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Abstract: In this paper, we apply the wavelet methods in the popular Augmented Dickey-Fuller and
M types of unit root tests. Moreover, we provide an extensive comparison of the wavelet based unit
root tests which also includes the recent contributions in the literature. Moreover, we derive the
asymptotic properties of the wavelet based unit root tests under generalized least squares detrending
mechanism. We demonstrate that the wavelet based M tests exhibit better size performance even in
problematic cases such as the presence of negative moving average innovations. However, the power
performances of the wavelet based unit root tests are quite similar to each other.

Keywords: unit root testing; wavelet; GLS detrending

1. Introduction

It is well known that many financial and economic time series exhibit non-stationary
characteristics. Without treatment of these non-stationary characteristics, both univariate and
multivariate analysis on these kinds of series may yield incorrect conclusions. Therefore, in numerous
studies both in economy and finance, testing the unit root of time series is usually the first step
before conducting the econometric analysis. The unit root testing procedure is first introduced by
Dickey and Fuller (1979) and Dickey and Fuller (1981). Afterwards, many different unit root tests
have been devised in the literature. Except for a few studies, overwhelmingly these unit root tests are
constructed in the time domain. However, conclusions drawn from these tests remain controversial in
many cases due to the low power of tests in near unit root cases and severe size distortions, especially
in the case of the large negative moving average (MA) root.

Even before the introduction of the unit root testing, Granger (1966) points out that most economic
time series have a spectral density characterized by the significant power in low frequencies followed
by exponential decline at higher frequencies, especially in trending series. This observation implies
that the variance of a unit root process is mostly originated from the low frequencies. Capitalizing
on this notion, Fan and Gencay (2010) developed a wavelet based unit root testing procedure. Using
a wavelet spectrum, the contribution of the variance to the overall variance at each frequency can
be decomposed, and therefore it is straightforward to construct a wavelet based unit root testing
procedure. Fan and Gencay (2010) rely on the discrete wavelet transformation (DWT) to extract
the most persistent component of time series called the scaling (approximation) coefficients and
use these coefficients, particularly the ratio of the variance from the unit scale to the total variance
of the time series to build their test statistics. Even though Fan and Gencay’s (2010) unit root test
enjoys considerable power, their test suffers from the size distortions when the MA error part has
large negative unit roots. Troki¢ (2016) improves upon Fan and Gencay’s (2010) unit root test by
constructing a nonparametric testing procedure and shows that size distortions can be treated by using
a bootstrap-like procedure called wavestrapping. These two tests are the only wavelet based unit root
tests in the literature currently.
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Following the same logic behind Fan and Gencay (2010) and Troki¢ (2016) unit root
testing procedures, we propose the wavelet based versions of Dickey and Fuller (1981) and
Ng and Perron (2001) tests. We use a generalized least squares (GLS) detrending to get rid of the
deterministic components in the observed data. As wavelet filtering doesn’t alter the nature of linear
time series process, our wavelet based tests share the same asymptotic distributions of the original
tests. Using Monte Carlo simulations, we evaluate size and power properties of our tests against
Fan and Gencay (2010) and Trokic¢ (2016). In these simulations, we consider Daubechies and Symlet
filter families since the developed methodology is compatible with compactly supported wavelets.
From these filters, Daubechies are the compactly supported filters that have a maximum amount
of vanishing moments. Furthermore, Symlet filters are obtained by increasing the symmetry of
Daubechies filters.

Our results show that the new proposed unit tests have less size distortions in sample without
relying on a bootstrap routine compared to Fan and Gencay (2010) and Troki¢ (2016). The power
performance of the tests indicates there is no single dominating test. Moreover, in medium length
filters (filter length of 2 or 4), type of wavelet does not alter the results drastically.

The rest of the paper is as follows. Section 2 introduces the wavelet theory. Section 3 explains our
wavelet based tests as well as Fan and Gencay (2010) and Troki¢’s (2016) methods. Section 4 presents
Monte Carlo simulation results and Section 5 provides the conclusions and the Appendix A presents
proofs of the theorems and the lemmas. All limits in the paper are as T — oo, — denotes the weak
convergence in distribution and | x| denotes the closest integer to x.

2. Wavelet Transform

Recently, the wavelet filters have become frequently used tools in unit root and cointegration
studies. In these studies, the authors utilize the fact that wavelet filters can operate in both time and
frequency domain. This feature helps the wavelets capture the nonstationarity across a wide range of
frequencies (Fan and Gencay (2010)). This makes the wavelet transform a proper instrument for unit
root and cointegration testing. Accordingly, for the construction of the new unit test, we utilize the
wavelet methods. First, we briefly introduce the wavelet transformation. This section and the notation
used in this paper mostly follow Fan and Gencay (2010) and Eroglu (2018).

A wavelet, §(t), is a real-valued function oscillating in a finite domain with the following
basic properties:

e} (o9
/ ¥(t)dt = 0 and / P(t)?dt = 1.

The first property implies that a wavelet function must take a non-zero value in a finite time
period and the second property indicates that all the departures from zero should be cancelled out
Gengay et al. (2001). Using the function ¢ (t), we can design the continuous time wavelet transform
(CWT) of a time series x; as it follows:

(e)

W(u,s) = / xeus(D)dt,

—00

s

where ¢, 5(t) = %lp (%) is translated by u and dilated by s. Note that W(u, s) is called the wavelet

coefficient in this transfigurations. Additionally, the parameter s € R allows wavelets to work under
different frequencies. However, the CWT has an important shortcoming: it is almost impossible to
analyse all wavelet coefficients for all frequencies. Furthermore, in the CWT, the wavelet coefficients
are redundant transformation for time series data. Hence, the CWT is not very appropriate in unit root
testing. Nevertheless, the wavelet theory equipped with many other transformations that can solve
the problems of the CWT such as the DWT, the maximum overlap discrete wavelet transform, and the
discrete wavelet packet transform, etc. From these techniques, the DWT that shares the fundamental
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properties of the CWT creates a non-redundant decomposition with a finite number of frequencies.
Consequently, the DWT is a more suitable instrument for our study.

The DWT can be defined with two separate filters. The first filter h = (ho, hy, ..., hp_1) is called
the discrete wavelet (or high pass) filter with a finite length L where h; corresponds to a filter coefficient
foralll = 0,...,L — 1. The high pass filters satisfy the zero sum condition, Zf;ol h; = 0 and these
filters have unit energy, Zle_Ol h? =1 as do the CWT filters. The high pass filter does not provide the
full analysis of the observed series. However, we also have an complementary filter g (low pass filter).
The low pass filter g can be obtained by the quadrature mirror relationship!. Unlike the high pass
filter, the low pass filters sum to V2, Zle_Ol g1 = V2, but they also have unit energy, Zle_Ol gl2 =1.

Using the convolution on the observed series and the filters defined above, we transform the time
series process into its high frequency and low frequency components. Let {xt}thl be the observed time
series process with dyadic length T = 2/ for some integer J. Then, the matrix of the DWT coefficients

can be defined as WL = [WlL,Wé,. .. ,WL,VH ,, where, forj =1,2,...,], W]L is the column vector
of j-th level wavelet coefficients and V% is the column vector of J-th level scaling (approximation)
coefficients. In this decomposition, the approximation coefficients Vj@ explain the fluctuations of x; on
the scale 2/ (the largest scale among the all coefficients) and the wavelet coefficients W]L are associated

with the changes on the scale 2/~ !. Note that scale and frequency are inversely proportional. As a
result, V]L captures the lowest frequency and W/ captures the highest frequency components of the
transformed series. Additionally, the approximation coefficient V% has a length of T/2/ and W]L has a
length of T/2 for eachj=1,2,...,].

In practice, the wavelet and the approximation coefficients for the levels higher than 1 can be
obtained by the pyramid algorithm, which is firstly proposed by Mallat (1989). However, in this study,
we focus on the first level wavelet transformation. We can obtain this transformation as the following:

L-1 L-1
V=Y g% imoar, and Wi =Y Xy moar forallt=12,.,T, 1
i=0 =0

where the filtering is carried out by the convolution of the observed series with the high pass and low
filters. In the construction of our test statistic, we only use the first level approximation coefficients of
the observed time series processes, VlL,t. Notice that VlL,t corresponds to lowest frequency data in level 1
decomposition. In this regard, we separate the data from the high frequency components that contain
short term fluctuations. As indicated (Fan and Gencay, 2010), Troki¢ (2016) and Eroglu (2018), this
separation also filters out the short run problematic dynamics in the process such as the innovations
of the observed series with highly negative MA roots. Accordingly, the wavelet transform helps us
to remove some problematic issues before the testing stage. In the literature, there are other variants
of wavelet transformation such as the maximum overlap discrete wavelet transform and the discrete
wavelet packet transform. In simulations, we also utilize the maximum overlap discrete wavelet
transform; however, DWT has better performance overall so we drop the maximum overlap discrete
wavelet transform for brevity.> Another issue worth considering is the performance of higher level
wavelet transformations. For instance, Troki¢ (2016) utilizes higher level transformations upto 3rd
level, but he achieves the best results by means of power with the first level DWT while the higher
level DWT has slight size improvements in the testing.

The quadrature mirror relationship can be characterized by: g, = (—1)I+1hL,1,, for/ =0,...,L —1 (Fan and Gencay 2010).

2 The results for the maximum overlap discrete wavelet transform are available upon request.
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3. Regression Based Wavelet Unit Root Tests

We consider a basic unit root model:

Xt = ’)/l]/lt + Y, (2)
(1—pB)y: = ur = ¢p(B)e, @)

where y; captures the deterministic component, y; is the stochastic part of the observed series,
B denotes the back-shift or lag operator and the parameter p governs the unit root process where
we assume |p| < 1. For brevity, we only consider two scenarios for the deterministic component. We
index these cases with the letter j. j = 0 indicates no deterministic component in the observed series,
thus y; = 0 for all . When j = 1, we assume a mean, i.e., yi; = 1 for all t and, when j = 2, we assume a
mean and trend such that y; = {1 t} . As in the classical unit root testing, we first need to remove
the deterministic trends from the observed series. Otherwise, these components introduce nuisance
parameters in the asymptotic distribution of the test statistics. In order to eliminate these nuisance
parameters, we apply a GLS detrending algorithm to the observed series. To obtain the GLS detrended
series, we first employ quasi-differencing on the observed series x; and y; with some positive constant
¢, which is a quasi-differencing parameter. The quasi-differencing algorithm can be seen as follows:

xep=x—(1—¢/T)xyq Vt=1,---,T,
Vf,t :‘ut_ (1_E/T)Ft71 vt: l, ,T,

where x;0 = xp and iz = po. Nielsen (2009) demonstrates the GLS detrended series as:

Ret = Xt — YGLSHts
where

T
. . 2
‘YGLs = argmin 2 (xc-,t - ')’,,uc‘,t) .
Y =1
After obtaining the GLS detrended series, we apply the first level wavelet transform with filter
length L to these series:

VE = G(B)zzn:. 4)

For simplicity, we first assume p; = 0. Notice that we can apply Equation (1) on y; to obtain
as follows:

Vi = G(B)ya,

where we drop mod T and L notation for brevity and G(B) = gy + g/B + -+ + gr_1B*~1. Now,
consider yo; = szZt—Z + Ut p Uy = pzyzt—z + (14 pB)uy;. Using this result, we can write:

Veit = G(B)yar = p*G(B)yar—2 + G(B)(1 4 pB)uz = p*G(B)yar— + vt.

In addition, note that Vz1;,_1 = G(B)yx—2; then, we can conclude that Vz1; = p*Vz1; 1 +
G(B)(1+ pB)uy;. This result implies that, if y¢ follows a unit root process, then Vz 1 ; also follows a unit
root process, but the innovation structure of the wavelet transformed series carries further MA roots.
However, these additional MA roots do not alter the stationarity of the innovation terms. Accordingly,

we can claim that v; admits a stationary Wold decomposition: v; = 2]9"’:0 cp]’»‘e;‘, where €} is an i.i.d
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random variable. From Chang and Park (2002), we can approximate v; as a finite order autoregressive
(AR) process:

U = W01 + Q201+ + ap0r—p + e;‘,,t,

where e;i,t =€+ Zz":p 41 &kU¢—k- We can use the following assumption from Chang and Park (2002)

for the new innovations:

Assumption 1. Let (et F;) be a martingale difference sequence, with some filtration (F), such that a.
E (€?|F—1) = c? and b. E |e;|" < K with r > 4, where K is a constant depending only on r.

Remark 1. Assumption 1 indicates that the innovation process €; admits a stationary Wold decomposition. On
the other hand, with simple algebra, it is possible to show that the innovations of the filtered y;, say €}, also
follow a stationary Wold decomposition. Accordingly, we can rewrite Assumption 1 for €] as:

Assumption 1": Let (e}, F;) be a martingale difference sequence, with some filtration (F}), such that a.
E (e/?|F ;) = 0**and b. E |e}|" < K with r > 4, where K is a constant depending only on .

Assumption 2. Let a(z) # 0 forall |z| < 1,and Y32 |k|*|ay| < oo for some s > 1.

Before presenting our theoretical results on a wavelet based unit root test, we review the recent
methods that also deal with the unit root problem by utilizing wavelet theory. These recent methods
include contributions of Fan and Gencay (2010) and Troki¢ (2016). First, Fan and Gencay (2010)
propose a unit root test based on the notion of Granger (1981) who argues that generally time series
after detrending has a peak in power spectra at low frequencies and exponential decline at higher
frequencies. Fan and Gencay (2010) decompose variance of the observed series into low and high
frequency components via DWT to test for unit root. More specifically, their unit root test is based on
the ratio of the variance from the low pass filtered series and the variance of observed series.

Fan and Gencay’s (2010) unit root test statistics are defined as follows:

TAZ T/z( 11)?
;\0 ZtT:1(3e )2,

FGy = ®)

where A2 = 4@&? and @& is the long run variance of u; in Equation (3), and Ag is the estimate of the
variance of €;. These parameters can be estimated by applying a nonparametric kernel estimation with
Barlett kernel to the residuals obtained after applying a detrending procedure on x;. We consider GLS
detrending for this test in this study.

Trokic (2016) argues that, even though Fan and Gencay (2010) enjoy high statistical power, their
test suffers from violent size distortions in the presence of errors with negative MA roots and follow a
parametric way to correct the long run variance of the observed series. In this regard, Troki¢ (2016)
tries to improve the Fan and Gencay (2010) test by devising a parameter free unit root test that is more
robust to size distortions. Troki¢’s (2016) test is based on the variance of the scaling coefficients and the
variance of its fractionally differenced transform series with some order d > 0. The test statistics of
Troki¢’s (2016) unit root test are as follows:

T*(d) 2d§ clt, (6)
clt
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where Vfrlrt = A;d let is the fractional transform of Val’t and Ajrd is the fractional differencing
operator that can be written for some time series process {v;},_; as:

—d. I'(j+4d) '
A= L@

vt=12,---,T.

Note that this operator does not include the prehistoric observation of the time series process v;
and T; = T/2, since every time we apply wavelet filters to the observed series, we lose half of the
sample. Additionally, Troki¢ (2016) and Nielsen (2009) suggest that the parameter d can be chosen
from the inverval (0, 1) by the practitioner. While Nielsen (2009) sets d = 0.1 to obtain the best power
performance, Troki¢ (2016) picks d = 0.05.

The asymptotic distribution of Fan and Gencay’s (2010) and Troki¢’s (2016) tests can be
summarized as the following:

SR B
Jo Wiz(s)?
1 2
Wi -
T*(d) N fO ]IC(S)

l 7
fo Wj,1+d,5(5)2

where W;(s) is defined in Theorem 1 and W;;4.(s) is the fractional Brownian motion that is
demonstrated in Nielsen (2009). However, although Trokic¢ (2016) and Fan and Gencay (2010) do not
explicitly derive the asymptotic results for GLS detrending series, following Nielsen (2009), Fan and
Gencay (2010), and Troki¢ (2016), one can easily reach the outcome.3

Now, we can illustrate our theoretical contribution on wavelet based unit root tests. Under
Assumptions 1 and 2, the approximation error is small as p becomes large (Chang and Park 2002). As a
result, we can use the following augmented regression for unit root testing:

p
AVers =0Veis 1+ ) mxAVe1s g+ €5 ()
k=1

Note that when 6 = 0, V1 ; is a unit root process and if § < 0, then V ; is a stationary process.
We base our unit root test on Equation (7). This equation is similar to the conventional Augmented
Dickey-Fuller (ADF) regression, thus we can use a similar procedure. Suppose that we estimate the
model in Equation (7) with OLS and obtain the estimates 5, a1, -, &1 and &,. We construct the null
hypothesis of a unit root in x; as Hy : 6 = 0. This hypothesis can be tested with two different t statistics:

)

ADF/ = —~ 8
t se ((S) ( )
)

ADF} = Tl&(l)’ 9

where se (5) is the standard deviation of the OLS estimator of 6 and &(1) =1 — Zi’zl & in the Equation
(7). Additionally, we can also construct modified wavelet based Phillips and Perron (1988) tests. These
are given as:

3 Similar to the results observed in the literature, we observe that GLS detrending generates better power performance than

the ordinary least squares (OLS) detrending mechanism, so we use GLS detrending in this study. Results for OLS detrending
are available upon request.
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T2 o — T2 — 872
MZ; = 1,1y 1,0 AR(p)’ (10)

2T, Zt 1V 1t 1/SAR(P)

0.5
( Z 21/ AR ( P)) , (11)

MZ} = MSB* x MZ, (12)

MSB*

where s*% (p) = 62/&(1)? is the spectral AR estimate of long run variance from ADF regression in
Equation (7). Note that both ADF and M type tests require the selection of lag length p. We can apply
an information criteria based method to select the optimal lag length.

Theorem 1. Let Assumptions 1 and 2 hold, then
Wie(1)? — ij(o)z -1
Jo Wie(s)2ds
. 1/2
MSB* — ( / (s)%ds)
], (1) W] c(o)z -1

(fo 2ds)l/Z

ADF,MZ} = 05

ADF},MZ} — 05

7

where Wi +(s) is defined as:

Wie(s) = W(s) ifj=1,

1+¢ &2 1 o
WZ,E(S) - W(S) - (HC__'_C_z/?’W(1> + m/o TW(T’)dT’) S lf] = 2,

and W (s) is the standard Brownian Motion.

Theorem 1 shows that the wavelet based tests share the same asymptotic distribution as the
classical tests. This result is expected since wavelet filtering does not alter the nature of the linear time
series process. Moreover, these results provide two new contributions in the wavelet based unit root
testing literature. First, we derive the theoretical results for the GLS detrending mechanism in wavelet
based unit root tests. Second, we modify the ADF and Ng and Perron’s (2001) tests by utilizing the
wavelet theory.

4. Small Sample Properties

In this section, we evaluate the performance of different wavelet based unit root tests by Monte
Carlo simulations. In these simulations, we consider five different wavelets, namely, Haar, Db2, Db4,
sym?2, and sym4. We can categorise these wavelets into two main groups. The first group consists of
Daubechies wavelets which are characterized by a maximal number of vanishing moments. In our
exercise, we consider Daubechies wavelets Db2 and Db4 with lengths 4 and 8, respectively. The second
group is called Symlet which are modified version of Daubechies wavelets with increased symmetry.*
The lengths of Symlet wavelets sym2 and sym4 are 4 and 8, respectively. Finally, Haar wavelet, which
has length of 2, is a special type of filter that can be placed in Daubechies and Symlet at the same time.

4 We also consider Daubechies and Symlet wavelets with different lengths, but they exhibit similar performance by means of

size and size-adjusted power.
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For simulations, we consider the following data generation process:

xe ="+, (13)
Ye = pYi-1+ €, (14)
€ = e; + Oey, (15)

where ¢; is i.i.d standard normal random variables. Since the coefficient vy is asymptotically irrelevant,
we set v = 0 for all cases. Furthermore, for the size exercise, we set p = 1 and for the power exercise
we use p = 0.99 and 0.9°,

As we discussed in the previous sections, we compare three different families of wavelet based
unit root test statistics. These are Troki¢’s (2016) variance ratio statistic, Fan and Gencay’s (2010)
statistic and the wavelet version of Ng and Perron’s (2001) test statistics. To evaluate the small sample
and large sample properties, we use sample size T = 100 and T = 1000. Moreover, we examine three
types of deterministic component adjustments. These are no deterministic component, only mean, and
mean and trend cases.

The newly proposed wavelet based M type and ADF tests require optimal lag length selection to
remove the present serial correlation innovation process. In this study, we utilize modified Akaike
information criteria (MAIC) information criteria proposed by Ng and Perron (2001). Other information
criterion can be considered; however, in our simulation studies, we observe the best results can be
obtained with MAIC. Moreover, we also consider the modification of Perron and Qu (2007) for the lag
selection procedure. Following Perron and Qu (2007), we utilize OLS instead of GLS detrended data
to calculate MAIC, but use GLS detrended data in the testing phase.

As mentioned in Section 3, ¢ is used for GLS detrending. This parameter is chosen, for each test,
as at the local alternative p = 1 — ¢/ T, the test obtains 50% power with the critical values generated by
the same value of ¢. This value for each test statistic can be find by running an expensive grid search.
We present the values of this parameter in Table 1:°

Table 1. The values of ¢ and the associated critical values of the wavelet based tests at a 5% significance level.

1t c ADF;, MZ; ADFf, MZ{ MSB*

1 9.8 —16.94 —2.83 0.17
[1,¢] 188 —-791 -1.92 0.23

4.1. The Size Performance of the Wavelet Based Tests

First, we evaluate the size performance of the wavelet based tests with simulated data. In these
simulations, we focus on MA(1) innovations for brevity. The MA(1) coefficient 6 in Equation (15) is
chosen from {0.8,0, —0.8}". The results of the size exercise can be found in Tables 2 and 3 for sample
sizes 100 and 1000, respectively.

First, we discuss about the over-size problem with negative MA innovations when T = 100.
Almost every test statistic in Table 2 exhibits severe size distortions under this scenario. However,
M type of unit root tests can eliminate the problem successfully, while ADF tests also demonstrate
smaller size distortion relative to Troki¢’s (2016) and Fan and Gencay’s (2010) statistics. Additionally,
Fan and Gencay’s (2010) test statistic seems to suffer the severest size distortion among all statistics.

The results for other intermediate values of p are available upon request.

In the simulation, we observe that, for all tests, the optimal ¢ is very close. As a result, we use the same ¢ for all tests.
A similar approach is adopted by Ng and Perron (2001). The values of critical values with other significant levels are
available upon request.

The simulations can be conducted under different ARMA innovations. These results are available upon request. Since they
do not alter the findings, we skip them for brevity.
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These features also persist in larger samples (see Table 3). When T = 1000, we observe size distortions,
but slightly less than observed in small samples. Another important observation in these table is
that the size distortion problem becomes more severe when we consider deterministic component
adjustments, especially in detrending cases. Nonetheless, M type of tests still provide satisfactory size
correction even after the detrending procedure.

Table 2. The empirical size of wavelet based tests with sample size = 100.

e 0 Wavelet t* FG MZ: MZ MSB* ADFS ADFE;
Haar 0212 0729 0040 0046 0034 0085  0.067

Db2 0212 0729 0041 0049 0035 0084  0.066

—08  Db4 0220 0729 0038 0047 0034 008  0.067
sym2 0214 0727 0041 0049 0035 0085  0.066
symd 0207 0723 0040 0046 0033 0084  0.065
Haar 0040 0046 0028 0030 0028 0031  0.031

Db2  0.041 0045 0029 0030 0030 0031  0.031

0 0 Db4 0045 0047 0033 0036 0031 0035 0.036
sym2  0.044 0046 0030 0031 0030 0033 0032
symé 0040 0043 0028 0029 0027 0032 0031
Haar 0037 0020 0040 0040 0040 0043  0.039

Db2 0039 0020 0040 0040 0041 0042  0.036

0.8 Db4 0042 0020 0040 0.043 0040 0040  0.036
sym2  0.039 0019 0040 0040 0041 0042  0.037
symd 0038 0018 0036 0037 0034 0039 0034
Haar 0227 0803 0.035 0039 0031 0088 0074

Db2 0228 0804 0035 0037 0034 0087 0.071
—08  Db4 0241 0806 0043 0056 0034 0091 0.073
sym2 0232 0804 0034 0036 0032 0087 0071
symd 0229 0802 0039 0046 0033 0089 0073
Haar  0.048 0054 0033 0033 0033 0036 0035

Db2 0050 0053 0033 0033 0035 0037 0.035

1 0 Db4 0053 0055 0040 0042 0037 0042  0.042
sym2 0051 0054 0034 0035 0035 0038 0037
symé 0051 0053 0035 0036 0032 0038 0038
Haar 0045 0022 0046 0046 0048 0049  0.044

Db2 0045 0.022 0046 0046 0047 0049  0.042

0.8 Db4 0050 0.024 0050 0053 0048 0050  0.044
sym2  0.048 0022 0046 0047 0048 0049  0.042
symdé 0048 0022 0045 0046 0042 0048  0.042
Haar 0498 0999 0.030 0032 0028 0113 0072

Db2 0501 0999 0031 0032 0030 0113  0.069
—08  Db4 0519 0999 0033 0040 0029 0116 0.068
sym2 0502 0999 0031 0032 0030 0116 0071
symé 0513 0999 0032 0034 0030 0116  0.069
Haar 0051 0038 0010 0011 0011 0017  0.020

Db2 0058 0.039 0012 0012 0012 0017  0.021

L, 0 Db4 0064 0040 0015 0017 0014 0023  0.029
sym2 0055 0037 0012 0012 0012 0018  0.021
symé 0065 0041 0013 0014 0013 0021  0.024
Haar 0045 0021 0025 0026 0026 0032 0027

Db2  0.049 0022 0025 0025 0026 0032 0.024

0.8 Db4 0056 0.024 0027 0028 0026 0032 0.026
sym2  0.048 0022 0026 0026 0027 0032 0025
symé 0056 0023 0022 0023 0022 0030 0024
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Table 3. The empirical size of wavelet based tests with sample size = 1000.

7 6  Wavelet ¥ FG MZ; MZ; MSB* ADFS ADF}

Haar 0.113 0.636 0.051 0.053  0.047 0.067 0.06
Db2 0.114 0.637 0.053 0.056 0.049 0.069 0.062
-0.8 Db4 0.118 0.638 0.052 0.055 0.05 0.068 0.062
sym2 0.115 0.638 0.053 0.056  0.051 0.069 0.062
sym4 0.115 0.635 0.054 0.057 0.05 0.069 0.063
Haar 0.046 0.049 0.047 0.047 0.047 0.048 0.047
Db2 0.048 0.05 0.049 0.048 0.048 0.049 0.047
0 0 Db4 0.05 0.049 0.048 0.047 0.047 0.048 0.045
sym2 0.048 0.049 0.048 0.048 0.048 0.048 0.047
sym4 0.047 0.048 0.046 0.046 0.045 0.046 0.045
Haar 0.045 0.04 0.044 0.045 0.045 0.045 0.044
Db2 0.048 0.041 0.046 0.047 0.046 0.047 0.045
0.8 Db4 0.05 0.041 0.048 0.048 0.047 0.048 0.045
sym2 0.047 0.04 0.045 0.045 0.046 0.046 0.044
sym4 0.047 0.041 0.046 0.047 0.046 0.047 0.045
Haar 0.112 0.651 0.049 0.051 0.047 0.067 0.062
Db2 0.114 0.651 0.046 0.048 0.046 0.067 0.061
-0.8 Db4 0.112 0.652 0.052 0.056  0.048 0.068 0.062
sym2 0.108 0.652 0.047 0.048 0.045 0.066 0.061
sym4 0.111 0.652 0.049 0.051 0.046 0.065 0.06
Haar 0.047 0.049 0.048 0.048 0.048 0.049 0.048
Db2 0.048 0.048 0.047 0.047 0.047 0.047 0.046
1 0 Db4 0.048 0.051 0.048 0.05 0.048 0.049 0.047
sym2 0.047 005 0.049 0.048 0.048 0.049 0.047
sym4 0.048 0.05 0.047 0.047 0.047 0.047 0.046
Haar 0.046 0.041 0.046 0.046 0.046 0.046 0.044
Db2 0.048 0.041 0.045 0.046 0.046 0.046 0.044
0.8 Db4 0.047 0.041 0.047 0.048 0.047 0.047 0.044
sym2 0.047 0.041 0.046 0.046 0.046 0.047 0.044
sym4 0.047 0.041 0.046 0.046 0.046 0.047 0.044
Haar 0268 0.994 0.031 0.032  0.029 0.074 0.056
Db2 0267 0994 0.03 0.031 0.03 0.074 0.056
—-0.8 Db4 027 0994 0.033 0.038 0.03 0.075 0.056
sym2 0.267 0.994 0.032 0.033 0.031 0.075 0.058
sym4 0272 0994 0.032 0.034 0.03 0.073 0.056
Haar 0.062 0.048 0.041 0.041 0.041 0.044 0.042
Db2 0.063 0.049 0.043 0.043 0.043 0.046 0.042
[1,¢] 0 Db4 0.065 0.049 0.043 0.044 0.043 0.045 0.041
sym2 0.063 0.049 0.043 0.043 0.043 0.046 0.042
sym4 0.068 0.051 0.044 0.044 0.043 0.046 0.042
Haar 0.06 0.028 0.041 0.042 0.042 0.044 0.039
Db2 0.06 0.028 0.04 0.041 0.04 0.043 0.037
0.8 Db4 0.065 0.028 0.042 0.043 0.042 0.043 0.036
sym2 0.06 0.028 0.041 0.041 0.041 0.044 0.038
sym4 0.065 0.029 0.042 0.043 0.041 0.045 0.038

For no serial correlation (6 = 0) and positive MA innovation case (§ = 0.8), we observe all wavelet
based tests are either correctly sized or slightly undersized. For instance, Fan and Gencay’s (2010)
test is undersized by 0.03% when 6 = 0.8 for all deterministic component cases. On the other hand,
when 6 = 0.8 and we have trend and mean as the deterministic component, M tests show 0.02%
size distortion. Finally, Troki¢’s (2016) test is the least affected by detrending algorithms by means of
size distortion. Again, these findings are also valid for large sample size (T = 1000), but with slight
improvement as expected.

In another exercise, we compare the size performances of standard and wavelet based tests. In this
exercise, we only consider GLS demeaned statistics with sample sizes T = 100 and 1000 for brevity and
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space constraints. Moreover, we utilize the same serial correlation scenarios as in the previous exercises.
The results for this exercise can be found in Table 4. In this table, when T = 100 and 8 = —0.8, standard
tests are undersized and the wavelet based tests are oversized, but the size distortions are almost the
same. However, when 6 = 0.8, the wavelet based tests are much more successful than the standard
tests. Although this result seems controversial, we know that Ng and Perron’s (2001) M tests are
quite successful without further modification. Additionally, the wavelet modification engenders better
results against standard ADF tests, especially ADF,. In the large sample case, all tests are performing
similarly as expected. As a result, there is no single winner in the size contest for the small samples.
Moreover, we can attribute the difference appeared in standard and wavelet M tests to the fact that
wavelet based tests effectively utilize half of the sample. We expect this difference would be eliminated
in the moderate sample sizes.

In the current literature, GLS is generally preferred to OLS for demeaning and detrending series.
Therefore, we also use GLS demeaning and detrending in our study. However, we also conduct a small
simulation to compare results of GLS and OLS in the case of demeaning with sample size T = 100.
We use Haar, Db2, and sym?2 as they usually perform quite well in our simulations. The results of this
simulation are shown in Table 5. For § = 0 and 0.8, tests based on OLS demeaning are significantly
undersized and are clearly worse than their GLS demeaning based counterparts. For a negative MA
root case, the tests are oversized except Trokic¢’s (2016) test and tests based on GLS demeaning have
slightly better sizes than those based on OLS demeaning except Troki¢’s (2016) test and ADF;" test.

Finally, we present size properties of tests when different lengths of wavelets are selected. For the
case of T = 100 and GLS demeaning, Figure 1 shows sizes of tests with wavelet length between 2
and 16 for 8 = —0.8,0, and 0, 8, respectively. Results clearly show that, for 8 = 0 and 0.8 when the
wavelength increases over 8, tests become significantly oversized. For § = —0.8, sizes of tests don’t
change much with the wavelet length. These results show that tests based on smaller wavelet lengths
show better size properties.

Table 4. The size comparison of the standard and wavelet based unit root tests under GLS demeaning.

Wavelet Based Tests

T 0 L Mz; MZ; MSB* ADF; ADEF
—0.8 0315 0.066 0.068 0.064 0.150 0.121

100 0 0.053 0.037 0.036 0.036 0.042 0.043
0.8 0.048 0.046 0.046 0.049 0.048 0.040

—0.8 0.113 0.047 0.048 0.047 0.067 0.062

1000 0 0.048 0.050 0.048 0.048 0.049 0.047
0.8 0.045 0.039 0.044 0.045 0.045 0.043

Standard Tests

T 0 T MZ, MZ; MSB ADF, ADF
—0.8 0582 0.037 0.039 0.035 0.162 0.119

100 0 0.069 0.047 0.048 0.047 0.054 0.056
0.8 0.054 0.071 0.070 0.072 0.072 0.043

—0.8 0.186 0.041 0.042 0.039 0.080 0.074

1000 0 0.050 0.048 0.048 0.049 0.049 0.049
0.8 0.047 0.053 0.053 0.053 0.054 0.048
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Figure 1. The size comparison of tests with various wavelet lengths with sample size T = 100. Note:
tvr, ram, mzaw, mztv, msbw, adfaw and adftw correspond to v, FG, MZ;, MZ}, MSB*, ADF;, and
ADF{, respectively.
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Table 5. The size comparison of the OLS and GLS demeaning with sample size T = 100.

GLS Demeaning
Wavelet 0 T FG MZ; MZ; MSB* ADFE; ADF;

-0.8 0307 0771 0.065 0071 0059 0.147  0.123
Haar 0 0.047 0.035 0.032 0.033 0.033 0.038 0.041
08 0.044 0.002 0.044 0.044 0.047 0.047 0.041
-08 0315 0771 0.066 0.068 0.064 0.150 0.121
db2 0 0.053 0.037 0.036 0.036  0.038 0.042 0.043
0.8 0.048 0.002 0.046 0.046 0.049 0.048  0.040
—-0.8 0317 0772 0.065 0.067 0.064 0.151 0.120
sym?2 0 0.054 0.037 0.036 0.037 0.038 0.042  0.044
0.8 0.049 0.002 0.048 0.047 0.051 0.050 0.042

OLS demeaning
Wavelet 6 ™  FG MZ; MZS MSB* ADF, ADF;
—-0.8 0423 0999 0.073 0.063 0.077 0.184 0.105
Haar 0 0.017 0.020 0.011 0.021 0.013 0.017  0.033
0.8 0.013 0.000 0.015 0.023 0.019 0.020 0.029
—-0.8 0423 0999 0077 0.068 0081  0.190  0.119
db2 0 0.018 0.018 0.010 0.014 0.013 0.016  0.028
08 0.014 0.000 0.014 0.018 0.020 0.019 0.026
—0.8 0432 0999 0078 0.069 0081 0192  0.119
sym2 0 0.019 0.019 0.010 0.015 0.014 0.017 0.031
08 0.015 0.000 0.015 0.018 0.021 0.020  0.028

4.2. The Size-Adjusted Power Performance of the Wavelet Based Tests

In this part, we investigate the size-adjusted power properties of the wavelet based tests. We use
the model in Equations (13)-(15). As in the size exercise, we utilize the same data generation and
detrending algorithms, but we set p as 0.99 and 0.9. The results for the size-adjusted power performance
of wavelet based unit root tests are summarized in Tables 6-8.

These tables demonstrate a few interesting findings. First, Fan and Gencay’s (2010) test suffers
extreme power loss when § = —0.8 and T = 100. We cannot observe conventional power curve for
this test since the power is decreasing with increasing values of p. This result is surprising in unit root
literature. The detrending or demeaning algorithm does not alter this conclusion, but larger sample
size approximately corrects this distortion. On the other hand, other tests still maintain conventional
power performance. Second, detrending or demeaning slightly reduce the power of the tests for both
small and large samples. Third, the tests show similar power performance in the no serial correlation
case. However, we observe slightly worse power for Troki¢’s (2016) test when 6 = 0.8 than the other
tests. Finally, when we compare M tests and ADF tests, ADF tests exhibit better performance than M
tests in almost all cases.

These findings imply that there is no single dominant test by means of size and size-adjusted
power. While M and ADF tests engender better size correction in problematic cases, Troki¢ (2016)
generates more stable power properties. Moreover, the type of wavelet filter (being from the family of
Daubechies or Symlets) does not matter by means of size or size-adjusted power.
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Table 6. The size-adjusted power of wavelet based tests.

T u 6 Wavelet p <t FG MZ: MZ' MSB* ADFE’ ADF;
Hogr 099 0109 0104 0109 0111 0104 0111 0111

09 0988 0073 0523 0537 0507 0769  0.640

ppp 099 0115 0105 0108 0109 0105 0113 0113

09 0989 0073 0520 0535 0505 0772  0.643

o8 pps 099 0113 0104 0110 011 0106 0115 0115
09 0989 0072 0516 0521 0508 0781  0.655

gma 099 0TI 0107 0109 0TI 0104 0T12 0113

09 0989 0075 0524 0539 0507 0773  0.645

gme 099 01170109 0TI 0109 0109 0TI 0174

09 0991 0078 0522 0530 0512 0776  0.641

oy 099 010 0110 0110 0112 0101 0111 0115

09 0884 0980 085 0859 0843 0903  0.870

oy 099 0103 0113 0110 0114 0104 0113 0115

09 0889 0982 0853 0854 0839 0901 0.866

0 o ppe 099 010I 0112 0114 0116 0106 0114 0.118
09 0889 0981 0854 0856 0837 089 0856

gmz 099 0102 01120112 0113 0105 0113 0116

09 0883 0979 0853 0854 0838 0900 0.865

gma 099 0106 0I15 0117 011§ 0IIT 0117 0120

09 0898 0982 0852 0851 0844 0897 0857

oy 099 0105 0114 0113 0115 0108 0115 0117

09 0873 0952 0789 0790 0767 0844 0811

Dy 099 0103 0II1 0II1 0112 0105 0113 0114

09 0875 0950 0790 0791 0771 0851 0817

08 ppa 099 0103 0113 0113 0115 0107 0115 0.118
09 0879 0951 0805 0808 0781 0860  0.824

gmz 099 0104 0T 0TIT 0TI3 0106 0115 0115

09 0878 0951 0791 0791 0770 0851 0818

gma 099 0106 0I15 0T13 0TI5 0109 0T 0TI

100 09 088 0954 0801 0797 0790 0.855 0813
oy 099 0093 0087 0091 0091 008 0093 009

09 0371 0017 0148 0151 0143 0237  0.189

Dy 099 009 008 009 009 0086 009 0.092

09 0377 0016 0148 0149 0145 0240 0.193

o8 pps 099 0092 008 0086 0086 0086 009  0.088
09 0373 0016 0147 0156 0144 0242  0.197

gma 099 009 0087 0092 0093 0089 00% 009

09 0374 0017 0149 0149 0146 0238  0.193

gma 099 00% 0087 0091 008 008 0095 00%

09 0377 0017 0152 0154 0149 0243  0.19%4

Hoy 099 010 01T 0108 0110 0102 0110 0114

09 0728 0895 0776 0775 0756 0820  0.791

Dpp 099 0100 0114 0111 0113 0104 0112 0116

09 0735 0900 0775 0774 0754 0819 0787

Lo pps 099 0104 0113 0109 0111 0103 0111 0.114
09 0747 0899 0775 0779 0754 0818 0776

gma 099 0103 01120108 0TI0 0102 0109 0112

09 0737 0898 0771 0771 0751 0818 0785

gma 099 0107 0I5 0112 0113 0108 0T 011

09 0747 0900 0765 0761 0756 0812  0.768

oy 099 0102 01T 0110 0112 0103 0112 0114

09 0839 0927 0746 0749 0718 0806 0778

ppp 099 0104 0112 0110 0112 0107 0113 0112

09 0847 0928 0751 0752 0730 0814 0782

08 ppa 099 0103 OII1 0110 01T 0105 0113 0.114
09 0854 0928 0773 0776 0745 0.829  0.793

gmp 099 0102 0112 0112 0TI 0104 0TI 0118

09 0845 0927 0753 0754 0724 0814 0786

gma 099 01030110 0108 0110 0106 0110 0112

09 0858 0930 0763 0759 0754 0819 0779

14 of 22
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Table 7. The size-adjusted power of wavelet based unit root tests, continued.

T 0 Wavelet p T FG MZ: MZ; MSB* ADF} ADF;
Hony 099 0058 0055 0057 0057 0057 0058  0.057

09 0400 0026 0162 0163 0161 0229  0.182

oy 099 0060 0053 0057 0058 0058 0058 0058

09 0411 0024 0161 0161 0160 0229  0.184

08  Dppe 099 0060 0054 0055 0055 005 0057 005
09 0405 0024 0159 0162 0158 0229  0.184

gmz 099 0058 0054 005 005 0055 005 0056

09 0401 0024 0160 0161 0159 0225 0.180

gma 099 0057 0055 0056 005 0057 0058 0057

09 0407 0024 0165 0164 0165 0233 0.186

oy 099 0061 0061 0059 0059 0058 0060  0.061

09 0646 0805 0611 0613 0595 0648  0.648

oy 099 0060 0061 0061 0061 0061 0061 0062

09 0640 0800 0612 0616 0599 0.649  0.646

099 0059 0060 0059 0059 0058 0.060  0.060

100 L0 bbd 09 0648 0804 0627 0628 0613 0662  0.636
gmz 099 0061 0062 0060 0061 0059 0061  0.060

09 0644 0804 0611 0616 0597 0650  0.644

gma 099 0060 0060 005 0059 005 0060 0060

09 0650 0802 0617 0614 0613 0652 0631

oy 099 0059 0059 0058 0058 0058 0059  0.058

09 0670 0672 0365 0373 0345 0430 0476

oy 099 0060 0060 0058 0059 0058 0060 0060

09 0676 0667 0398 0407 0381 0471 0515

08 pps 099 0058 0058 0058 0058 0058 0059 0.060
09 0679 0665 0446 0459 0423 0517 0552

gmz 099 0059 0058 0058 0055 0055 0055 0057

09 0678 0668 0391 0401 0374 0463 0513

gmd 099 0060 0060 0058 0059 0058 0059 0059

09 0678 0675 0452 0454 0444 0510 0531

oy 099 0621 0699 0650 0658 0625 0677 0675

09 1000 1.000 0978 0979 0973 1.000  0.999

Dpp 099 0626 069 0650 0652 0629 0680 0674

09 1000 0999 0977 0977 0973 1.000  0.999

08 pps 099 0627 0703 0650 0647 0631 0683 0677
09 1000 1.000 0974 0971 0972 1.000  0.999

gmz 099 0622 0697 0685 0645 0620 0676 0670

09 1000 0999 0977 0977 0972  1.000  0.999

gmd 099 0626 0699 0GHT 0645 0623 0671 0,664

09 1000 1.000 0976 0976 0972  1.000  0.999

oy 099 0523 0704 0707 0711 0680 0711 0711

09 1.000 1.000 0999 0998 0999 1.000  0.999

bpp 099 0526 0707 0707 0707 0684 0709 0707

09 1.000 1000 0999 0999 0999  1.000  0.999

099 0528 0711 0712 0718 068 0715 0717

10000 0 Dbt 09 1000 1.000 0999 0999 0999  1.000  0.999
gma 099 058 O07IT 0711 0712 0682 0714 0712

09 1.000 1.000 0999 0998 0999 1.000  0.999

gmt 099 0533 0716 0714 0718 060 0717 0715

09 1.000 1.000 0999 0999 0999  1.000  0.999

Hony 099 0527 0708 0705 0707 0679 0708 0708

09 1000 1.000 0999 0999 0999  1.000  0.999

oy 099 0524 0704 0701 0703 0674 0704 0704

09 1000 1.000 0999 0999 0999  1.000  0.999

08 Dpe 099 0519 0697 0689 0695 0665 0694 0697
09 1.000 1.000 0999 0999 0999 1.000  0.999

gmz 099 052 0709 0706 0710 0678 0709 0711

09 1000 1.000 0999 0999 0999  1.000  0.999

gma 099 0525 0702 094 0694 0668 069  0.6%

09 1000 1.000 0999 0998 0999  1.000  0.999

15 of 22
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Table 8. The size-adjusted power of wavelet based unit root tests, continued.

T 0 Wavelet p 1 FG MZ: MZ; MSB* ADF} ADF;}
oy 099 0391 0447 0454 0456 0438 0474 0471

09 0551 0429 0248 0255 0238 0433 0413

ppp 099 0387 0444 0455 0457 0436 0473 0469

09 0554 0429 0245 0248 0238 0434 0414

08 Dpps 099 0398 0448 0455 0454 0439 0477 0472
09 0554 0430 0250 0266 0238 0435 0416

gma 099 0397 0455 0461 0460 0443 0479 0474

09 0557 0437 0246 0249 0240 0436 0416

gmt 099 0395 042 045 0458 0440 0474 04E7

09 0556 0435 0254 0264 0242 0437 0416

Hony 099 0514 0698 0694 0694 0668 0697 0.69%

09 0950 1.000 0948 0948 0942 0982 0972

ppp 099 0520 0702 0699 0699 0673 0705 0699

09 0954 0999 0951 0950 0945 0983 0974

. 0 ppe 099 0519 0694 0697 0699 0670 0700 0697
09 0953 0999 0953 0954 0945 0983 0973

gmz 099 0518 069 0691 06% 066 06% 065

09 0952 0999 0948 0948 0942 0982 0972

gma 099 0516 0693 0692 069 0668 0695 069

09 0953 1000 0950 0951 0945 0983 0973

oy 099 0529 0699 0704 0706 0673 0707 0706

09 0998 1.000 0993 0992 0991 0999  0.998

oy 099 0526 0697 069 0697 0667 0700 0700

09 0998 1000 0992 0992 0991 0999 0998

08 Dpa 099 0530 069 0694 0697 0665 0698 0699
09 0998 1000 0994 0994 0992 0999 0998

gmz 099 0526 0% 0% 07001 0669 0700 0702

09 0998 1000 0993 0992 0991 0999 0998

gma 099 0529 095 0689 0689 0665 0691  0.6%

1000 09 0998 1.000 0993 0993 0993 0999  0.998
oy 099 0246 0255 0218 0220 0215 0234 0228

09 079 0607 0261 0264 0257 0549 0483

oy 099 0242 0250 0213 0214 0211 0231 0224

09 0793 0604 0257 0259 0255 0546  0.479

o8 Dppe 099 0240 025 0214 0215 0212 0232 022
09 0792 0609 0257 0267 0253 0543 0478

gmz 099 0235 0285 0208 0210 0207 0225 0221

09 0793 0599 0255 0257 0253 0542 0475

gma 099 0238 025 0218 0218 0204 0235 0228

09 0794 0613 0261 0263 0258 0550  0.485

oy 099 0269 0302 0291 0293 0286 0293 0293

09 0997 1000 0941 0942 0940 0992 0968

Dpp 099 0260 0293 0278 0281 0274 0280 0282

09 0997 1000 0938 0938 0937 0991  0.966

g 0 pps 099 0266 0292 0280 0283 0276 0281 0283
’ 09 0998 1000 0943 0945 0940 0991  0.968
gma 099 0262 0292 028T 0281 0275 0283 0283

09 0998 1000 0938 0938 0937 0992 0967

gma 099 020 0290 0275 0278 0269 0277 0277

09 0997 1000 0941 0941 0939 0992 0967

oy 099 0267 0292 0281 0285 0276 0283  0.284

09 0999 1000 0970 0970 0970 0998 0987

ppp 099 0266 0289 0280 0280 0273 0283 0283

09 0999 1000 0971 0970 0971 0998  0.988

08 Dpa 099 0262 0285 0277 0279 0271 0279 0282
09 0999 1000 0971 0972 0970 0998  0.989

gma 099 0260 08T 0275 0279 0268 0277 0278

09 0999 1000 0971 0970 0970 0998  0.989

gmt 099 0261 0285 0271 0275 0268 0275 0274

09 1000 1.000 0972 0971 0971 0998 0987

16 of 22
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In the last two Monte Carlo exercises, we evaluate the large sample properties of the wavelet based
and standard unit root tests under GLS demeaning®. First, we examine the asymptotic behaviour of
the wavelet based test with different wavelet filters and lengths. In this exercise, we only consider the
asymptotic power properties of the MZ} test and seven different wavelet filters, namely Haar, Db2,
Db4, Db8, sym2, sym4 and sym8. These results, which are generated under no serial correlation and
sample size 1000, are presented in Figure 2. From this figure, it is clear that wavelet type and length do
not matter asymptotically.

In another exercise, we compare the asymptotic power curves of the GLS demeaned standard
and wavelet based tests. From these tests, we consider t*, FG, MZ} and MZ/, as the wavelet based
tests, andt, MZ, and MZ; as standard unit root tests. The results of the simulations, which are run
with no serial correlation and sample size 1000, are given in Figure 3. The findings are twofold: (1)
Nielsen’s (2009) test and its wavelet version are almost asymptotically equivalent; and (2) there are
very slight deviations in other tests. However, increasing the sample size further may eliminate
the difference further. On the other hand, the figure illustrates that the most powerful tests are
M tests, the second rank belongs to Fan and Gencay’s (2010) test and the least powerful tests are
Nielsen’s (2009) test.

8 We also consider GLS detrending, but, for the space considerations, we do not present them. If requested, they are available

from the authors.
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Figure 2. Asymptotic power curves of the wavelet based MZ, with different wavelet filters under GLS demeaning. Note: Filters are defined in the text.
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Figure 3. Asymptotic power curves of the wavelet based and standard unit root tests under GLS demeaning. Note: tvr, ram, mzaw and mztw correspond to T, FG,
MZ; and MZ}, respectively. nor, mza and mzt correspond to T, MZ, and MZ; which are standard unit root tests without the wavelet application, respectively.
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5. Conclusions

In this study, we extend the results of Fan and Gencay (2010) in Ng and Perron’s (2001) framework
and we provide an analysis of the application of GLS detrending in the wavelet framework.

As a result of our comparison exercise, relative to existing wavelet based unit roots, the newly
proposed tests seem to be more robust to problematic innovation structures such as negative MA roots.
Although all tests suffer size distortion from the presence of the negative MA innovations, in particular,
M type tests are almost correctly sized. Furthermore, our tests also exhibit local power, while there is
no single test that dominates the power performance contest.

We also show that the wavelet type does not matter in unit root testing. However, using higher
length filters may distort the performance of wavelet based tests. Nonetheless, we can suggest length
2 or 4 wavelets for wavelet based unit root tests.

For the future work, we also consider wavelet based Johansen cointegration test using similar
methodology. Recently, Eroglu (2018) combine the Fan and Gencay (2010) and Troki¢’s (2016) results
with a Nielsen (2010) cointegration test. Utilizing wavelet based techniques in a Johansen cointegration
test may engender a fruitful comparison. Finally, one can also consider the evaluation of the
wavestrapping or other bootstrapping techniques for the wavelet based unit root tests.

Author Contributions: Both authors contributed equally to this manuscript.
Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs of the Theorems and the Lemmas

Lemma A1. Suppose that Assumptions 1 and 2 hold and define V1 ; = G(B)yos. Under the null hypothesis of
p=1

[T ]
T Vi () =T, V2 Y Vis = 200(0W() - VE€[0,1],
s=1

where W (t) is a standard Brownian motion and ¢(1) is the long run variance of u.
The proof of this lemma can found in Troki¢ (2016) and Fan and Gencay (2010).

Lemma A2. Suppose that Assumptions 1-2 hold and x; is generated by Equations (2) and (3). Let Vy ;1 be
defined in Equation (4). The partial sum process of V1 z ; satisfies the following properties:

tTy ]
T 2Ver () = T2 Y Vigs — 200(1)Wie(t),

[tTh
s=1

where W; +(s) is demonstrated in Theorem 1.

Proof of Lemma 2. First, we decompose %¢¢ as £¢: = vt — (f6rs0 — 70) — (YgLs,1 — 1)t where

JcLs = [%,GLS '?’1,GLS} when j = 2 and %+ = y: — (Ycrs0 — v0) where jgrs = ['?O,GLS} when
j = 1. Now, we write

>

G(B)%z2t = Vir — G(1)(G6Ls0 — v0) — (Gcrsa —71)G(B)2t ifj =2,
G(B)%c2t = Vi — G(1)(GgLso — v0) ifj=1

=

Lt

>

(=

ot
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Note that G(B)yy; = Vi 4. This result implies that

T2V e () = Ty V2V — T 2G(1) (s — 70) — T /2 (deLsy —11)G(B2[tTh]  if j=2,
(A1)
T V2 Ve = T V2V = T 2G() (orso — 7o) ifj = 1. (A2)

Elliott et al. (1996) (§gLs,0) = Op(1) as a result Tfl/zG(l)('?GLS,O — Y0) converges to zero in the limit,
and the convergence of the second deterministic term is shown as

. 1+¢ c2 1
Tl/z(’YGLS,l - ')’1) — 0'4)(1) (HC_‘FEZ/?)W(l) + m‘/o TW(T)dT) .

Using these results, we can rewrite Equations (A1) and (A2) as:

TV Ve = TV *Vir, — T7Y2G(1) (46rs0 — 70) (A3)
= T{*(fers1 — M)G(BR2UT /Ty ifj =2, (Ad)
T,V Ve = T2V, — T7V2G(1) (orsp — 10)  ifj = 1. (A5)

Note that G(1) = v/2and 2G(B)t/T = 2G(1) [tTy|/T1 — 2Y;_o 11/ T1. The second term can be
written as 2G(B) [tTy | /T = v/2t/T in the limit since 2 Y,_o1g;/T1 = 0,(1). Finally, we can show,

TV Ver, (1) — T2V g (1) — V2T 2 (dersy — 1)t/ T (A6)

(
(

= T VY2 Vg (1) — 2TV (96151 — 1)t/ T (A7)
— 209(1)W(t) (A8)
1+¢ &2 1
~20¢(1) (HC_W)W(Q + m/@ rW(r)dr) t (A9)
=20p(1)Wae(s) ifj=2, (A10)
T Y20 64 (8) — T7V2V (1) = 20p(1)W(t) = 20¢(1)Wae(s) ifj =1, (A11)
1

where Equation (A7) follows from the fact that Tll/ 2 = V212 O
Lemma A3. Let assumptions of Theorem 1 hold, then s*% (p) — 20¢(1).

Proof of Lemma 3. The proof of this lemma can be obtained from the consistency of &(1), which is
demonstrated in Lemma 3.5 of Chang and Park (2002) and the results of Lemma A1. First, note that
&(1) — a(1), thus 1/&(1) — 1/a(1). Additionally, ¢ is a consistent estimator of the variance of €.
However, from Fan and Gencay (2010) and Trokic¢ (2016), we know the long run variance of v; is given
as 20¢(1), and then we obtain the result from Continuous Mapping Theorem (CMT) since we also
have & — ¢*2. O

Proof of Theorem 1. The proof of results for the ADF test based on wavelet transformed series directly
follows Chang and Park (2002). Note that the wavelet based augmented regression satisfies the same
conditions as the classical ADF regression. As a result, we can use Lemmas A2 and A3 to obtain the
results. The proof is the same as in Chang and Park (2002), and thus we skip the details.

The results for the wavelet based M tests follow from Lemmas A2 and A3. We simply apply CMT
to reach the desired outcome. [
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