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Abstract: A new comprehensive approach to nonlinear time series analysis and modeling is
developed in the present paper. We introduce novel data-specific mid-distribution-based Legendre
Polynomial (LP)-like nonlinear transformations of the original time series {Y(t)} that enable us to
adapt all the existing stationary linear Gaussian time series modeling strategies and make them
applicable to non-Gaussian and nonlinear processes in a robust fashion. The emphasis of the
present paper is on empirical time series modeling via the algorithm LPTime. We demonstrate
the effectiveness of our theoretical framework using daily S&P 500 return data between 2 January
1963 and 31 December 2009. Our proposed LPTime algorithm systematically discovers all the
‘stylized facts’ of the financial time series automatically, all at once, which were previously noted by
many researchers one at a time.

Keywords: nonparametric time series modeling; nonlinearity; unified time series algorithm;
exploratory diagnostics

1. Introduction

When one observes a sample Y(t), t = 1, . . . , T, of a (discrete parameter) time series Y(t),
one seeks to nonparametrically learn from the data a stochastic model with two purposes: (a1) scientific
understanding; (a2) forecasting (predict future values of the time series under the assumption that the
future obeys the same laws as the past). Our prime focus in this paper is on developing a nonparametric
empirical modeling technique for nonlinear (stationary) time series that can be used by data scientists
as a practical tool for obtaining insights into (i) the temporal dynamic patterns and (ii) the internal
data generating mechanism; a crucial step for achieving (a1) and (a2).

Under the assumption that the time series is stationary (which can be extended to asymptotically
stationary), the distribution of Y(t) is identical for all t, and the joint distribution of Y(t) and Y(t + h)
depends only on lag h. Typical estimation goals are as follows:

(1) Marginal modeling: The identification of the marginal probability law (in particular,
the heavy-tailed marginal densities) of a time series plays a vital role in financial econometrics.
Notations: common quantile Q, inverse of the distribution function F, respectively denoted
Q(u; Y), 0 < u < 1 and F(y; Y). The mid-distribution is defined as Fmid(y; Y) = F(y; Y) −
0.5 Pr(Y(t) = y).

(2) Correlation modeling: Covariance function (defined for positive and negative lag h) R(h; Y) =
Cov[Y(t), Y(t + h)]. R(0; Y) = Var[Y(t)], µ = E[Y(t)] assumed zero in our prediction theory.
Correlation function ρ(h) = Cor[Y(t), Y(t + h)] = R(h; Y)/R(0; Y).

J. Risk Financial Manag. 2018, 11, 37; doi:10.3390/jrfm11030037 www.mdpi.com/journal/jrfm

http://www.mdpi.com/journal/jrfm
http://www.mdpi.com
https://orcid.org/0000-0002-6841-0132
http://dx.doi.org/10.3390/jrfm11030037
http://www.mdpi.com/journal/jrfm
http://www.mdpi.com/1911-8074/11/3/37?type=check_update&version=2


J. Risk Financial Manag. 2018, 11, 37 2 of 17

(3) Frequency-domain modeling: When covariance is absolutely summable, define spectral density
function f (ω; Y) = ∑ R(h; Y) e−2πiωh,−1/2 < ω < 1/2.

(4) Time-domain modeling: The time domain model is a linear filter relating Y(t) to white noise ε(t),
N (0, 1) independent random variables. Autoregressive scheme of order m, a predominant linear
time series technique for modeling conditional mean, is defined as (assuming E[Y(t)] = 0):

Y(t)− a(1; m)Y(t− 1)− . . .− a(m; m)Y(t−m) = σmε(t), (1)

with the spectral density function given by:

f (ω; Y) =
σ2

m∣∣1−∑m
k=1 a(k; m)e2πiωk

∣∣2 . (2)

To fit an AR model, compute the linear predictor of Y(t) given Y(t− j), j = 1, . . . , m by:

Yµ,m[t] = E
[
Y(t) | Y(t− 1), . . . , Y(t−m)

]
= a(1; m)Y(t− 1) + · · ·+ a(m; m)Y(t−m). (3)

Verify that the prediction error Y[t]−Yµ,m[t] is white noise. The best fitting AR order is identified
by the Akaike criterion (AIC) (or Schwarz’s criterion, BIC) as the value of m minimizes:

AIC(m) = 2 log σm + 2m/n.

In what follows, we aim to develop a parallel modeling framework for nonlinear time series.

2. From Linear to Nonlinear Modeling

Our approach to nonlinear modeling, called LPTime1, is via approximate calculation of conditional
expectation E[Y(t)|Y(t− 1), . . . , Y(t−m)]. Because with probability one Q(F(Y)) = Y, one can prove
that the conditional expectation of Y(t) given past values Y(t− j) is equal to (with probability one)
the conditional expectation of Y(t) given past values Fmid(Y(t− j)), which can be approximated by
linear orthogonal series expansion in score functions Tk[Fmid(Y(t− j))] constructed by Gram–Schmidt
orthonormalization of powers of:

T1 =
Fmid(Y(t); Y)− 0.5

σ[Fmid(Y(t); Y)]
, (4)

where σ[Fmid(Y(t); Y)] is the standard deviation of the mid-distribution transform random variable
given by

√
(1−∑y p3(y))/12 and p(y) denotes the probability mass function of Y. This score

polynomial allows us to simultaneously tackle the discrete (say count-valued) and continuous time
series. Note that for Y continuous, T1 reduces to:

T1 =
√

12
(

F(Y(t))− 0.5
)
. (5)

and all the higher order polynomials Tj can be compactly expressed as Legj[F(Y)], where Legj(u),
0 < u < 1 denotes orthonormal Legendre polynomials. It is worthwhile to note that Tj are orthonormal
polynomials of mid-rank (instead of polynomials of the original y’s), which inject robustness into our

1 The LP nomenclature: In nonparametric statistics, the letter L plays a special role to denote robust methods based on
ranks and order statistics such as quantile-domain methods. With the same motivation, we use the letter L. On the other
hand, P simply stands for Polynomials. Our custom-constructed basis functions are orthonormal polynomials of mid-rank
transform instead of raw y-values; for more details see Mukhopadhyay and Parzen (2014).
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analysis while allowing us to capture nonlinear patterns. Having constructed score functions of y
denoted by Tj, we transform it into a unit interval by letting y = Q(u; Y) and defining:

Sj(u; Y) = Tj
[
Fmid(Q(u; Y))

]
, Tj(y; Y) = Sj

[
Fmid(Y(t))

]
. (6)

In general, our score functions are custom constructed for each distribution function F, which can
be discrete or continuous.

3. Nonparametric LPTime Analysis

Our LPTime empirical time series modeling strategy for nonlinear modeling of a univariate time
series Y(t) is based on linear modeling of the multivariate time series:

Vec(YS)(t) =
[

YS1(t), . . . , YSk(t)
]T, (7)

where YSk(t) = Tk[Fmid(Y(t))], our tailor-made orthonormal mid-rank-based nonlinear transformed
series. We summarize below the main steps of the algorithm LPTime. To better understand the
functionality and applicability of LPTime, we break it into several inter-connected steps, each of
which highlights:

(a) The algorithmic modeling aspect (how it works).
(b) The required theoretical ideas and notions (why it works).
(c) The application to daily S&P 500 return data between 2 January 1963 and 31 December 2009

(empirical proof-of-work).

3.1. The Data and LP-Transformation

The data used in this paper are daily S&P 500 return data between 2 January 1963 and 31 December
2009 (defined as log(Pt/Pt−1), where Pt is the closing price on trading day t). We begin our modeling
process by transforming the given univariate time series {Y(t)} into multiple (robust) time series by
means of special data-analytic construction rules described in Equations (4)–(6) and (7). We display
the original “normalized” time series Z(Y(t)) = (Y(t)−E[Y(t)])/σ[Y(t)] and the transformed time
series YS1(t), . . . , YSk(t) on a single plot.

Figure 1 shows the first look at the transformed S&P 500 return data between October 1986
and October 1988. These newly-constructed time series work as a universal preprocessor for any
time series modeling in contrast with other ad hoc power transformations. In the next sections,
we will describe how the temporal patterns of these multivariate LP-transformed series Vec(YS)(t) =
{YS1(t), . . . , YSk(t)} generate various insights for the time series {Y(t)} in an organized fashion.

3.2. Marginal Modeling

Our time series modeling starts with the nonparametric identification of probability distributions.

Non-Normality Diagnosis

Does the normal probability distribution provide a good fit to the S&P 500 return data? Figure 2a
clearly indicates that the distribution of daily return is certainly non-normal. At this point, the natural
question is how the distribution is different from the assumed normal one? A quick insight into this
question can be gained by looking at the distribution of the random variable U = G(Y), called the
comparison density (Mukhopadhyay 2017; Parzen 1997), given by:

d(u; G, F) =
f (Q(u; G))

g(Q(u; G))
, 0 ≤ u ≤ 1, (8)
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where Q(u; G) = inf{x : G(x) ≥ u} is the quantile function. The flat uniform shape of the estimated
comparison density provides a quick graphical diagnostic to test the fit of the parametric G to the
true unknown distribution F. The Legendre polynomial-based orthogonal series comparison density
estimator is given by:

d(u; G, F) = 1 + ∑
j

LP[j; G, F]Legj(u), 0 < u < 1 (9)

where the Fourier coefficients LP[j; G, F] = E[Legj ◦G(Y)].
For G = Φ, Figure 2b displays the histogram of Ui = Φ(Yi) for i = 1, . . . , n. The corresponding

comparison density estimate d̂(u; G, F) = 1− 0.271 Leg2(u)− 0.021 Leg3(u) + 0.193 Leg4(u) is shown
with the blue curve, which reflects the fact that the distribution of daily return (i) has a sharp peaked
(inverted “U” shape) and (ii) is negatively skewed with (iii) fatter tails than the Gaussian distribution.
We can carry out a similar analysis by asking whether the t-distribution with two degrees of freedom
provides a better fit. Figure 2c demonstrates the full analysis, where the estimated comparison density
d̂(u; G, F) = 1− 0.492 Leg2(u)− 0.015 Leg3(u) + 0.084 Leg4(u) indicates that (iv) the t-distribution
fits the data better than normal, especially in the tails, although not a fully-adequate model.

The shape of the comparison density (along with the histogram of Ui = G(Yi), i = 1, . . . , n)
captures and exposes the adequacy of the assumed model G for the true unknown F; thus acting as an
exploratory, as well as confirmatory tool.
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Figure 1. LP-transformed S&P 500 daily stock returns between October 1986 and October 1988. This is
just a small part of the full time series from 2 January 1963–31 December 2009 (cf. Section 3.1).
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Figure 2. (a) The marginal distribution of daily returns; (b) plots the histogram of Φ(yi) and display
the LP-estimated comparison density curve. and (c) shows the associated comparison density estimate
with G as t-distribution with 2 degrees of freedom.

3.3. Copula Dependence Modeling

Distinguishing uncorrelatedness and independence by properly quantifying association is an
essential task in empirical nonlinear time series modeling.

3.3.1. Nonparametric Serial Copula

We display the nonparametrically-estimated smooth serial copula density cop(u, v; Y(t), Y(t + h))
to get a much finer understanding of the lagged interdependence structure of a stationary time series.
For a continuous distribution, define the copula density for the pair (Y(t), Y(t + h)) as the joint density
of U = F(Y(t)) and V = F(Y(t + h)), which is estimated by sample mid-distribution transform
Ũ = F̃mid(Y(t)), Ṽ = F̃mid(Y(t + h)). Following Mukhopadhyay and Parzen (2014) and Parzen and
Mukhopadhyay (2012), we expand the copula density (square integrable) in a orthogonal series of
product LP-basis functions as:

cop(u, v; Y(t), Y(t + h)) − 1 = ∑
j,k

LP[j, k; Y(t), Y(t + h)] Sj(u; Y(t)) Sk(v; Y(t + h)), (10)

where Sj(u; Y(t)) = YSj(Q(u; Y(t)); Y(t)). Equation (10) allows us to pictorially represent the
information present in the LP-comoment matrix via copula density. The various “shapes” of the
copula density give insight into the structure and dynamics of the time series.

Now, we apply this nonparametric copula estimation theory to model the temporal dependence
structure of S&P return data. The copula density estimate ĉop(u, v; Y(t), Y(t + 1)) based on the smooth
LP-comoments is displayed in Figure 3. The shape of the copula density shows strong evidence
of asymmetric tail dependence. Note that the dependence is only present in the extreme quantiles,
another well-known stylized fact of economic and financial time series.

3.3.2. LP-Comoment of Lag h

Here, we will introduce the concept of the LP-comoment to get a complete understanding of the
nature of the serial dependence present in the data. The LP-comoment of lag h is defined as the joint
covariance of Vec(YS)(t) and Vec(YS)(t + h).

The lag one LP-comoment matrix for S&P 500 return data is displayed below:

LP
[
Y(t), Y(t + 1)

]
=


0.0705∗ −0.0617∗ 0.0199 0.0113
0.0074 0.1542∗ 0.0077 0.0652∗

−0.0104 −0.0071 0.0262 −0.0355
0.0166 0.0438∗ 0.0113 0.0698∗

 (11)
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Figure 3. Top: Nonparametric smooth serial copula density (lag one) estimate of S&P return data.
Bottom: BIC plot to select the significant LP-comoments computed in Equation (11).

To identify the significant elements, we first rank order the squared LP-comoments. Then, we take
the penalized cumulative sum of m comoments using BIC criterion 2m log(n)/n, where n is the sample
size, and choose the m for which the BIC is maximum. The complete BIC path for S&P 500 data is
shown in Figure 3, which selects the top six comments, also denoted by ∗ in the LP-comoment matrix
display (Equation (11)). By making all those uninteresting “small” comoments equal to zero, we get
the “smooth” LP-comoment matrix denoted by L̂P. The linear auto-correlation is captured by the
LP[1, 1; Y(t), Y(t + 1)] = E[YS1(t)YS1(t + 1)] term. The presence of higher order significant terms
in the LP-comoment matrix indicates the possible nonlinearity. Another interesting point to note is
that CORR[Y(t), Y(t + 1)] = 0.027, whereas the auto-correlation between the mid-rank transformed
data CORR[Fmid(Y(t)), Fmid(Y(t + 1))] = 0.071, considerably larger and picked by the BIC criterion.
This is an interesting fact as it indicates that the rank-transform time series (YS1(t)) is much more
predictable than the original raw time series Y(t).

3.3.3. LP-Correlogram, Evidence and Source of Nonlinearity

We provide a nonparametric exploratory test for (non)linearity (the spectral domain test is
given in Section 3.6). Plot the correlogram of YS1(t), . . . , YS4(t): (a) diagnose possible nonlinearity;
and (b) identify possible sources. This constitutes an important building block for methods of
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model identification. The LP-correlogram generalizes the classical sample Autocorrelation Function
(ACF). Applying the acf() R function on Vec(YS)(t) generates the graphical display of our proposed
LP-correlogram plot.

Figure 4 shows the LP-correlogram of S&P stock return data. Panel A shows the absence of linear
autocorrelation, which is known as an efficient market hypothesis in finance literature. A prominent
auto-correlation pattern for the series YS2(t) (top right panel of Figure 4) is the source of nonlinearity.
This fact is known as “volatility clustering”, which says that a large price fluctuation is more likely
to be followed by large price fluctuations. Furthermore, the slow decay of the autocorrelation of the
series YS2(t) can be interpreted as an indication of the long-memory volatility structure.
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Figure 4. LP-correlogram: Sample autocorrelations of LP-transformed time series. The decay rate
of the sample autocorrelations of YS2(t) appears to be much slower than the exponential decay of the
ARMA process, implying possible long-memory behavior.

3.3.4. AutoLPinfor: Nonlinear Correlation Measure

We display the sample AutoLPinforplot, a diagnostic tool for nonlinear autocorrelation. We define
the lag h AutoLPinfor as the squared Frobenius norm of the smooth-LP-comoment matrix of lag h,

AutoLPinfor(h) = ∑
j,k

∣∣ LP[j, k; Y(t), Y(t + h)]
∣∣2, (12)

where the sum is over BIC selected j, k for which LP-comoments are significantly non-zero.
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Our robust nonparametric measure can be viewed as capturing the deviation of the copula density
from uniformity:

AutoLPinfor(h) =
∫∫

cop2[u, v; Y(t), Y(t + h)] du dv − 1, (13)

which is closely related to the entropy measure of association proposed in Granger and Lin (1994):

Granger–Lin(h) =
∫∫

cop[u, v; Y(t), Y(t + h)] log cop[u, v; Y(t), Y(t + h)] du dv. (14)

It can be shown using Taylor series expansion that asymptotically:

AutoLPinfor(h) ≈ 2×Granger–Lin(h). (15)

An excellent discussion of the role of information theory methods for unified time series analysis
is given in Parzen (1992) and Brillinger (2004). For an extensive survey of tests of independence for
nonlinear processes, see Chapter 7.7 of Terasvirta et al. (2010). AutoLPinfor is a new information
theoretic nonlinear autocorrelation measure, which detects generic association and serial dependence
present in a time series. Contrast the AutoLPinfor plot for S&P 500 return data shown in Figure 5 with
the ACF plot (left panel). This underlies the need for building a nonlinear time series model, which we
will be discussing next.
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Figure 5. Left: ACF plot of S&P 500 data. Right: AutoLPinforPlot up to lag 150.

3.3.5. Nonparametric Estimation of Blomqvist’s Beta

Estimate the Blomqvist’s β (also known as the medial correlation coefficient) of lag h by using the
LP-copula estimate in the following equation,

β̂LP(h; Y(t)) := − 1 + 4
∫ 1/2

0

∫ 1/2

0
ĉop

[
u, v; Y(t), Y(t + h)

]
du dv (16)

The β values −1, 0 and 1 are interpreted as reverse correlation, independence and perfect
correlation, respectively. Note that,

Blomqvist’s β : Normalized distance of copula distribution Cop(u, v) from independence copula uv

AutoLPinfor : Distance of copula density cop(u, v) from uniformity 1.
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For S&P 500 return data, we compute the following dependence numbers,

β̂LP(1; Y(t)) = 0.0528

β̂LP(1; YS1(t)) = 0.0528

β̂LP(1; YS2(t)) = 0.0729

β̂LP(1; YS3(t)) = 0.0

β̂LP(1; YS4(t)) = 0.003.

3.3.6. Nonstationarity Diagnosis, LP-Comoment Approach

Viewing the time index T = 1, . . . , n as the covariate, we propose a nonstationarity diagnosis
based on LP-comoments of Y(t) and the time index variable T. Our treatment has the ability to detect
the time-varying nature of mean, variance, skewness, and so on, represented by various custom-made
LP-transformed time series.

For S&P data, we computed the following LP-comoment matrix to investigate the nonstationarity:

LP
[
T, Y(t)

]
=


0.012 0.180∗ −0.010 0.058∗

−0.005 −0.034 −0.036 0.080∗

−0.016 0.115∗ 0.001 −0.001
0.024 −0.040 −0.010 0.049∗

 (17)

This indicates the presence of the slight non-stationarity behavior of variance or volatility (YS2(t))
and the kurtosis of tail-thickness (YS4(t)). Similar to AutoLPinfor, we propose the following statistic
for detecting nonstationarity:

LPinfor[Y(t), T] = ∑
j,k

∣∣ LP[j, k; T, Y(t)]
∣∣2. (18)

We can also generate the corresponding smooth copula density of (T, Y(t)) based on the smooth
LP
[
T, Y(t)

]
matrix to visualize the time-varying information as in Figure 6.

Time0.0 0.2 0.4 0.6 0.8 1.0Y[t]

0.0
0.2

0.4
0.6

0.8
1.0

1

2

3

Figure 6. LP copula diagnostic for detecting non-stationarity in S&P 500 return data.
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3.4. Local Dependence Modeling

3.4.1. Quantile Correlation Plot and Test for Asymmetry

We display the quantile correlation plot, a copula distribution-based graphical diagnostic to
visually examine the asymmetry of dependence. The goal is to get more insight into the nature of
tail-correlation.

Motivated by the concept of the lower and upper tail dependence coefficient, we define the
quantile correlation function (QCF) as the following in terms of the copula distribution function of
(Y(t), Y(t + h)) denoted by Cop(u, v; Y(t), Y(t + h)) := Cop(u, v; h),

λ
[
u; Y(t), Y(t + h)

]
:=

Cop(u, u; h)
u

I{
u≤0.5

} +
1− 2u + Cop(u, u; h)

1− u
I{

u>0.5
}, (19)

Our nonparametric estimate of the quantile correlation function is based on the LP-copula density,
which we denote as λ̂LP

[
u; Y(t), Y(t + h)

]
. Figure 7 shows the corresponding quantile correlation plot

for S&P 500 data. The dotted line represents QCF under the independence assumption. Deviation from
this line helps us to better understand the nature of asymmetry. We compute λ̂G[u; Y(t), Y(t + h)]
using the fitted Gaussian copula:

ĈopG(u, v; Y(t), Y(t + h)) = Φ(Φ−1(u), Φ−1(v); Σ̂ = S) (20)

where S is the sample covariance matrix. The dark green line in Figure 7 shows the corresponding
curve, which is almost identical to the “no dependence” curve, albeit misleading. The reason is
the Gaussian copula is characterized by linear correlation, while S&P data are highly nonlinear
in nature. As the linear auto-correlation of a stock return is almost zero, we have approximately
Φ(Φ−1(u), Φ−1(u); Σ̂ = S) ≈ Φ(Φ−1(u))Φ(Φ−1(u)) = u2. Similar to the Gaussian copula, there are
several other parametric copula families, which can give similar misleading conclusions. This simple
illustration reminds us of the pernicious effect of not “looking into the data”.
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Quantiles
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Figure 7. Estimated Quantile Correlation Function (QCF) λ̂LP[u; Y(t), Y(t + 1)]. It detects asymmetry in
the tail dependence between the lower-left quadrant and upper-right quadrant for S&P 500 return data.
The red dotted line denotes the quantile correlation function under dependence. The dark green line
shows the quantile correlation curve for the fitted Gaussian copula.
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3.4.2. Conditional LPinfor Dependence Measure

For more transparent and clear insight into the asymmetric nature of the tail dependence, we need
to introduce the concept of conditional dependence. In what follows, we propose a conditional
LPinfor function LPinfor(Y(t + h)|Y(t) = Q(u; Y(t))), a quantile-based diagnostic for tracking how
the dependence of Y(t + h) on Y(t) changes at various quantiles.

To quantify the conditional dependence, we seek to estimate f (y; Y(t + h)|Y(t))/ f (y; Y(t + h)).
A brute force approach estimates separately the conditional distribution and the unconditional
distribution and takes the ratio to estimate this arbitrary function. An alternative elegant way
is to recognize that by “going to the quantile domain” (i.e., Y(t + h) = Q(v; Y(t + v)) and
Y(t) = Q(u; Y(t))), we can interpret the ratio as “slices” of the copula density, which we call the
conditional comparison density:

d
[
v; Y(t + h), Y(t + h)|Y(t) = Q(u; Y(t))

]
= 1 + ∑

j
LP[j; h, u] Sj(v; Y(t + h)), (21)

where the LP-Fourier orthogonal coefficients LP[j; h] are given by:

LP[j; h, u] = ∑
k

LP[j, k; Y(t), Y(t + h)] Sk(u; Y(t)).

Define the conditional LPinfor as:

LPinfor
[
Y(t + h)|Y(t) = Q(u; Y(t))

]
= ∑

j

∣∣LP[j; h, u]
∣∣2. (22)

We use this theory to investigate the conditional dependency structure of S&P 500 return data.
Figure 8a traces out the complete path of the estimated LPinfor[Y(t + h) | Y(t) = Q(u; Y(t)] function,
which indicates the high asymmetric tail correlation. These conditional correlation curves can be
viewed as a “local” dependence measure. An excellent discussion on this topic is given in Section 3.3.8
of Terasvirta et al. (2010).
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Figure 8. (a) The conditional LPinfor curve is shown for the pair [Y(t), Y(t + 1)]. The asymmetric
dependence in the tails is clearly shown, and almost nothing is going on in between. (b,c) Display of
how the mean and volatility levels of conditional distribution f [y; Y(t + 1)|Y(t) = Q(u; Y(t))] change
with respect to the unconditional marginal distribution f (y; Y(t)) at different quantiles.

At this point, we can legitimately ask: What aspects of the conditional distributions are changing
most? Figure 8b,c displays only the two coefficients LP[1; h, u] and LP[2; h, u] for the S&P 500 return
data for the pairs (Y(t), Y(t + 1)). These two coefficients represent how the mean and the volatility
levels of the conditional density change with respect to the unconditional reference distribution.
The typical asymmetric shape of conditional volatility shown in the right panel of Figure 8b,c indicates
what is known as the “leverage effect”; future stock volatility negatively correlated with past stock
return, i.e., stock volatility tends to increase when stock prices drop.
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3.5. Non-Crossing Conditional Quantile Modeling

We display the nonparametrically-estimated conditional quantile curves of Y(t + h) given Y(t).
Our new modeling approach uses the estimated conditional comparison density d̂(v; h, u) to simulate
from F[y; Y(t + h)|Y(t) = Q(u; Y(t))] by utilizing the given sample Q̃(u; Y(t)) via an accept-reject
rule to arrive at the “smooth” nonparametric model for Q̂[v; Y(t + h)|Y(t) = Q(u; Y(t)]. See Parzen
and Mukhopadhyay (2013b) for details about the method. Our proposed algorithm generates “large”
additional simulated samples from the conditional distribution, which allows us to accurately estimate
the conditional quantiles (especially the extreme quantiles). By construction, our method is guaranteed
to produce non-crossing quantile curves; thus tackling a challenging practical problem.

For S&P 500 data, we first nonparametrically estimate the conditional comparison densities
d̂(v; h, u) shown in the left panel of Figure 9 for F(y; Y(t)) = 0.01, 0.5 and 0.99, which can be thought
of as a “weighting function” for an unconditional marginal distribution to produce the conditional
distributions:

f̂
[
y; Y(t + h)|Y(t) = Q(u; Y(t))

]
= f (y; Y(t)) × d̂

[
F(y; Y(t + h)); h, u

]
. (23)

This density estimation technique belongs to the skew-G modeling class (Mukhopadhyay 2016).
We simulate n = 10,000 samples from f̂ (y; Y(t + h)|Y(t)) by accept-reject sampling from d̂(v; h, u),
u = {0.01, 0.5, 0.99}. The histograms and the smooth conditional densities are shown in the right panel
of Figure 9. It shows some typical shapes in terms of long-tailedness.

Next, we proceed to estimate the nonparametric conditional quantiles Q̂(v; Y(t + h)|Y(t)),
for v = 0.001, 0.25, 0.5, 0.75, 0.999, from the simulated data. Figure 10 shows the estimated conditional
quantiles. The extreme conditional quantiles have a special significance in the context of financial
time series. They are sometimes popularly known as Conditional Value at Risk (CoVaR), currently
the most popular quantitative risk management tool (see Adrian and Brunnermeier (2011); Engle
and Manganelli (2004)). The red solid line in Figure 10 is Q̂

[
0.001; Y(t + 1) | Y(t) = Q(u; Y(t))

]
,

which is known as the 0.1% CoVaR function for a one-day holding period for S&P 500 daily return
data. Although the upper conditional quantile curve Q̂(0.999; Y(t + 1)|Y(t)) (blue solid line) shows
symmetric behavior around F(y; Y(t)) = 0.5, the lower quantile has a prominent asymmetric shape.
These conditional quantiles give the ultimate description of the auto-regressive dependence of S&P
500 return movement in the tail region.

3.6. Nonlinear Spectrum Analysis

Here, we extend the concept of spectral density for nonlinear processes. We display the
LPSpectrum -Autoregressive (AR) spectral density estimates of YS1(t), . . . , YS4(t). The spectral density
for each LP-transformed series is defined as:

f (ω; YSj) = ∑
h

LP[j, j; Y(t), Y(t + h)] e−i2πhω, −1/2 < ω < 1/2

= ∑
h

Cov[YSj(t), YSj(t + h)] e−i2πhω, −1/2 < ω < 1/2. (24)

We separately fit the univariate AR model for the components of Vec(YS)(t) and use the BIC
order selection criterion to select the “best” parsimonious parametrization using the Burg method.

Finally, we use the estimated model coefficients to produce the “smooth” estimate of the spectral
density function (see Equation (2)). The copula spectral density is defined as:

f (ω; u, v) = ∑
h

cop(u, v; h) e−i2πhω, −1/2 < ω < 1/2. (25)
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To estimate the copula spectral density, we use the LP-comoment-based nonparametric copula
density estimate. Note that both the serial copula (3.12) and the corresponding spectral density (3.25)
capture the same amount of information for the serial dependence of {Y(t)}. For that reason, we
recommend computing AutoLPinfor as a general dependence measure for non-Gaussian nonlinear
processes.

The application of our LPSpectral tool on S&P 500 return data is shown in Figure 11. A few
interesting observations are: (i) the conventional spectral density (black solid line) provides no insight
into the (complex) serial dependency present in the data; (ii) the nonlinearity in the series is captured
by the interesting shapes of our specially-designed times series YS2(t) and YS4(t), which classical
(linear) correlogram-based spectra cannot account for; (iii) the shape of the spectra of Z(Y(t)) and the
rank-transformed time series YS1(t) look very similar; and a (iv) pronounced singularity near zero
of the spectrum of YS2(t) hints at some kind of “long-memory” behavior. This phenomena is also
known as regular variation representation at frequency ω = 0 (Granger and Joyeux 1980).

A quick diagnostic measure for screening significant spectrums can be computed via the
information number 2

∫ 1/2
0 log f̂ (ω; Sj) dω. The LPSpectrum methodology is highly robust and,

thus, can tackle the heavy-tailed S&P data quite successfully.
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Figure 10. The figure shows estimated non-parametric conditional quantile curves for S&p 500 return
data. The red solid line, which represents Q̂(0.001; Y(t + 1)|Y(t)), is popularly known as the one-day
0.1% Conditional Value at Risk measure (CoVaR).
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Figure 11. LPSpectrum: AR spectral density estimate for S&P 500 return data. Order selected by
the BIC method. This provides a diagnostic tool for providing evidence of hidden periodicities in
non-Gaussian nonlinear time series.
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3.7. Nonparametric Model Specification

The ultimate goal of empirical time series analysis is nonparametric model identification. To model
the univariate stationary nonlinear process, we specify the multiple autoregressive model based on
Vec(YS)(t) =

[
YS1(t), . . . , YSk(t)

]T of the form:

Vec(YS)(t) =
m

∑
k=1

A(k; m)Vec(YS)(t− k) + ε(t). (26)

where ε(t) is multivariate mean zero Gaussian white noise with covariance Σm. This system of
equations jointly describes the dynamics of the nonlinear process and how it evolves over time. We use
the BIC criterion to select the model order m, which minimizes:

BIC(m) = log |Σ̂m| + mk2 log T
T

. (27)

We carry out this step for our S&P 500 return data. We estimate our multiple AR model based
on Vec(YS)(t) =

[
YS1(t), YS2(t), YS4(t)

]T. We discard YS3(t) due to its flat spectrum (see Figure 11).
BIC selects “best” order eight. Although the complete description of the estimated model is clearly
cumbersome, we provide below the approximate structure by selecting a few large coefficients from the
actual matrix equation. The goal is to interpret the coefficients (statistical parameters) of the estimated
model and relate them to economic theory (scientific parameters/theory). This multiple AR LP-model
(LPVAR) is given by:

YS1(t) ≈ 0.071 YS1(t− 1)− 0.024 YS1(t− 2) + ε1(t)
YS2(t) ≈ −0.063 YS1(t− 1)− 0.075 YS1(t− 2) + 0.06 YS2(t− 2) + 0.123 YS2(t− 5) + 0.04 YS4(t− 2) + ε2(t)
YS4(t) ≈ 0.04 YS4(t− 1) + 0.038 YS4(t− 2) + 0.04 YS2(t− 3) + ε4(t).

(28)

and the residual covariance matrix is:

Σ̂8 =

 0.993 −0.001 −0.002
−0.001 0.853 −0.058
−0.002 −0.058 0.964


The autoregressive model of YS2(t) can be considered as a robust stock return volatility model

(LPVolatility modeling), which is less affected by unusually large extreme events. The model for YS2(t)
automatically discovers many known facts: (a) the sign of the coefficient linking volatility and return is
negative, confirming the “leverage effect”; (b) YS2(t) is positively autocorrelated, known as volatility
clustering; (c) the positive interaction with lagged YS4(t) accounts for the “excess kurtosis”.

4. Conclusions

This article provides a pragmatic and comprehensive framework for nonlinear time series
modeling that is easier to use, more versatile and has a strong theoretical foundation based on the
recently-developed theory of unified algorithms of data science via LP modeling (Mukhopadhyay 2016,
2017; Mukhopadhyay and Fletcher 2018; Mukhopadhyay and Parzen 2014; Parzen and Mukhopadhyay
2012, 2013a, 2013b). The summary and broader implications of the proposed research are:

• From the theoretical standpoint, the unique aspect of our proposal lies in its ability to
simultaneously embrace and employ the spectral domain, time domain, quantile domain and
information domain analyses for enhanced insights, which to the best of our knowledge has not
appeared in the nonlinear time series literature before.

• From a practical angle, the novelty of our technique is that it permits us to use the techniques
from linear Gaussian time series to create non-Gaussian nonlinear time series models with highly
interpretable parameters. This aspect makes LPTime computationally extremely attractive for data
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scientists, as they can now borrow all the standard time series analysis machinery from R libraries
for implementation purposes.

• From the pedagogical side, we believe that these concepts and methods can easily be augmented
with the standard time series analysis course to modernize the current curriculum so that students
can handle complex time series modeling problems (McNeil et al. 2010) using the tools with which
they are already familiar.

The main thrust of this article is to describe and interpret the steps of LPTime technology to
create a realistic general-purpose algorithm for empirical time series modeling. In addition, many
new theoretical results and diagnostic measures were presented, which laid the foundation for the
algorithmic implementation of LPTime. We showed how LPTime can systematically explore the data
to discover empirical facts hidden in time series. For example, LPTime empirical modeling of S&P
500 return data reproduces the ‘stylized facts’—(a) heavy tails; (b) non-Gaussian; (c) nonlinear serial
dependence; (d) tail correlation; (e) asymmetric dependence; (f) volatility clustering; (g) long-memory
volatility structure; (h) efficient market hypothesis; (i) leverage effect; (j) excess kurtosis—in a coherent
manner under a single general unified framework. We have emphasized how the statistical parameters
of our model can be interpreted in light of established economic theory.

We have recently applied this theory for large-scale eye-movement pattern discovery problem,
which came out as the winner (among 82 competing algorithms) of the 2014 IEEE International
Biometric Eye Movements Verification and Identification Competition (Mukhopadhyay and
Nandi 2017). The proposed algorithm is implemented in the R package LPTime (Mukhopadhyay
and Nandi 2015), which is available on CRAN.

We conclude with some general references: a few popular articles: Brillinger (1977, 2004);
Engle (1982); Granger and Lin (1994); Granger (1993, 2003); Parzen (1967, 1979); Salmon (2012);
Tukey (1980); books: Guo et al. (2017); Terasvirta et al. (2010); Tsay (2010); Woodward et al. (2011); and
review articles: Granger (1998); Hendry (2011).

Author Contributions: Conceptualization, S.M. and E.P.; Methodology, S.M. and E.P.; Formal Analysis, S.M.;
Computation, S.M.; Writing-Review & Editing, S.M.
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