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Abstract: This paper considers a flexible class of time series models generated by Gegenbauer
polynomials incorporating the long memory in stochastic volatility (SV) components in order to
develop the General Long Memory SV (GLMSV) model. We examine the corresponding statistical
properties of this model, discuss the spectral likelihood estimation and investigate the finite sample
properties via Monte Carlo experiments. We provide empirical evidence by applying the GLMSV
model to three exchange rate return series and conjecture that the results of out-of-sample forecasts
adequately confirm the use of GLMSV model in certain financial applications.
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1. Introduction

Consider the well known ARFIMA(p, d, q) model given by:

φ(B)Yt = θ(B)εt, (1)

where Yt = (1 − B)dXt, d ∈ (−1, 0.5), {εt} is a sequence of uncorrelated (but not necessarily
independent) random variables such that Var(εt) = σ2, and φ(B) and θ(B) are stationary AR(p) and
invertible MA(q) polynomials, respectively.

In recent years, there has been a great deal of developments with time dependent instantaneous
innovation variances (or volatility) related in modeling financial volatility. See, for example,
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) family Engle (1982) and
Stochastic Volatility (SV) models (Clark 1973; Taylor 1982, 1986). A general survey can be found on
these topics in McAleer (2005) and Shephard (2005). An alternative modelling via ‘realized volatility’
can be considered as noise plus the realized value of the latent volatility in SV models and discussed
in Barndorff-Nielsen and Shephard (2002), Bollerslev and Zhou (2002), and Asai et al. (2012).

As the conditional volatility displays long memory or long range dependencies in many financial
applications, Baillie et al. (1996) and Bollerslev and Mikkelsen (1996) developed the Fractionally
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Integrated GARCH (FIGARCH) and Fractionally Integrated Exponential GARCH (FIEGARCH)
models, respectively. In the light of this evidence, Breidt et al. (1998) developed the long memory
SV (LMSV) model, in which log-volatility follows the ARFIMA(p, d, q) process. Empirical evidence
from Breidt et al. (1998), Andersen et al. (2001, 2003), Pong et al. (2004), Koopman et al. (2005).
Asai et al. (2012) indicated that estimates of d lie between zero and one.

Motivated by these extensions and applications, Bordignon et al. (2007) and
Artiach and Arteche (2012) developed the generalized long memory GARCH model and the generalized
LMSV model using the Gegenbauer polynomials. See Gray et al. (1989). Incorporating the Gegenbauer
process in volatility modeling enables a flexible class of process for the conditional/stochastic variance
that is capable of explaining and representing the observed temporal dependencies in financial market
volatility. Artiach and Arteche (2012) suggested spectral likelihood estimation for general LMSV models.

The main purpose of this paper is to develop and apply the GLMSV models for forecasting
volatility of exchange rate returns.

The organization of the paper is as follows. Section 2 briefly reviews stochastic volatility models
and the Gegenbauer ARMA process. Section 3 considers generalized LMSV model, and develops
its statistical properties. Section 4 discusses the estimation technique via spectral likelihood (SL),
which is equivalent to the quasi-maximum likelihood (QML) estimator, and examines the finite sample
properties of the SL estimator. Section 4 also explains the method for estimating and forecasting
volatility. Section 5 presents empirical results using the exchange rate returns of Japanese Yen
(YEN), Euro (EUR), and British Pound (GBP) relative to the US dollar (USD). Section 6 provides
concluding remarks.

2. Review of Stochastic Volatility (SV) Models

An alternative to the modeling of the popular GARCH and related conditional volatility models
is a class of models such that the variance follows a certain latent stochastic process. Suppose that a
discrete time series {Yt} is given by Yt = σtξt, where ξt ∼ I ID(0, 1) and the volatility process satisfies:

σt = exp(Xt/2). (2)

Two popular cases related to (2) have been analysed in the literature:

• {Xt} follows a stationary and invertible ARMA(p,q) process given by:

φ(L)Xt = C + θ(L)vt, (3)

where vt is white noise with zero mean and variance σ2
v , C is a constant, L is the lag operator,

and the roots of φ(L) (AR(p) polynomial) and θ(L) (MA(q) polynomial) lie outside the unit circle
to ensure stationarity and invertibility of {Xt}.

• {Xt} follows a stationary and invertible ARFIMA(p,d,q) process given by:

φ(L)(1− L)dXt = C + θ(L)vt, (4)

where, in addition to the conditions in (3), the parameter d ∈ (−0.5, 0.5) to ensure stationarity
and invertibility of {Xt}.

Particular attention has been paid to the class in (4) when 0 < d < 0.5 to model long memory
in SV. In this case, (2) and (4) describe a family of LMSV. This paper introduces a general family of
long memory models with SV. With that view in mind, below we report Gegenbauer polynomials and
Gegenbauer ARMA (GARMA) for later reference. See Dissanayake et al. (2016) for further details.
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3. Gegenbauer ARMA (GARMA) Model

Suppose that a time series {Xt} is generated by:

φ(L)(1− 2ηL + L2)dXt = θ(L)vt, (5)

where the polynomials φ(L), θ(L) and noise {vt} are as defined in (3), and |η| ≤ 1 and |d| ≤ 1 are
real parameters.

This family in (5) is known as the Gegenbauer ARMA of order(p, d, q; η) or GARMA(p, d, q; η)
suggested by Gray et al. (1989) (see also Chung (1996a, 1996b) and Dissanayake et al. (2016)). The
GARMA process has the following properties:

• The power spectrum:

fX(ω) = [4(cos ω− η)2]−dg(ω), −π < ω < π, (6)

where g(ω) = |θ(e−iω)|2
|φ(e−iω)|2

σ2
v

2π corresponds to the ARMA part.

• The process in (5) is stationary and explains long memory when |η| < 1 and 0 < d < 1/2,
or |η| = 1 and 0 < d < 1/4, with the stationary condition on φ(L). From (6), it is clear that the
long memory features are characterized by an unbounded spectrum at the Gegenbauer frequency
ω = ωg = arccos(η) when |η| < 1, and at ω = 0 when η = 1, in addition to the hyperbolic decay
of the autocorrelation function (acf).

For later reference, we consider a special case, namely, the class of GARMA(0, d, 0; η) given by:

(1− 2ηL + L2)dXt = vt. (7)

Following regularity conditions are useful for further analysis.

• Under the AR regularity conditions:

(a1) |η| < 1 and d < 1/2; or
(a2) |η| = 1 and d < 1/4,

the Wold representation of (7) is given as:

Xt = ψ(L)vt =
∞

∑
j=0

ψjvt−j, (8)

where ψ(L) = (1 − 2ηL + L2)−d = ∑∞
j=0 ψjLj and the coefficients ψj, j ≥ 2, are recursively

related by:

ψj = 2η

(
d− 1 + j

j

)
ψj−1 −

(
2d− 2 + j

j

)
ψj−2,

with initial values ψ0 = 1 and ψ1 = 2dη.

These coefficients, ψj, reduce to the corresponding standard long memory (or binomial) coefficients

when η = 1, such that ψj =
Γ(2d+j)

Γ(j+1)Γ(2d) .

• Under the MA regularity conditions:

(b1) |η| < 1 and d > −1/2; or
(b2) |η| = 1 and d > −1/4,
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(6) admits an invertible solution, such that:

vt = (1− 2ηL + L2)dXt =
∞

∑
j=0

πjXt−j, (9)

where the coefficients, πj, are obtained from (9) by replacing d with −d.

In the general case of (5), the corresponding stationary and invertible solutions can be
obtained from:

Xt = ψ(L)× ψ′(L)vt,

and
vt = [ψ′(L)]−1 × (1− 2ηL + L2)dXt,

respectively, where ψ′(L) = [φ(L)]−1θ(L) (see Dissanayake et al. (2016) for further details). In recent
papers, Shitan and Peiris (2008, 2013) have considered an alternative family of generalized fractional
processes given by:

φ(L)(1− αL)dXt = θ(L)vt.

As an extension, Section 4 considers a family of generalized long memory volatility models using
Gegenbauer polynomials.

4. Generalized Long Memory SV (GLMSV) Models

This section considers the generalized long memory SV (GLMSV) model, suggested by
Artiach and Arteche (2012). The GLMSV model is defined by:

Yt = σtξt, ξt ∼ I ID(0, 1), σt = exp(Xt/2), (10)

φ(L)(1− 2ηL + L2)d(Xt − µ) = θ(L)vt, (11)

where {ξt} is independent of {Xt} for all t. In the model, log-volatility follows the GARMA(p, d, q; η)
process. From the spectrum of (6), it is clear that the log volatility process, {Xt}, has generalized long
memory when |η| < 1 and 0 < d < 0.5, with a spectral peak at Gegenbauer frequency ωg = arccos(η).

4.1. Properties of GLMSV

Suppose that {vt} in (5) is Gaussian and let γ(k) be the autocovariance function (ACVF) of {Xt}
given by γ(k) = Cov(Xt, Xt+k). It follows from the properties of the lognormal distribution that:

• E(Yt) = 0 and Var(Yt) = exp[γ(0)/2],
• γY(k) = Cov(Yt, Yt+k) = 0 for all k 6= 0,
• {Yt} is a martingale difference.

Let Ut = log(Y2
t ). Then the observation equation satisfies the linear state space model,

Ut = log(σ2
t ) + log(ξ2

t ), and reduces to:

Ut = c + Xt + εt, (12)

where c = µ+E[log(ξ2
t )] and εt = log(ξ2

t )−E[log(ξ2
t )] is an iid process independent of {Xt}. Note that,

if ξt is standard normal, then ξ2
t ∼ χ2

1, which gives E[log(ξ2
t )] = −1.2704 and Var[log(ξ2

t )] =
π2

2 ≈ 4.93.

It follows from (12) that the corresponding spectra are related by:

fU(ω) = fX(ω) +
σ2

ε

2π
, −π < ω < π, (13)

where fX(ω) = g(ω)[4(cos ω− η)2]−d, −π < ω < π, and σ2
ε = Var(εt).



J. Risk Financial Manag. 2017, 10, 23 5 of 16

From the results in Granger and Morris (1976) for the sum of an MA process and noise,
we can write:

Ut = c +
∞

∑
j=0

ψ̃jvt−j + εt = c +
∞

∑
j=0

κjet−j, (14)

where {et} is a white noise process, and ψ̃j is the jth coefficient of the polynomial ψ̃(z) = (1− 2ηz +
z2)−dφ(z)−1θ(z), with ψ̃0 = 1. Hence, we obtain the MA(∞) representation of Ut. The distribution
of et can be obtained by the the convolution of the distributions of Xt and εt, where {et} is serially
uncorrelated, but is not an independent process.

Clearly, (13) implies that the log squared returns of {Yt} have long memory, with the same
memory parameter d as in the volatility process {Xt}. In particular, when η = 1 and 0 < d < 1/4,
GLMSV reduces to the standard LMSV. These spectral properties can be used to identify the GLMSV
and LMSV processes in practice.

4.2. Identification of GLMSV and LMSV

The following lemma on spectral densities can be used to identify LMSV and/or GLMSV.

Lemma 1. fU(ω) ∼ fX(ω) as ω → ωg = arccos(η).

Proof. Let f ∗(ω) = [ fX(ω)]−1 σ2
ε

2π . Then from (13) we have:

fU(ω) = fX(ω)[1 + f ∗(ω)]. (15)

Clearly, f ∗(ω) is bounded from above and bounded away from zero when 0 < d < 0.5, and
f ∗(ω)→ 0 as ω → ωg = arccos(η). Hence, the lemma holds.

The lemma shows that the spectrum of {Ut} behaves like that of {Xt} near the Gegenbauer
frequency, ωg. We illustrate this for three important cases by taking φ(L) = θ(L) = 1 for simplicity.

Spectral Densities

• Standard LMSV when η = 1 :

The sdf of {Ut} is given by:

fU(ω) ∼ [2(sin(ω/2)]−4d σ2
v

2π
, −π < ω < π, (16)

and is unbounded as ω → 0 when 0 < d < 1/2. The following diagram illustrates
f = fU(ω), d = 0.4, σ2

v = 2:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

0
20

0
30

0
40

0
50

0

omega

f

SDF of LMSV

• GLMSV when |η| < 1 :

The sdf of {Ut} is given by:

fU (ω) ∼ [4(cosω − η)2]−d σ
2
v

2π
, −π < ω < π, (4.8)

and is unbounded as ω → arccos(η) (the Gegenbauer frequency, which is away from the

origin) for |η| < 1 and 0 < d < 1/2. The second diagram illustrates f2 = fU (ω), d =

0.4, η = 0.8, σ2v = 2 :

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

20
0

25
0

omega

f2

SDF of GLMSV

7
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• GLMSV when |η| < 1 :

The sdf of {Ut} is given by:

fU(ω) ∼ [4(cos ω− η)2]−d σ2
v

2π
, −π < ω < π, (17)

and is unbounded as ω → arccos(η) (the Gegenbauer frequency, which is away from the origin)
for |η| < 1 and 0 < d < 1/2. The second diagram illustrates f 2 = fU(ω), d = 0.4, η = 0.8, σ2

v = 2:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

0
20

0
30

0
40

0
50

0

omega

f

SDF of LMSV

• GLMSV when |η| < 1 :

The sdf of {Ut} is given by:

fU (ω) ∼ [4(cosω − η)2]−d σ
2
v

2π
, −π < ω < π, (4.8)

and is unbounded as ω → arccos(η) (the Gegenbauer frequency, which is away from the

origin) for |η| < 1 and 0 < d < 1/2. The second diagram illustrates f2 = fU (ω), d =

0.4, η = 0.8, σ2v = 2 :

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

20
0

25
0

omega

f2

SDF of GLMSV

7

5. Estimation and Forecasting

5.1. Spectral-Likelihood Estimator

Though the process {vt} is non-Gaussian, a reasonable estimation procedure is to maximize
the quasi-likelihood, or the likelihood computed as if {vt} was Gaussian. For the LMSV models,
the approaches of So (1999, 2002) and Doornik and Ooms (2003) enable us to compute the
quasi-likelihood exactly, using the autocovariance functions up to order n. For the GLMSV model, it is
not easy to calculate the exact autocovariances, but it is possible to obtain their approximate values
with the use of the algorithm of McElroy and Holan (2012). Hence, the effectiveness of the QML
estimation of this type depends on the accuracy of the approximation of the autocovariance functions.
Rather than the approximate approach, we suggest a spectral domain estimator, which was used in
estimating the GLSMV model by Artiach and Arteche (2012).

The spectral-likelihood (SL) estimator is obtained by minimizing:

L(λ) = 2π

n

[n/2]

∑
j=1

[
log( fU(ωj)) +

In(ωj)

fU(ωj)

]
× 1

(
ωj 6= arccos(η)

)
, (18)

where λ = (δ, η′)′ and δ = (d, φ1, . . . , φp, θ1, . . . , θq, σv, σε)′ are the vectors of unknown parameters,
1( · ) is an indicator function which takes one if the condition is satisfied, and otherwise zero, [ · ]
denotes the integer part, ωj = 2π j/n is the jth Fourier frequency, and

In(ωj) =
1

2πn

∣∣∣∣∣ n

∑
t=1

xt exp(−iωjt)

∣∣∣∣∣
2

, j = 1, · · · , [n/2].

This technique is originally suggested by Breidt et al. (1998) for estimating the LMSV model. If we
know the value of η a priori, we should omit the observation which corresponds to ω = arccos(η).
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For estimating η, it is straightforward to show from Chung (1996a, 1996b) and
Peiris and Asai (2016) that:

n(η̂ − η0)
L−→ K sin(ωg)

d
Y0 if |η| < 1 and d 6= 0, (19)

where K = E(σ−2
t ) + 2 ∑∞

j=1 ϕσ(j)E(ε2
t−i/σ4

t ), Y0 is a random variable defined as

Y0 ≡
∫ 1

0 W̃1dW2 −
∫ 1

0 W1dW̃2∫ 1
0 W̃2

1 (r)dr +
∫ 1

0 W2
1 (r)dr

,

and (W̃1(t), W̃2(t)) and (W1(t), W2(t)) are two independent Brownian motions with mean zero
and covariance,

t

(
E(σ2

t ) 1
1 K

)
.

Furthermore,

n2(η̂ ∓ 1) L−→± K
2d

Y1 if η = ±1 and d 6= 0, (20)

where Y1 is a random variable defined as

Y1 ≡
∫ 1

0

{∫ r
0 W1(s)ds

}
dW2(r)∫ 1

0

{∫ r
0 W1(s)ds

}2 dr
.

Apart from η, Zaffaroni (2009) showed that the SL estimator, λ̂, is consistent, and:

√
T(λ̂− λ0)

d−→N
(

0, W−1U(W∗)−1
)

,

where λ0 is the true value,

W =
∂R(λ)

∂λ′
,

R(λ) =
∂

∂λ

∫ π

−π
log fU(ω; λ)dω−

∫ π

−π

[
∂

∂λ
log fU(ω; λ)

]
dω,

U = 4π
∫ π

−π

[
∂

∂λ
log fU(ω; λ)

] [
∂

∂λ′
log fU(ω; λ)

]
dω

+ (2π)3
∫ π

−π

∫ π

−π

[
∂

∂λ
log fU(ω1; λ)

] [
∂

∂λ′
log fU(ω2; λ)

]
×Qe(ω1, ω2,−ω2)dω1dω2,

and Qe(ω1, ω2, ω3) is the fourth-order cumulant spectral density of et, defined by (14). Furthermore,
the SL estimator has the same limiting distribution as the QML estimator in the time domain.
In practice, the second term of U can be estimated by the approach of Taniguchi (1982) (see chp. 5 of
Taniguchi and Kakizawa (2000) and Zaffaroni (2009) for the general justification of the SL estimator).
Zaffaroni (2009) shows the consistency and asymptotic normality of the SL estimator for conditional
and stochastic volatility models with both short and long range dependencies.

Following Gray et al. (1989), Chung (1996a, 1996b), and Artiach and Arteche (2012), we use the
grid search procedure for different values of η over the range [−1, 1] for minimizing (18).
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5.2. Finite Sample Properties

We conducted Monte Carlo experiments for investigating the finite sample properties of the SL
estimator. The parameter values for Xt are specified as:

(µ, σ, φ, d, η) =


(0, 0.199, 0.98, 0, 1) for AR(1)
(0, 0.572, 0.30, 0.2, 1) for ARFIMA(1,2d,0)
(0, 0.520, 0.30, 0.4, 0.7) for GARMA(1,d,0), Case 1
(0, 0.675, 0.70, 0.3, 0.3) for GARMA(1,d,0), Case 2.

In the parameter settings, all the variances of Xt are equal to one. Note that the standard deviation
of εt is σε = π/

√
2 = 2.221, which is greater than twice the standard deviation of Xt. We consider

sample sizes n = {1024, 2048}, with R = 2000 replications. For the AR and ARFIMA models, the
structure (1− 2ηL + L2)d implies that the estimate of η can take any value when the estimate of d is
close to zero.

Table 1 shows the finite sample performances of the SL estimator for the GARMA model. The bias
for the estimator of d is negligible for both n = 1024 and n = 2048. The bias for η is negligible when
d > 0, and it is meaningless if d = 0. As noted before, when the true value of d is zero, the estimates of η

can take any values. The results for d = 0 show that the estimates of η are close to 0.7, and the RMSE has
no major change with respect to the sample size. The bias for the estimates of µ and φ are negligible.
The estimator of σε has a downward bias, while that of σ is biased upward. The result may come from
the difference in the sizes of the parameters. The biases for σε and σ become small as the sample size
increases. For all the parameters, except for the meaningless case of η, the bias, standard deviation, and
RMSE decrease as the sample size increases. Next we support the above findings using real data.

Table 1. Finite Sample Performance of the SL Estimator of GLMSV.

DGP Parameters
µ σε σ φ d η

AR(1)
True 0 2.221 0.199 0.98 0 1

n = 1024
0.0091 2.1201 0.4863 0.9693 −0.1086 0.8972

(0.2967) (0.1901) (0.4455) (0.0305) (0.3847) (0.0830)
[0.2967] [0.2152] [0.5297] [0.0323] [0.3993] [0.1320]

n = 2048
0.0011 2.1666 0.4047 0.9753 −0.0869 0.8986

(0.2170) (0.1137) (0.3361) (0.0119) (0.3590) (0.0797)
[0.2168] [0.1261] [0.3938] [0.0128] [0.3691] [0.1289]

ARFIMA(1,2d,0)
True 0 2.221 0.572 0.30 0.2 1

n = 1024
0.0034 2.0796 0.5907 0.8551 0.1004 0.8901

(0.4011) (0.3942) (0.6551) (0.2127) (0.3359) (0.0824)
[0.4007] [0.4185] [0.6547] [0.5944] [0.3500] [0.1373]

n = 2048
0.0063 2.2014 0.4303 0.8939 0.1568 0.9003

(0.3394) (0.1618) (0.4617) (0.1983) (0.2928) (0.0870)
[0.3391] [0.1629] [0.4826] [0.6261] [0.2957] [0.1322]

GARMA(1,d,0), Case 1
True 0 2.221 0.520 0.30 0.4 0.7

n = 1024
0.0027 1.9444 0.9212 0.0988 0.3301 0.6984

(0.0684) (0.5856) (0.5432) (0.3501) (0.1072) (0.0307)
[0.0684] [0.6473] [0.6749] [0.4035] [0.1280] [0.0307]

n = 2048
−0.0017 2.0965 0.7608 0.1693 0.3572 0.7005
(0.0564) (0.3353) (0.4068) (0.3143) (0.0797) (0.0052)
[0.0564] [0.3575] [0.4724] [0.3401] [0.0904] [0.0053]
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Table 1. Cont.

DGP Parameters
µ σε σ φ d η

GARMA(1,d,0), Case 2
True 0 2.221 0.675 0.70 0.3 0.3

n = 1024
0.0037 2.0348 0.8180 0.6441 0.2668 0.3016

(0.0871) (0.5725) (0.5207) (0.2018) (0.1481) (0.0937)
[0.0871] [0.6016] [0.5395] [0.2092] [0.1516] [0.0936]

n = 2048
−0.0014 2.1928 0.7022 0.6847 0.2905 0.3006
(0.0696) (0.2076) (0.2269) (0.1099) (0.0747) (0.0459)
[0.0696] [0.2094] [0.2283] [0.1109] [0.0752] [0.0458]

Note: Entries show the means of the SL estimates. Standard errors are in parentheses, and root mean squared
errors are in brackets.

5.3. Estimating and Forecasting Volatility

We introduce an algorithm of Harvey (1998) regarding signal extraction and forecasting of long
memory plus noise processes. Define U = (U1, . . . , Un)′, X∗ = (X1 − µ, . . . , Xn − µ)′, and ε =

(ε1, . . . , εn)′, in order to obtain:
U = (c + µ)1n + X∗ + ε,

where 1n is an n× 1 vector of ones. Then, the minimum mean square linear estimator of X is given by:

X̃∗ = (In − σ2V−1) {U − (c + µ)1n} ,

where V = V X + σ2 In, and V X denotes the covariance matrix of X∗. As noted in Section 5.1, V X
can be approximated by the algorithm of McElroy and Holan (2012) (see the Appendix for details).
Harvey (1998) recommends using the volatility estimate:

σ̃2
t = σ̃2

Ỹ exp
(
X̃∗t
)

,

where σ̃2
Ỹ = n−1 ∑n

t=1 Ỹ2
t , and Ỹt = Yt exp(−0.5X̃∗t ) are the heteroskedasticity-corrected observations.

For predicting the observations on Ut for t = n + 1, . . . , n + h, denote Uh as the h× 1 vector of
predicted values. Then the corresponding MMSLEs are given by:

Ũh = (µ + c)1h + RV−1 {U − (µ + c)1n} ,

where R is the h × n matrix of covariances between Uh and U. Using X̃h = Ũh − (µ + c)1h,
the predictions of σ2

n+j (j = 1, . . . , h) are given by exponentiating the elements of X̃h, and multiplying

by σ̃2
Ỹ.

6. Empirical Analysis

6.1. Data and Preliminary Results

The empirical analysis focuses on estimating and forecasting the GLMSV model for three sets
of exchange rate data, namely YEN/USD, EUR/USD, and GBP/USD. The sample period is from
4 October 2005 to 25 November 2015, giving 2549 observations. We calculated the returns series,
Rt = log Pt − log Pt−1, where Pt is the closing price on day t. We use the first n = 2048 returns for
estimating the GLMSV models, and the remaining 500 series for forecasting. The estimation period
includes the global financial crisis. Table 2 presents descriptive statistics for the whole sample. As our
interest is on volatility, we use the mean subtracted returns, Yt = Rt − R̄.
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Table 2. Descriptive Statistics for Exchange Rate Returns.

Data Mean Std. Dev. Skewness Kurtosis

YEN/USD 0.0028 0.6617 −0.3225 8.1747
EUR/USD −0.0045 0.6383 0.1717 5.9683
GBP/USD −0.0060 0.6163 −0.3377 9.6188

As a preliminary analysis, we estimated the new generalized fractionally integrated EGARCH
(GIEGARCH) model, defined by:

Yt =
√

htξt, ξt ∼ I ID(0, 1),

φ(L)(1− 2ηL + L2)d(log ht − µ) = θ(L)ζ(ξt−1),

where ζ(ξt) is the generalized return, and φ(L) and θ(L) are defined in Section 3. Following
Hansen et al. (2012), we consider the second-order Hermite polynomial for the error term, as:

ζ(ξt) = γ1ξt + γ2(ξ
2
t − E(ξ2

t )).

Assuming that ξt has finite fourth moment, it is straightforward to show E[ζ(ξt)] = 0 and V[ζ(ξt)] <

∞. When η = 1, the new GIEGARCH(p,d,q; η) model reduces to the class of the FIEGARCH(p,2d,q)
model of Bollerslev and Mikkelsen (1996). Following Bollerslev and Mikkelsen (1996), we truncate the
MA(∞) representation of the GARMA process of log-volatility as:

log ht = µ +
J

∑
j=0

ψ̃jζ(ξt−1−j),

where ψ̃j is the jth coefficient of the polynomial ψ̃(z) = (1− 2ηz + z2)−dφ(z)−1θ(z), with ψ̃0 = 1.
We calculate the value of ψ̃j by the approximating technique of McElroy and Holan (2012) up to
J = 1000 (see the Appendix A).

In addition to the FIEGARCH and GIEGARCH models, we estimated the GARCH model with
the conditional volatility equation:

ht = w + αY2
t−1 + βht−1,

as a benchmark.
Table 3 gives the QML estimates of the GARCH model. As a typical result, the estimates of α+ β is

close to one, indicating a possible long range dependence in volatility. Table 4 shows the QML estimates
of the FIEGARCH(1,2d,0) and GIEGARCH(1,d,0; η) models. For the FIEGARCH model, the estimates
of d indicate that the conditional log-volatility, log ht, has long range dependence. The estimates of γ1

are negative, while those of γ2 are positive. The estimates of φ are located in the interval (−0.25, −0.1).
Except for the estimates of γ1 for the EUR/USD return, all parameter estimates are significant at the
five percent level. These estimates are similar to the values obtained in the literature.

Table 3. QML Estimates of GARCH Model.

Parameters YEN/USD EUR/USD GBP/USD

w 0.0045 0.0010 0.0018
(0.0010) (0.0005) (0.0008)

α
0.0342 0.0329 0.0394

(0.0036) (0.0046) (0.0056)

β
0.9565 0.9647 0.9556

(0.0047) (0.0044) (0.0065)

Note: Standard errors are in parentheses.
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Table 4. QML Estimates of FIEGARCH and GIEGARCH Models.

Parameters YEN/USD EUR/USD GBP/USD
FIEGARCH GIEGARCH FIEGARCH GIEGARCH FIEGARCH GIEGARCH

µ −0.7736 −0.8589 −0.7916 −0.9170 −0.8771 −1.0338
(0.0474) (0.0427) (0.0715) (0.0776) (0.0809) (0.0760)

φ −0.1084 0.9749 −0.2401 0.9854 −0.2006 0.9881
(0.0278) (0.0034) (0.0509) (0.0014) (0.0379) (0.0019)

γ1 −1.1991 −0.0415 −0.2439 −0.0119 −0.7873 −0.0229
(0.3571) (0.0064) (0.1325) (0.0036) (0.2147) (0.0042)

γ2 0.7254 0.0321 0.5071 0.0140 0.4779 0.0108
(0.2696) (0.0043) (0.1496) (0.0023) (0.1727) (0.0027)

d 0.1491 0.3350 0.2368 0.4988 0.2495 0.4996
(0.0345) (0.0750) (0.0365) (0.0854) (0.0431) (0.0624)

η 1 0.3892 1 0.8583 1 0.8570
(0.0026) (0.0014) (0.0006)

ωg 0 1.1710 0 0.5388 0 0.5414

Note: Standard errors are in parentheses. The Gegenbauer frequency is given by ωg = arccos(η).

The estimates of d in the GIEGARCH model are about twice of those for the FIEGARCH model.
The estimates of η are positive, and the estimates of φ are close to one. The estimates of γ1 are
negative, while those of γ2 are positive. All parameter estimates are significant at the five percent level.
As the estimates of η are significantly different from one, the estimates of the Gegenbauer frequency,
ωg = arccos(η), are different from zero.

6.2. Estimates and Forecasts for the GLMSV Model

In the following, we show the empirical results for the GLMSV models as compared with those of
the GIEGARCH model.

Table 5 gives the SL estimates of the GLMSV model. The estimates of d and φ are close to the
values of the GIEGARCH model. Compared with the GIEGARCH model, the estimates of η are
higher. The estimates of µ are different from those of the GIEGARCH model, and the differences
may arise from the statistical flexibility of the class of SV models compared with their conditional
heteroskedasticity counterparts. All estimates are significant at the five percent level. As the estimates
of η are significantly different from one, the estimates of the Gegenbauer frequency ωg = arccos(η)
are different from zero.

Table 5. Estimates of GLMSV for Daily Currency Returns.

Parameters YEN/USD EUR/USD GBP/USD

µ −1.2366 −1.2030 −1.3069
(0.0579) (0.0544) (0.0538)

σε 2.5173 2.3482 2.2844
(0.0414) (0.0384) (0.0368)

σ 0.0868 0.1621 0.0974
(0.0350) (0.0378) (0.0311)

φ 0.9872 0.9939 0.9980
(0.0066) (0.0042) (0.0039)

d 0.3173 0.4702 0.4987
(0.1475) (0.1029) (0.1869)

η 0.8032 0.9597 0.8400
(0.0001) (0.0003) (0.0009)

ωg 0.6381 0.2849 0.5735

Note: Standard errors are in parentheses. The Gegenbauer frequency is given by ωg = arccos(η).
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As explained previously, we use the last 500 observations for the rolling-window forecasting
analysis, based on the approach in the previous section. First, we report the estimates of the
Mincer–Zarmowitz (MZ) regression, given by:

Y2
t = a + bσ̂2

t|t−1 + et, t = n + 1, . . . , n + 500,

where σ̂2
t|t−1 is the one-step ahead forecast of σ2

t on day t. Table 6 presents the results of OLS
estimation with heteroskedasticity and autocorrelation consistent standard errors. For all three data
sets, the GLMSV model has the highest R2. We should note that the simple GARCH model has the
second highest R2 for two series.

Secondly, we compare the forecasts using the robust and homogeneous loss function suggested
by Patton (2011), defined by:

L(σ̂2, h) =


1

c(c−1) (σ̂
2c − hc)− 1

c−1 hc−1(σ̂2 − h) (c 6∈ {0, 1})
h− σ̂2 + σ̂2 log σ̂2

h (c = 1)
σ̂2

h − log σ̂2

h − 1 (c = 0),

where c is the degree of homogeneity, h is the proxy of volatility (h = Y2), and σ̂2 is the forecast of
volatility. The general loss function reduces to the mean squared error (MSE) when c = 2, while it
is equivalent to the the loss function based on the quasi-log-likelihood (QLIKE) when c = 0. Table 7
shows the average of the loss function for the cases c = 0, 1, 2. For all three series, two of three loss
functions chose the GLMSV model, while the remaining one selects the GARCH model.

Table 6. Results for MZ Reression.

Data Parameter GARCH FIEGARCH GIGARCH GLMSV

YEN/USD

a 0.0859 0.0715 0.0404 −0.2356
(0.0676) (0.0660) (0.0687) (0.0898)

b 0.5887 0.5906 0.7116 1.5406
(0.1951) (0.1765) (0.1933) (0.2596)

S.E. 0.6496 0.6482 0.6467 0.6335
R2 0.1609 0.1644 0.1682 0.2020 †

EUR/USD

a 0.0329 −0.0493 −0.0631 0.1012
(0.0448) (0.0652) (0.0563) (0.0360)

b 0.8955 1.0968 1.1251 0.2704
(0.1116) (0.1729) (0.1438) (0.0307)

S.E. 0.5624 0.5748 0.5640 0.5560
R2 0.3226 0.2922 0.3187 0.3379 †

GBP/USD

a 0.0314 0.0464 0.0052 −0.4764
(0.0317) (0.0435) (0.0398) (0.1018)

b 0.7768 0.5747 0.7346 1.4038
(0.1445) (0.1704) (0.1520) (0.2140)

S.E. 0.3090 0.3143 0.3107 0.3050
R2 0.2950 0.2708 0.2875 0.3134 †

Note: Heteroskedasticity and autocorrelation consistent standard errors are given in parenthesis. ‘†’ denotes
the highest value of R2.
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Table 7. Comparison of Volatility Forecasts.

Data Loss Function GARCH FIEGARCH GIGARCH GLMSV

YEN/USD
c = 2 (MSE) 0.2129 0.2137 0.2106 0.1594 †

c = 1 0.4661 0.5006 0.4812 0.4232 †

c = 0 (QLIKE) 284.45 † 342.79 299.66 320.26

EUR/USD
c = 2 (MSE) 0.1578 0.1648 0.1588 0.0849 †

c = 1 0.4565 † 0.5245 0.5020 0.5787
c = 0 (QLIKE) 362.20 497.04 476.01 354.85 †

GBP/USD
c = 2 (MSE) 0.0479 0.0514 0.0502 0.0089 †

c = 1 0.2995 0.3804 0.3773 0.1983 †

c = 0 (QLIKE) 35,926 † 41,066 37,279 36,204
Note: ‘†’ denotes the smallest value.

Thirdly, we calculated the Value-at-Risk (VaR) thresholds, assuming normality of ξt. Combined
with the one-day-ahead forecasts of log-volatility, we computed the 1 and 5 percent VaR thresholds as
−2.326σ̂2

n+1 and −1.645σ̂2
n+1, respectively, fixing the sample size as n = 2048. In order to assess the

estimated VaR thresholds, we use the GMM duration-based tests developed by Candelon et al. (2011),
which works with the J-statistic based on the moments defined by the orthonormal polynomials that are
associated with the geometric distribution. The conditional coverage test and independence test based
on q orthonormal polynomials have the asymptotic χ2

q and χ2
q−1 distributions under their respective

null distributions. The unconditional coverage test is given as a special case of the conditional coverage
test, with q = 1. Table 8 shows the percentage of VaR violations and test results for the GARCH,
FIEGARCH, GIEGARCH and GLMSV models. For the FIEGARCH model, some of the test statistics
are rejected at the five percent significance level. On the other hand, for the GARCH, GIEGARCH, and
GLMSV models, the tests do not reject the null hypothesis at the 5% and 1% VaR thresholds, thereby
indicating that the estimated VaR thresholds are satisfactory.

Table 8. Backtesting VaR Thresholds for One-Step-Ahead Forecasts.

Data VaR GARCH FIEGARCH GIEGARCH GLMSV
5% 1% 5% 1% 5% 1% 5% 1%

YEN/USD

PV 0.036 0.008 0.034 0.004 0.036 0.004 0.0040 0.010
UC 0.6540 0.3168 0.9752 0.5989 0.5029 1.5034 0.0733 1.2558

[0.4187] [0.5735] [0.3234] [0.4390] [0.4782] [0.2201] [0.7866] [0.2625]
IND 1.7393 1.0694 8.1759 0.9347 2.1775 1.1999 5.2835 1.6877

[0.7836] [0.8991] [0.0853] [0.9195] [0.732] [0.8781] [0.2594] [0.7930]
CC 5.4979 3.3522 76.331 * 2.0605 5.4058 3.7080 7.2375 1.6877

[0.3582] [0.6459] [0.0000] [0.8407] [0.3684] [0.5922] [0.2036] [0.8905]

EUR/USD

PV 0.036 0.008 0.058 0.010 0.054 0.008 0.044 0.018
UC 0.6540 0.3168 20866 0.3457 0.3174 0.0097 0.6177 2.0001

[0.4187] [0.5735] [0.1486] [0.5566] [0.5732] [0.9214] [0.4319] [0.1573]
IND 1.7393 1.0694 1.3895 1.7610 0.0726 0.2397 3.5391 0.9180

[0.7836] [0.8991] [0.8460] [0.7796] [0.9994] [0.9934] [0.4720] [0.9220]
CC 5.4979 3.3522 3.0081 1.7610 0.3424 0.1625 6.6769 2.8541

[0.3582] [0.6459] [0.6987] [0.8811] [0.9968] [0.9995] [0.2458] [0.7225]

GBP/USD

PV 0.068 0.016 0.048 0.004 0.050 0.004 0.052 0.012
UC 2.7886 2.8064 0.0193 04137 0.0281 2.0368 1.7100 2.3767

[0.0949] [0.0939] [0.8894] [0.5201] [0.8669] [0.1535] [0.1910] [0.1232]
IND 1..3485 1.7954 18.555 * 0.8417 1.0782 1.2781 7.1894 2.7581

[0.8531] [0.7733] [0.0010] [0.9328] [0.8977] [0.8651] [0.1262] [0.5991]
CC 2.9997 4.0075 23.801 * 1.7850 1.0782 4.6977 3.9607 3.8607

[0.7000] [0.5483] [0.0002] [0.8780] [0.9560] [0.4539] [3.9607] [3.8607]

Note: PV denotes the percentage of violations, which is the percentage of days when returns are less
than the VaR threshold. UC, IND, and CC are the generalized method of moments duration-based tests
for unconditional coverage, independence and conditional coverage, developed by Candelon et al. (2011).
The number of orthonormal polynomials is set to 5. p values are in brackets. ‘*’ denotes significance at
5% level.
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By the three kinds of measures of forecasting performance, we found that the GLMSV model
always outperforms the FIEGARCH and GIEGARCH models for the period includes the global
financial crises. We also found that the simple GARCH model is the second best model.

7. Concluding Remarks

In this paper, we considered a generalized long memory volatility (GLMSV) model, based on
the GARMA(p,d,q; η) process, and examined the statistical properties. We discussed theoretical
background of the spectral likelihood (SL) estimation method, for which the asymptotic distribution is
the same as that of the QML estimator. Then we conducted Monte Carlo experiments for investigating
the finite sample properties of the SL estimator, and found that the finite sample biases are negligible
for n = 2048.

In addition, we estimated the GARCH, FIEGARCH, GIEGARCH, and GLMSV models, using
three exchange rate returns for YEN/USD, EUR/USD, and GBP/USD. The empirical results supported
long memory for log-volatility, and also showed a non-zero Gegenbauer frequency. Furthermore,
the specification of generalized long memory improved satisfactory the out-of-sample forecasts for the
MZ regression, the loss functions, and the VaR thresholds, which shows that the GLMSV model is a
useful addition to the existing models in the literature.
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Appendix A

We explain the calculation of the coefficients of the MA(∞) representation of the GARMA(p,d,q; η)
model, and the calculation of the autocovariance functions.

For the GARMA process, it is not easy to obtain explicit formulas for the MA coefficients and
the autocovariances that are valid for all lags. Recently, McElroy and Holan (2012) developed a
computationally efficient method for calculating these values. Using the Gegenbauer frequency,
λ = ωg, the spectral density of Xt can be written as:

f (ω) = σ2|1− e−iλe−iω |−2d|1− eiλe−iω |−2dg(ω),

where g(ω) represents the short memory part of the spectrum. For convenience, we define κ(z) so that
g(ω) = |κ(e−iω)|2. Then, κ(z) takes the form κ(z) = ∏l(1− ζlz)pl for (possibly complex) reciprocal
roots, ζl , of the moving average and autoregressive polynomials, where pl is one if l corresponds to a
moving average root, and minus one if l corresponds to an autoregressive root.

Define:

gj = −2 ∑
l

plζ
j
l

j
,

β j =
4d cos(jω)

j
+ gj,

ψ̃j =
1
2j

l

∑
m=1

mβmψ̃j−m, ψ̃0 = 1.
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McElroy and Holan (2012) showed that the MA(∞) representation of (11) is given by:

Xt = µ +
∞

∑
j=0

ψ̃jvt−j,

and the autocovariances of Xt for h ≥ 0 are given by:

γh = σ2
J−1

∑
j=0

ψ̃jψ̃j+h + RJ(h),

where

RJ(h) = σ2
{

J−1+2d F(1− d, 1− 2d; 2− 2d;−h/J)
Γ2(d)(1− 2d)

}
{1 + o(1)},

and F(a, b; c; z) is the hypergeometric function evaluated at z. Note that γ−h = γh. McElroy and Holan (2012)
recommend using the cutoff value J ≥ 2000.
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