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Numerial solution of boundary value problemsfor stohasti di�erential equations on the basis ofthe Gibbs sampler 1
S.M. Prigarin 2 and G. Winkler 3

To solve boundary value problems for linear systems of stohasti di�er-ential equations we propose and justify a numerial method based on theGibbs sampler. In ontrast to the tehnique whih yields for linear systemsan "exat" numerial solution, the proposed method is simpler to general-ize for stohasti partial di�erential equations and nonlinear systems. Suhgeneralizations are disussed as well.1 Statement of the problem for linear stohastidi�erential equationsLet us onsider a boundary value problem for a linear vetor-valued stohas-ti di�erential equation (SDE) of the Ito typedu(t) = A(t)u(t)dt +�(t)dw(t); t 2 (t1; tN ); (1)u(t1) = u�; u(tN ) = u�; (2)where u(t) = (u1(t); : : : ; uk(t))T is a vetor-valued random proess, w(t) =(w1(t); : : : ; wk(t))T is a vetor of independent standard Wiener proesses,A(t) and �(t) are k � k matries whose elements are pieewise ontinuousfuntions, u� and u� are non-random vetors.The problem is to onstrut realizations of the proess u(t) satisfyingSDE (1) and boundary onditions (2). In other words, it is neessary tosimulate a set U = fu(t1); u(t2); : : : ; u(tN )g of dependent random vetorsu(ti) (for a �xed grid T = ft1; t2; : : : ; tNg) with a joint distribution P (U)generated by the SDE and the boundary onditions.1The work partially was supported by RFBR grant N 00-15-961732Institute of Computational Mathematis and Mathematial Geophysis, pr. Lavren-tieva 6, Novosibirsk, 630090, Russia; e-mail: smp�osmf.ss.ru3Institute of Biomathematis and Biometry, GSF-National Researh Center for Envi-ronment and Health, 85764 Neuherberg M�unhen, Germany; e-mail: gwinkler�gsf.de1



2 "Exat" numerial solution of boundary valueproblems for systems of linear stohasti di�er-ential equationsFor a solution u(t) of the linear SDE (1) the �nite-dimensional distributionsan be desribed in a omparatively simple way: if the values u(�) and u(�)are �xed, then the distribution of u(),  2 (�; �), is Gaussian and doesnot depend on the values of u(s) for s < � and s > �. The moments of theGaussian distribution are written down in the following two statements (fordetails and proofs see [1,2℄).Here by �(t; s) we denote the prinipal matrix assoiated with A(t) andby Rts we denote Gram's matrixRts = tZs �(t; �)�(�)�T (�)�T (t; �)d�:Lemma 2.1 (onditional distributions for linear SDE) Assume thata vetor-valued random proess u(t) satis�es SDE (1) on the segment [�; �℄,and the matrix R�� is nonsingular. Then the distribution of the vetor u(), 2 (�; �), provided that u(�) = u�, u(�) = u� (the vetors u�, u� arenon-random), is Gaussian with expetationm = h�(; �)�R��T (�; )(R��)�1�(�; �)i u� ++R��T (�; )(R��)�1u� (3)and orrelation matrix E (u()�m) �uT ()�mT� == R� �R��T (�; )(R��)�1�(�; )R�: (4)If the matrix R�� is singular and u� 2 �(�; �)u(�) + R��(Rk), then for-mulas (3), (4) remain valid with pseudo-inverse matrix (R��)+ instead of(R��)�1.Lemma 2.2 (onditional distributions for time-invariant linear SDE)Assume that the vetor-valued random proess u(t) is a solution to SDE (1)with onstant matries, and the matrix A is stable (i.e., A(t) = A and�(t) = � do not depend on t and the real parts of the roots � of the hara-teristi equation det(A��I) = 0 are stritly negative). Then the distributionof the vetor u(),  2 (�; �), provided that u(�) = u�, u(�) = u�, is Gaus-sian with expetationm� = (B1 �K1BT2 K�1B)u� +K1BT2 K�1u�2



and orrelation matrixR� = E (u() �m�) (u()�m�)T = K1 �K1BT2 K�1B2K1;where B1 = exp(( � �)A), B2 = exp((� � )A), B = B1B2 = B2B1,K1AT +AK1 = B1��TBT1 � ��T ;K2AT +AK2 = B2��TBT2 � ��T ;KAT +AK = B��TBT � ��T ;K = B2K1BT2 +K2:(Here we assume that the matrix K is nonsingular. In partiular, K isnonsingular if the matrix � is nonsingular.)Aording to the "exat" algorithm, the grid T is sequentially sannedin a ertain order. For the urrent grid point  2 T , the losest points� <  and � >  must be found, where the values of u are already known,(note, that at the very beginning only the values u(t1), u(tN ) are known).Then the value u() is simulated aording to the onditional distributiondesribed in Lemma 1. (Calulation of averages and orrelation matries forthe onditional distributions in Lemma 1 is one of the most labor-onsumingsteps of the algorithm.) Finite-dimensional distributions of the proess u(t)are reprodued exatly by this algorithm.There are no restritions for the order of sanning, but omputationalosts an appreiably depend on it. From this point of view the bisetionsheme seems to be eÆient for time-invariant equations.Further results and examples onerning the "exat" algorithm, inlud-ing the study of existene and uniqueness of the solution for more generalboundary onditions, an be found in [2,3℄.3 The Gibbs sampler to solve boundary value prob-lems for linear systems of SDEFor the method on the basis of the Gibbs sampler, we propose below, it isneessary to �nd onditional distributions of a speial kind. For all innergrid points ti 2 ft2; : : : ; tN�1g = T0 it is neessary to know the distributionsof u(ti) provided that the values u(ti�1), u(ti+1) are �xed. These distribu-tions will be denoted by P (u(ti)ju(ti�1); u(ti+1)) and they an be found byLemma 1.3.1 Desription of the algorithmAn iterative numerial algorithm to solve boundary value problem (1), (2)an be desribed as follows. 3



Initial step. A vetor (whih an be random or non-random)U (0) = (u(0)(t1); : : : ; u(0)(tN ))is taken as initial, whereu(0)(t1) = u(t1) = u�; u(0)(tN ) = u(tN ) = u�:For example, the points with the oordinates (ti; u(0)(ti)) an be disposedon the straight line whih onnets the boundary points (t1; u�), (tN ; u�).Iterative step. We will onsider two versions of the iterative step, toprodue a random vetor U (n+1) from the vetor U (n).(a) Random visiting sheme. First, aording to a proposal distributionG on T0 we hoose a node t 2 T0. Then the value of u(n+1)(t) is simulatedaording to the distribution P (u(n+1)(t)ju(n)(t�1); u(n)(t+1)). For all othervalues we set u(n+1)(s) = u(n)(s), t 6= s 2 T0. The proposal distribution Gis assumed to be stritly positive on T0.(b) Deterministi visiting sheme. The inner grid T0 is sanned sequen-tially aording to some �xed proedure (a sweep with deterministi visitingsheme) in suh a way that all the nodes from T0 must be, at least, onevisited. For every visited node t 2 T0 the value of u(n)(t) is hanged aord-ing to the onditional distribution P (u(n)(t)ju(n)(t�1); u(n)(t+1)) (possibleprevious hanges of u(n)(t� 1), u(n)(t+ 1) during the urrent sweep shouldbe taken into aount). The on�guration obtained at the end of the sweepwill be taken as U (n+1).After many iterative steps a on�guration U (n) for large n is onsideredto be an approximation of U .3.2 ConvergeneThe sequene U (n), n = 1; 2; : : : ; generated by the algorithm is a Markovhain with a ontinuous state spae of N � k dimension. Obviously, thedistribution P (U) is invariant for the Markov hain, and then (under someadditional assumptions) the distributions of U (n) onverge to P (U).The exat results an be obtained from the general ergodi theory forMarkov hains presented, for example, in [5,6℄. In partiular, the followingstatements an be obtained like onsequenes of Orey's theorem.Proposition 3.1 Assume the matries Rti+1ti , i = 1; : : : ; N � 1, to be non-singular. Then for any initial on�guration U (0), kP (U (n))�P (U)k ! 0 asn!1 (heneforth by k:k we denote the total variation norm).Proposition 3.2 Consider a boundary value problem (1), (2) for a time-invariant SDE with a stable matrix A, and assume the matrix R�� to benonsingular. Then for an arbitrary initial on�guration U (0), the algorithmon the basis of the Gibbs sampler onverges to a solution of the boundaryvalue problem, i.e., kP (U (n))� P (U)k ! 0 as n!1.4



Remark 3.3 For a time-invariant SDE with a stable matrix A, the setRts(Rk) does not depend on the values s and t for s < t. If the matrixR�� is singular, then existene of the solution is equivalent to the onditionx� 2 exp((� � �)A)x� + R��(Rk), and the initial on�guration annot bearbitrarily hosen.4 A general sheme for partial di�erential equa-tions and nonlinear systemsThe approah of Markov ChainMonte Carlo (MCMC) seems to be promisingfor the numerial solution of boundary value problems for stohasti di�er-ential equations of di�erent types. There are several well-known shemesof MCMC like the Gibbs, the Metropolis and the Hastings methods. Forstohasti di�erential equations (when there is a desription of "loal" de-pendeny for the values of a simulated proess or a �eld) the Gibbs samplerseems to be one of the most appropriate and natural.Let us desribe a general sheme. Consider a boundary value problemfor a (partial nonlinear) SDE Au(x) = w(x), where x 2 X � Rd and w(x)is white noise. After disretization, the boundary value problem an be re-dued to another boundary value problem for a �nite di�erene equation~A~u(xi) = ~w(xi), where ~A is a disrete approximation of the operator A onthe grid ~X � X, xi 2 ~X , and ~w(xi) is a disrete white noise. The latter equa-tion enables to �nd the onditional distributions P (~u(xi)j~u(x); x 2 �(xi)) for~u(xi) when the values of ~u in the neighborhood �(xi) � ~X of the node xiare given. Then the Gibbs sampler (like in Item 3.1) an be used for theapproximate simulation of ~u(xi) on ~X: �rst, some initial on�guration is�xed and then the nodes of the grid are sanned (aording to a randomor a deterministi visiting sheme) and the values in the nodes are updatedaording to the onditional distributions.Remark 4.11. The following problems are signi�ant for the onsidered algorithm:(a) the study of auray for disrete approximation, (b) an appropriatehoie of the initial on�guration and the stopping rule for the Gibbs sam-pler, () balaning the errors for disretization and the Gibbs sampler todiminish the total error of the result.2. To optimize the algorithm, one an use suh well-known tehniqueslike the simultaneous updating for ensembles of nodes, synhronous andpartially parallel algorithms, et.3. Conventional iteration methods for deterministi systems an be on-sidered as an extreme ase for the Gibbs samplers when white noise has zerointensity. 5



4. If the intensity of the white noise in the SDE tends to zero, then theresult of simulation possibly onverges to a solution for a ertain problem ofoptimal ontrol (f. [2℄, p.153).Referenes[1℄ S.M. Prigarin, Numerial solution of boundary value problems for linearsystems of stohasti di�erential equations // Comp. Mathematis andMath. Physis.{1998.{V.38, N12.{P.1903-1908[2℄ S.M. Prigarin, Spetral Models of Random Fields in Monte Carlo Meth-ods. VSP, Utreht, 2001[3℄ S.M. Prigarin. On numerial solvability of boundary value problemsfor linear stohasti di�erential equations// Mathematial methods instohasti simulation and experimental design. Proeedings of the 4thSt.Petersburg Workshop on Simulation (2001, June 18 - June 22).- SaintPetersburg: Publishing House of Saint Petersburg University, 2001.-P.401-406[4℄ G. Winkler, Image analysis, Random Fields and Dynami Monte CarloMethods. Springer, Berlin, 1995[5℄ D. Revuz, Markov Chains. North-Holland Publishing Company, Ams-terdam, 1975[6℄ S.P. Meyn and R.L. Tweedie, Markov Chains and Stohasti Stability.Springer-Verlag, London, 1996
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