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Abstract: In this paper, we apply the wavelet methods in the popular Augmented Dickey-Fuller and
M types of unit root tests. Moreover, we provide an extensive comparison of the wavelet based unit
root tests which also includes the recent contributions in the literature. Moreover, we derive the
asymptotic properties of the wavelet based unit root tests under generalized least squares detrending
mechanism. We demonstrate that the wavelet based M tests exhibit better size performance even in
problematic cases such as the presence of negative moving average innovations. However, the power
performances of the wavelet based unit root tests are quite similar to each other.

Keywords: unit root testing; wavelet; GLS detrending

1. Introduction

It is well known that many financial and economic time series exhibit non-stationary
characteristics. Without treatment of these non-stationary characteristics, both univariate and
multivariate analysis on these kinds of series may yield incorrect conclusions. Therefore, in numerous
studies both in economy and finance, testing the unit root of time series is usually the first step
before conducting the econometric analysis. The unit root testing procedure is first introduced by
Dickey and Fuller (1979) and Dickey and Fuller (1981). Afterwards, many different unit root tests
have been devised in the literature. Except for a few studies, overwhelmingly these unit root tests are
constructed in the time domain. However, conclusions drawn from these tests remain controversial in
many cases due to the low power of tests in near unit root cases and severe size distortions, especially
in the case of the large negative moving average (MA) root.

Even before the introduction of the unit root testing, Granger (1966) points out that most economic
time series have a spectral density characterized by the significant power in low frequencies followed
by exponential decline at higher frequencies, especially in trending series. This observation implies
that the variance of a unit root process is mostly originated from the low frequencies. Capitalizing
on this notion, Fan and Gencay (2010) developed a wavelet based unit root testing procedure. Using
a wavelet spectrum, the contribution of the variance to the overall variance at each frequency can
be decomposed, and therefore it is straightforward to construct a wavelet based unit root testing
procedure. Fan and Gencay (2010) rely on the discrete wavelet transformation (DWT) to extract
the most persistent component of time series called the scaling (approximation) coefficients and
use these coefficients, particularly the ratio of the variance from the unit scale to the total variance
of the time series to build their test statistics. Even though Fan and Gencay’s (2010) unit root test
enjoys considerable power, their test suffers from the size distortions when the MA error part has
large negative unit roots. Trokić (2016) improves upon Fan and Gencay’s (2010) unit root test by
constructing a nonparametric testing procedure and shows that size distortions can be treated by using
a bootstrap-like procedure called wavestrapping. These two tests are the only wavelet based unit root
tests in the literature currently.
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Following the same logic behind Fan and Gencay (2010) and Trokić (2016) unit root
testing procedures, we propose the wavelet based versions of Dickey and Fuller (1981) and
Ng and Perron (2001) tests. We use a generalized least squares (GLS) detrending to get rid of the
deterministic components in the observed data. As wavelet filtering doesn’t alter the nature of linear
time series process, our wavelet based tests share the same asymptotic distributions of the original
tests. Using Monte Carlo simulations, we evaluate size and power properties of our tests against
Fan and Gencay (2010) and Trokić (2016). In these simulations, we consider Daubechies and Symlet
filter families since the developed methodology is compatible with compactly supported wavelets.
From these filters, Daubechies are the compactly supported filters that have a maximum amount
of vanishing moments. Furthermore, Symlet filters are obtained by increasing the symmetry of
Daubechies filters.

Our results show that the new proposed unit tests have less size distortions in sample without
relying on a bootstrap routine compared to Fan and Gencay (2010) and Trokić (2016). The power
performance of the tests indicates there is no single dominating test. Moreover, in medium length
filters (filter length of 2 or 4), type of wavelet does not alter the results drastically.

The rest of the paper is as follows. Section 2 introduces the wavelet theory. Section 3 explains our
wavelet based tests as well as Fan and Gencay (2010) and Trokić’s (2016) methods. Section 4 presents
Monte Carlo simulation results and Section 5 provides the conclusions and the Appendix A presents
proofs of the theorems and the lemmas. All limits in the paper are as T −→ ∞,→ denotes the weak
convergence in distribution and bxc denotes the closest integer to x.

2. Wavelet Transform

Recently, the wavelet filters have become frequently used tools in unit root and cointegration
studies. In these studies, the authors utilize the fact that wavelet filters can operate in both time and
frequency domain. This feature helps the wavelets capture the nonstationarity across a wide range of
frequencies (Fan and Gencay (2010)). This makes the wavelet transform a proper instrument for unit
root and cointegration testing. Accordingly, for the construction of the new unit test, we utilize the
wavelet methods. First, we briefly introduce the wavelet transformation. This section and the notation
used in this paper mostly follow Fan and Gencay (2010) and Eroğlu (2018).

A wavelet, ψ(t), is a real-valued function oscillating in a finite domain with the following
basic properties: ∫ ∞

−∞
ψ(t)dt = 0 and

∫ ∞

−∞
ψ(t)2dt = 1.

The first property implies that a wavelet function must take a non-zero value in a finite time
period and the second property indicates that all the departures from zero should be cancelled out
Gençay et al. (2001). Using the function ψ(t), we can design the continuous time wavelet transform
(CWT) of a time series xt as it follows:

W(u, s) =
∫ ∞

−∞
xtψu,s(t)dt,

where ψu,s(t) = 1√
s ψ
( t−u

s
)

is translated by u and dilated by s. Note that W(u, s) is called the wavelet

coefficient in this transfigurations. Additionally, the parameter s ∈ R+ allows wavelets to work under
different frequencies. However, the CWT has an important shortcoming: it is almost impossible to
analyse all wavelet coefficients for all frequencies. Furthermore, in the CWT, the wavelet coefficients
are redundant transformation for time series data. Hence, the CWT is not very appropriate in unit root
testing. Nevertheless, the wavelet theory equipped with many other transformations that can solve
the problems of the CWT such as the DWT, the maximum overlap discrete wavelet transform, and the
discrete wavelet packet transform, etc. From these techniques, the DWT that shares the fundamental
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properties of the CWT creates a non-redundant decomposition with a finite number of frequencies.
Consequently, the DWT is a more suitable instrument for our study.

The DWT can be defined with two separate filters. The first filter h = (h0, h1, . . . , hL−1) is called
the discrete wavelet (or high pass) filter with a finite length L where hl corresponds to a filter coefficient
for all l = 0, . . . , L− 1. The high pass filters satisfy the zero sum condition, ∑L−1

l=0 hl = 0 and these
filters have unit energy, ∑L−1

l=0 h2
l = 1 as do the CWT filters. The high pass filter does not provide the

full analysis of the observed series. However, we also have an complementary filter g (low pass filter).
The low pass filter g can be obtained by the quadrature mirror relationship1. Unlike the high pass
filter, the low pass filters sum to

√
2, ∑L−1

l=0 gl =
√

2, but they also have unit energy, ∑L−1
l=0 g2

l = 1.
Using the convolution on the observed series and the filters defined above, we transform the time

series process into its high frequency and low frequency components. Let {xt}T
t=1 be the observed time

series process with dyadic length T = 2J for some integer J. Then, the matrix of the DWT coefficients

can be defined asW L =
[
WL

1 , WL
2 , . . . , WL

J , VL
J

]′
, where, for j = 1, 2, . . . , J, WL

j is the column vector

of j-th level wavelet coefficients and VL
J is the column vector of J-th level scaling (approximation)

coefficients. In this decomposition, the approximation coefficients VL
J explain the fluctuations of xt on

the scale 2J (the largest scale among the all coefficients) and the wavelet coefficients WL
j are associated

with the changes on the scale 2j−1. Note that scale and frequency are inversely proportional. As a
result, VL

J captures the lowest frequency and WL
1 captures the highest frequency components of the

transformed series. Additionally, the approximation coefficient VL
J has a length of T/2J and WL

j has a

length of T/2j for each j = 1, 2, . . . , J.
In practice, the wavelet and the approximation coefficients for the levels higher than 1 can be

obtained by the pyramid algorithm, which is firstly proposed by Mallat (1989). However, in this study,
we focus on the first level wavelet transformation. We can obtain this transformation as the following:

VL
1,t =

L−1

∑
l=0

gl x2t−l mod T , and WL
1,t =

L−1

∑
l=0

hl x2t−l mod T for all t = 1, 2, ..., T, (1)

where the filtering is carried out by the convolution of the observed series with the high pass and low
filters. In the construction of our test statistic, we only use the first level approximation coefficients of
the observed time series processes, VL

1,t. Notice that VL
1,t corresponds to lowest frequency data in level 1

decomposition. In this regard, we separate the data from the high frequency components that contain
short term fluctuations. As indicated (Fan and Gencay, 2010), Trokić (2016) and Eroğlu (2018), this
separation also filters out the short run problematic dynamics in the process such as the innovations
of the observed series with highly negative MA roots. Accordingly, the wavelet transform helps us
to remove some problematic issues before the testing stage. In the literature, there are other variants
of wavelet transformation such as the maximum overlap discrete wavelet transform and the discrete
wavelet packet transform. In simulations, we also utilize the maximum overlap discrete wavelet
transform; however, DWT has better performance overall so we drop the maximum overlap discrete
wavelet transform for brevity.2 Another issue worth considering is the performance of higher level
wavelet transformations. For instance, Trokić (2016) utilizes higher level transformations upto 3rd
level, but he achieves the best results by means of power with the first level DWT while the higher
level DWT has slight size improvements in the testing.

1 The quadrature mirror relationship can be characterized by: gl = (−1)l+1hL−1−l for l = 0, . . . , L− 1 (Fan and Gencay 2010).
2 The results for the maximum overlap discrete wavelet transform are available upon request.
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3. Regression Based Wavelet Unit Root Tests

We consider a basic unit root model:

xt = γ′µt + yt, (2)

(1− ρB)yt = ut = φ(B)εt, (3)

where µt captures the deterministic component, yt is the stochastic part of the observed series,
B denotes the back-shift or lag operator and the parameter ρ governs the unit root process where
we assume |ρ| ≤ 1. For brevity, we only consider two scenarios for the deterministic component. We
index these cases with the letter j. j = 0 indicates no deterministic component in the observed series,
thus µt = 0 for all t. When j = 1, we assume a mean, i.e., µt = 1 for all t and, when j = 2, we assume a
mean and trend such that µt =

[
1 t

]
. As in the classical unit root testing, we first need to remove

the deterministic trends from the observed series. Otherwise, these components introduce nuisance
parameters in the asymptotic distribution of the test statistics. In order to eliminate these nuisance
parameters, we apply a GLS detrending algorithm to the observed series. To obtain the GLS detrended
series, we first employ quasi-differencing on the observed series xt and µt with some positive constant
c̄, which is a quasi-differencing parameter. The quasi-differencing algorithm can be seen as follows:

xc̄,t = xt − (1− c̄/T)xt−1 ∀t = 1, · · · , T,

µx̄,t = µt − (1− c̄/T)µt−1 ∀t = 1, · · · , T,

where xc̄,0 = x0 and µc̄,0 = µ0. Nielsen (2009) demonstrates the GLS detrended series as:

x̂c̄,t = xt − γ̂GLSµt,

where

γ̂GLS = arg min
γ

T

∑
t=1

(
xc̄,t − γ′µc̄,t

)2 .

After obtaining the GLS detrended series, we apply the first level wavelet transform with filter
length L to these series:

V̂L
c̄,1,t = G(B)x̂c̄,2t. (4)

For simplicity, we first assume µt = 0. Notice that we can apply Equation (1) on yt to obtain
as follows:

VL
c̄,1,t = G(B)y2t,

where we drop mod T and L notation for brevity and G(B) = g0 + gl B + · · · + gL−1BL−1. Now,
consider y2t = ρ2y2t−2 + u2t+ ρ u2t−1 = ρ2y2t−2 + (1 + ρB)u2t. Using this result, we can write:

Vc̄,1,t = G(B)y2t = ρ2G(B)y2t−2 + G(B)(1 + ρB)u2t = ρ2G(B)y2t−2 + vt.

In addition, note that Vc̄,1,t−1 = G(B)y2t−2; then, we can conclude that Vc̄,1,t = ρ2Vc̄,1,t−1 +

G(B)(1 + ρB)u2t. This result implies that, if yt follows a unit root process, then Vc̄,1,t also follows a unit
root process, but the innovation structure of the wavelet transformed series carries further MA roots.
However, these additional MA roots do not alter the stationarity of the innovation terms. Accordingly,
we can claim that vt admits a stationary Wold decomposition: vt = ∑∞

j=0 φ∗j ε∗t , where ε∗t is an i.i.d
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random variable. From Chang and Park (2002), we can approximate vt as a finite order autoregressive
(AR) process:

vt = α1vt−1 + α2vt−1 + · · ·+ αpvt−p + ε∗p,t,

where ε∗p,t = ε∗t + ∑∞
k=p+1 αkut−k. We can use the following assumption from Chang and Park (2002)

for the new innovations:

Assumption 1. Let (εt, Ft) be a martingale difference sequence, with some filtration (Ft), such that a.
E
(
ε2

t |Ft−1
)
= σ2 and b. E |εt|r < K with r ≥ 4, where K is a constant depending only on r.

Remark 1. Assumption 1 indicates that the innovation process εt admits a stationary Wold decomposition. On
the other hand, with simple algebra, it is possible to show that the innovations of the filtered yt, say ε∗t , also
follow a stationary Wold decomposition. Accordingly, we can rewrite Assumption 1 for ε∗t as:

Assumption 1’: Let (ε∗t , F∗t ) be a martingale difference sequence, with some filtration (F∗t ), such that a.
E
(
ε∗2t |F∗t−1

)
= σ∗2 and b. E |ε∗t |r < K with r ≥ 4, where K is a constant depending only on r.

Assumption 2. Let α(z) 6= 0 for all |z| ≤ 1, and ∑∞
k=0 |k|s|αk| < ∞ for some s ≥ 1.

Before presenting our theoretical results on a wavelet based unit root test, we review the recent
methods that also deal with the unit root problem by utilizing wavelet theory. These recent methods
include contributions of Fan and Gencay (2010) and Trokić (2016). First, Fan and Gencay (2010)
propose a unit root test based on the notion of Granger (1981) who argues that generally time series
after detrending has a peak in power spectra at low frequencies and exponential decline at higher
frequencies. Fan and Gencay (2010) decompose variance of the observed series into low and high
frequency components via DWT to test for unit root. More specifically, their unit root test is based on
the ratio of the variance from the low pass filtered series and the variance of observed series.

Fan and Gencay’s (2010) unit root test statistics are defined as follows:

FG1 =
Tλ̂2

u

λ̂0

∑T/2
t=1 (V̂c̄,1,t)

2

∑T
t=1(x̂c̄,t)2

, (5)

where λ̂2
v = 4ω̂2 and ω̂2 is the long run variance of ut in Equation (3), and λ̂0 is the estimate of the

variance of εt. These parameters can be estimated by applying a nonparametric kernel estimation with
Barlett kernel to the residuals obtained after applying a detrending procedure on xt. We consider GLS
detrending for this test in this study.

Trokić (2016) argues that, even though Fan and Gencay (2010) enjoy high statistical power, their
test suffers from violent size distortions in the presence of errors with negative MA roots and follow a
parametric way to correct the long run variance of the observed series. In this regard, Trokić (2016)
tries to improve the Fan and Gencay (2010) test by devising a parameter free unit root test that is more
robust to size distortions. Trokić’s (2016) test is based on the variance of the scaling coefficients and the
variance of its fractionally differenced transform series with some order d > 0. The test statistics of
Trokić’s (2016) unit root test are as follows:

τ∗(d) = T2d
1

∑T1
t=1 V̂2

c̄,1,t

∑T1
t=1

˜̂V2
c̄,1,t

, (6)
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where ˜̂Vc̄,1,t = ∆−d
+ V̂c̄,1,t is the fractional transform of V̂c̄,1,t and ∆−d

+ is the fractional differencing
operator that can be written for some time series process {vt}T

t=1 as:

4−d
+ vt =

t

∑
j=0

Γ(j + d)
Γ(j + 1)Γ(d)

vt−j ∀t = 1, 2, · · · , T.

Note that this operator does not include the prehistoric observation of the time series process vt

and T1 = T/2, since every time we apply wavelet filters to the observed series, we lose half of the
sample. Additionally, Trokić (2016) and Nielsen (2009) suggest that the parameter d can be chosen
from the inverval (0, 1) by the practitioner. While Nielsen (2009) sets d = 0.1 to obtain the best power
performance, Trokić (2016) picks d = 0.05.

The asymptotic distribution of Fan and Gencay’s (2010) and Trokić’s (2016) tests can be
summarized as the following:

FG1 −→ −
1∫ 1

0 Wj,c̄(s)2
,

τ∗(d) −→
∫ 1

0 Wj,c̄(s)2∫ 1
0 Wj,1+d,c̄(s)2

,

where Wj,c̄(s) is defined in Theorem 1 and Wj,1+d,c̄(s) is the fractional Brownian motion that is
demonstrated in Nielsen (2009). However, although Trokić (2016) and Fan and Gencay (2010) do not
explicitly derive the asymptotic results for GLS detrending series, following Nielsen (2009), Fan and
Gencay (2010), and Trokić (2016), one can easily reach the outcome.3

Now, we can illustrate our theoretical contribution on wavelet based unit root tests. Under
Assumptions 1 and 2, the approximation error is small as p becomes large (Chang and Park 2002). As a
result, we can use the following augmented regression for unit root testing:

∆V̂c̄,1,t = δV̂c̄,1,t−1 +
p

∑
k=1

αk∆V̂c̄,1,t−k + ε∗p,t. (7)

Note that when δ = 0, V̂c̄,1,t is a unit root process and if δ < 0, then V̂c̄,1,t is a stationary process.
We base our unit root test on Equation (7). This equation is similar to the conventional Augmented
Dickey-Fuller (ADF) regression, thus we can use a similar procedure. Suppose that we estimate the
model in Equation (7) with OLS and obtain the estimates δ̂, α̂1,· · · , α̂p−1 and α̂p. We construct the null
hypothesis of a unit root in xt as H0 : δ = 0. This hypothesis can be tested with two different t statistics:

ADF∗t =
δ̂

se
(
δ̂
) , (8)

ADF∗α = T1
δ̂

α̂(1)
, (9)

where se
(
δ̂
)

is the standard deviation of the OLS estimator of δ and α̂(1) = 1−∑
p
k=1 α̂k in the Equation

(7). Additionally, we can also construct modified wavelet based Phillips and Perron (1988) tests. These
are given as:

3 Similar to the results observed in the literature, we observe that GLS detrending generates better power performance than
the ordinary least squares (OLS) detrending mechanism, so we use GLS detrending in this study. Results for OLS detrending
are available upon request.
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MZ∗α =
T−1

1 V̂2
c̄,1,T1

− T−1
1 V̂2

c̄,1,,0 − s∗2AR(p)

2T−2
1 ∑T1

t=1 V̂2
c̄,1,t−1/s∗2AR(p)

, (10)

MSB∗ =

(
T−2

1

T1

∑
t=1

V̂2
c̄,1,t−1/s∗2AR(p)

)0.5

, (11)

MZ∗t = MSB∗ ×MZ∗α , (12)

where s∗2AR(p) = σ̂2/α̂(1)2 is the spectral AR estimate of long run variance from ADF regression in
Equation (7). Note that both ADF and M type tests require the selection of lag length p. We can apply
an information criteria based method to select the optimal lag length.

Theorem 1. Let Assumptions 1 and 2 hold, then

ADF∗α , MZ∗α −→ 0.5
Wj,c̄(1)2 −Wj,c̄(0)2 − 1∫ 1

0 Wj,c̄(s)2ds
,

MSB∗ −→
(∫ 1

0
Wj,c̄(s)2ds

)1/2

,

ADF∗t , MZ∗t −→ 0.5
Wj,c̄(1)2 −Wj,c̄(0)2 − 1(∫ 1

0 Wj,c̄(s)2ds
)1/2 ,

where Wj,c̄(s) is defined as:

W1,c̄(s) = W(s) if j = 1,

W2,c̄(s) = W(s)−
(

1 + c̄
1 + c̄ + c̄2/3

W(1) +
c̄2

1 + c̄ + c̄2/3

∫ 1

0
rW(r)dr

)
s if j = 2,

and W(s) is the standard Brownian Motion.

Theorem 1 shows that the wavelet based tests share the same asymptotic distribution as the
classical tests. This result is expected since wavelet filtering does not alter the nature of the linear time
series process. Moreover, these results provide two new contributions in the wavelet based unit root
testing literature. First, we derive the theoretical results for the GLS detrending mechanism in wavelet
based unit root tests. Second, we modify the ADF and Ng and Perron’s (2001) tests by utilizing the
wavelet theory.

4. Small Sample Properties

In this section, we evaluate the performance of different wavelet based unit root tests by Monte
Carlo simulations. In these simulations, we consider five different wavelets, namely, Haar, Db2, Db4,
sym2, and sym4. We can categorise these wavelets into two main groups. The first group consists of
Daubechies wavelets which are characterized by a maximal number of vanishing moments. In our
exercise, we consider Daubechies wavelets Db2 and Db4 with lengths 4 and 8, respectively. The second
group is called Symlet which are modified version of Daubechies wavelets with increased symmetry.4

The lengths of Symlet wavelets sym2 and sym4 are 4 and 8, respectively. Finally, Haar wavelet, which
has length of 2, is a special type of filter that can be placed in Daubechies and Symlet at the same time.

4 We also consider Daubechies and Symlet wavelets with different lengths, but they exhibit similar performance by means of
size and size-adjusted power.
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For simulations, we consider the following data generation process:

xt = γ′µt + yt, (13)

yt = ρyt−1 + εt, (14)

εt = et + θet, (15)

where et is i.i.d standard normal random variables. Since the coefficient γ is asymptotically irrelevant,
we set γ = 0 for all cases. Furthermore, for the size exercise, we set ρ = 1 and for the power exercise
we use ρ = 0.99 and 0.95.

As we discussed in the previous sections, we compare three different families of wavelet based
unit root test statistics. These are Trokić’s (2016) variance ratio statistic, Fan and Gencay’s (2010)
statistic and the wavelet version of Ng and Perron’s (2001) test statistics. To evaluate the small sample
and large sample properties, we use sample size T = 100 and T = 1000. Moreover, we examine three
types of deterministic component adjustments. These are no deterministic component, only mean, and
mean and trend cases.

The newly proposed wavelet based M type and ADF tests require optimal lag length selection to
remove the present serial correlation innovation process. In this study, we utilize modified Akaike
information criteria (MAIC) information criteria proposed by Ng and Perron (2001). Other information
criterion can be considered; however, in our simulation studies, we observe the best results can be
obtained with MAIC. Moreover, we also consider the modification of Perron and Qu (2007) for the lag
selection procedure. Following Perron and Qu (2007), we utilize OLS instead of GLS detrended data
to calculate MAIC, but use GLS detrended data in the testing phase.

As mentioned in Section 3, c̄ is used for GLS detrending. This parameter is chosen, for each test,
as at the local alternative ρ = 1− c̄/T, the test obtains 50% power with the critical values generated by
the same value of c̄. This value for each test statistic can be find by running an expensive grid search.
We present the values of this parameter in Table 1:6

Table 1. The values of c̄ and the associated critical values of the wavelet based tests at a 5% significance level.

µt c̄ ADF∗
α , MZ∗

α ADF∗
t , MZ∗

t MSB∗

1 9.8 −16.94 −2.83 0.17
[1, t] 18.8 −7.91 −1.92 0.23

4.1. The Size Performance of the Wavelet Based Tests

First, we evaluate the size performance of the wavelet based tests with simulated data. In these
simulations, we focus on MA(1) innovations for brevity. The MA(1) coefficient θ in Equation (15) is
chosen from {0.8, 0,−0.8}7. The results of the size exercise can be found in Tables 2 and 3 for sample
sizes 100 and 1000, respectively.

First, we discuss about the over-size problem with negative MA innovations when T = 100.
Almost every test statistic in Table 2 exhibits severe size distortions under this scenario. However,
M type of unit root tests can eliminate the problem successfully, while ADF tests also demonstrate
smaller size distortion relative to Trokić’s (2016) and Fan and Gencay’s (2010) statistics. Additionally,
Fan and Gencay’s (2010) test statistic seems to suffer the severest size distortion among all statistics.

5 The results for other intermediate values of ρ are available upon request.
6 In the simulation, we observe that, for all tests, the optimal c̄ is very close. As a result, we use the same c̄ for all tests.

A similar approach is adopted by Ng and Perron (2001). The values of critical values with other significant levels are
available upon request.

7 The simulations can be conducted under different ARMA innovations. These results are available upon request. Since they
do not alter the findings, we skip them for brevity.
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These features also persist in larger samples (see Table 3). When T = 1000, we observe size distortions,
but slightly less than observed in small samples. Another important observation in these table is
that the size distortion problem becomes more severe when we consider deterministic component
adjustments, especially in detrending cases. Nonetheless, M type of tests still provide satisfactory size
correction even after the detrending procedure.

Table 2. The empirical size of wavelet based tests with sample size = 100.

µt θ Wavelet τ∗ FG MZ∗
α MZ∗

t MSB∗ ADF∗
α ADF∗

t

0

−0.8

Haar 0.212 0.729 0.040 0.046 0.034 0.085 0.067
Db2 0.212 0.729 0.041 0.049 0.035 0.084 0.066
Db4 0.220 0.729 0.038 0.047 0.034 0.086 0.067
sym2 0.214 0.727 0.041 0.049 0.035 0.085 0.066
sym4 0.207 0.723 0.040 0.046 0.033 0.084 0.065

0

Haar 0.040 0.046 0.028 0.030 0.028 0.031 0.031
Db2 0.041 0.045 0.029 0.030 0.030 0.031 0.031
Db4 0.045 0.047 0.033 0.036 0.031 0.035 0.036
sym2 0.044 0.046 0.030 0.031 0.030 0.033 0.032
sym4 0.040 0.043 0.028 0.029 0.027 0.032 0.031

0.8

Haar 0.037 0.020 0.040 0.040 0.040 0.043 0.039
Db2 0.039 0.020 0.040 0.040 0.041 0.042 0.036
Db4 0.042 0.020 0.040 0.043 0.040 0.040 0.036
sym2 0.039 0.019 0.040 0.040 0.041 0.042 0.037
sym4 0.038 0.018 0.036 0.037 0.034 0.039 0.034

1

−0.8

Haar 0.227 0.803 0.035 0.039 0.031 0.088 0.074
Db2 0.228 0.804 0.035 0.037 0.034 0.087 0.071
Db4 0.241 0.806 0.043 0.056 0.034 0.091 0.073
sym2 0.232 0.804 0.034 0.036 0.032 0.087 0.071
sym4 0.229 0.802 0.039 0.046 0.033 0.089 0.073

0

Haar 0.048 0.054 0.033 0.033 0.033 0.036 0.035
Db2 0.050 0.053 0.033 0.033 0.035 0.037 0.035
Db4 0.053 0.055 0.040 0.042 0.037 0.042 0.042
sym2 0.051 0.054 0.034 0.035 0.035 0.038 0.037
sym4 0.051 0.053 0.035 0.036 0.032 0.038 0.038

0.8

Haar 0.045 0.022 0.046 0.046 0.048 0.049 0.044
Db2 0.045 0.022 0.046 0.046 0.047 0.049 0.042
Db4 0.050 0.024 0.050 0.053 0.048 0.050 0.044
sym2 0.048 0.022 0.046 0.047 0.048 0.049 0.042
sym4 0.048 0.022 0.045 0.046 0.042 0.048 0.042

[1, t]

−0.8

Haar 0.498 0.999 0.030 0.032 0.028 0.113 0.072
Db2 0.501 0.999 0.031 0.032 0.030 0.113 0.069
Db4 0.519 0.999 0.033 0.040 0.029 0.116 0.068
sym2 0.502 0.999 0.031 0.032 0.030 0.116 0.071
sym4 0.513 0.999 0.032 0.034 0.030 0.116 0.069

0

Haar 0.051 0.038 0.010 0.011 0.011 0.017 0.020
Db2 0.058 0.039 0.012 0.012 0.012 0.017 0.021
Db4 0.064 0.040 0.015 0.017 0.014 0.023 0.029
sym2 0.055 0.037 0.012 0.012 0.012 0.018 0.021
sym4 0.065 0.041 0.013 0.014 0.013 0.021 0.024

0.8

Haar 0.045 0.021 0.025 0.026 0.026 0.032 0.027
Db2 0.049 0.022 0.025 0.025 0.026 0.032 0.024
Db4 0.056 0.024 0.027 0.028 0.026 0.032 0.026
sym2 0.048 0.022 0.026 0.026 0.027 0.032 0.025
sym4 0.056 0.023 0.022 0.023 0.022 0.030 0.024
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Table 3. The empirical size of wavelet based tests with sample size = 1000.

µt θ Wavelet τ∗ FG MZ∗
α MZ∗

t MSB∗ ADF∗
α ADF∗

t

0

−0.8

Haar 0.113 0.636 0.051 0.053 0.047 0.067 0.06
Db2 0.114 0.637 0.053 0.056 0.049 0.069 0.062
Db4 0.118 0.638 0.052 0.055 0.05 0.068 0.062
sym2 0.115 0.638 0.053 0.056 0.051 0.069 0.062
sym4 0.115 0.635 0.054 0.057 0.05 0.069 0.063

0

Haar 0.046 0.049 0.047 0.047 0.047 0.048 0.047
Db2 0.048 0.05 0.049 0.048 0.048 0.049 0.047
Db4 0.05 0.049 0.048 0.047 0.047 0.048 0.045
sym2 0.048 0.049 0.048 0.048 0.048 0.048 0.047
sym4 0.047 0.048 0.046 0.046 0.045 0.046 0.045

0.8

Haar 0.045 0.04 0.044 0.045 0.045 0.045 0.044
Db2 0.048 0.041 0.046 0.047 0.046 0.047 0.045
Db4 0.05 0.041 0.048 0.048 0.047 0.048 0.045
sym2 0.047 0.04 0.045 0.045 0.046 0.046 0.044
sym4 0.047 0.041 0.046 0.047 0.046 0.047 0.045

1

−0.8

Haar 0.112 0.651 0.049 0.051 0.047 0.067 0.062
Db2 0.114 0.651 0.046 0.048 0.046 0.067 0.061
Db4 0.112 0.652 0.052 0.056 0.048 0.068 0.062
sym2 0.108 0.652 0.047 0.048 0.045 0.066 0.061
sym4 0.111 0.652 0.049 0.051 0.046 0.065 0.06

0

Haar 0.047 0.049 0.048 0.048 0.048 0.049 0.048
Db2 0.048 0.048 0.047 0.047 0.047 0.047 0.046
Db4 0.048 0.051 0.048 0.05 0.048 0.049 0.047
sym2 0.047 0.05 0.049 0.048 0.048 0.049 0.047
sym4 0.048 0.05 0.047 0.047 0.047 0.047 0.046

0.8

Haar 0.046 0.041 0.046 0.046 0.046 0.046 0.044
Db2 0.048 0.041 0.045 0.046 0.046 0.046 0.044
Db4 0.047 0.041 0.047 0.048 0.047 0.047 0.044
sym2 0.047 0.041 0.046 0.046 0.046 0.047 0.044
sym4 0.047 0.041 0.046 0.046 0.046 0.047 0.044

[1, t]

−0.8

Haar 0.268 0.994 0.031 0.032 0.029 0.074 0.056
Db2 0.267 0.994 0.03 0.031 0.03 0.074 0.056
Db4 0.27 0.994 0.033 0.038 0.03 0.075 0.056
sym2 0.267 0.994 0.032 0.033 0.031 0.075 0.058
sym4 0.272 0.994 0.032 0.034 0.03 0.073 0.056

0

Haar 0.062 0.048 0.041 0.041 0.041 0.044 0.042
Db2 0.063 0.049 0.043 0.043 0.043 0.046 0.042
Db4 0.065 0.049 0.043 0.044 0.043 0.045 0.041
sym2 0.063 0.049 0.043 0.043 0.043 0.046 0.042
sym4 0.068 0.051 0.044 0.044 0.043 0.046 0.042

0.8

Haar 0.06 0.028 0.041 0.042 0.042 0.044 0.039
Db2 0.06 0.028 0.04 0.041 0.04 0.043 0.037
Db4 0.065 0.028 0.042 0.043 0.042 0.043 0.036
sym2 0.06 0.028 0.041 0.041 0.041 0.044 0.038
sym4 0.065 0.029 0.042 0.043 0.041 0.045 0.038

For no serial correlation (θ = 0) and positive MA innovation case (θ = 0.8), we observe all wavelet
based tests are either correctly sized or slightly undersized. For instance, Fan and Gencay’s (2010)
test is undersized by 0.03% when θ = 0.8 for all deterministic component cases. On the other hand,
when θ = 0.8 and we have trend and mean as the deterministic component, M tests show 0.02%
size distortion. Finally, Trokić’s (2016) test is the least affected by detrending algorithms by means of
size distortion. Again, these findings are also valid for large sample size (T = 1000), but with slight
improvement as expected.

In another exercise, we compare the size performances of standard and wavelet based tests. In this
exercise, we only consider GLS demeaned statistics with sample sizes T = 100 and 1000 for brevity and
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space constraints. Moreover, we utilize the same serial correlation scenarios as in the previous exercises.
The results for this exercise can be found in Table 4. In this table, when T = 100 and θ = −0.8, standard
tests are undersized and the wavelet based tests are oversized, but the size distortions are almost the
same. However, when θ = 0.8, the wavelet based tests are much more successful than the standard
tests. Although this result seems controversial, we know that Ng and Perron’s (2001) M tests are
quite successful without further modification. Additionally, the wavelet modification engenders better
results against standard ADF tests, especially ADFα. In the large sample case, all tests are performing
similarly as expected. As a result, there is no single winner in the size contest for the small samples.
Moreover, we can attribute the difference appeared in standard and wavelet M tests to the fact that
wavelet based tests effectively utilize half of the sample. We expect this difference would be eliminated
in the moderate sample sizes.

In the current literature, GLS is generally preferred to OLS for demeaning and detrending series.
Therefore, we also use GLS demeaning and detrending in our study. However, we also conduct a small
simulation to compare results of GLS and OLS in the case of demeaning with sample size T = 100.
We use Haar, Db2, and sym2 as they usually perform quite well in our simulations. The results of this
simulation are shown in Table 5. For θ = 0 and 0.8, tests based on OLS demeaning are significantly
undersized and are clearly worse than their GLS demeaning based counterparts. For a negative MA
root case, the tests are oversized except Trokić’s (2016) test and tests based on GLS demeaning have
slightly better sizes than those based on OLS demeaning except Trokić’s (2016) test and ADF∗t test.

Finally, we present size properties of tests when different lengths of wavelets are selected. For the
case of T = 100 and GLS demeaning, Figure 1 shows sizes of tests with wavelet length between 2
and 16 for θ = −0.8, 0, and 0, 8, respectively. Results clearly show that, for θ = 0 and 0.8 when the
wavelength increases over 8, tests become significantly oversized. For θ = −0.8, sizes of tests don’t
change much with the wavelet length. These results show that tests based on smaller wavelet lengths
show better size properties.

Table 4. The size comparison of the standard and wavelet based unit root tests under GLS demeaning.

Wavelet Based Tests

T θ τ∗ MZ∗
α MZ∗

t MSB∗ ADF∗
α ADF∗

t

100
−0.8 0.315 0.066 0.068 0.064 0.150 0.121

0 0.053 0.037 0.036 0.036 0.042 0.043
0.8 0.048 0.046 0.046 0.049 0.048 0.040

1000
−0.8 0.113 0.047 0.048 0.047 0.067 0.062

0 0.048 0.050 0.048 0.048 0.049 0.047
0.8 0.045 0.039 0.044 0.045 0.045 0.043

Standard Tests
T θ τ MZα MZt MSB ADFα ADFt

100
−0.8 0.582 0.037 0.039 0.035 0.162 0.119

0 0.069 0.047 0.048 0.047 0.054 0.056
0.8 0.054 0.071 0.070 0.072 0.072 0.043

1000
−0.8 0.186 0.041 0.042 0.039 0.080 0.074

0 0.050 0.048 0.048 0.049 0.049 0.049
0.8 0.047 0.053 0.053 0.053 0.054 0.048
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Figure 1. The size comparison of tests with various wavelet lengths with sample size T = 100. Note:
tvr, ram, mzaw, mztv, msbw, adfaw and adftw correspond to τ∗, FG, MZ∗α , MZ∗t , MSB∗, ADF∗α , and
ADF∗t , respectively.
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Table 5. The size comparison of the OLS and GLS demeaning with sample size T = 100.

GLS Demeaning

Wavelet θ τ∗ FG MZ∗
α MZ∗

t MSB∗ ADF∗
α ADF∗

t

Haar
−0.8 0.307 0.771 0.065 0.071 0.059 0.147 0.123

0 0.047 0.035 0.032 0.033 0.033 0.038 0.041
0.8 0.044 0.002 0.044 0.044 0.047 0.047 0.041

db2
−0.8 0.315 0.771 0.066 0.068 0.064 0.150 0.121

0 0.053 0.037 0.036 0.036 0.038 0.042 0.043
0.8 0.048 0.002 0.046 0.046 0.049 0.048 0.040

sym2
−0.8 0.317 0.772 0.065 0.067 0.064 0.151 0.120

0 0.054 0.037 0.036 0.037 0.038 0.042 0.044
0.8 0.049 0.002 0.048 0.047 0.051 0.050 0.042

OLS demeaning
Wavelet θ τ∗ FG MZ∗α MZ∗t MSB∗ ADF∗α ADF∗t

Haar
−0.8 0.423 0.999 0.073 0.063 0.077 0.184 0.105

0 0.017 0.020 0.011 0.021 0.013 0.017 0.033
0.8 0.013 0.000 0.015 0.023 0.019 0.020 0.029

db2
−0.8 0.423 0.999 0.077 0.068 0.081 0.190 0.119

0 0.018 0.018 0.010 0.014 0.013 0.016 0.028
0.8 0.014 0.000 0.014 0.018 0.020 0.019 0.026

sym2
−0.8 0.432 0.999 0.078 0.069 0.081 0.192 0.119

0 0.019 0.019 0.010 0.015 0.014 0.017 0.031
0.8 0.015 0.000 0.015 0.018 0.021 0.020 0.028

4.2. The Size-Adjusted Power Performance of the Wavelet Based Tests

In this part, we investigate the size-adjusted power properties of the wavelet based tests. We use
the model in Equations (13)–(15). As in the size exercise, we utilize the same data generation and
detrending algorithms, but we set ρ as 0.99 and 0.9. The results for the size-adjusted power performance
of wavelet based unit root tests are summarized in Tables 6–8.

These tables demonstrate a few interesting findings. First, Fan and Gencay’s (2010) test suffers
extreme power loss when θ = −0.8 and T = 100. We cannot observe conventional power curve for
this test since the power is decreasing with increasing values of ρ. This result is surprising in unit root
literature. The detrending or demeaning algorithm does not alter this conclusion, but larger sample
size approximately corrects this distortion. On the other hand, other tests still maintain conventional
power performance. Second, detrending or demeaning slightly reduce the power of the tests for both
small and large samples. Third, the tests show similar power performance in the no serial correlation
case. However, we observe slightly worse power for Trokić’s (2016) test when θ = 0.8 than the other
tests. Finally, when we compare M tests and ADF tests, ADF tests exhibit better performance than M
tests in almost all cases.

These findings imply that there is no single dominant test by means of size and size-adjusted
power. While M and ADF tests engender better size correction in problematic cases, Trokić (2016)
generates more stable power properties. Moreover, the type of wavelet filter (being from the family of
Daubechies or Symlets) does not matter by means of size or size-adjusted power.
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Table 6. The size-adjusted power of wavelet based tests.

T µt θ Wavelet ρ τ∗ FG MZ∗
α MZ∗

t MSB∗ ADF∗
α ADF∗

t

100

0

−0.8

Haar 0.99 0.109 0.104 0.109 0.111 0.104 0.111 0.111
0.9 0.988 0.073 0.523 0.537 0.507 0.769 0.640

Db2 0.99 0.115 0.105 0.108 0.109 0.105 0.113 0.113
0.9 0.989 0.073 0.520 0.535 0.505 0.772 0.643

Db4 0.99 0.113 0.104 0.110 0.111 0.106 0.115 0.115
0.9 0.989 0.072 0.516 0.521 0.508 0.781 0.655

sym2 0.99 0.114 0.107 0.109 0.111 0.104 0.112 0.113
0.9 0.989 0.075 0.524 0.539 0.507 0.773 0.645

sym4 0.99 0.117 0.109 0.111 0.109 0.109 0.114 0.114
0.9 0.991 0.078 0.522 0.530 0.512 0.776 0.641

0

Haar 0.99 0.101 0.110 0.110 0.112 0.101 0.111 0.115
0.9 0.884 0.980 0.859 0.859 0.843 0.903 0.870

Db2 0.99 0.103 0.113 0.110 0.114 0.104 0.113 0.115
0.9 0.889 0.982 0.853 0.854 0.839 0.901 0.866

Db4 0.99 0.101 0.112 0.114 0.116 0.106 0.114 0.118
0.9 0.889 0.981 0.854 0.856 0.837 0.896 0.856

sym2 0.99 0.102 0.112 0.112 0.113 0.105 0.113 0.116
0.9 0.883 0.979 0.853 0.854 0.838 0.900 0.865

sym4 0.99 0.106 0.115 0.117 0.118 0.111 0.117 0.120
0.9 0.898 0.982 0.852 0.851 0.844 0.897 0.857

0.8

Haar 0.99 0.105 0.114 0.113 0.115 0.108 0.115 0.117
0.9 0.873 0.952 0.789 0.790 0.767 0.844 0.811

Db2 0.99 0.103 0.111 0.111 0.112 0.105 0.113 0.114
0.9 0.875 0.950 0.790 0.791 0.771 0.851 0.817

Db4 0.99 0.103 0.113 0.113 0.115 0.107 0.115 0.118
0.9 0.879 0.951 0.805 0.808 0.781 0.860 0.824

sym2 0.99 0.104 0.114 0.111 0.113 0.106 0.115 0.115
0.9 0.878 0.951 0.791 0.791 0.770 0.851 0.818

sym4 0.99 0.106 0.115 0.113 0.115 0.109 0.114 0.115
0.9 0.886 0.954 0.801 0.797 0.790 0.855 0.813

1

−0.8

Haar 0.99 0.093 0.087 0.091 0.091 0.088 0.093 0.090
0.9 0.371 0.017 0.148 0.151 0.143 0.237 0.189

Db2 0.99 0.094 0.086 0.090 0.090 0.086 0.095 0.092
0.9 0.377 0.016 0.148 0.149 0.145 0.240 0.193

Db4 0.99 0.092 0.086 0.086 0.086 0.086 0.090 0.088
0.9 0.373 0.016 0.147 0.156 0.144 0.242 0.197

sym2 0.99 0.095 0.087 0.092 0.093 0.089 0.094 0.093
0.9 0.374 0.017 0.149 0.149 0.146 0.238 0.193

sym4 0.99 0.095 0.087 0.091 0.089 0.089 0.093 0.090
0.9 0.377 0.017 0.152 0.154 0.149 0.243 0.194

0

Haar 0.99 0.101 0.111 0.108 0.110 0.102 0.110 0.114
0.9 0.728 0.895 0.776 0.775 0.756 0.820 0.791

Db2 0.99 0.100 0.114 0.111 0.113 0.104 0.112 0.116
0.9 0.735 0.900 0.775 0.774 0.754 0.819 0.787

Db4 0.99 0.104 0.113 0.109 0.111 0.103 0.111 0.114
0.9 0.747 0.899 0.775 0.779 0.754 0.818 0.776

sym2 0.99 0.103 0.112 0.108 0.110 0.102 0.109 0.112
0.9 0.737 0.898 0.771 0.771 0.751 0.818 0.785

sym4 0.99 0.107 0.115 0.112 0.113 0.108 0.114 0.114
0.9 0.747 0.900 0.765 0.761 0.756 0.812 0.768

0.8

Haar 0.99 0.102 0.111 0.110 0.112 0.103 0.112 0.114
0.9 0.839 0.927 0.746 0.749 0.718 0.806 0.778

Db2 0.99 0.104 0.112 0.110 0.112 0.107 0.113 0.112
0.9 0.847 0.928 0.751 0.752 0.730 0.814 0.782

Db4 0.99 0.103 0.111 0.110 0.111 0.105 0.113 0.114
0.9 0.854 0.928 0.773 0.776 0.745 0.829 0.793

sym2 0.99 0.102 0.112 0.112 0.114 0.104 0.114 0.118
0.9 0.845 0.927 0.753 0.754 0.724 0.814 0.786

sym4 0.99 0.103 0.110 0.108 0.110 0.106 0.110 0.112
0.9 0.858 0.930 0.763 0.759 0.754 0.819 0.779
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Table 7. The size-adjusted power of wavelet based unit root tests, continued.

T µt θ Wavelet ρ τ∗ FG MZ∗
α MZ∗

t MSB∗ ADF∗
α ADF∗

t

100 [1, t]

−0.8

Haar 0.99 0.058 0.055 0.057 0.057 0.057 0.058 0.057
0.9 0.400 0.026 0.162 0.163 0.161 0.229 0.182

Db2 0.99 0.060 0.053 0.057 0.058 0.058 0.058 0.058
0.9 0.411 0.024 0.161 0.161 0.160 0.229 0.184

Db4 0.99 0.060 0.054 0.055 0.055 0.055 0.057 0.056
0.9 0.405 0.024 0.159 0.162 0.158 0.229 0.184

sym2 0.99 0.058 0.054 0.056 0.056 0.055 0.056 0.056
0.9 0.401 0.024 0.160 0.161 0.159 0.225 0.180

sym4 0.99 0.057 0.053 0.056 0.056 0.057 0.058 0.057
0.9 0.407 0.024 0.165 0.164 0.165 0.233 0.186

0

Haar 0.99 0.061 0.061 0.059 0.059 0.058 0.060 0.061
0.9 0.646 0.805 0.611 0.613 0.595 0.648 0.648

Db2 0.99 0.060 0.061 0.061 0.061 0.061 0.061 0.062
0.9 0.640 0.800 0.612 0.616 0.599 0.649 0.646

Db4 0.99 0.059 0.060 0.059 0.059 0.058 0.060 0.060
0.9 0.648 0.804 0.627 0.628 0.613 0.662 0.636

sym2 0.99 0.061 0.062 0.060 0.061 0.059 0.061 0.060
0.9 0.644 0.804 0.611 0.616 0.597 0.650 0.644

sym4 0.99 0.060 0.060 0.059 0.059 0.059 0.060 0.060
0.9 0.650 0.802 0.617 0.614 0.613 0.652 0.631

0.8

Haar 0.99 0.059 0.059 0.058 0.058 0.058 0.059 0.058
0.9 0.670 0.672 0.365 0.373 0.345 0.430 0.476

Db2 0.99 0.060 0.060 0.058 0.059 0.058 0.060 0.060
0.9 0.676 0.667 0.398 0.407 0.381 0.471 0.515

Db4 0.99 0.058 0.058 0.058 0.058 0.058 0.059 0.060
0.9 0.679 0.665 0.446 0.459 0.423 0.517 0.552

sym2 0.99 0.059 0.058 0.054 0.055 0.053 0.055 0.057
0.9 0.678 0.668 0.391 0.401 0.374 0.463 0.513

sym4 0.99 0.060 0.060 0.058 0.059 0.058 0.059 0.059
0.9 0.678 0.675 0.452 0.454 0.444 0.510 0.531

1000 0

−0.8

Haar 0.99 0.621 0.699 0.650 0.654 0.625 0.677 0.675
0.9 1.000 1.000 0.978 0.979 0.973 1.000 0.999

Db2 0.99 0.626 0.696 0.650 0.652 0.629 0.680 0.674
0.9 1.000 0.999 0.977 0.977 0.973 1.000 0.999

Db4 0.99 0.627 0.703 0.650 0.647 0.631 0.683 0.677
0.9 1.000 1.000 0.974 0.971 0.972 1.000 0.999

sym2 0.99 0.622 0.697 0.645 0.645 0.620 0.676 0.670
0.9 1.000 0.999 0.977 0.977 0.972 1.000 0.999

sym4 0.99 0.626 0.699 0.641 0.645 0.623 0.671 0.664
0.9 1.000 1.000 0.976 0.976 0.972 1.000 0.999

0

Haar 0.99 0.523 0.704 0.707 0.711 0.680 0.711 0.711
0.9 1.000 1.000 0.999 0.998 0.999 1.000 0.999

Db2 0.99 0.526 0.707 0.707 0.707 0.684 0.709 0.707
0.9 1.000 1.000 0.999 0.999 0.999 1.000 0.999

Db4 0.99 0.528 0.711 0.712 0.718 0.686 0.715 0.717
0.9 1.000 1.000 0.999 0.999 0.999 1.000 0.999

sym2 0.99 0.523 0.711 0.711 0.712 0.682 0.714 0.712
0.9 1.000 1.000 0.999 0.998 0.999 1.000 0.999

sym4 0.99 0.533 0.716 0.714 0.714 0.690 0.717 0.715
0.9 1.000 1.000 0.999 0.999 0.999 1.000 0.999

0.8

Haar 0.99 0.527 0.703 0.705 0.707 0.679 0.708 0.708
0.9 1.000 1.000 0.999 0.999 0.999 1.000 0.999

Db2 0.99 0.524 0.704 0.701 0.703 0.674 0.704 0.704
0.9 1.000 1.000 0.999 0.999 0.999 1.000 0.999

Db4 0.99 0.519 0.697 0.689 0.695 0.665 0.694 0.697
0.9 1.000 1.000 0.999 0.999 0.999 1.000 0.999

sym2 0.99 0.522 0.709 0.706 0.710 0.678 0.709 0.711
0.9 1.000 1.000 0.999 0.999 0.999 1.000 0.999

sym4 0.99 0.525 0.702 0.694 0.694 0.668 0.696 0.696
0.9 1.000 1.000 0.999 0.998 0.999 1.000 0.999
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Table 8. The size-adjusted power of wavelet based unit root tests, continued.

T µt θ Wavelet ρ τ∗ FG MZ∗
α MZ∗

t MSB∗ ADF∗
α ADF∗

t

1000

1

−0.8

Haar 0.99 0.391 0.447 0.454 0.456 0.438 0.474 0.471
0.9 0.551 0.429 0.248 0.255 0.238 0.433 0.413

Db2 0.99 0.387 0.444 0.455 0.457 0.436 0.473 0.469
0.9 0.554 0.429 0.245 0.248 0.238 0.434 0.414

Db4 0.99 0.393 0.448 0.455 0.454 0.439 0.477 0.472
0.9 0.554 0.430 0.250 0.266 0.238 0.435 0.416

sym2 0.99 0.397 0.455 0.461 0.460 0.443 0.479 0.474
0.9 0.557 0.437 0.246 0.249 0.240 0.436 0.416

sym4 0.99 0.395 0.452 0.456 0.458 0.440 0.474 0.467
0.9 0.556 0.435 0.254 0.264 0.242 0.437 0.416

0

Haar 0.99 0.514 0.698 0.694 0.694 0.668 0.697 0.694
0.9 0.950 1.000 0.948 0.948 0.942 0.982 0.972

Db2 0.99 0.521 0.702 0.699 0.699 0.673 0.703 0.699
0.9 0.954 0.999 0.951 0.950 0.945 0.983 0.974

Db4 0.99 0.519 0.694 0.697 0.699 0.670 0.701 0.697
0.9 0.953 0.999 0.953 0.954 0.945 0.983 0.973

sym2 0.99 0.518 0.690 0.691 0.696 0.666 0.695 0.695
0.9 0.952 0.999 0.948 0.948 0.942 0.982 0.972

sym4 0.99 0.516 0.693 0.692 0.695 0.668 0.695 0.694
0.9 0.953 1.000 0.950 0.951 0.945 0.983 0.973

0.8

Haar 0.99 0.529 0.699 0.704 0.706 0.673 0.707 0.706
0.9 0.998 1.000 0.993 0.992 0.991 0.999 0.998

Db2 0.99 0.526 0.697 0.696 0.697 0.667 0.700 0.700
0.9 0.998 1.000 0.992 0.992 0.991 0.999 0.998

Db4 0.99 0.530 0.699 0.694 0.697 0.665 0.698 0.699
0.9 0.998 1.000 0.994 0.994 0.992 0.999 0.998

sym2 0.99 0.526 0.698 0.696 0.701 0.669 0.700 0.702
0.9 0.998 1.000 0.993 0.992 0.991 0.999 0.998

sym4 0.99 0.529 0.695 0.689 0.689 0.665 0.691 0.690
0.9 0.998 1.000 0.993 0.993 0.993 0.999 0.998

[1, t]

−0.8

Haar 0.99 0.246 0.255 0.218 0.220 0.215 0.234 0.228
0.9 0.796 0.607 0.261 0.264 0.257 0.549 0.483

Db2 0.99 0.242 0.250 0.213 0.214 0.211 0.231 0.224
0.9 0.793 0.604 0.257 0.259 0.255 0.546 0.479

Db4 0.99 0.240 0.256 0.214 0.215 0.212 0.232 0.225
0.9 0.792 0.609 0.257 0.267 0.253 0.543 0.478

sym2 0.99 0.235 0.248 0.208 0.210 0.207 0.225 0.221
0.9 0.793 0.599 0.255 0.257 0.253 0.542 0.475

sym4 0.99 0.238 0.256 0.218 0.218 0.214 0.235 0.228
0.9 0.794 0.613 0.261 0.263 0.258 0.550 0.485

0

Haar 0.99 0.269 0.302 0.291 0.293 0.286 0.293 0.293
0.9 0.997 1.000 0.941 0.942 0.940 0.992 0.968

Db2 0.99 0.260 0.293 0.278 0.281 0.274 0.280 0.282
0.9 0.997 1.000 0.938 0.938 0.937 0.991 0.966

Db4 0.99 0.266 0.292 0.280 0.283 0.276 0.281 0.283
0.9 0.998 1.000 0.943 0.945 0.940 0.991 0.968

sym2 0.99 0.262 0.292 0.281 0.281 0.275 0.283 0.283
0.9 0.998 1.000 0.938 0.938 0.937 0.992 0.967

sym4 0.99 0.259 0.290 0.275 0.278 0.269 0.277 0.277
0.9 0.997 1.000 0.941 0.941 0.939 0.992 0.967

0.8

Haar 0.99 0.267 0.292 0.281 0.285 0.276 0.283 0.284
0.9 0.999 1.000 0.970 0.970 0.970 0.998 0.987

Db2 0.99 0.266 0.289 0.280 0.280 0.273 0.283 0.283
0.9 0.999 1.000 0.971 0.970 0.971 0.998 0.988

Db4 0.99 0.262 0.285 0.277 0.279 0.271 0.279 0.282
0.9 0.999 1.000 0.971 0.972 0.970 0.998 0.989

sym2 0.99 0.260 0.281 0.275 0.279 0.268 0.277 0.278
0.9 0.999 1.000 0.971 0.970 0.970 0.998 0.989

sym4 0.99 0.261 0.283 0.271 0.273 0.268 0.275 0.274
0.9 1.000 1.000 0.972 0.971 0.971 0.998 0.987
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In the last two Monte Carlo exercises, we evaluate the large sample properties of the wavelet based
and standard unit root tests under GLS demeaning8. First, we examine the asymptotic behaviour of
the wavelet based test with different wavelet filters and lengths. In this exercise, we only consider the
asymptotic power properties of the MZ∗α test and seven different wavelet filters, namely Haar, Db2,
Db4, Db8, sym2, sym4 and sym8. These results, which are generated under no serial correlation and
sample size 1000, are presented in Figure 2. From this figure, it is clear that wavelet type and length do
not matter asymptotically.

In another exercise, we compare the asymptotic power curves of the GLS demeaned standard
and wavelet based tests. From these tests, we consider τ∗, FG, MZ∗α and MZ∗t , as the wavelet based
tests, andτ, MZα and MZt as standard unit root tests. The results of the simulations, which are run
with no serial correlation and sample size 1000, are given in Figure 3. The findings are twofold: (1)
Nielsen’s (2009) test and its wavelet version are almost asymptotically equivalent; and (2) there are
very slight deviations in other tests. However, increasing the sample size further may eliminate
the difference further. On the other hand, the figure illustrates that the most powerful tests are
M tests, the second rank belongs to Fan and Gencay’s (2010) test and the least powerful tests are
Nielsen’s (2009) test.

8 We also consider GLS detrending, but, for the space considerations, we do not present them. If requested, they are available
from the authors.
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Figure 2. Asymptotic power curves of the wavelet based MZα with different wavelet filters under GLS demeaning. Note: Filters are defined in the text.
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Figure 3. Asymptotic power curves of the wavelet based and standard unit root tests under GLS demeaning. Note: tvr, ram, mzaw and mztw correspond to τ∗, FG,
MZ∗α and MZ∗t , respectively. nvr, mza and mzt correspond to τ, MZα and MZt which are standard unit root tests without the wavelet application, respectively.



J. Risk Financial Manag. 2018, 11, 47 20 of 22

5. Conclusions

In this study, we extend the results of Fan and Gencay (2010) in Ng and Perron’s (2001) framework
and we provide an analysis of the application of GLS detrending in the wavelet framework.

As a result of our comparison exercise, relative to existing wavelet based unit roots, the newly
proposed tests seem to be more robust to problematic innovation structures such as negative MA roots.
Although all tests suffer size distortion from the presence of the negative MA innovations, in particular,
M type tests are almost correctly sized. Furthermore, our tests also exhibit local power, while there is
no single test that dominates the power performance contest.

We also show that the wavelet type does not matter in unit root testing. However, using higher
length filters may distort the performance of wavelet based tests. Nonetheless, we can suggest length
2 or 4 wavelets for wavelet based unit root tests.

For the future work, we also consider wavelet based Johansen cointegration test using similar
methodology. Recently, Eroğlu (2018) combine the Fan and Gencay (2010) and Trokić’s (2016) results
with a Nielsen (2010) cointegration test. Utilizing wavelet based techniques in a Johansen cointegration
test may engender a fruitful comparison. Finally, one can also consider the evaluation of the
wavestrapping or other bootstrapping techniques for the wavelet based unit root tests.

Author Contributions: Both authors contributed equally to this manuscript.

Funding: This research received no external funding.
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Appendix A. Proofs of the Theorems and the Lemmas

Lemma A1. Suppose that Assumptions 1 and 2 hold and define V1,t = G(B)y2t. Under the null hypothesis of
ρ = 1,

T−1/2
1 V1,T1(t) = T−1/2

1

btT1c

∑
s=1

V1,s −→ 2σφ(1)W(t) ∀t ∈ [0, 1],

where W(t) is a standard Brownian motion and φ(1) is the long run variance of ut.

The proof of this lemma can found in Trokić (2016) and Fan and Gencay (2010).

Lemma A2. Suppose that Assumptions 1–2 hold and xt is generated by Equations (2) and (3). Let V1,c̄,t be
defined in Equation (4). The partial sum process of V̂1,c̄,t satisfies the following properties:

T−1/2
1 V̂1,c̄,T1(t) = T−1/2

1

btT1c

∑
s=1

V̂1,c̄,s −→ 2σφ(1)Wj,c̄(t),

where Wj,c̄(s) is demonstrated in Theorem 1.

Proof of Lemma 2. First, we decompose x̂c̄,t as x̂c̄,t = yt − (γ̂GLS,0 − γ0) − (γ̂GLS,1 − γ1)t where

γ̂GLS =
[
γ̂0,GLS γ̂1,GLS

]
when j = 2 and x̂c̄,t = yt − (γ̂GLS,0 − γ0) where γ̂GLS =

[
γ̂0,GLS

]
when

j = 1. Now, we write

V̂1,c̄,t = G(B)x̂c̄,2t = V1,t − G(1)(γ̂GLS,0 − γ0)− (γ̂GLS,1 − γ1)G(B)2t if j = 2,

V̂1,c̄,t = G(B)x̂c̄,2t = V1,t − G(1)(γ̂GLS,0 − γ0) if j = 1.
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Note that G(B)y2t = V1,t. This result implies that

T−1/2
1 V̂1,c̄,T1(t) = T−1/2

1 V1,T1 − T−1/2
1 G(1)(γ̂GLS,0 − γ0)− T−1/2

1 (γ̂GLS,1 − γ1)G(B)2btT1c if j = 2,
(A1)

T−1/2
1 V̂1,c̄,t = T−1/2

1 V1,t − T−1/2
1 G(1)(γ̂GLS,0 − γ0) if j = 1. (A2)

Elliott et al. (1996) (γ̂GLS,0) = Op(1) as a result T−1/2
1 G(1)(γ̂GLS,0 − γ0) converges to zero in the limit,

and the convergence of the second deterministic term is shown as

T1/2(γ̂GLS,1 − γ1) −→ σφ(1)
(

1 + c̄
1 + c̄ + c̄2/3

W(1) +
c̄2

1 + c̄ + c̄2/3

∫ 1

0
rW(r)dr

)
.

Using these results, we can rewrite Equations (A1) and (A2) as:

T−1/2
1 V̂1,c̄,T1 = T−1/2

1 V1,T1 − T−1/2
1 G(1)(γ̂GLS,0 − γ0) (A3)

− T1/2
1 (γ̂GLS,1 − γ1)G(B)2btT1c/T1 if j = 2, (A4)

T−1/2
1 V̂1,c̄,t = T−1/2V1,t − T−1/2G(1)(γ̂GLS,0 − γ0) if j = 1. (A5)

Note that G(1) =
√

2 and 2G(B)t/T = 2G(1)btT1c/T1 − 2 ∑l=0 lgl/T1. The second term can be
written as 2G(B)btT1c/T =

√
2t/T in the limit since 2 ∑l=0 lgl/T1 = op(1). Finally, we can show,

T−1/2
1 V̂1,c̄,T1(t) −→ T−1/2

1 V1,T1(t)−
√

2T1/2
1 (γ̂GLS,1 − γ1)t/T (A6)

−→ T−1/2
1 V1,T1(t)− 2T1/2(γ̂GLS,1 − γ1)t/T (A7)

−→ 2σφ(1)W(t) (A8)

− 2σφ(1)
(

1 + c̄
1 + c̄ + c̄2/3

W(1) +
c̄2

1 + c̄ + c̄2/3

∫ 1

0
rW(r)dr

)
t (A9)

= 2σφ(1)W2,c̄(s) if j = 2, (A10)

T−1/2
1 V̂1,c̄,t(t) −→ T−1/2V1,t(t) −→ 2σφ(1)W(t) = 2σφ(1)W2,c̄(s) if j = 1, (A11)

where Equation (A7) follows from the fact that T1/2
1 =

√
2T1/2.

Lemma A3. Let assumptions of Theorem 1 hold, then s∗2AR(p) −→ 2σφ(1).

Proof of Lemma 3. The proof of this lemma can be obtained from the consistency of α̂(1), which is
demonstrated in Lemma 3.5 of Chang and Park (2002) and the results of Lemma A1. First, note that
α̂(1) −→ α(1), thus 1/α̂(1) −→ 1/α(1). Additionally, σ̂ is a consistent estimator of the variance of ε∗p,t.
However, from Fan and Gencay (2010) and Trokić (2016), we know the long run variance of vt is given
as 2σφ(1), and then we obtain the result from Continuous Mapping Theorem (CMT) since we also
have σ̂ −→ σ∗2.

Proof of Theorem 1. The proof of results for the ADF test based on wavelet transformed series directly
follows Chang and Park (2002). Note that the wavelet based augmented regression satisfies the same
conditions as the classical ADF regression. As a result, we can use Lemmas A2 and A3 to obtain the
results. The proof is the same as in Chang and Park (2002), and thus we skip the details.

The results for the wavelet based M tests follow from Lemmas A2 and A3. We simply apply CMT
to reach the desired outcome.
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