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Abstract: The classical Stieltjes transform is modified in such a way as to generalize both Stieltjes
and Fourier transforms. This transform allows the introduction of new classes of commutative and
non-commutative generalized convolutions. A particular case of such a convolution for degenerate
distributions appears to be the Wigner semicircle distribution.
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1. Introduction

Let us begin with definitions of classical and generalized Stieltjes transforms. Although these are
usual transforms given on a set of functions, we will consider more convenient for us a case of
probability measures or for cumulative distribution functions. Namely, let µ be a probability measure
of Borel subsets of real line IR1. Its Stieltjes transform is defined as1

S(z) = S(z; µ) =
∫ ∞

−∞

dµ(x)
x− z

,

where Im(z) 6= 0. Surely, the integral converges in this case. The generalized Stieltjes transform is
represented by

Sγ(z) = Sγ(z; µ) =
∫ ∞

−∞

dµ(x)
(x− z)γ

for real γ > 0. For more examples of the generalized Stieltjes transforms of some probability
distributions, see Demni (2016) and references therein.

A modification of generalized Stieltjes transform was proposed in Roozegar and Bazyari (2017).
Our aim in this paper is to use this modification of the Stieltjes transform to define a class of generalized
stochastic convolutions and give their probability interpretation (see Theorem 1 below) in lines of
preprint Klebanov and Roozegar (2016).

2. Preliminary Results

Now we prefer to switch to the modified form, and define the following form of transform:

Rγ(u) = Rγ(u; µ) =
∫ ∞

−∞

dµ(x)
(1− iux)γ

. (1)

1 Sometimes with opposite sign.
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Connection to the generalized Stieltjes transform is obvious. It is convenient for us to use this
transform for real values of u. It is clear that the limit

lim
γ→∞

Rγ(u/γ) =
∫ ∞

−∞
exp{iux}dµ(x) (2)

represents the Fourier transform (characteristic function) of the measure µ (we used the dominated
convergence theorem here to change the order of integration and limit). The uniqueness of a measure
recovering from its modified Stieltjes transform follows from the corresponding result for generalized
Stieltjes transform.

Relation (2) gives us the limit behavior of the modified Stieltjes transform as γ → ∞. Another
possibility (γ→ 0) without any normalization gives trivial limit equal to 1. However, a more proper
approach is to calculate the limit (Rγ(u)− 1)/γ as γ→ 0. It is easy to see that

lim
γ→0

(Rγ(u)− 1)/γ =
∫ ∞

−∞
log

1
1− iux

dµ(x). (3)

If the measure µ has compact support, it is possible to write series expansion for modified
Stieltjes transform:

Rγ(u) =
∫ ∞

−∞

dµ(x)
(1− iux)γ

=
∞

∑
k=0

(−1)kik
(
−γ

k

)
mk(µ)xk,

where mk(µ) =
∫ ∞
−∞ xkdµ(x) is the kth moment of the measure µ.

The modified Stieltjes transform may be interpreted in terms of characteristic functions. Namely,
let us consider a gamma distribution with probability density function

p(x) =
1

λγΓ(γ)
xγ−1 exp(−x/λ), (4)

for x > 0, λ > 0, and zero in other cases. Note that this distribution is an ordinary gamma distribution
for positive λ, and its “mirror reflection” on negative semi-axes for negative λ. Let us now consider
λ as a random variable with cumulative distribution function µ. In this case, Relation (1) gives the
characteristic function of gamma distribution with such random parameter:

f (t) =
∫ ∞

−∞

dµ(λ)

(1− itλ)γ
. (5)

The Gauss-hypergeometric function 2F1, which is defined by the series

2F1(c, a; b; z) =
∞

∑
n=0

(c)n(a)n

(b)nn!
zn,

where (a)0 = 1 and (a)n = a(a + 1)(a + 2) · · · (a + n − 1), n ≥ 1, denotes the rising factorial.
Gauss-hypergeometric function 2F1 has Euler’s integral representation of the form

2F1(c, a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ta−1(1− t)b−a−1

(1− zt)c dt. (6)

For more details on Gauss-hypergeometric function and its properties, see Abramowitz and
Stegun (2012) and also Andrews et al. (1999).
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3. A Family of Commutative Generalized Convolutions

Using the modified Stieltjes transform, we can introduce a family of commutative generalized
convolutions. The main idea for this is the following. Let µ1 and µ2 be two probability measures.
Take positive γ and consider the product of the modified Stieltjes transforms of these measures
Rγ(u, µ1)Rγ(u, µ2). We would like to represent this product as a modified Stieltjes transform of a
measure. Typically, the product is not a modified Stieltjes transform with the same index γ. However,
it can be represented as a modified Stieltjes transform with index ρ > γ of a measure ν, which is called
a generalized (more precisely “(γ, ρ)”) convolution of the measures µ1 and µ2. Let us mention that
the indexes ρ and γ are not arbitrary, but there are infinitely many suitable pairs of indexes. Clearly,
the measure ν—if it exists—depends on µ1, µ2, and on indexes γ, ρ.

Unfortunately, we cannot describe all pairs γ, ρ for which corresponding generalized convolution
ν of measures µ1 and µ2 exists. However, we shall show that the pairs of the form c, 2c (where c is
positive, but not necessarily integer number) possess this property.

Theorem 1. Let µ1, µ2 be two probability measures on σ-field Borel subsets of a real line. For arbitrary real
c > 0 there exists “(c, 2c)” convolution ν of µ1 and µ2. In other words, for real c > 0 and measures µ1 and µ2,
there exists a measure ν such that

R2c(u; ν) = Rc(u; µ1)Rc(u; µ2). (7)

Proof. Because convex combination of probability measures is a probability measure again, and each
probability on real line can be considered as a limit in weak-∗ topology of sequence of measures
concentrated in finite number of points each, it is sufficient to prove the statement for Dirac
δ-measures only.

Suppose now that the measures µ1 and µ2 are concentrated in points a and b correspondingly.
We have to prove that there is a measure ν depending on a, b and c such that

∫ ∞

−∞

dν(x)
(1− iux)2c =

1
(1− iua)c ·

1
(1− iub)c . (8)

Of course, it is enough to find the measure ν with compact support2. Therefore, we must have for
a > 0 and b > 0

mk =

k

∑
j=0

c(c + 1) · · · (c + j− 1)
j!

· c(c + 1) · · · (c + k− j− 1)
(k− j)!

ajbk−j/
(
−2c

k

)
, (9)

where mk = mk(ν) is the kth moment of ν. It remains to be shown that the left hand side of (9) really
defines for k = 0, 1, . . . moments of a distribution.

Let us denote λ = a/b and suppose that |λ| < 1 (the case |λ| = 1 may be obtained as a limit case).
Then, km can be rewritten in the form

km = (−1)mbm
m

∑
k=0

(
m
k

)
(c)k(c)m−k

(2c)m
λk,

2 Another approach may be based on the expression of the right hand side of (8) thought the Lauricella’s fourth function and
its integral representation (for close results see Van Laarhoven and Kalker (1988)). However, it is out of the scope of this
paper.
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where (s)j = s · · · (s + j− 1) is the Pochhammer symbol. Simple calculations allow us to obtain from
previous equality that

km =
bm(c)m 2F1(−m, c, 1−m− c, a/b)

(2c)m
. (10)

Let us consider a random variable X having Beta distribution with equal parameters c and c;
that is, with probability density function

pX(x) = (1− x)c−1xc−122c−1Γ(c + 1/2)/(
√

π Γ(c)),

for x ∈ (0, 1), and zero for x /∈ (0, 1). It is not difficult to calculate that

IE
(

aX + b(1− X)
)m

= bm
2F1(−m, c, 2c, 1− a/b),

which coincides with (10) for non-negative integer m and real c > 0.

Theorem 1 allows us to define a family of generalized convolutions ν = µ1 ?c µ2 depending
on c, which is equivalent to the relation (7). Obviously, this operation is commutative. However,
it is not associative, which can be easily verified by comparing the convolutions (δ1 ?c δ2) ?c δ3 and
δ1 ?c (δ2 ?c δ3), where δa denotes Dirac measure at point a. It is easy to verify that µ1 ?c µ2(2A) −→

c→∞
µ1 ∗ µ2(A), where ∗ denotes ordinary convolution of measures. We have 2A in the left hand side
because IEX = 1/2. This generalized convolution may be written through independent random
variables U and V in the form

W = UX + V(1− X),

where X is a random variable independent of (U, V) and having Beta distribution with parameters
(n, n), and the distribution of W is exactly a generalized convolution of distributions of U and V.

Let us note that the ?3/2-convolution of Dirac measures concentrated at points −1 and 1 gives the
well-known Wigner semicircle distribution.

In view of the non-associativity of ?c-convolution, it does not coincide with K. Urbanik’s
generalized convolution (see Urbanik (1964)). At the same time, its non-associativity shows that
the expression µ1 ?c µ2 ?c µ3 has no sense. However, one can define this 3-argument operation
by using stochastic linear combinations; that is, linear forms of random variables with random
coefficients. Now we define such k-arguments operation. Namely, let U1, . . . , Uk be independent
random variables, and X1, . . . , Xn−1 be a random vector having Dirichlet distribution with parameters
(a1, . . . , ak) = (c, . . . , c). Define

W = X1U1 + . . . + Xk−1Uk−1 +
(
1−

k−1

∑
j=1

Xj
)

Uk. (11)

The map from vector U of marginal distributions of (U1, . . . , Uk) to the distribution of random
variable W call k-tuple generalized convolution of the components of U. Clearly, this operation
is symmetric with respect to the permutations of coordinates of the vector U. Let us mention
that it is probably possible to use Lauricella’s fourth function and its integral representation for
the definition of k-tuple generalized convolution. However, we prefer this approach in view of its
probabilistic interpretation.

4. Connected Family of Non-Commutative Generalized Convolutions

Let now U1, . . . , Uk be independent random variables, and X1, . . . , Xn−1 be a random vector
having Dirichlet distribution with parameters (a1, . . . , ak), possibly different from each other. Using the
relation (11), define random variable W. Its distribution will be called a non-commutative generalized
convolution of marginal distributions of the vector U. In the particular case of k = 2, we obtain a
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non-commutative variant of two-tuple generalized convolution, which represents the more general
case of (1).

Let us give a property of this generalized convolution. To do so, let us define b̃etaA,B distribution
over interval (A, B) by its probability density function

pα,β(x) =


1

B(α,β)(B−A)α+β−1 (x− A)α−1(B− x)β−1, if A < x < B,

0 otherwise,

for positive α, β. Here B(α, β) is beta function.

Theorem 2. Let W1, W2 be two independent identical distributed random variables having b̃etaA,B(n, n)
distribution, and µ1, µ2 be corresponding probability distributions. Then the measure ν = µ1 ?n µ2 corresponds
to b̃etaA,B(2n, 2n) distribution.

Proof. From the proof of Theorem 1 that Wj
d
= AXj + B(1− Xj), where X1, X2 are independent

identically distributed random variables having B(n, n) distribution. The rest of the proof is just
simple calculation.

The property given by Theorem 2 is very similar to classical stability definition.

Theorem 3. Let Uj, j = 1, . . . , k be independent random variables having b̃eta distribution with parameters
αj = rj + 1/2, βj = rj + 1/2. Let X1, . . . , Xk−1 be a random vector having Dirichlet distribution with
parameters (r1, . . . , rk). Then, random variable

W = X1U1 + . . . + Xk−1Uk−1 +
(
1−

k−1

∑
j=1

Xj
)

Uk

has b̃eta distribution with parameters
(

∑k
j=1 rj + 1/2, ∑k

j=1 rj + 1/2
)

.

Proof. It is sufficient to calculate the modified Stieltjes transform of the distribution of W using some
properties of Gauss-hypergeometric function.

This property is also similar to the classical stability property, but for the case of k-tuple operation.
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