a decision tree can be constructed using CART from
(Breiman et al. 1984). This algorithm is computationally simple and quick to fit the data. In addition,
as it requires no parametric, no formal distributional assumptions are required. However, one of the
main disadvantages of tree-based models is that they exhibit instability and high variance, i.e., a small
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change in the data can result in a very different series of split, or over-fitting. To overcome such a
major issue, we used an alternative ensemble approach known as the random forests algorithm.

Algorithm 1: Classification And Regression Trees - CART algorithm for building decision trees.
1: Let N be the root node with all available data.
2: Find the feature F and threshold value T that split the samples assigned to N into subsets

ITRUE and IFALSE, to maximise the label purity within these subsets.
3: Assign the pair (F, T) to N.
4: If I(s) is too small to be split, attach a ‘child’ leaf node to LTRUE and LFALSE to N and

assign the leaves with the most present label in ITRUE and IFALSE, respectively.
If subset I(s) is large enough to be split, attach child nodes NTRUE and NFALSE to N,
and then assign I(s) to them, respectively.

5: Repeat steps 2–4 for the new nodes N = NTRUE and N = NFALSE until the new subsets
can no longer be split.

Algorithm 1 CART algorithm for building decision trees.
1: Let N be the root node with all available data.

2: Find the feature F and threshold value T that split the samples assigned to N into subsets ITRUE

and IFALSE , to maximise the label purity within these subsets.

3: Assign the pair (F, T) to N .

4: If I(s) are too small to be split, attach a ‘child’ leaf nodes LTRUE and LFALSE to N and assign

the leaves with the most present label in ITRUE and IFALSE respectively.

If subset I(s) are large enough to be split, attach child nodes NTRUE and NFALSE to N , then

assign I(s) to them respectively.

5: Repeat step 2 - 4 for the new node N = NTRUE and N = NFALSE until the new subsets can no

longer be split.

ROOT
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Q1.1.1 Q1.1.2
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Figure 1: A binary tree - starts from the root node, multiple criteria are selected based on the information from each input. A

decision is drawn at a particular leaf, i.e. Decision D, if all criteria along its path “==” are satisfied .
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randomly. It belongs to the class of so-called bootstrap aggregation or bagging technique which aims86

to reduce the variance of an estimated prediction function. Particularly, a number of decision trees87

are constructed and random forests will either “vote” for the best decision (classification problems) or88

“average” the predicted values (regression problems). Here, each tree in the collection is formed by89

firstly selecting at random, at each node, a small group of input coordinates (also called features or90

variables hereafter) to split on and, secondly, by calculating the best split based on these features in the91

training set. The tree is grown using CART algorithm to maximum size, without pruning. Using random92

forests can lead to significant improvement in prediction accuracy (i.e. better ability to predict new data93

cases) in comparisons with a single decision tree as discussed in the previous section. Algorithm 2 from94

4

Figure 1. A binary tree—starting from the root node, multiple criteria are selected based on the
information from each input. A decision is drawn at a particular leaf, i.e., Decision D, if all criteria
along its path “==” are satisfied.

2.1.2. Random Forests

A random forest can be considered to be a collection or ensemble of simple decision trees that
are selected randomly. It belongs to the class of so-called bootstrap aggregation or bagging technique
which aims to reduce the variance in an estimated prediction function. Particularly, a number of
decision trees are constructed and random forests will either “vote” for the best decision (classification
problems) or “average” the predicted values (regression problems). Here, each tree in the collection is
formed by firstly selecting, at random, at each node, a small group of input coordinates (also called
features or variables hereafter) to split on and secondly, by calculating the best split based on these
features in the training set. The tree is grown using the CART algorithm to maximum size, without
pruning. The use of random forests can lead to significant improvements in prediction accuracy (i.e.,
better ability to predict new data cases) in comparison with a single decision tree, as discussed in the
previous section. Algorithm 2 from Breiman (2001) details how the random forests can be constructed.

For m = 1, the algorithm uses random splitter selection. m can also be set to the total number
of predictor variables which is known as Breiman’s bagger parameter (Breiman 2001). In this paper,
we set m as equal to the maximum number of variables of interest used in the proposed model.

Applications of the random forests algorithm can be found in machine learning, pattern
recognitions, bio-infomatics, and big data modelling. Recently, a number of financial literatures
have applied the random forests algorithm to the forecasting of stock prices as well as in developing
the investment strategies found in Theofilatos et al. (2012) and Qin et al. (2013). Here, we introduce an
application of the random forests algorithm involving the forecasting of the realised volatility.
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Algorithm 2: Random forests
1: Draw a number of bootstrap samples from the original data (ntree) to be grown.
2: Sample N cases at random with replacement to create a subset of the data. The subset is

then split into in-bag and out-of-bag samples at a selected ratio (i.e., 7:3).
3: At each node, for a preselected number m, m predictor variables (mtry) are chosen at

random from all the predictor variables.
4: The predictor variable that provides the best split, according to some objective function,

is used to build a binary split on that node.
5: At the next node, choose another m variables at random from all predictor variables.
6: Repeat 3–5 until all nodes are grown.

2.2. Volatility Measures

Volatility, often measured by the standard deviation or variance of returns from a financial
security or market index, is an important component of asset allocation, risk management, and pricing
derivatives. In this section, we discuss the two measures of volatility known as the realised volatility
and the purified implied volatility.

2.2.1. Realised Volatility

The realised volatility measure was proposed by Andersen et al. (2003) in 2003 based on the use
of high frequency data.

Let S(t) represent the asset price which is observed at equally-spaced discrete points within a
given time interval [t− δ, t], where 0 6 t− δ 6 t 6 T, s(t) = log S(t) and r(t, δ) = s(t)− s(t− δ).
We assume that S(t) is represented by the following Ito equation

ds(t) = µ(t)dt + σ(t)dW(t), 0 6 t 6 T, (1)

where W(t) is a standard Brownian process, µ(t) and σ(t) are predictable processes with σ(t) being
the standard deviation of ds(t) and independent of dW(t). Therefore, the processes µ(t) and σ(t)
represent the instantaneous conditional mean and volatility of the return. Hence,

r(t, δ) = s(t)− s(t− δ) =
∫ t

t−δ
µ(τ)dτ +

∫ t

t−δ
σ(τ)W(t). (2)

Following this result, let us assume that the time interval [t− δ, t] is observed evenly at4 steps
in discrete time. The realised volatility (RV) of S(t) can be estimated by

RVt−δ,t =

√√√√
M−1

∑
j=0

r2
t−j4, (3)

where rt−j4 = s(t− j4)− s(t− (j + 1)4),4 = 1
M , and M is the number of observations within that

time interval.

2.2.2. The Purified Implied Volatility

The implied volatility is often known as the ex-ante measure of volatility, and is derived
from either the Black–Scholes’ options pricing model from Black and Scholes (1973) (model-based
estimation) or from theoptions market price formula by Carr and Wu (2006) (model-free estimation).
Such measures depend on several inputs, such as time-to-expiration, stock price, exercise price,
risk-free-rate-of-interest, and observed call/put price. Hence, the implied volatility will vary in
accordance with the fluctuations of these inputs. In order to reduce the impact of the stock price
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movements, the purified implied volatility (PV) was introduced in Luong and Dokuchaev (2014).
The purified implied volatility is derived from the Black–Scholes options pricing model, where the
market option prices are replaced by artificial option prices that reduce the impact of the market price
from the observed option prices. The paper also shows that the purified implied volatility does contain
information about the traditional volatility measure (i.e., the standard deviation of the low-frequency
daily returns). In this paper, we include the purified implied volatility as an extended variable of the
HAR model.

2.3. Models for Volatility

2.3.1. Heterogeneous Autoregressive Model for Realised Volatility

Corsi (2003) (see also Corsi and Reno (2009)) proposed the heterogeneous autoregressive model for
realised volatility as an extension of the Heterogenous ARCH (HARCH) class of models analysed by
Muller et al. (1997), which recognizes the presence of heterogeneity in the traders. The idea stems from
the “Fractal Market Hypothesis” (Peters 1994), “Interacting Agent View” (Lux and Marchesi 1999) and
“Mixture of Distribution” hypotheses (Andersen and Bollerslev 1997) in the realised volatility process.

It is noted that the definition of realised volatility involves two time parameters: (1) the intraday
return interval4 and (2) the aggregation period one day. For the heterogeneous autoregressive model
of realised volatility from Corsi (2003), it is considered that the latent realised volatility is viewed
over time horizons longer than one day. The n days historical realised volatility at time t (i.e., RVt−n,t)
is estimated as an average of the daily realised volatility between (t− n) and t. The daily HAR is
expressed by

RVt,t+1 = β0 + βDRVt−1,t + βW RVt−5,t + βMRVt−22,t + εt,t+1, (4)

where W = 5 days, M = 22 days, and RVt−5,t, RVt−22,t present the average realised volatility of the last
5 days and 22 days, respectively. The HAR model can be extended by including the jump component
proposed by Barndorff-Nielsen and Shephard (2001) such that

∑
t−δ6τ6t

J2(τ) ≡ max{RV(t− δ, t)− BV(t− δ, t), 0}, (5)

where BV is the realised bi-power variation Barndorff-Nielsen and Shephard (2004). Hence, the general
form of the model is

RVt,t+k = β0 + βDRVt−1,t + βW RVt−5,t + βMRVt−22,t + β J Jt−k,t + εt,t+k. (6)

Most recently, the heterogeneous structure was extended with the inclusion of the leverage effect
observed by Black (1976)—the asymmetry in the relationship between returns and volatility noticed
by Corsi and Reno (2009). For a given period of time, the leverage level at time t is measured as the
average aggregated negative and positive returns during that period where

r+t−k,t =
1
M

M−1

∑
j=0

rt−j4,t I{rt−k,t ,...,rt,t>0}; r−t−k,t =
1
M

M−1

∑
j=0

rt−j4,t I{rt−k,t ,...,rt,t60},

with M being the number of observations between t− k, t, and4 is the time step. Therefore, one would
include the leverage effect as a predictor for the realised volatility in the next k days as follows:

RVt,t+k = β0 + βDRVt−1,t + βW RVt−5,t + βMRVt−22,t

+ β J Jt−k,t + αPr+t−k,t + αNr−t−k,t + εt,t+k. (7)

Often, the coefficients β0, βD, βW , βM, β J , αP, αN are obtained by using the Ordinary-Least-Squares
(OLS) estimation for linear regression models.
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2.4. The Modified HAR Model for Realised Volatility and Forecasting the Direction

We define two states of the world outcome on the volatility direction as “UP” and “DOWN”.
Let Dδ be the direction of the realised volatility observed at the time δ, such that

Dδ =





UP if
RVδ

RVδ−1
> 1,

DOWN if
RVδ

RVδ−1
< 1.

(8)

In order to forecast the direction of realised volatility, a set of predictors (or technical indicators) is
used which are derived from the historical price movement of the underlying asset and its realised
volatility. Since all available historical information is used, Dδ does not follow a Markov chain.
We investigated a number of indicators and through the feature selection process (using variable
importance ranking from the random forest algorithm), we found that the following indicators were
best for forecasting the realised volatility’s direction.

1. The Average True Range (ATR): The ATR is an indicator that measures volatility by using the
high–low range of the daily prices. ATR is based on n-periods and can be calculated on an
intraday, daily, weekly, or monthly basis. It is noted that ATR is often used as a proxy for volatility.
To estimate ATRt, we are required to compute the “true range” (TR) such that

TRδ = max{Hδ − Lδ, |Hδ − Cδ−1|, |L− Cδ−1|}, (9)

where Hδ, Lδ, Cδ−1 are the current highest return, the current lowest return, and the previous last
return of a selected period, respectively, with absolute values to ensure TRδ is always positive.
Hence, the average true range within n-days is

ATRδ−n,δ =
(n− 1)ATRδ−n−1,δ + TRδ

n
. (10)

2. Close Relative To Daily Range (CRTDR): The location of the last return within the day’s range is a
powerful predictor of next-returns. Here, CRTDR is estimated by

CRTDRδ =
Cδ − Lδ

Hδ − Lδ
, (11)

where, Hδ, Lδ and Cδ are the high, low, and close returns at time δ for a selected time period using
high frequency returns.

3. Exponential Moving Average of realised volatility (EMARV): Exponential moving averages reduce
the lag effect in time-series by applying more weight to recent prices. The weighting applied
to the most recent price depends on the number of periods (n) in the moving average and the
weighting multiplier (κ). The formula for EMARV of n-periods is as follows:

EMARVδ−n,δ = RVδ − κ × EMARVδ−n−1,δ + EMARVδ−n−1,δ. (12)

4. Moving average convergence/divergence oscillator (MACD) measure of realised volatility:
The MACD is one of the simplest and most effective momentum indicators. It turns two moving
averages into a momentum oscillator by subtracting the longer moving average (m-days) from
the shorter moving average (n-days). The MACD fluctuates above and below the zero line as the
moving averages converge, cross, and diverge. We estimate the MACD for realised volatility as

MACDRVδ,m,n = EMARVδ,m − EMARVδ,n. (13)
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5. Relative Strength Index for realised volatility (RSIRV): This is also a momentum oscillator that
measures the speed and change of volatility movements. We define RSIRV as

RSIRVδ−n,δ = 1− 1

1 +
RV+

δ−n,δ

RV−δ−n,δ

, (14)

where RV+
δ−n,δ is the average increase in volatility and RV−δ−n,δ is the average decrease in volatility

within n-days.

The steps that we take to forecast the volatility direction are listed in Algorithm 3.

Algorithm 3: Forecasting the direction of realised volatility
1: Obtain the direction of the realised volatility.
2: Compute the above technical indicators for each observation.
3: Split the data into a training set and a testing set.
4: Apply the random forests algorithm to the training set to develop the pattern solution of

the realised volatility using the above indicators.
5: Use the solution from Step 4 to predict the direction of the testing set.

Figure 2 demonstrates a possible decision tree that was built for forecasting the direction of realised
volatility Dδ using the above steps. In this example, node #4 can be reached when RSI-RV(5) > 0.5
and TR(10) < 0.0084, with 19% of the in-sample data falling into this category and 91% of these
observations being classified as “DOWN”. Likewise, node #27 is reached when RSI-RV(5) 6 0.5,
r+ > 0.014, and 0.0049 6 TR(10) < 0.0072. In random forests, we can construct similar trees but with
different structures to classify the direction of the realised volatility based on the information from
other predictors.

Let D̂t,t+k denote the predicted direction of the realised volatility at time t + k using Algorithm 3.

RSI−RV(5) >= 0.5

TR(10) < 0.0084

RSI−RV(22) >= 0.52

Jump >= 0.013

TR(10) < 0.015

ATR−RV(10) >= 0.0097

TR(10) < 0.0072

Leverage (+) >= 0.014

TR(10) < 0.0049
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.64  .36
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DOWN
.82  .18
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Figure 2: A possible decision tree for classyfing the daily realised volatility direction using the technical indicators from the
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2.5. Forecasting the Realised Volatility—The Proposed Model

To forecast the realised volatility, we consider the heterogeneous autoregression model as
discussed in Section 2.3.1. We further include the purified implied volatility and the predicted
direction of the future volatility as new predictive variables. Particularly, the model (7) is extended to

RVt,t+k = β0 + βDRVt−1,t + βW RVt−5,t + βMRVt−22,t + β J Jt−k,t + α1r+t−k,t
+α2r−t−k,t + γPVt−k,t+22 + κD̂t,t+k + εt,t+k.

(15)

We also consider the logarithmic form of this model, as the logarithmic of the realised volatility is
often believed to be a smoother process. Thus, we model log RV as

log RVt,t+k = β0 + βD log RVt−1,t + βW log RVt−5,t + βM log RVt−22,t + β J log (1 + Jt−k,t)

+α1 log |r+t−1,t|+ α2 log |r−t−1,t|+ γlog(PVt−k,t+22) + κD̂t,t+k + εt,t+k,
(16)

where k = {1, 5, 22} for 1-day, 5-day, and 22-day time horizons. We use log (1 + Jt−k,t) instead of
log (Jt−k,t) to allow for the cases where Jt−k,t = 0, and the leverage effect is measured by log |r∗t−1,t| to
allow for the average aggregated negative returns.

The parameters in models (15) and (16) (HAR-JL-PV-D) are fitted using the random forests
regression algorithm. It is important to note that for the in-sample data, we replace D̂t,t+k with
the actual direction Dt,t+k to measure the impact of the direction variable on the forecasting of the
realised volatility.

3. The results

3.1. Measuring Errors

Since the paper focuses on forecasting both the realised volatility’s direction and its magnitude,
we used the following measures to compare each model.

3.1.1. Classification Problem

In forecasting the direction of the realised volatility, the classification problem consists of only
two stages. We measured the accuracy of the forecast as follows.

Let us define the following terms

• True positive (TP): The number of days that are observed with “DOWN” signals that were correctly
predicted.

• False positive (FP): The number of days that are observed with “DOWN” signals that were
predicted to have “UP” signals.

• False negative (FN): The number of days that are observed with “UP” signals that were predicted
to have “DOWN” signals.

• True negative (TN): The number of days that are observed with “UP” signals that were
correctly predicted.

• Accuracy: the proportion of the total number of correct predictions

Accuracy =
TP + TN

TP + FP + TN + FN
. (17)

3.1.2. Regression Problem

We split our data into two subsets: the training (in-sample) data and the test (out-of-sample) data.
Since we used the random forests algorithm, we measured the accuracy of the model proposed method
for training data and test data separately.
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Measuring Error for Training Data

For the random forests algorithm, an estimate of the error rate can be obtained based on the
training as follows:

1. For each bootstrap, predict the out-of-bag values using the tree grown within the bootstrap sample.
2. Aggregate the Out-of-bag (OOB) predictions and calculate the mean square error rate by

MSEOOB =
1
m

n

∑
t=1

{
RVt − RVt

OOB
}2

(18)

where m is the number of observations in the OOB data (i.e., m < N) and RVt
OOB is the average

of the OOB predictions for the tth observation.
3. Estimate the percentage variance explained as a measure of goodness of fit by

1− MSEOOB

σ2
RV

(19)

where σ2
RV is the variance in the OOB sample.

Measuring Error for Test Data

Let RVt denote the tth observation, R̂Vt denote its forecast, and k be the number of data points
observed in the selected period. The error measures include:

• The mean absolute error

MAE =
1
k

k

∑
t=1
|RVt − R̂Vt|. (20)

• The mean absolute percentage error

MAPE =
1
k

k

∑
t=1

|RVt − R̂Vt|
RVt

. (21)

• The root mean square error

RMSE =

√√√√1
k

k

∑
t=1

(RVt − R̂Vt)2. (22)

• The root mean square percentage error

RMSPE =

√√√√1
k

k

∑
t=1

(
RVt − R̂Vt

RVt

)2

. (23)

3.2. Empirical Results

3.2.1. Data Description

We demonstrate the proposed model by analysing the S&P ASX 200 Index high frequency returns
data and their realised volatility. Our dataset was collected from Reuters (2015) for the period 1 January
2008 to 31 December 2014. The Australian Stock Exchange is open between 10:00 a.m. to 4:00 p.m.
We collected the tick-by-tick S&P 200 levels; hence, the prices were not recorded at equispaced time
points. We used the previous tick aggregation method to force the observed prices into an equispaced
grid, i.e., by taking the last price realized before each grid point and obtaining the 15-s frequency
data. The daily realised volatility (with 1762 observations) was then estimated using these 15-s prices.
The data from 2008 to 2013 were used for training purposes and 2014 data were used for validation
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purposes. This was to account for over-fitting and bias effects of the time-series data with the random
forests algorithm.

The experiment was performed in a cloud-based Linux environment that stored seven years
worth of high frequency data. The data aggregation was processed on a 2.5 GHz Intel Xeon Platinum
8175 instance with 32 GB of RAM. The function rxDForest from RevoScaleR package in R was used for
the random forests algorithm. This allowed us to effectively handle the large dataset and to execute the
computation in parallel. A fixed value of random seed was also set to ensure that the results between
each run were comparable and reproducible.

3.2.2. The Results

Below we report the results of our experiment which were the best results obtained via
cross-validation and hyper parameter tuning of the rxDForest function.

Table 1 provides a summary of the 15-s realised volatility measured using different time-windows.
It was observed that both non-logarithmic and logarithmic series are skewed and non-normal.
This suggests that the Ordinary Least Squares estimation approach is not applicable for our dataset.
As a result, we compared the maximum likelihood estimation (MLE) with the random forests algorithm
instead. In terms of correlation coefficients between the series, we observed that the computed realised
volatility exhibits the long memory effect. Further, the purified implied volatility was shown to be
strongly correlated with the realised volatility measures, which indicates that PV can be a useful
predictor of realised volatility.

Table 2 compares the in-sample forecast results of the proposed model. For the selected time
horizons, the inclusion of purified implied volatility improved the forecast accuracy against the original
HAR-JL model (based on the RMSE measure and % OOB variance explained), where the logarithmic
RV series performed better than the non-logarithmic RV series. It is also observed that the direction
indicator further improved the forecast results; this was most significant for the 1-day forecast (with
79.28% and 80.55% variance explained for RV and log RV in comparison with 57.81% and 61.66% from
the HAR-JL model respectively). For the 5-day and 22-day in-sample forecasts, we observed slight
improvements in RMSE with a better goodness of fit.

In forecasting the direction of the out-sample realised volatility, we obtained the accuracy of the
hit-rate at 80.05%, 72.85%, and 65.22% for 1-day, 5-day and 22-day forecasts respectively. This suggests
our classification model can perform better for short-term forecasts than long-term forecasts. This can
be explained by the fact that long-term forecasts require not only technical indicators but also
fundamental indicators and long-term expectations from the market.

Table 3 provides a summary of the forecast errors for the out-sample data. In general, the out-
of-sample performances of the proposed model are in line with the in-sample performances. The MAPE
and RMSPE for the 1-day forecast of the RV from the HAR-JL-PV-D reduced by 8% and 11%,
respectively, while the MAPE and RMSPE for the 5-day and 22-day forecasts reduced by 3% and 5%.
When comparing the HAR-JL-PV model against the HAR-JL-D model, it can be seen that the forecast
errors were smaller for the HAR-JL-PV model for these time horizons. This was anticipated as we
found that the forecast in the long-term direction was less accurate for the 5-day and 22-day forecasts.
However, the HAR-JL-D model still performed better than the HAR-JL alone, and the HAR-JL-PV-D
model provided the best fit.

We present in Figure 3 the actual S&P200’s realised volatility measured under different time
horizons from 1 January 2014 to 31 December 2014, with the predicted realised volatility using
the maximum likelihood estimation for the HAR-JL model (left panel) and using the random
forests estimation for the HAR-JL-PV-D model (right panel). Such separation in the time frame was
implemented to measure the realised values of our metrics, in order to avoid the over-fitting effect that
can possibly be caused by the random forests algorithm.
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Table 1. Statistical summary of S&P/ASX 200’s 15-second realised volatility at different time horizons
from 1 January 2008 to 31 December 2014 and their correlations matrix.

Series Mean Std. Dev. Skew. Kurt. Min. Max. RVt−1,t RVt−5,t RVt−22,t PV
RVt−1,t 0.1335 0.0848 2.4957 8.9530 0.0328 0.7811 1 0.8441 0.7523 0.7757
RVt−5,t 0.1335 0.0721 2.0481 5.4748 0.0484 0.5453 0.8441 1 0.9042 0.8919
RVt−22,t 0.1331 0.0664 1.8304 3.9311 0.0593 0.4228 0.7523 0.9042 1 0.9180

PV 0.1614 0.0705 1.5181 2.8461 0.0698 0.5004 0.7757 0.8919 0.9180 1
Series Mean Std. Dev Skew. Kurt. Min. Max. log RVt−1,t log RVt−5,t log RVt−22,t log PV

log RVt−1,t −2.1588 0.5139 0.5678 0.2336 −3.4184 −0.2471 1 0.8548 0.7739 0.7936
log RVt−5,t −2.1244 0.4499 0.6619 0.0960 −3.0274 −0.6064 0.8548 1 0.9124 0.8972
log RVt−22,t −2.113 0.4213 0.7156 −0.0407 −2.8248 −0.8608 0.7739 0.9124 1 0.9017

log PV −1.9044 0.3893 0.5190 −0.3229 −2.6618 −0.6923 0.7936 0.8972 0.9017 1
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Figure 3: Predicted vs Actual realised volatility using HAR-JL-PV-D model with maximum likelihood estimation and random forests estimation.
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Figure 3. Predicted vs. actual realised volatility using the HAR-JL-PV-D model with the maximum
likelihood estimation and random forests estimation.
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Table 2. Forecasting error of the realised volatility for the in-sample data from 1 January 2008 to 31 December 2013.

1-Day 5-Day 22-Day
HAR-JL HAR-JL-PV HAR-JL-D HAR-JL-PV-D HAR-JL HAR-JL-PV HAR-JL-D HAR-JL-PV-D HAR-JL HAR-JL-PV HAR-JL-D HAR-JL-PV-D

RV RMSE 0.0031 0.0029 0.0018 0.0018 0.002 0.0011 0.0010 0.0010 0.0011 0.0010 0.0009 0.0001
% OOB Var 57.81 59.61 74.68 75.58 79.28 80.28 81.13 81.81 74.47 76.44 78.09 79.44

log RV RMSE 0.0996 0.0957 0.0509 0.0502 0.0378 0.0336 0.0326 0.0295 0.0383 0.0323 0.0339 0.0287
% OOB Var 61.66 63.12 80.39 80.65 80.55 82.70 83.25 84.83 77.48 81.97 80.05 83.12

Table 3. Forecasing error of the realised volatility for the out-sample data from 1 January 2014 to 31 December 2014.

1-Day 5-Day 22-Day
HAR-JL HAR-JL-PV HAR-JL-D HAR-JL-PV-D HAR-JL HAR-JL-PV HAR-JL-D HAR-JL-PV-D HAR-JL HAR-JL-PV HAR-JL-D HAR-JL-PV-D

RV

MAE 0.0212 0.0205 0.0176 0.0171 0.0147 0.0135 0.0137 0.0127 0.0184 0.0142 0.017 0.0137
MAPE 0.2715 0.2516 0.2042 0.1974 0.1814 0.1573 0.1670 0.1500 0.2245 0.1630 0.2094 0.1576
RMSE 0.0285 0.0277 0.0247 0.0235 0.0192 0.0182 0.0180 0.0168 0.0223 0.0182 0.0209 0.0176

RMSPE 0.3610 0.3245 0.2709 0.2568 0.2352 0.2025 0.2181 0.1926 0.2745 0.2046 0.2602 0.1973

log RV

MAE 0.0206 0.0201 0.0170 0.0165 0.0143 0.0135 0.0130 0.0129 0.0170 0.0138 0.0156 0.0135
MAPE 0.2525 0.2331 0.1947 0.1878 0.1740 0.1553 0.1574 0.1481 0.2058 0.1576 0.1881 0.1532
RMSE 0.0279 0.0280 0.0239 0.0233 0.0185 0.0185 0.0175 0.0175 0.0206 0.0177 0.0191 0.0174

RMSPE 0.3250 0.2929 0.2573 0.2454 0.2230 0.1980 0.2116 0.1913 0.2499 0.1958 0.2310 0.1912

Note: as the random forests algorithm requires a random selection process, for consistent comparison across models, we reset the random seed to a specific value before applying the
algorithm to each of the above models.
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4. Discussion

Forecasting problems for financial time series are challenging since these series have a significant
noise component. Currently, there is no consensus on the possibility of forecasting for asset prices
using a technical analysis or a mathematical algorithm. The forecasting of parameters of stochastic
models for financial time series, including volatility, is also challenging. Moreover, even statistical
inference for parameters of financial time series is usually difficult. An additional difficulty is that
these parameters are not directly observable; they are defined by the underlying model and by many
other factors. For example, it appears that the volatility depends on the sampling frequency and on
the delay parameter in the model equation see, e.g., Luong and Dokuchaev (2016). In addition, there
is no a unique comprehensive model for stock price evolution; for example, there are many models
with stochastic equations for volatility, with jumps, with fractional noise, etc. Respectively, even a
modest improvement in forecasting for the parameters of financial time series would be beneficial for
the practitioners.

Our paper explored the HAR (Corsi and Reno 2009) model with the main focus being to extend
this model family via two new features, the purified volatility and the forecast volatility movement,
and the implementation of this machine learning algorithm to improve the forecast of realised volatility.

By utilising the availability of high frequency data, we showed that the direction of the realised
volatility can be forecast with the random forests algorithm by using the proposed technical indicators,
with an accuracy of above 80% for the selected time series. However, this accuracy could be further
improved if we could integrate fundamental indicators such as financial news.

The errors in forecasting the realised volatility with our proposed features also showed further
improvement on top of the existing HAR-JL model. Particularly, this was done through the addition of
information derived from the purified volatility and the predicted direction of the volatility. We believe
that the predictions of realised volatility would further be improved by using other tree-based
algorithms such as Extreme Gradient Boosting (XGBoost) or Bayesian additive regression trees (BART).
However, we leave this for future study.

5. Conclusions

This paper introduces an application of the random forests algorithm for forecasting the realised
volatility. For the classification problem, our study showed that by using the selected feature choices,
it was able to forecast the direction of the realised volatility. For the regression problem with its
non-linear structure, the technique was able to reduce the forecasting error rate from volatility
clustering systematically under different time horizons. The empirical results of S&P 200 show
that the existing HAR model framework was improved by including the purified implied volatility
and applying this machine learning technique. We suggest that further investigation of the roles of the
purified implied volatility and random forests algorithm in other high frequency models of volatility
should be done.
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