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Abstract: This paper compares the finite sample performance of three non-parametric threshold
estimators via the Monte Carlo method. Our results indicate that the finite sample performance of
the three estimators is not robust to the position of the threshold level along the distribution of the
threshold variable, especially when a structural change occurs at the tail part of the distribution.
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1. Introduction

Popularly used to describe structural changes in economic relationships, threshold models have
seen many applications, especially in macro fields (e.g., Hansen 2011; Potter 1995). Typical examples
include the nonlinearity in public debt to GDP ratio (e.g., Afonso and Jalles 2013; Caner et al. 2010;
Cecchetti et al. 2011). A number of threshold estimators for threshold models have been proposed in the
literature, and the asymptotic results of these estimators can be categorized into two groups based on
different assumptions. The first group is based on the “fixed threshold effect” assumption. The second
group imposes a “diminishing threshold effect” assumption introduced by Hansen (2000). For example,
it is well known that, for the least-squares estimator, the threshold estimator is super-consistent
with the convergence rate n under the “fixed threshold effect” assumption and n1−2α under the
“diminishing threshold effect” assumption, respectively, where α measures the diminishing rate of the
threshold effect.

The asymptotic theory and statistical inference have been well developed for the least-squares
estimator exogenous regressors and exogenous threshold variable (e.g., Chan 1993; Hansen 2000;
Seo and Linton 2007). Recently, there has been a growing interest in studying threshold models with
endogenous regressors and/or a threshold variable. Extending the framework of Hansen (2000),
Caner and Hansen (2004) applied the two-step least-squares method to estimate threshold models
with endogenous slope regressors. In the spirit of the sample selection technique of Heckman (1979),
imposing the joint normality assumption, Kourtellos et al. (2016) explored the case that both the
threshold variable and slope regressors are endogenous. The work in Seo and Shin (2016) proposed
a two-step GMM estimator for a dynamic panel threshold model with fixed effects, which allows
endogeneity in both the slope regressors and threshold variable. It is worth noticing that the GMM
method allows both a fixed and diminishing threshold effect, and the convergence rate for the GMM
threshold estimator is not super-consistent. By relaxing the joint normality assumption of Kourtellos et al.
(2016, 2017), a two-step least square estimator based on a nonparametric control function approach
to correct the threshold endogeneity was proposed. The semiparametric threshold model separates
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the threshold effect into two parts, namely the exogenous threshold effect and endogenous threshold
bias-correction term. Therefore, with a “small threshold” effect, the convergence rate for the threshold
variable depends on diminishing rates of the threshold effect and the bias-correction term.

However, few studies have worked on the estimation and statistical inference of threshold
estimators based on nonparametric estimation methods, which do not rely on the least square method.
The work in Delgado and Hidalgo (2000) suggested a difference kernel estimator (or DKE), which
depends on a chosen point. The convergence rate of Delgado and Hidalgo (2000) DKE is nhd−1,
which depends on both the bandwidth, h, and the dimensionality of regressors in their threshold
model, d ≥ 1. Built upon the method of Delgado and Hidalgo (2000), Yu et al. (2018) introduced an
integrated difference kernel estimator (or IDKE). The work in Yu et al. (2018) argued that the IDKE can
be applied to the case with the endogenous threshold variable. The convergence rate of the IDKE is
not related to either the bandwidth or the dimensionality of regressors and is super-consistent with the
rate n. Using recently-developed discrete smoothing methods, Henderson et al. (2017) introduced a
semiparametric M-estimator of a nonparametric threshold regression model. The threshold estimator
of Henderson et al. (2017) can be estimated at the rate

√
n/h (h is the bandwidth), which is faster than

the parametric convergence rate of
√

n. One may notice that the aforementioned convergence rate is
the same as that of the smoothed least squares estimator in Seo and Linton (2007). However, they are
entirely different. The work in Henderson et al. (2017) focussed on the nonparametric threshold model,
and their proposed estimator was based on a non-smooth objective function. On the contrary, Seo and
Linton (2007) worked on a linear threshold model, and the proposed estimator was based on a smooth
objective function with the indicator function replaced by a CDF-type smooth function.

With many applications and simulations available for comparing the parametric threshold
estimators in the literature, little guidance is available for researchers to apply as to the choice of
nonparametric threshold estimators. Moreover, to avoid the boundary effect of the threshold estimator,
most simulations are designed deliberately with the true threshold level chosen at the middle point of
the threshold variable distribution, which can be highly doubted in reality. Therefore, the purpose of
this paper is to carefully compare the three nonparametric threshold estimators mentioned above
using the Monte Carlo method. More importantly, we consider the case that the true threshold level is
not only at the middle, but also at the two tails of the threshold variable distribution.

The rest of the paper is organized as follows. In Section 2, we briefly review the estimation
procedure of three nonparametric threshold estimators such as DKE, IDKE and the M-estimator, where
threshold models have exogenous regressors and a threshold variable. In Section 3, we illustrate the
possible theoretical reason for the conjecture of the poor finite sample performance of the difference
kernel-type estimators. Section 4 presents the design of the Monte Carlo simulations. Section 5 reports
the finite sample performance. Section 6 concludes.

2. Three Nonparametric Threshold Estimators

In this paper, we aim to compare the finite sample performance of three nonparametric threshold
estimators: Henderson et al. (2017) the semiparametric M-estimator, Delgado and Hidalgo (2000) the
difference kernel estimator (DKE) and Yu et al. (2018) the integrated difference kernel estimator (IDKE).

Following Henderson et al. (2017), we consider a generalized threshold regression model:

yi = α0(Xi) + β0 I{qi > γ0}+ εi, (1)

for i = 1, ..., n, where α0(·) is an unknown smooth function, Xi is a vector of d regressors, qi is the
threshold variable, γ0 is the threshold level, I(·) is the indicator function and β0 measures the jump
size of the regression function at q > γ. Furthermore, Xi and qi are both exogenous and may have a
common variable.
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2.1. Semiparametric M-Estimator

If γ0 is known a priori, Model (1) is known as a partially linear model. The conventional
method to estimate the unknown γ0 is minimizing the sum of squared errors, which can be iterated by
the grid search. Therefore, Henderson et al. (2017) suggested the semi-parametric M-estimator of the
nonparametric threshold model, which can be obtained in three steps.

In Step 1, given (β, γ), Model (1) becomes a standard nonparametric model. Therefore, we can
obtain the Nadaraya–Watson (NW) estimator of α0 (x) at an interior point, x, i.e.,

α̂(x; β, γ) = arg min
α∈Θα

n−1
n

∑
i=1

[yi − α− βI{qi > γ}]2Kh(Xi − x), (2)

where Kh(Xi − x) = h−d ∏d
j=1 k(

Xij−xj
h ), Xi = [Xi,1, ..., Xi,d]

′, x = [x1, ..., xd]
′, k(·) is a second order

kernel function, h is the bandwidth and d is the dimension of x.
In Step 2, given γ, Model (1) becomes a partially linear model. Then, β0 can be estimated as:

β̂(γ) = arg min
β∈Θβ

n−1
n

∑
i=1

[yi − α̂(Xi; β, γ)− βI{qi > γ}]2 f̂ 2
h (Xi), (3)

where f̂h(Xi) = n−1 ∑n
i=1 Kh(Xi − x) works as the weighting function.

The work in Henderson et al. (2017) shows that β̂(γ) has the following mathematical expression:

β̂(γ) =
[
n−1 ∑n

i=1
[

∑n
j=1 Kh(Xi − Xj)(Ii − Ij)

]2]−1
n−1 ∑n

i=1
[

∑n
j=1 Kh(Xi − Xj)(Ii − Ij)∑n

j=1 Kh(Xi − Xj)(yi − yj)
]
, (4)

where we denote Ii = I(qi > γ).
In Step 3, we can estimate the threshold level γ0 by solving the following optimization problem,

γ̂ = arg min
γ∈Θγ

∣∣∣∣∣ n−1
n

∑
i=1

[
yi − α̂(Xi; β(γ), γ)− β̂(γ)I{qi > γ}

]
w(Xi)

∣∣∣∣∣ , (5)

where w(·) is a weighting function and is application dependent.
As mentioned in Section 1, the convergence rate of the threshold estimator of Henderson et al. (2017)

is
√

n/h, which explodes faster than the usual parametric
√

n rate. However, the unknown function
α0 (·) and the jump size β0 converge at standard nonparametric rates of

√
nhd and

√
nh, respectively.

2.2. DKE and IDKE

Instead of using the absolute value of the weighted average of the sum of errors as the objective
function, Delgado and Hidalgo (2000) considered using the difference between Ê[y|x0, q = γ−] and
Ê[y|x0, q = γ+] as the objective function. Ideally, the closer γ approaches the true value, the larger the
absolute value of the above difference should be. As a result, we are able to estimate the threshold
level by choosing γ, which gives the most considerable gap between the two one-sided expectations.
Therefore, the difference kernel estimator (DKE) can be obtained by:

γ̂DKE = arg max
γ∈Θγ

(
1
n

n

∑
i=1

yiK
γ−
h,i −

1
n

n

∑
i=1

yiK
γ+
h,i

)2

(6)

where we have:
Kγ+

h,i = Kh(Xi − x0) · k+h (qi − γ),

Kγ−
h,i = Kh(Xi − x0) · k−h (qi − γ),
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if qi is not part of Xi, and
Kγ+

h,i = Kh(X1i − x10) · k+h (qi − γ),

Kγ−
h,i = Kh(X1i − x10) · k−h (qi − γ),

if qi is part of Xi, i.e., Xi = [X′1i, qi]
′, and x0 = [x′10, q0]

′. Furthermore, k+/−
h (·) is the one-sided kernel

function with:
k+h (qi − γ) = k(

qi − γ

h
)I(qi > γ),

k−h (qi − γ) = k(
qi − γ

h
)I(qi ≤ γ),

and k(·) is a second order kernel function.
Obviously, it is reasonable to expect that the DKE estimator is sensitive to the choice of x0.

Furthermore, the DKE suffers the curse of dimensionality problem as the convergence rate of the DKE,
nhd−1, depends on the dimension of the regressor. To fix these potential weaknesses, Yu et al. (2018)
proposed an integrated difference kernel estimator, which allows γ̂ not to rely on the single choice in
x0, but the expectation of all X. The γ̂IDKE can be derived as follows:

γ̂IDKE = arg max
γ∈Θγ

n−1
n

∑
i=1

(
1

n− 1

n

∑
j=1,j 6=i

yjK
γ−
h,ij −

1
n− 1

n

∑
j=1,j 6=i

yjK
γ+
h,ij

)2

, (7)

where:
Kγ+

h,ij = Kh(Xi − xj) · k+h (qi − γ),

Kγ−
h,i = Kh(Xi − xj) · k−h (qi − γ),

if qi is not part of Xi, and
Kγ+

h,i = Kh(X1i − x1j) · k+h (qi − γ),

Kγ−
h,i = Kh(X1i − x1j) · k−h (qi − γ),

if qi is part of Xi, i.e., Xi = [X′1i, qi]
′, and xj = [x′1j, qj]

′. k+/−
h (·) is defined the same as above.

The IDKE is super-consistent with convergence rate n. The work in Yu et al. (2018) showed that
IDKE is consistent even if the threshold variable is endogenous. They explain that the role of the
instruments of the endogenous regressors and the endogenous threshold variable is improving only
the efficiency of the IDKE.

3. Estimation Difficulties in the Difference Kernel-Type Estimator with Near Boundary γ0

In this section, we use a simple version of Model (1) to explain the estimation difficulties of
the difference kernel-type estimators when γ0 lies at the tails of the threshold variable distribution.
This estimation difficulty motivates us to investigate the position effect of the true threshold level on
the finite sample performance. Specifically, we consider the true model as:

yi = I(Xi ≥ γ0), (8)

where Xi is randomly drawn from a uniform distribution over the interval of [−0.5, 0.5] for i = 1, ..., n.
The model above can be regarded as Model (1) with α0(x) ≡ 0, β0 = 1, and εi = 0 for all i = 1, ..., n.

Therefore, the DKE is based on the objective function:

Q̂n(γ)
DKE =

[ 1
n

n

∑
i=0

k
(

Xi − γ

h

)
I(Xi < γ)yi −

1
n

n

∑
i=0

k
(

Xi − γ

h

)
I(Xi ≥ γ)yi

]2. (9)
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Letting ux = (Xi − γ) /h and applying the change of variables, we have the probability limit of Q̂n(γ)

equal to:

Qn(γ)DKE = h2[ ∫ 0.5−γ
h

−0.5−γ
h

k(ux)I(ux < 0)I
(

ux ≥ γ0−γ
h

)
dux −

∫ 0.5−γ
h

−0.5−γ
h

k(u)I(ux ≥ 0)I
(

ux ≥ γ0−γ
h

)
dux
]2, (10)

where h is the bandwidth.
If γ < γ0, we obtain:

Qn(γ)
DKE = h2[ ∫ 0.5−γ

h

−0.5−γ
h

k(ux)dux
]2, (11)

and:
∂Qn(γ)DKE

∂γ
= 2h

(∫ 0.5−γ
h

γ0−γ
h

k(ux)dux

)[
k
(

γ0 − γ

h

)
− k

(
0.5− γ

h

)]
> 0, (12)

where the positive sign follows for all γ0 < 0.5 for any second-order kernel function with a bell shape.
It is worth noting that as γ0 approaches 0.5 from the left side, the difference between

k( γ0−γ
h )− k( 0.5−γ

h ) becomes smaller. As a result, for all γ, the above derivative goes to zero, which
makes the objective function flat and leads to the estimation difficulty.

Similarly, if γ > γ0, we have:

Qn(γ)
DKE = h2

(∫ 0

γ0−γ
h

k(ux)dux −
∫ 0.5−γ

h

0
k(ux)dux

)2

, (13)

and:

∂Qn(γ)DKE

∂γ
= 2h

(∫ 0

γ0−γ
h

k(ux)dux −
∫ 0.5−γ

h

0
k(ux)dux

)[
k
(

γ0 − γ

h

)
+ k

(
0.5− γ

h

)]
< 0, (14)

where the negative sign follows for all γ0 > −0.5 for any second-order kernel function with a bell shape.
Therefore, we observe that as γ0 approaches −0.5 from the right side, for all γ, the difference

between
∫ 0

γ0−γ
h

k(ux)dux −
∫ 0.5−γ

h
0 k(ux)dux becomes smaller, which makes the derivative go to zero,

and this results in a flat objective function.
In summary, the DKE is asymptotically consistent with γ0 ∈ (−0.5, 0.5). However, it is reasonable

to suspect that DKE may have poor finite performance with the true threshold level lying at the tails of
the threshold variable distribution due to the estimation difficulty of the flat objective function.

Next, we assume that there are additional covariates, Zi, which are randomly drawn from uniform
distribution over the interval of [−0.5, 0.5], for all i = 1, ..., n, and {Xi} and {Zi} are independent.
Therefore, the probability limit of the objective function of the IDKE is (with the same bandwidth):

Qn(γ)
IDKE

= h4
∫ 0.5

−0.5

[∫ 0.5−γ
h

−0.5−γ
h

k(uz)k(ux)I(ux < 0)I(ux ≥
γ0 − γ

h
)duxduz

−
∫ 0.5−z0

h

−0.5−z0
h

∫ 0.5−γ
h

−0.5−γ
h

k(uz)k(ux)I(ux ≥ 0)I(ux ≥
γ0 − γ

h
)duxduz

]2

dz0 (15)

where uz =
Zi−z0

h .
Note that:

∂Qn(γ)IDKE

∂γ
= h2

∫ 0.5

−0.5

(∫ 0.5−z0
h

−0.5−z0
h

k(uz)duz

)2

dz0
∂Qn(γ)DKE

∂γ
. (16)
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Consequently, in this typical example, ∂Qn(γ)IDKE

∂γ can be interpreted as a rescaled ∂Qn(γ)DKE

∂γ ,
which implies the IDKE will suffer the same boundary problem as the DKE estimator.

4. Monte Carlo Designs

To assess the finite sample performance of the three nonparametric threshold estimators,
we consider seven data-generating mechanisms, which are similar to those studied in Henderson et al.
(2017); Yu et al. (2018).

• DGP 1:
yi = 2I(xi ≥ γ0) + εi (17)

• DGP 2:
yi = xi + 2I(xi ≥ γ0) + εi (18)

• DGP 3:
yi = sin(xi) + 2I(xi ≥ γ0) + εi (19)

• DGP 4:
yi = x2

i + 2I(xi ≥ γ0) + εi (20)

• DGP 5:
yi = x1i + x2i + x3i + 2I(x1i ≥ γ0) + εi (21)

• DGP 6:
yi = x2

1i + x2ix3i + 2I(x1i ≥ γ0) + εi (22)

• DGP 7:
yi = sin(x1i) + cos(x2i) + sin(x3i) + 2I(x1i ≥ γ0) + εi (23)

where xi is randomly drawn from a uniform distribution over the interval of [−0.5, 0.5] for all
i = 1, ..., n,1 and εi is randomly drawn from the N(0, 1) distribution. All DGPs are based on the
fixed threshold effect framework of Chan (1993) with both the exogenous threshold variable and
exogenous regressors.

DGPs 1–4 are univariate threshold models. More specifically, DGPs 1–2 are typical linear
threshold models. DGPs 3–4 are nonlinear threshold models modelling the periodicity and the
quadraticity, respectively. DGPs 5–7 are multivariate threshold models. DGP 5 characterizes the
multivariate linear threshold model. DGPs 6–7 are nonlinear threshold models extending DGPs 3–4 to
multivariate specifications.

To examine the position effect of the true threshold level on the finite sample performance, we set
γ0 at different segments of the threshold variable distribution. Specifically, we set the true threshold,
γ0, as the pth quantile of the threshold variable with p = 25, 50 and 75 to place the true threshold level
to the left tail, middle and the right tail of the threshold variable distribution, respectively.

We set x0 = xmax for the DKE estimate of Delgado and Hidalgo (2000), where xmax is the data with
the greatest empirical density among all generated x′i’s for each simulation of each DGP.2 We use the

rule of thumb bandwidth, h = Cσ̂xn−1/(d+4), where C = 4
d+2

1
d+4 , d is the dimension of xi and σ̂x

is the sample standard deviation of {xi}. We use the Gaussian kernel function. As suggested by

1 With the uniform distribution, the intensity of the Poisson process would not change with the change in the true threshold
location. Therefore, the limiting distribution of both the DKE and the IDKE is not affected given γ0 is not on the
boundary of Θγ.

2 The theoretical density should be the same for all x due to the uniform distribution. The reason we use the data-driven
choice of x0 is because we do not know the true density in reality.
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Yu et al. (2018), we use the one-sided rescaled Epanechnikov kernel with k−(q, 0) = 3
4 (1− q2)I(q < 0)

and k+(q, 0) = k−(−q, 0) to estimate the DKE and the IDKE.
We repeat 2000 times for each simulation.3 We set the sample size n = 100, 300 and 500.

For each simulation, we report the average bias, mean squared error (or MSE) and the standard
deviation (or stdev) of the threshold estimates. Tables 1–7 contain the details of the simulation results.
Table 8 shows the realized convergence rate of the semi-parametric M-estimator of Henderson et al. (2017)
and IDKE of Yu et al. (2018).

Table 1. Simulation results of nonparametric threshold estimators, Data-generating Mechanism 1
(DGP 1). IDKE, integrated difference kernel estimator.

γ0 Is the 25th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0336 0.2705 0.0679 0.0144 0.0913 0.0225 0.1152 0.1345 0.1338

300 0.0015 0.2929 0.0870 0.0006 0.0986 0.0308 0.0241 0.1133 0.1525

500 0.0002 0.2632 0.1530 0.0001 0.0920 0.0544 0.0097 0.1509 0.1760

γ0 Is the 50th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0056 −0.0346 −0.0183 0.0084 0.0154 0.0012 0.0916 0.1191 0.0288

300 0.0007 −0.0346 −0.0083 0.0009 0.0209 0.0002 0.0302 0.1406 0.0126

500 0.0008 −0.0347 −0.0055 0.0003 0.0233 0.0001 0.0166 0.1488 0.0080

γ0 Is the 75th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 −0.0397 −0.2485 −0.0666 0.0163 0.1082 0.0087 0.1215 0.2156 0.0650

300 −0.0028 −0.2590 −0.0377 0.0009 0.1143 0.0029 0.0299 0.2174 0.0391

500 −0.0004 −0.2841 −0.0287 0.0001 0.1288 0.0018 0.0118 0.2193 0.0308

This table reports the simulation results of three estimators, the semiparametric M-estimator of Henderson et al.
(2017), the DKE of Delgado and Hidalgo (2000) and the IDKE of Yu et al. (2018) for the simple jump function
defined as Equation (17). The first column gives the sample size that the simulation used. The third to fifth columns
report the average bias. The sixth to eighth columns give the mean squared errors of the threshold estimates.
The last three columns present the standard deviations.

Table 2. Simulation results of nonparametric threshold estimators, DGP 2.

γ0 Is the 25th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0359 0.2272 0.0813 0.0154 0.0823 0.0250 0.1190 0.1752 0.1357

300 0.0053 0.2680 0.1019 0.0020 0.0954 0.0324 0.0442 0.1536 0.1485

500 0.0002 0.2632 0.1530 0.0001 0.0920 0.0544 0.0097 0.1509 0.1760

3 All programming is finished in Matlab.
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Table 2. Cont.

γ0 Is the 50th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 −0.0008 −0.0246 −0.0151 0.0082 0.0122 0.0009 0.0907 0.1077 0.0257

300 0.0002 −0.0147 −0.0067 0.0009 0.0130 0.0002 0.0306 0.1130 0.0107

500 0.0002 −0.0131 −0.0044 0.0000 0.0154 0.0001 0.0068 0.1233 0.0073

γ0 Is the 75th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 −0.0307 −0.2465 −0.1031 0.0119 0.1049 0.0159 0.1048 0.2101 0.0730

300 −0.0059 −0.2564 −0.0786 0.0023 0.1009 0.0086 0.0477 0.1876 0.0494

500 −0.0008 −0.2651 −0.0699 0.0003 0.1060 0.0065 0.0177 0.1891 0.0397

This table reports the simulation results of three estimators, the semiparametric M-estimator of Henderson et al.
(2017), the DKE of Delgado and Hidalgo (2000) and the IDKE of Yu et al. (2018) for the univariate linear threshold
model defined as Equation (18). The first column gives the sample size that the simulation used. The third to
fifth columns report the average bias. The sixth to eighth columns give the mean squared errors of the threshold
estimates. The last three columns present the standard deviations.

Table 3. Simulation results of nonparametric threshold estimators, DGP 3.

γ0 Is the 25th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0303 0.2211 0.0785 0.0128 0.0791 0.0233 0.1092 0.1739 0.1310

300 0.0022 0.2725 0.1137 0.0014 0.0980 0.0373 0.0376 0.1541 0.1561

500 0.0005 0.2694 0.1570 0.0002 0.0961 0.0546 0.0131 0.1535 0.1730

γ0 Is the 50th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0017 −0.0236 −0.0137 0.0073 0.0111 0.0008 0.0852 0.1027 0.0257

300 0.0002 −0.0220 −0.0061 0.0004 0.0132 0.0001 0.0196 0.1128 0.0101

500 −0.0003 −0.0114 −0.0041 0.0001 0.0149 0.0001 0.0112 0.1215 0.0067

γ0 Is the 75th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 −0.0358 −0.2471 −0.1036 0.0160 0.1031 0.0160 0.1212 0.2051 0.0725

300 −0.0027 −0.2592 −0.0822 0.0013 0.1041 0.0091 0.0360 0.1924 0.0482

500 −0.0007 −0.2637 −0.0686 0.0004 0.1031 0.0065 0.0203 0.1832 0.0422

This table reports the simulation results of three estimators, the semiparametric M-estimator of Henderson et al.
(2017), the DKE of Delgado and Hidalgo (2000) and the IDKE of Yu et al. (2018) for the univariate threshold
periodic model defined as Equation (19). The first column gives the sample size that the simulation used. The third
to fifth report propose the average bias. The sixth to eighth columns give the mean squared errors of the threshold
estimates. The last three columns present the standard deviations.
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Table 4. Simulation results of nonparametric threshold estimators, DGP 4.

γ0 Is the 25th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0371 0.2754 0.1038 0.0168 0.0922 0.0348 0.1242 0.1278 0.1551

300 0.0065 0.2817 0.1479 0.0030 0.0921 0.0526 0.0545 0.1131 0.1754

500 0.0010 0.2884 0.2146 0.0005 0.0974 0.0794 0.0221 0.1196 0.1826

γ0 Is the 50th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0050 −0.0324 −0.0173 0.0086 0.0156 0.0016 0.0930 0.1205 0.0355

300 −0.0010 −0.0408 −0.0071 0.0012 0.0212 0.0002 0.0341 0.1400 0.0135

500 0.0000 −0.0340 −0.0051 0.0000 0.0222 0.0001 0.0038 0.1451 0.0086

γ0 Is the 75th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 −0.0378 −0.2562 −0.0694 0.0157 0.1105 0.0089 0.1196 0.2120 0.0640

300 −0.0025 −0.2622 −0.0445 0.0007 0.1131 0.0037 0.0266 0.2107 0.0411

500 −0.0007 −0.2709 −0.0358 0.0004 0.1162 0.0024 0.0203 0.2070 0.0334

This table reports the simulation results of three estimators, the semiparametric M-estimator of Henderson et al.
(2017), the DKE of Delgado and Hidalgo (2000) and the IDKE of Yu et al. (2018) for the univariate threshold
quadratic model defined as Equation (20). The first column gives the sample size that the simulation used.
The third to fifth report propose the average bias. The sixth to eighth columns give the mean squared errors of the
threshold estimates. The last three columns present the standard deviations.

Table 5. Simulation results of nonparametric threshold estimators, DGP 5.

γ0 Is the 25th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0141 0.2560 0.0751 0.0060 0.1005 0.0213 0.0762 0.1871 0.1253

300 0.0005 0.2587 0.0421 0.0006 0.0970 0.0104 0.0253 0.1733 0.0931

500 0.0000 0.2696 0.0333 0.0000 0.0977 0.0085 0.0038 0.1583 0.0862

γ0 Is the 50th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 −0.0035 −0.0232 −0.0167 0.0050 0.0248 0.0014 0.0710 0.1559 0.0335

300 0.0000 −0.0176 −0.0082 0.0001 0.0205 0.0003 0.0118 0.1420 0.0136

500 0.0001 −0.0330 −0.0057 0.0000 0.0222 0.0001 0.0041 0.1452 0.0106
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Table 5. Cont.

γ0 Is the 75th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 −0.0203 −0.2778 −0.1173 0.0085 0.1239 0.0212 0.0900 0.2161 0.0864

300 −0.0007 −0.2878 −0.0958 0.0002 0.1256 0.0133 0.0154 0.2069 0.0639

500 0.0000 −0.2883 −0.0944 0.0000 0.1253 0.0119 0.0035 0.2056 0.0544

This table reports the simulation results of three estimators, the semiparametric M-estimator of Henderson et al.
(2017), the DKE of Delgado and Hidalgo (2000) and the IDKE of Yu et al. (2018) for the multivariate linear threshold
model defined as Equation (21). The first column gives the sample size that the simulation used. The third to
fifth report propose the average bias. The sixth to eighth columns give the mean squared errors of the threshold
estimates. The last three columns present the standard deviations.

Table 6. Simulation results of nonparametric threshold estimators, DGP 6.

γ0 Is the 25th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0197 0.2495 0.0704 0.0082 0.0972 0.0188 0.0882 0.1871 0.1177

300 0.0002 0.2652 0.0364 0.0001 0.0997 0.0094 0.0114 0.1714 0.0898

500 0.0000 0.2738 0.0297 0.0000 0.1003 0.0074 0.0032 0.1594 0.0807

γ0 Is the 50th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0019 −0.0107 −0.0158 0.0051 0.0242 0.0013 0.0711 0.1553 0.0323

300 −0.0004 −0.0251 −0.0074 0.0002 0.0216 0.0002 0.0138 0.1450 0.0125

500 0.0001 −0.0280 −0.0054 0.0000 0.0210 0.0001 0.0036 0.1422 0.0094

γ0 Is the 75th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 −0.0184 −0.2709 −0.1164 0.0082 0.1177 0.0207 0.0886 0.2105 0.0846

300 −0.0007 −0.2717 −0.0975 0.0004 0.1157 0.0131 0.0194 0.2048 0.0600

500 0.0002 −0.2647 −0.0889 0.0000 0.1080 0.0104 0.0042 0.1949 0.0497

This table reports the simulation results of three estimators, the semiparametric M-estimator of Henderson et al.
(2017), the DKE of Delgado and Hidalgo (2000) and the IDKE of Yu et al. (2018) for the multivariate threshold
quadratic model defined as Equation (22). The first column gives the sample size that the simulation used.
The third to fifth columns report the average bias. The sixth to eighth columns give the mean squared errors of the
threshold estimates. The last three columns present the standard deviations.
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Table 7. Simulation results of nonparametric threshold estimators, DGP 7.

γ0 Is the 25th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 0.0207 0.2936 0.1292 0.0097 0.1086 0.0419 0.0964 0.1498 0.1588

300 0.0005 0.2915 0.1275 0.0003 0.1031 0.0393 0.0168 0.1347 0.1517

500 0.0003 0.2947 0.1378 0.0001 0.1048 0.0427 0.0105 0.1341 0.1542

γ0 Is the 50th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 −0.0034 0.0004 −0.0373 0.0051 0.0265 0.0074 0.0716 0.1630 0.0778

300 0.0013 0.0049 −0.0366 0.0003 0.0229 0.0029 0.0178 0.1514 0.0398

500 0.0003 0.0077 −0.0315 0.0001 0.0180 0.0019 0.0081 0.1339 0.0294

γ0 Is the 75th Quantile of the Threshold Variable

Bias MSE Stdev

n Semi-M DKE IDKE Semi-M DKE IDKE Semi-M DKE IDKE

100 −0.0244 −0.2830 −0.2242 0.0106 0.1137 0.0575 0.0998 0.1834 0.0849

300 0.0000 −0.2798 −0.2068 0.0001 0.1074 0.0457 0.0084 0.1708 0.0539

500 0.0000 −0.2823 −0.1963 0.0000 0.1039 0.0403 0.0036 0.1558 0.0424

This table reports the simulation results of three estimators, the semiparametric M-estimator of Henderson et al.
(2017), the DKE of Delgado and Hidalgo (2000) and the IDKE of Yu et al. (2018) for the multivariate threshold
periodic model defined as Equation (23). The first column gives the sample size that the simulation used. The
third to fifth columns report the average bias. The sixth to eighth columns give the mean squared errors of the
threshold estimates. The last three columns present the standard deviations.

Table 8. Estimated convergence rate of the nonparametric threshold estimators.

Semiparametric M-Estimator of Henderson et al. (2017)

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7

p = 25 −1.235 −1.202 −1.209 −1.280 −1.224 −1.347 −1.307

p = 50 −1.162 −1.195 −1.171 −1.234 −1.349 −1.335 −1.347

p = 75 −1.215 −1.251 −1.203 −1.205 −1.227 −1.234 −1.331

IDKE of Yu et al. (2018)

DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7

p = 25 −2.207 −2.126 −2.164 −2.541 −1.556 −1.436 −2.557

p = 50 −1.352 −1.287 −1.305 −1.335 −1.428 −1.348 −1.982

p = 75 −1.758 −1.949 −1.966 −1.757 −1.876 −2.115 −2.626

This table reports the realized convergence rates of the semiparametric M-estimator of Henderson et al. (2017)
and the IDKE of Yu et al. (2018). The realized convergence rates are shown as the coefficient estimate by
regressing the logarithm of RMSE on the logarithm of the sample size for each DGP. Samples sizes used are
n = 100, 200, 300, 400, 500, 600 and 700.

5. Monte Carlo Results

For the semi-parametric M-estimator introduced by Henderson et al. (2017), our results show
that the performance was slightly affected by the position of the true threshold level. Meanwhile,
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as the sample size increased, this position effect gradually vanished.4 In addition, we observed that
the bias was smaller for multivariate models than univariate models. Using the bandwidth as defined
in Section 4, which behaved roughly as O(n−1/5) for univariate models and O(n−1/7) for multivariate
models, the theoretical convergence rates were O(n−1.2) and O(n−1.14) accordingly. From Table 8,
the super-consistency was confirmed with the estimated convergence rate of γ̂. Consistent with the
theory, the realized convergence rate decreased as the dimension increased. It is quite interesting that,
for almost all univariate models, the realized convergence rate of γ̂ was faster when γ0 was at the left-
and right-tail position than when γ0 was at the median position. However, for multivariate models,
the realized rates seemed to be stable with the position of γ0.

For the DKE, as we conjectured, it was severely affected by the position of the true threshold
value for all DGPs, which may result from the estimation difficulties, as we argued in Section 3.
Furthermore, even with the middle-positioned γ0, the bias still showed a non-decreasing pattern
with the increasing sample size under some multivariate specifications.5 Intuitively, this may result
from the choice of x0, which distorts the result by providing useless information. According to the
comment in the Supplementary Material of Yu et al. (2018), the choice of x0 is crucial in identifying the
DKE estimator. On the one hand, the optimal x0 should make [E(y|x0, q = γ−0 )− E(y|x0, q = γ+

0 )]2

as large as possible. On the other hand, one needs the conditional density f (x0|q = γ0) to be large
enough to provide sufficient information. Therefore, theoretically, with a uniform distribution and
univariate linear threshold model as in DGP2, the ideal x0 should be at the middle of its distribution
with the value of zero. However, in the simulation, we set x0 equal to the value with the largest
empirical density, which may appear at the two tails. This may lead to [E(y|x0, q = γ−0 )− E(y|x0, q = γ+

0 )]2

approaching zero. Moreover, with the multivariate and nonlinear specification, we can expect more
distortion involved. As a result, the DKE performs the worst among all three competitors for all DGPs.

For the IDKE, our results reveal several features. Firstly, the IDKE was affected by the position of
the actual threshold value. The influence was not as substantial as the DKE. Indeed, the integration
allowed more local information to be used and alleviated the possible distortion due to the choice of
x0. Surprisingly, unlike the DKE, this position effect seemed to be asymmetric for the IDKE. For most
of the DGPs, we observed that the absolute value of the average bias and MSE was larger with the
left-tailed γ0 than the right-tailed γ0. The theoretical convergence rate of the IDKE estimator, n, is not
related to either the bandwidth or the dimension, which is faster than the semi-parametric M-estimator
of Henderson et al. (2017). This is consistent with our realized convergence rates, which are shown in
Table 8. Moreover, for all DGPs, the realized convergence rates were faster with two-sided tailed γ0

than the median γ0.
In summary, the simulation results give some evidence that the finite sample performances were

affected by the position of the true threshold level for all three nonparametric threshold estimators.
However, this effect was heterogeneous. The position effect least influenced the semi-M estimator of
Henderson et al. (2017). Meanwhile, the difference kernel-type estimators were severely distorted by
the tailed γ0, which confirms our conjecture made in Section 3. Furthermore, our results show that the
position of the true threshold level also affects the realized convergence rate. We also found, for the
semi-M estimator of Henderson et al. (2017) and the IDKE estimator, the tail distortion tended to be
reduced in multivariate models.

As a robustness check of our findings, Figures 1–4 show the simulation results of DGP 2 and
DGP 5 with γ0 taking different positions along the threshold variable distribution. It is obvious that,
for all figures, semi-M had lower average bias in absolute value than difference kernel-type estimators
with tail γ0. Furthermore, we found the gap between the average bias of the semi-M estimator and the

4 With n = 100, the bias, MSE and standard deviation were larger with γ0 placed at two tails and γ0 placed at the median
point. However, with n = 500, there was no apparent difference between tail position γ0 estimation and the median position
γ0 estimation.

5 For example, in Table 6, the bias monotonically increases with the in sample size.
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average bias of the difference kernel-type estimators to drop greatly with γ0 approaching the middle
position of the threshold variable distribution.

Figure 1. Average bias with γ0 as various quantiles of the threshold variable, DGP 2, n = 100. This figure
shows absolute values of the average bias with the true threshold level being several quantiles of the
threshold variable (5th, 10th, 20th, 40th, 50th, 60th, 80th, 90th, 95th). The simulation is based on DGP 2.
The sample size is 100.

Figure 2. Average bias with γ0 as various quantiles of the threshold variable, DGP 2, n = 300. This figure
shows absolute values of the average bias with the true threshold level being several quantiles of the
threshold variable (5th, 10th, 20th, 40th, 50th, 60th, 80th, 90th, 95th). The simulation is based on DGP 2.
The sample size is 300.
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Figure 3. Average bias with γ0 as various quantiles of the threshold variable, DGP 5, n = 100. This figure
shows absolute values of the average bias with the true threshold level being several quantiles of the
threshold variable (5th, 10th, 20th, 40th, 50th, 60th, 80th, 90th, 95th). The simulation is based on DGP 5.
The sample size is 100.

Figure 4. Average bias with γ0 as various quantiles of the threshold variable, DGP 5, n = 300. This figure
shows absolute values of the average bias with the true threshold level being several quantiles of the
threshold variable (5th, 10th, 20th, 40th, 50th, 60th, 80th, 90th, 95th). The simulation is based on DGP 5.
The sample size is 300.

6. Conclusions

In this paper, we evaluated the finite sample performance of three non-parametric threshold
estimators and identified the relationship between the performances of different estimators and the
position of the true threshold level with Monte Carlo methods.
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The study shows, with all three estimators affected by the tail position of the true threshold value,
that the semi-M estimator of Henderson et al. (2017) outperformed DKE and IDKE for roughly all
DGPs considered in the paper. Interestingly, there appears to be some evidence that the distortion
can be reduced if there are other covariates besides the threshold variable for the semi-M estimator
and the IDKE. Consistent with the theory, we find that the realized convergence rates support the
super-consistency in the threshold estimate for all three estimators. However, we find that the realized
convergence rates are also affected by the position of the true threshold value. We therefore conclude
that, in applied works, using the difference kernel-type estimation, researchers must be careful when
the threshold estimate is at the left-tail or the right-tail of the threshold variable distribution.
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