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Abstract: This paper considers the optimal investment problem in a financial market with one
risk-free asset and one jump-diffusion risky asset. It is assumed that the insurance risk process
is driven by a compound Poisson process and the two jump number processes are correlated by
a common shock. A general mean-variance optimization problem is investigated, that is, besides
the objective of terminal condition, the quadratic optimization functional includes also a running
penalizing cost, which represents the deviations of the insurer’s wealth from a desired profit-solvency
goal. By solving the Hamilton-Jacobi-Bellman (HJB) equation, we derive the closed-form expressions
for the value function, as well as the optimal strategy. Moreover, under suitable assumption on model
parameters, our problem reduces to the classical mean-variance portfolio selection problem and the
efficient frontier is obtained.

Keywords: optimal investment; common shock; general mean-variance optimization problem; HJB
equation; value function; efficient frontier

1. Introduction

In the past two decades, the problems of optimal investment and optimal reinsurance have gained
rich attention in actuarial and financial literature. One of the insurer’s objectives is to maximize
the expected terminal wealth or minimize the ruin probability. See, for example, Browne (1995),
Schmidli (2002) and Yang and Zhang (2005). The other impressive objective is to maximize the expected
present value of total dividends. We refer the readers to Asmussen et al. (2000), Azcue and Muler (2005)
and Bai and Guo (2010).

As is known, mean-variance portfolio selection problem is to explore a satisfactory wealth
allocation for the sake of achieving the optimal trade-off between the expected investment return
and its risk, which is measured by variance. It is a significant criterion to use mean-variance
measuring the risk in financial theory, which was first proposed by Markowitz (1952). From then
on, more and more researchers have been devoted to this field. See, for example, Lim (2004),
Merton (1972) and Zhou and Li (2000). Subsequently, Bäuerle (2005) first put forward that the criterion
of mean-variance may be attractive in insurance applications and then investigated optimal reinsurance
strategy when the insurance risk process is described by a classical compound Poisson process.
Afterwards, Bai and Zhang (2008) and Bi and Guo (2013) considered the optimal mean-variance
reinsurance-investment problem under constrained controls. However, the aforementioned literature
solving the underlying investment or reinsurance problems mainly concentrated on the stochastic
control theory (for more details readers may consult Fleming and Soner (2006), Yong and Zhou (1999)
and references therein).
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Although many insightful results for various optimal control problems are available in the
actuarial literature, most of them are derived under the assumption of independent risks. In reality,
the risks of different types are often dependent in some way, which can be frequently seen in the
literature of classical risk theory, for example, Cojocaru (2017), Cossette and Marceau (2000) and so
on. In the theory of stochastic optimal control, there are three cases related to the common shock
model. One typical case is the so-called common shock risk model, in which two or more claims
with different classes are correlated due to a common shock. Based on two different kinds of
dependent insurance businesses, Bai et al. (2013) investigated the optimal excess-of-loss reinsurance
strategy under the criterion of minimizing the ruin probability for the controlled diffusion process.
Liang and Yuen (2016) studied the optimal reinsurance problem to maximize the expected exponential
utility under the principle of variance premium. Ming et al. (2016) considered the optimal reinsurance
problem for a mean-variance optimizer. Bi et al. (2016) derived the optimal investment-reinsurance
strategies with and without bankruptcy prohibition under the criterion of mean-variance. For
more than two correlated claim number processes, Yuen et al. (2015) explored optimal reinsurance
strategy for the problem of exponential utility maximization. The second frequently-used model
describes that financial market and insurance risk are dependent with each other, i.e., the risky
asset and insurance claims are correlated by a common shock. Based on this kind of common
shock, Liang et al. (2016, 2017) studied the optimal reinsurance-investment problems under the
mean-variance and exponential utility criterion, respectively. The third classical model expresses
that the price processes of two or more risky assets in financial markets are correlated through a
common shock. For example, Zhang and Liang (2017) investigated the optimal investment strategy
under the criterion of maximizing the mean-variance utility with state dependent risk aversion.

Additionally, this paper considers a running penalizing cost, with a deterministic goal process
to be achieved for the insurer and extends the existing results of the classical mean-variance
problem. As is known, this results in the optimization problem with wealth-path dependence (see
Bouchard and Pham (2004)). Moreover, we incorporate dependent risks between the stock price and
claims into the model, which makes our modeling framework more realistic. Then we consider
a general mean-variance problem, that is, besides the objective of expected terminal condition,
the quadratic optimization functional includes also a running penalizing cost deviating from a
deterministic target. Furthermore, our problem reduces to the classical mean-variance problem
under suitable assumption on model parameters. It should be noted that our paper is different
from Delong (2005) and Delong and Gerrard (2007). In fact, Delong (2005) considered a quadratic
optimization problem only with a running penalizing cost deviating from a deterministic target
but without considering the expected terminal objective. Meanwhile, Delong and Gerrard (2007)
considered a general mean-variance problem, however, with independent risks between the risky asset
and claims.

This paper is organized as follows. Section 2 presents the insurance risk process and two assets
in financial market and then formulates a general mean-variance optimization problem. In Section 3,
we derive closed-form expressions for both the value function and the optimal strategy via the HJB
equation method . In Section 4, the efficient strategy and efficient frontier are obtained for the special
case α = 0. Section 5 illustrates the impact of dependence and economic parameters on the efficient
frontier. Finally, Section 6 concludes the paper.

2. The Model

2.1. Some Necessary Notations

Let [0, T] be a finite interval and (Ω,F ,P) be a complete probability space. Denote by R the set of
all real numbers. Let {W(t)}t∈[0,T] be a standard Brownian motion, {N1(t)}t∈[0,T], {N2(t)}t∈[0,T] and
{N(t)}t∈[0,T] be three homogeneous Poisson processes with intensity parameters λ1 > 0, λ2 > 0 and
λ > 0, respectively. Throughout this paper, we assume that N1(·), N2(·), N(·) and W(·) are mutually
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independent. We define F = {Ft}t∈[0,T] as the natural filtration generated by N1(·), N2(·), N(·) and
W(·) satisfying the usual conditions.

2.2. The Insurance Risk Process

The risk process {U(t)}t≥0 of the insurer is modeled by

dU(t) = cdt− d
N(t)+N1(t)

∑
i=1

Xi, U(0) = U0, (1)

where c is a constant premium rate, N(t) + N1(t) represents the number of claims occurring in the time
interval [0, t], and {Xi}i≥1 is a sequence of positive-valued i.i.d random variables, which represents
the size of the ith claim. Let X be a generic random variable which has the same distribution as Xi.
Denote EX = µ11(> 0) and EX2 = µ12(> 0). Here, we assume {Xi}i≥1, N(·) and N1(·) are mutually
independent, and the premium is paid in accordance with the expected premium principle, i.e.,

c = (1 + θ)a1,

where a1 = (λ + λ1)µ11 and θ > 0 is the insurer’s safety loading.

2.3. Description of Financial Market

We consider a financial market consisting of two assets. One is a risk-free asset, such as bond or
bank account, the other one is risky asset, such as stock or mutual fund. Specially, the price {B(t)}t≥0

of the risk-free asset is given by
dB(t) = rB(t)dt, B(0) = 1,

where r > 0 represents the risk-free interest rate.
The price {S(t)}t≥0 of the risky asset is driven by the following jump-diffusion process

dS(t)
S(t−) = µdt + σdW(t) + d

N(t)+N2(t)

∑
i=1

Yi, S(0) = S0, (2)

where µ > r implies that the expected return rate of the stock price is larger than the risk-free interest
rate, and σ is the coefficient of volatility, which reflects the gradual fluctuation of stock price due to
the change of economic environment. Here, we assume that {Yi}i≥1 are a sequence of i.i.d random
variables with values in (−1,+∞) and have the same distribution as a generic random variable Y.
Denote EY = µ21 and EY2 = µ22(> 0). This jump component characterizes the sudden fluctuation of
stock price due to the appearance of some unpredictable information which may have influence on the
stock price. It is worth noting that the assumption Yi ≥ −1 is essential, since it guarantees that the
stock prices are always positive. Clearly, the dependence between risky asset and aggregate claim is
correlated by a common shock described by Poisson process N(·). Following Protter (2004, Chapter V),
Equation (2) admits a unique solution.

2.4. Problem Formulation

Suppose that the insurer can invest all its wealth into the financial market. Denote by π(t) the total
money invested into the stock at time t. In this paper, short-selling is allowed, i.e., π(t) is real-valued.
Incorporating strategy π(t) into (1) and denoting by Rπ(t) the controlled wealth process, we have
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
dRπ(t) = [rRπ(t) + (µ− r)π(t) + (1 + θ)a1]dt + σπ(t)dW(t)

+π(t)d
N(t)+N2(t)

∑
i=1

Yi − d
N(t)+N1(t)

∑
i=1

Xi,

R(0) = x.

(3)

Definition 1. A strategy {π(t)}t∈[0,T] is said to be admissible, if π(t) is F-predictable and satisfies

E[
∫ T

0 π2(t)dt] < ∞. Denote by Π the set of all admissible strategies.

Remark 1. For any admissible strategy π(·), it is not difficult to prove that Equation (3) admits a unique
solution on [0, T].

We suppose that besides the objective of terminal condition, the quadratic optimization functional
includes also a running penalizing cost representing deviations of the wealth process from a desired
goal process {P(t)}t∈[0,T]. Then the optimal quadratic investment problem with a running penalizing
cost can be established as the following general mean-variance optimization problem: inf

π(·)∈Π
αE
[ ∫ T

0 (Rπ(t)− P(t))2dt
]
+ (1− α)Var[Rπ(T)− P(T)],

E[Rπ(T)− P(T)] = 0,
(4)

where α ∈ [0, 1] attaches a weight to the terminal cost. Here we assume that P(t) is Lipschitz continuous
with respect to t which could denote a profit accumulated until time t. For instance, P(t) = xeρt, where
ρ > 0 may represent the desired expected return rate of the wealth. It is easy to see that (4) reduces to
the following classical mean-variance problem when P(T) is deterministic and α = 0: inf

π(·)∈Π
Var[Rπ(T)− P(T)],

E[Rπ(T)− P(T)] = 0.
(5)

Remark 2. It should be noted that adding the running penalizing cost into the optimization problem is
reasonable since the optimal strategy in this case should guarantee that the controlled wealth process is not far
away from the target process during the whole term of the contract.

3. The Closed-Form Solution to HJB Equation

This section focuses on solving the general quadratic optimization problem (4) stated in Section 2.
Note that problem (4) is a convex optimization problem and can be tackled by introducing a Lagrange
multiplier. Hence, we first solve the inner stochastic control problem given a fixed Lagrange
multiplier β

inf
π(·)∈Π

E
[

α
∫ T

0
(Rπ(t)− P(t))2dt + (1− α)(Rπ(T)− P(T))2 − β(Rπ(T)− P(T))

]
, (6)

and then determine the optimal β such that the following equality holds

E[Rπ∗(T)] = P(T),

where π∗ is the optimal strategy of (6).
We now give the definition of the associated value function for problem (6)

V(t, x) = inf
π(·)∈Π

Et,x
[

α
∫ T

t
(Rπ(s)− P(s))2ds + (1− α)(Rπ(T)− P(T))2 − β(Rπ(T)− P(T))

]
,
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where Et,x[·] represents the conditional expectation under P given that Rπ(t) = x. According to
Fleming and Soner (2006), the corresponding HJB equation can be formulated as

inf
π(·)∈Π

{
α(x− P(t))2 + LπV(t, x)

}
= 0, (7)

with the boundary condition

V(T, x) = (1− α)(x− P(T))2 − β(x− P(T)), (8)

where the generator Lπ is given by

Lπv(t, x) =
∂v
∂t

(t, x) + [rx + (µ− r)π(t) + (1 + θ)a1]
∂v
∂x

(t, x) +
1
2

σ2π2(t)
∂2v
∂x2 (t, x)

+ λ1E[v(t, x− X)− v(t, x)] + λ2E[v(t, x + π(t)Y)− v(t, x)]

+ λE[v(t, x + π(t)Y− X)− v(t, x)].

Next, we propose a specific discussion on deriving a continuously differentiable solution to HJB
Equation (7).

Theorem 1. A continuously differentiable solution to HJB Equation (7) is given by

v(t, x) = A(t)x2 + K(t)x + L(t),

and the optimal investment strategy is expressed as

π∗(t, x) = −∆1

∆

(
x +

K(t)
2A(t)

)
+

∆2

∆
, (9)

where A(t), K(t), L(t) have the following closed-form expressions

A(t) = (1− α)e(2r−M1)(T−t) + α
2r−M1

[
e(2r−M1)(T−t) − 1

]
,

K(t) = −[2(1− α)P(T) + β]e(r−M1)(T−t) − 2α
∫ T

t e(r−M1)(s−t)P(s)ds

+
(
2θa1 + M2

) ∫ T
t e(r−M1)(s−t)A(s)ds,

L(t) = (1− α)P2(T) + βP(T) +
(
a2 −M3

) ∫ T
t A(s)ds +

(
θa1 +

1
2 M2

) ∫ T
t K(s)ds

−M1
∫ T

t
K2(s)
4A(s)ds + α

∫ T
t P2(s)ds,

(10)

with ∆, ∆1, ∆2 and M1, M2, M3 determined by (13)–(15) and (17)–(19), respectively.

Proof. Suppose v(t, x) is a solution to Equation (7) which can be expressed as

v(t, x) = A(t)x2 + K(t)x + L(t). (11)

According to the terminal condition (8), we have
A(T) = 1− α,

K(T) = −2(1− α)P(T)− β,

L(T) = (1− α)P2(T) + βP(T).
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Inserting (11) back into Equation (7) yields

inf
π

{
α(x− P(t))2 + A′(t)x2 + K′(t)x + L′(t) +

[
rx + (µ− r)π + (1 + θ)a1

][
2A(t)x + K(t)

]
+ Aσ2π2 + λ(2A(t) + K(t))(πµ21 − µ11) + λA(t)(π2µ22 − 2πµ11µ21 + µ12) (12)

+ λ1
[
A(t)µ12 − (2A(t)x + K(t))µ11

]
+ λ2

[
A(t)µ22π2 + (2A(t)x + K(t))µ21π

]}
= 0.

If A(t) > 0, differentiating (12) with respect to π results in

2A(t)
[(

σ2 + (λ + λ2)µ22
)
π − λµ11µ21

]
+
[
2A(t)x + K(t)

][
µ− r + (λ + λ2)µ21

]
= 0.

It is obvious that (12) attains its minimum at

π∗(t, x) = −∆1

∆

(
x +

K(t)
2A(t)

)
+

∆2

∆
,

where ∆, ∆1 and ∆2 are given by

∆ = σ2 + (λ + λ2)µ22 > 0, (13)

∆1 = µ− r + (λ + λ2)µ21, (14)

∆2 = λµ11µ21. (15)

Substituting π∗(t, x) back into (12) yields

α(x− P(t))2 + A′(t)x2 + K′(t)x + L′(t) + [rx + (1 + θ)a1](2A(t)x + K(t))

+ (λ + λ1)A(t)µ12 − (λ + λ1)(2A(t) + K(t))µ11

−
[
(2A(t)x + K(t))∆1 − 2∆2 A(t)

]2
4∆A(t)

= 0.

By separating the variables with respect to x we obtain the following three ODEs:
A′(t) +

(
2r−M1

)
A(t) + α = 0,

K′(t) +
(
r−M1

)
K(t) +

(
2θa1 + M2

)
A(t)− 2αP(t) = 0,

L′(t) +
(
a2 −M3

)
A(t) +

(
θa1 +

1
2 M2

)
K(t)−M1

K2(t)
4A(t) + αP2(t),

(16)

where a2 = (λ + λ1)µ12, and Mi for i = 1, 2, 3 are given by

M1 =
[µ− r + (λ + λ2)µ21]

2

σ2 + (λ + λ2)µ22
, (17)

M2 =
λµ11µ21[µ− r + (λ + λ2)µ21]

σ2 + (λ + λ2)µ22
, (18)

M3 =
λ2µ2

11µ2
21

σ2 + (λ + λ2)µ22
. (19)

As a result, the solutions A(t), K(t) and L(t) of (16) are expressed by (10). Specially, it is not
difficult to verify that A(t) > 0, which implies that the infimum in (7) can be obtained. We complete
the proof.
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Denote by C1,2[[0, T),R] the set of all continuous functions φ(t, x) defined on [0, T]×R such that
its first-order and second-order partial derivatives φt, φx, φxx are real-valued continuous. Using the
standard methods of Fleming and Soner (2006), we present the following classical verification theorem.

Theorem 2. If v ∈ C1,2[[0, T),R] satisfies the following inequality

α(x− P(t))2 + Lπv(t, x) ≥ 0, ∀π(·) ∈ Π,

with
v(T, x) = (1− α)(x− P(T))2 − β(x− P(T)).

Then
V(t, x) ≥ v(t, x), ∀(t, x) ∈ [0, T]×R.

Furthermore, if there exists an admissible strategy π∗(·) ∈ Π such that

α(x− P(t))2 + Lπ∗v(t, x) = 0,

then V(t, x) = v(t, x), and π∗(·) is the optimal investment strategy.

Remark 3. Following the verification theorem, it is easy to obtain that v(t, x) presented by Theorem 1 is identical
to V(t, x) and π∗(·) given by (9) is the optimal investment strategy. For the detailed proof of Theorem 2, readers
may consult the Appendix in Delong and Gerrard (2007). Here we omit it.

Next, we devote to exploring the optimal value of Lagrange multiplier β. Substituting π∗(·) back
into the Equation (3) yields

dRπ∗(t) =[rRπ∗(t−) + (µ− r)π∗(t) + (1 + θ)a1]dt + σπ∗(t)dW(t)

+ π∗(t)d
N(t)+N2(t)

∑
i=1

Yi − d
N(t)+N1(t)

∑
i=1

Xi

=

{
rRπ∗(t) + (µ− r) +

[
∆2

∆
− ∆1

∆

(
Rπ∗(t−) + K(t)

2A(t)

)]}
dt

+

[
∆2

∆
− ∆1

∆

(
Rπ∗(t−) + K(t)

2A(t)

)][
σdW(t) + d

N(t)+N2(t)

∑
i=1

Yi

]

− d
N(t)+N1(t)

∑
i=1

Xi.

Rewrite the above Itô differential in the integral form

Rπ∗(t) = x +
∫ t

0

{
rRπ∗(s−) + (µ− r)

[
∆2
∆ −

∆1
∆

(
Rπ∗(s−) + K(s)

2A(s)

)]
+ (1 + θ)(λ + λ1)µ11

}
ds

+
∫ t

0

[
∆2
∆ −

∆1
∆

(
Rπ∗(s−) + K(s)

2A(s)

)][
σdW(s) + d

N(s)+N2(s)
∑

i=1
Yi

]
−

N(s)+N1(s)
∑

i=1
Xi.

(20)

Denote
ϕ(t) := E0,x[Rπ∗(t)], 0 ≤ t ≤ T.
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Taking expectation on both sides of (20) under the condition Rπ∗(0) = x, and then applying
Fubini’s theorem to the right-hand side yield

ϕ(t) =x +
∫ t

0

{
rϕ(s−) + θa1 + M2 −M1

(
ϕ(s−) + K(s)

2A(s)

)}
ds. (21)

Clearly, the function ϕ(·) defined in (21) is continuously differentiable with respect to t. Hence,
the integral form in (21) can be transformed into the following ODE:

dϕ

dt
(t) = (r−M1)ϕ(t) + θa1 + M2 −M1

K(t)
2A(t)

, ϕ(0) = x,

which can be easily solved and leads to

ϕ(T) =xe(r−M1)T + (θa1 + M2)
∫ T

0
e(r−M1)(T−t)dt

−M1

∫ T

0

K(t)
2A(t)

e(r−M1)(T−t)dt.

Therefore, it suffices to determine the optimal value of β which can make the constraint
ϕ(T) = P(T) hold. After some algebraic calculations we deduce the value of the Lagrange multiplier

β = 2
[1−M1(1− α)β2]P(T)− xe(r−M1)T − β1 −M1β3

M1β2
, (22)

where

β1 = (θa1 + M2)
e(r−M1)T − 1

r−M1
, (23)

β2 =
∫ T

0

e2(r−M1)(T−t)

A(t)
dt, (24)

and

β3 = −(θa1 + M2)
∫ T

0
e(r−M1)(T−t)

A(t)

∫ T
t e(r−M1)(s−t)A(s)dsdt

+α
∫ T

0
e(r−M1)(T−t)

A(t)

∫ T
t e(r−M1)(s−t)P(s)dsdt.

(25)

Next, we conclude the above results with the following theorem.

Theorem 3. Let ∆, ∆1 and ∆2 be given by (13)–(15). Then the optimal investment strategy for the constrained
quadratic optimization problem (4) is given by

π∗(t, Rπ∗(t)) = −∆1

∆

(
Rπ∗(t) +

K(t)
2A(t)

)
+

∆2

∆
,

and the quadratic minimum cost is

V(0, x) = A(0)x2 + K(0)x + L(0),

where the functions A(·), K(·), L(·) and the Lagrange multiplier β are presented by (10) and (22), respectively.
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4. Efficient Strategy and Efficient Frontier

This section concentrates on deriving the efficient strategy and efficient frontier for the classical
mean-variance problem (5). Note that the efficient strategy can be easily obtained by setting α = 0 in
Theorem 3:

π∗(t, Rπ∗(t)) = −∆1

∆

[
Rπ∗(t) +

2θa1 + M2

2r
−
(

2P(T) + β

2
+

2θa1 + M2

2r

)
e−r(T−t)

]
+

∆2

∆
.

As is mentioned in Bielecki et al. (2005), the efficient frontier is the subset of the variance
minimizing frontier, which can be obtained from the optimal value function V(t, x) under the condition
of α = 0. After some algebraic calculations, it is not difficult to derive the Lagrange multiplier β which
has the following form

β = 2
P(T)− erT[x + (θa1 + M2)

∫ T
0 e−rtdt

]
eM1T − 1

, (26)

and the variance minimizing frontier equals

Var[Rπ∗(T)] = (a2 −M1)
∫ T

0 e(2r−M1)(T−t)dt + (θa1 + M2)
2e(2r−M1)TW

+

{
P(T)−erT

[
x+(θa1+M2)

∫ T
0 e−rtdt

]}2

eM1T−1
,

(27)

where

W = 2
∫ T

0 e−(r−M1)t
∫ T

t e−rsdsdt−
( ∫ T

0 e−rtdt
)2

−M1
∫ T

0 eM1t
( ∫ T

t e−rsds
)2

dt.
(28)

Remark 4. Similar to Delong and Gerrard (2007), we have W ≥ 0. Note that when a2 ≥ M1, it is obvious
that there exists no “risk-free asset", i.e., there exists no investment strategy such that the risk is zero. This is
reasonable since a2 ≥ M1 implies larger intensities of the claims forthcoming. Thus, even though we invest
all our wealth into the risk-free asset, that is, choosing the expected return target P(T) = erT[x + (θa1 +

M2)
∫ T

0 e−rtdt
]
, we are still exposed to risks with a strictly positive probability due to the large amount of claims.

On the other hand, this is in accordance with the results of classical mean-variance investment-reinsurance
problem, see Liang et al. (2016), in which case there exists real “risk-free asset" indeed. The comparisons can also
be seen in Remark 5 in Section 5.

Now, let us end the results by introducing the following straightforward lemma.

Lemma 1. The variance minimizing frontier (27) is strictly decreasing for P ∈ (−∞, P∗) and strictly increasing
for P ∈ (P∗,+∞), where

P∗ = erT[x + (θa1 + M2)
∫ T

0
e−rtdt

]
,

and M2 is expressed as (18). Moreover, the efficient frontier is (P, Var[Rπ∗(T)]), where P ∈ [P∗,+∞).

5. Sensitive Analysis

This section presents several numerical examples to illustrate the impact of different parameters
on the efficient frontier derived in the previous section. Set x = 2, T = 4, r = 0.03, µ = σ = 0.05,
λ = λ1 = λ2 = 1, θ = 0.3, µ11 = 3, µ12 = 10, µ21 = 2, µ22 = 5.

(i) Figure 1 investigates the impact of parameters λ1 and λ2 on the efficient frontier. In Figure 1a,
we assume that the value of λ1 varies and the other parameters are fixed. It shows that under the same
E[X(T)], Var[X(T)] increases with λ1. This is a natural consequence since under the same expected
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terminal wealth, the bigger λ1, the more frequency the claims arrive, which results in more risks the
insurer undertakes. In Figure 1b, we assume that the value of λ2 varies and the other parameters are
fixed. Different from Figure 1a, the bigger λ2, the more frequency the stock price jumps upwards,
which leads to bigger expected terminal wealth under the same Var[X(T)].
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Figure 1. Impact of parameters λ1 and λ2 on the efficient frontier. (a) Impact of λ1 on the efficient
frontier; (b) Impact of λ2 on the efficient frontier.

(ii) Figure 2 illustrates the impact of common shock intensity λ and the volatility coefficient σ

on the efficient frontier. In Figure 2a, we assume that the common shock intensity λ varies and the
other parameters are fixed. It shows that under the same E[X(T)], Var[X(T)] decreases with λ. As λ

increases, the insurer will receives more premium and then he would be more likely to invest his
wealth into the risk-free asset rather than risky asset to hedge the forthcoming claims. Therefore,
the insurer prefers to possessing less risky asset to achieve the same expected terminal wealth, which
leads to the decreasing of Var[X(T)]. In Figure 2b, we assume that the value of σ varies and the
other parameters are fixed. It shows that under the same E[X(T)], Var[X(T)] increases with σ. This is
obvious since σ influences the volatility rate of stock price. As σ increases, the volatility rate of stock
price increases and the instantaneous growth rate remains unchanged. As a result, the insurer will
undertake more risks to reach the same expected terminal wealth.
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Figure 2. Impact of parameters λ and σ on the efficient frontier. (a) Impact of λ on the efficient frontier;
(b) Impact of σ on the efficient frontier.
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Remark 5. From the four cases of numerical analysis presented in the above, we can conclude:
(i) Under the assumption of a2 > M1, Var[X(T)] stays always above zero whatever E[X(T)] takes, which
implies that the risk is always positive whatever the strategy we choose. In other words, there exists no investment
strategy such that the risk is zero or there exists no “risk-free asset".
(ii) Note that this is different from the results in Liang et al. (2016, Section 5), where Var[X(T)] can always
reach zero when E[X(T)] takes on appropriate value. That is, the risk is zero if the insurer invests all his wealth
into the risk-free asset and cedes all the claims to the reinsurer. In other words, there exists a special strategy
such that the risk is zero or there exists “risk-free asset" indeed.

6. Conclusions

This paper considers a general mean-variance investment problem, that is, besides the objective of
expected terminal condition, the quadratic optimization functional includes also a running penalizing
cost, which describes the deviations of insurer’s wealth from a desired profit-solvency goal. Suppose
that the stock price and the insurance claims are dependent via a common shock. Applying the
theory of HJB equation, we derive explicit formula for the optimal investment strategy. Moreover, our
problem reduces to the classical mean-variance problem, which is in accordance with the results in
Liang et al. (2016).
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