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Abstract

Three classes of models for time series on acyclic directaghs are considered. At first a
review of tree-structured models constructed from a neséetitioning of the observation interval
is given. This nested partitioning leads to several regmiuscales. The concept of mass balance
allowing to interpret the average over an interval as thestemerages over the sub-intervals implies
linear restrictions in the tree-structured model. Underhit@vnoise assumption for transition and
observation noise there is an change-of-resolution Kalfittanfor linear least squares prediction of
interval averages (Chou 1991). This class of models is gdined by modeling transition noise on
the same scale in linear state space form. The third class @éh models on a more general class
of directed acyclic graphs where nodes are allowed to hasgdwents. We show that these models
have a linear state space representation with white systedmaoured observation noise.

Key words: linear least squares prediction, tree-streckumodel, mass-balance, acyclic directed graph,

linear state space model, linear Kalman filter, score vector
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1 Introduction

The main problem considered in this paper is the optimaliptied and smoothing of stochastic pro-
cesses based on irregularly time-spaced observationarfyg br even huge data sets. Here optimality
means minimal linear least square errors. It is assumedhbatata is generated by a continuous time
stochastic process. Distorted observations are madedretkstime points, where the distance between
them may very short compared to the length of the observatienval. It is also allowed that the time
points are irregularly spaced in time. Dacorogna et al. 1206fer to such time series as irregular time
series. As they point out, most methods in time series aisalgly on homogeneously time spaced time
series. If the data is observed in irregularly spaced timtpdhen a homogeneous time series has to be
constructed from the raw data. For this they propose lingarpolation, previous-value interpolation or
other operators such as the moving average operator. Owbalrk of these methods is that the length
of the homogeneous intervals between two time points hae thbsen carefully and some information
contained in the data may be lost. After making the time sdr@nogeneous standard time series tech-

niques can be applied.

We review and introduce models that are formulated by aesrayer different time horizons, where
we do not need to construct homogeneous time series. Thevabea interval is divided on several
resolution scales into sub-intervals where these sulpviaite become shorter from resolution scale to
resolution scale. At the finest resolution scale therefloeeet are only short intervals that contain either
no observation, one or just a few observations. The aim sEtheodels is to allow for fast summaries for
different time resolutions that are estimated by lineastisguares prediction and smoothing. Another

matter of interest may be the relationship between the gesrfor different time resolutions.

Three classes of models are discussed in this paper. At fiestiew of models of Huang et al. (2002)
is given, which was formulated for spatial data. The spagéglon is divided by nested partitioning into
sub-regions on several resolution scales. Correspondiniget nested partitioning they define a tree-
structured autoregressive stochastic process. Due toapplication of nested partitioning they need
and introduce the concept of mass balance. In their modgktbsume the transition and the observation
noise to be independent, serially and mutually. In this easspeak of white noise otherwise the noise
is coloured. They also develop an algorithm for linear leagtare prediction of the averages over the
sub-regions which is connected to a tree-structure. Thgarithm is based on results of Chou (1991).
Formulation of these models for time series is straightfody Hence we consider these models as a

starting point for modeling interval averages.

We first generalize these models by modeling transitionenois the same resolution scale in linear



state space form. The observation noise is treated in the ssanner. The concept of nested partition-

ing and mass balance was retained.

Due to restrictions implied by mass balance these modelsyiap artificial structure of the correla-

tion matrix of the given data. So we formulate a third classioflels where mass balance is omitted. As
a consequence the concept of nested partitioning is no l@pyeicable and replaced by an overlapping
interval arrangement. The tree-structure is no longer ta@ied when overlapping intervals are used so

we formulate models on a more general class of acyclic didegtaphs.

Autoregressive stochastic processes on acyclic direataphg with white transition and observation
noise and a corresponding algorithm are discussed by Huzth@eessie (2001). Again we generalize

these models by allowing a linear state space model for #imsition and observation noise.

Since the algorithm proposed by Chou (1991) and Huang ansisier¢2001) is no longer applicable
for models on graphs with coloured noise we show how to findeali state space representation with
white system noise and coloured observation noise for thesiels. Therefore we give a brief review
of these linear state space models. A Kalman filter (Chui anenCL999) is applicable and an exist-
ing Kalman fixed point smoothing algorithm (Durbin and Koagmm2001) was modified to allow for
coloured transition noise in the state space domain. Wigharteto maximum likelihood estimation of

the unknown model parameters we derive an analytical reptason of the score vector.

2 Linear Least Squares Prediction of Interval Averages in anAdditive
Error Model

Huang et al. (2002) consider a continuous time stochasticessX (s) = u(s) + n(s) over an spatial
region G. Since we are interested in models for time series we replaapatial region by the ob-
servation intervall. 1(s) is assumed a deterministic mean processgrgl a stochastic process with
finite variance and zero mean. We assume that distortedwattesrs 7 (¢;) of the processX are made

at discrete time pointg which are irregularly spaced in time, i.e.
Z(ti) = X (i) +e(ts) (i €1),

wheree(t;) is a random error variable with zero mean and finite variance.

As in Huang et al. (2002) we are interested in fast summafig¢iseoprocessX (s) over sub-intervals

of I with different lengths. For this
1),
Y = — [ n(s)ds
1/,
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is considered as the average value)aiver the intervall. Here|l| denotes the length of the interval
1. In particular! is divided on a first scale into several sub-intervals. Trsegeintervals are divided
into shorter sub-intervals on following scales. Letenote the scale. On each scale the sub-intervals are

numbered starting with = 1 from the left to the right.

The goal is to find linear least square estimates in termseofdimplete data vectd of

1

1) Yjgi= =
P Ll

n(s)ds.

Let L(Y'|Z) denote the linear least square prediction operator of sorandriableY” given dataZ and

A" the generalized inverse of the matéx Then linear least square estimates are given by
) L(Yjk|Z) = E(Y) + cov(Yj, Z2)S5(Z — E(Z),

whereX z := var(Z). Formula (2) can be found e.g. in Hamilton (1994), Sectidn 4.

For application of (2) one has to know the complete covagasteucture ol’; , andZ and has to invert
the matrixX z. For big or even massive data-séfshis may be very consuming of computation time.

Thus we introduce in the following sections algorithms fecursive computation.

3 Tree-structured Models with White Noise

Chou (1991) introduces tree-structured models with whittesn and observation noise. He derives
a tree-structured Kalman filter and smoother for calcutatib linear least squares prediction. In this

section we review this model including the notion of massbed, since we will consider this model

as a first model for interval averag&$;, defined in (1). Huang et al. (2002) partition the observation
interval I into nested sub-interval ;. This means, they allow for no overlapping of intervals, aadh

sub-interval has just one parent. A precise formulatioriviergin the following definition

Definition 3.1. (Nested Partitioning (Huang et al. 2002):)
Let a real intervall with length|I| > 0, a natural number/ € N and a family of natural numbers

(Nj)j:1 with N;.; > N; (j = 1,...,J) be given. A collection of sub-intervald;, C I : j =



L,...,J, k=1,...,N;}is called a nested partitioning ofy if the following conditions hold:

0] |Ij7k|>0(jZl,...,J;]{J:L...,Nj),
N;
k=1
N;
(iii) ULx=1G=1,....7),
k=1
(iv) VIJk (j:2,...,J, kzl,...,Nj)Hk'e{1,...,N]-_1}

such thatl;, C I;_q .
3.1 The Tree-structure

Huang et al. (2002) consider a (univariate or multivariadédom process indexed by the nodes of a tree
(T,E). T denotes the set of the nodes and E the set of the elitectges. For the tree (T,E) we introduce
the following notation:
J : finest scale
j: scale, withj =0,...,.J.
N; : number of nodes on the scale(j = 0,...,J).
(4, k) : k' root on the scalg, counted from the left to the right.
pa(j, k) : parent node ofy, k).
an(i, j, k) : ancestor node on the scalef the node(j, k).
ng : number of children of the root node.
njk - number of children of the nodg, k).
ch(j, k1) : 1" child of the nodej, k).
de(i, j, k) : the descendants on the scale the node(j, k).

Example 1. As an example we show a tree with the finest sdate 3, andn;, =3 (j =0,...,J —

1;k=1,...N;)in Figure 1. For example take the no¢#, 1). Then the following relations hold:

parent node of2,1) : pa(2,1) = (1, 1),
ancestor node df2, 1) onthe scalg = 1: an(1,2,1) = (1,1),
first child of (2,1) : ¢h(2,1,1) = (3,1),

(
descendants @, 1) on the scalg = 3 : de(3,2,1) = ((3,1).(3,2),(3,3)).

Together with the nested partitioning from Definition 3.1 imenediately get a tree of intervals, where
the original interval I is assigned to the root. The interval; from Definition 3.1(iv) could then be

called a child of intervall;_ s (j =1,2,3;k =1,...,Nj).

7
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Figure 1: Tree-structure of Example 1

It is assumed that the process evolves from parents to ehildran autoregressive manner. The process
itself is considered as hidden. The corresponding obsensare connected with the random variables

on the finest scale by observation equations. Thus Chou X@®&iders the following model:

Definition 3.2. (Univariate Tree-structured Model:)
Let atree(E, T') with the finest scalg andn; . children(j = 0,...,J -1,k =1,..., N;) be given. A

tree-structured stochastic process can then be definedlas/fo

Root: Yo,
3) Transition equation: Yie =Yatip) T Wik G=1,....J5 k=1,...,N;),
4) Observation equation: Zy=Y5+Qr (k=1,...,Ny).

We restrict ourselves to the special case where obsensffgrare available only at the finest scale

Then we can index them with a single indexXV;  is called transition noise an@; observation noise.

Let X 1 Y denote that random variableX¥ andY are uncorrelated. If normal joint distribution of
the random variables is assumed this is equivalent to inddgece. Chou (1991) makes the following

white noise assumptions:
E(Yy) =0, B(Y}) < oo,
E(Wjk) =0,07, = E(W?,) < oo,
(5) E(Qk) =0,7; := E(Q}) < 0,
Wik L Yo, Wik LW, (5 #1),
Wik L Qi Qr LY.

Further assumptions necessary for the transition and wdigar noise will be given in the following

subsection.



3.2 The Concept of Mass Balance

The concept of mass balance was introduced by Huang et @2)2Mh (1) the average value gfs)
was defined by

1
Yk = | A n(s)ds.

It is natural to assume that the average value of the proy:{eszsaver the intervall; , is the sum of the

average values of(s) over the sub-intervalg ,; 1y, = 1,...,n;,. Thatis, it is assumed that
’I'L]'_’k

(6) Yie =D Yeniihn
=1

holds forj = 0,...,J—1,k =1,...,N;. This assumption was denoted by Huang et al. (2002) as mass
balance. This is equivalent to requiring

n]k
/ ds—Z/
Ijk IACR )

It can easily be shown that mass balance in (6) can be charzactdy

nj k
(7) Z\I Wen ey =0, or
n],k
8 var (Z |Ich(j,k,l)|Wch(j,k:,l)> =0
=1
forj=0,...,J-1,k=1,...,N;,l =1,...,n;, We can solve Equatiof7) for a choseW; 1. »):
1 X
Wengjhp) = — 1 — |Z\Ich(j,k,,\)\Wch(j,k,,\)
(9) ch(j,k,l) =1

AL
(j :0,...,J—1, k= 1,...,Nj, [ = 1,...,nj’k).

If [ Teni el = Hengey (0=1,...,n5,), i.e. for(I = 1,...,n;,) the sub-intervals have equal length

Equation (9) simplifies to

TL]k

(10) Wenii k) ZWch (k)

/\;él
3.3 Vectorized Tree-structured Models

Since the mass balance of a particular node involves conditbn all children of this node, it is con-
venient to combine these children in a vector. Together Wiginition 3.2 this yields the following

vectorization (see Huang et al. (2002), Subsection 3.2):



Definition 3.3. Given a tree-structured model as in Definition 3.2. Fee 0,...,J -1,k =1,...

Huang et al. (2002) define

(11) Y cn(ik) = (Yen(ik)s Yen(ik,2)s -+ s Yen(ikms ) s

(12) Wik = Wenip1)s WenGk2ys - Wen(ikmy 1))

(13) Z1, = (Zenpa(dk),1)s Zeh(pal1k),2) - -+ » Zeh(pa(Jk)rsp)) s
(14) Q. = (Qen(pa(sk),1): Qeh(pa(ik).2)s -+ » Qehipa(dk)rsi)) -

(G=0,....J —1L;k=1,...,N;).
We introduce some additional notation:

K; : Number of nodes on the scale j in the vectorized tree-stredtmodel
;% : Number of elements in the random vecds;, (j=1,...,J; k=1,...,Kj).
With this notation the following relations hold
Kj=Nj1 (G=1,....J),
Tik = Npaik) (G =1, s k=1,...,Kj),
Wie=Waur (G=2,....0 -1 k=1,...,N;).
We illustrate this vectorization by the following Example:

Example 2. For the tree in Figure 1 we define

Yi1 Wi

=1 Yii:=|Yip W= | Wip
Yi3 Wiz3

Yo Wa1

j=2: Yoi:=|Yoo W= | Wap
Yo 3 Wa3

Yo 4 Wau

Yoo = |Yo5 Woo = | Wys

Yos Wae

Yo7 Waz

Yos3:=|Yog Wy = | Wag

Yoo Wag

Y31 W31

=3 Ys31:= Y32 W31 = | Wsp
Y33 W33

Y3,25 W3 25

Ys39:= | Y3 Wi3g:= | W32

Y307 W3.97
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(L.1)
T
(2,1) (2,2) (2,3)

Figure 2: Tree for vectorized nodes in Example 2

This vectorized tree is shown in Figure 2.

We now consider the variance matrix W ; ;, 7 = 1,...,J, k = 1,..., N;, under mass balance. For
this let
EWch(J k) - var(Wch(j,k))
E(th(j,k-,l)) EWerhieyWenik2) -+ EWenGrnyWenikin 1))
EWen(je,2)Wenjik,1)) (thu k2) o EWen(ir2yWenGigen, )

E(Wch(j,k,nj,k)Wch(j,k.,l)) E(WCh(j7kanj,k)WCh(j-,kaQ)) E(Wgh(jykmj,k))
(1=0,...,J-1,k=1,...,K;).

Using Equation (9) the elemenits=1,...,n;; — 1 of the last column oEw , .., have to satisfy:

’I'L]'_’kfl ‘I
h(7,k,A\ |
EWenGiknyWen(ikns ) = EWeniin) D onirm ol o |Wch(j,k.,x>)
A=1 Ch‘(jak-,nj,k)

(15)

njr—1

= |Ih N Z\Ichgk,\w ch(de ) Wen(ikn)
c ] n]k

and the last element of the last columnF§V 2 ch(j.km; )). SinceXw , ; ., is symmetric, the last row

of EW i is simply the transponse of the last cqumnE)tV iy Huang et al. (2002) proposed a

) k)

simple method for constructing positive semi-definite oat satisfying mass balance which are used

as variance matricesw ., (j =1,...,J,k=1,..., K;). They assume that the condition
. 2 2 2 2 2 2
mm{uch(j-,k,lﬂ Och(j,k,1)’ |Ich(j,k.,2)| Uch(j,k,2)a---a|fch 3k, njk)\ O ch(jk,nj k) } >

(16) <X )
ngkngk_l Z\Ichgkz Teh(j,kl)

11



is satisfied. Recall thautf.’,c =wvar(Wjy)forj=1,...,J,k=1,...,N;. Further they define

1 )
Fengjk) = Mok — 1(nI”j,k = 1o, 10, )
1 /
Gy = (1 o 7 o Gy s
/

IrCh‘(jak) = (|ICh(]7k1)‘2/ Tt ‘ICh(Jkanch(],k))|2) ’

. 2 /
aCh(]ik) T (|ICh(~7’k1)‘ O-Ch(jakvl)’ Tt ‘ICh(jk’nCh(]ak)ﬂ O—Ch(jvkanch(j,k))) ’

1
cCh(jak) T Gch(j,k)rCh(j,k:)?
then the matrix defined by

A7) Zw,g = (diagrar)” Fougrdiag(eon i) Feng ) (diag(rengir) ™

is semi positive-definite and can be used as variance mdfrifor a node (j, k) in a univariate tree-

structured mode]rgh(j_k N = Ugh(j.k b (0=2,...njp) and|Lep(j k] = Lenj k1| holds, (17) reduces
to
_ 9 1 1 , )
EwWonn = T+ In; + ﬁfnj - ﬁlnjlnj) (j=1,....,J = 1).

Transition Equation (3) and Observation Equation (4) carebeitten for the vectorized model given by

Definition 3.3 as follows:

(18) Transition equation: Yk =1, Yie+ Wi,

(29) Observation equation: Zy=Y 5, +Q, (k=1,...,Ky).

The white noise assumptions (5) for the univariate modelyrfgr j = 1,...,J,k=1,..., K;
(20) Wi LYy Q LY,

and{W;,j=1,....J,k=1...,K,;} and{Q,.k = 1,..., K, } are families of mutually and seri-

ally orthogonal random vectors.

Chou (1991) introduced an efficient tree-structured Kalriléer and smoother for these models. The
algorithm has the advantage that, in case of a huge numbésefationsZ, it can be easily performed

in parallel problems of smaller dimensions. Estimationm{nown variance parameters of the transition
noise can be done by an EM algorithm, as formulated in Huaag €2002). They assumed the variance
of the observation noise to be known, for instance by infdionaavailable for the measuring device or

from independent experiments.

The most severe drawback of this setup in our opinion is thg faat the model given by (18) and

12



(19) implies an artificial block structure of the correlatimatrix of Z. In Appendix A we give an Ex-
ample that demonstrates this behavior. It is not possibigi®rate a stationary correlation function for
Z. As a possible solution Huang et al. (2002) suggested to at#the estimates as an average over a
number of mass balanced, tree-structured models wittréifteree branches. They also pointed out, that
the estimation variances and covariances will be condifieraore complicated and the computational

complexity will increase with the number of trees used.

4 Tree-structured Models with Coloured Transition and Obseavation Noise

In order to smooth the block structure of the implied cotielaof Z we relax the white noise assumption
while maintaining the orthogonality of transition noise different scales and the orthogonality on the

observation noise, i.e.
Wi LW, forj#iandW;;, L Qforj=1,....J, kl=1,... K.

But we now allow for correlation of the transition noise oe tame scale. For this we note that there is
only one node on the first scale of the vectorized tree. Fumleeassume for a given scajle=2,...,J
andk =1,..., K; — 1 the vectorized transition noise to be a vector AR(1)-pre¢sse for example Wei
(1990), Section 14.3) given by

(21) Wikt1 =B kWi + Vi,

whereV ; ;. is a zero-mean random variable and all of its components firave variance. Furthermore

we assumé/ ;. L W andV;, LV, for k # [. This implies

LW, p1lWii,...,Wji) = LW, 1|W;) = coo(W i1, Wj,k)E;Vj’ij,k.
Therefore,B; j, = E(Wj,kHWQ’k)E;Vj’k.
Let w;, be a realization of the random vectW ;.. The Mass Balance Equatidf), which is still

assumed to hold, states that a single element ip is uniquely determined by the other elements. This

implies a restriction on the covariance matfiXW ;. W', ;). More precisely, from Equatiof8) it

follows thatforA =1,...,n;; — 1
— 1 k4171

(22)  EWengiring oy Weniikn) Ly T— 121 Hen(rr1.0EWen k41,0 Wen(ken):
— 1 ik

(23) E(Wch(j,k+1,>\)WCh(]‘,kanj_’k)) _7W Zlil ‘Ich(j,k,l)‘E(Wch(j,k+1,A)Wch(j.,k,nj,k))7

—1
(24)  BWen(itting gy 1) Wenikng ) = ek [ BWen( kttm; ) WenGokn)

_ 1 an,k
‘ICh(]‘,k+1,nj,k+1)‘ A=t

Note thatll(Wen(j k+1,n; 401) Wen(ikny) fOr A =1,...,n; is computed in Equation (22).

13



Let Wlh denote the vectoW ., (; x) without its last eIemeanh(j,k_/nj.k). As seen from Equation

(7,k)

28 EWen(j k41, 1000 Wen(ikom; 1)) 1S @Weighted sum of all of the elements in the maEbW} kHW}f,ﬂ).

Sincelcov(X1, X2)| < y/var(X;)var(X2) holds for two random variableX, X,
(25)
nj,k—l

1
7 | D HenGuo) EWen(iaring ) Wen(ba) | S O, e40) T (iking 1)
| ch(j,k+1,nj.’k+1)| A=1

has to hold. In simulations with several covariance maa;rE(eti[/'j7k+1W9’k) Condition (25) turned out

to be just a necessary but not a sufficient condition to ol&ginsitive semidefinite matrix
UCL’I“(V]"]{;) = 'Ua'r(Wj’kH,l — Bj,ij,k) = 2Wj,k+1 — Bj,k:EWj’kB;,k;-

SinceB;x = E(W ;11 W))Zy  holds, the matrixvar(V;x) depends od(W ;1 W' ). Thus
one problem of this model is to find sufficient conditions foe vnatrixE(Wj,k+1W}7k) to obtain a

positive semidefinite matrixar(V ; ;) such that mass balance is satisfied.

For the observation noise we proceed in a similar manner:

Qi1 = DiQ, + Uy,

with E(Uy) =0, U L Q, andU, L U,. Since we do not require mass balance for the observations,

the problems discussed for the transition noise don’t ohete.

Since the derivation of the tree-structured Kalman filted amoother mentioned in the previous sec-
tion make distinct use of the orthogonality of the noise iestot apply to Model (18),(19) and (21).
But this model has a state space representation with wrstersynoise and coloured observation noise.
This state space representation will be derived in Sectifum tore general models defined on acyclic
directed graphs which allow several parents of a node. QmliiGhen (1999) derived a Kalman filter
for such state space models. A Kalman smoothing algoritlsnm Burbin and Koopman (2001) can be
modified for such state space models. Estimation of the umkrparameters can again be carried out by

an EM-Algorithm.

Forcor(Z) the vector AR(1)-structure of the observation noise seerhate no great effect. The major
effect is brought in by the vector AR(1)-structure of theasiéion noise. The structure eér(Z) depends
on the specification of the covariance matriﬁé(Wj,k+1W}7k) forj=2,...,Jandk =1,... K;—1.
But stationarity of the correlation function & was still not obtained. The correlation matrix Zfnow
depends also on specification E(Wj,kHW},k) or B, respectively. Example 6 given in Appendix
A illustrates this. On the other side we have to spesﬁ‘Wj,kHW},k) carefully and therefore have

more parameters to estimate than in the tree-structureeimath white noise. Thus it is questionable,
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whether the model with coloured noise is really an improvetnier the desired inference of time series
data. It seems that these problems are the result from uséngancept of mass balance. In the next

section we therefore introduce a model, where no mass @lamssumed.

5 Extensions of White Noise Linear State Space Models

In the next section we will derive a linear state space remtasion for an autoregressive stochastic
process indexed by the nodes of an acyclic directed grapl.thireason we give in this section a
short review about extensions of linear state space modeds.a detailed discussion see e.g. Chui
and Chen (1999). This section is arranged into several stibss. At first, we discuss linear state
space models with coloured observation noise which areeteedSection 6 for autoregressive models
on acyclic directed graphs. Then we give a brief summary efthlman filter and Kalman one step
predictor for these state space models. These two subsectfer to Chui and Chen (1999). In the
next subsections we state smoothing algorithms, where Mosvfthe approach in Durbin and Koopman
(2001) for white noise linear state space models. Since weider linear state space models with
white system and coloured observation noise some modditathave to be made. Then we discuss
the treatment of missing observations, which are necessamynsider for the models in Section 6. For
maximum likelihood estimation of model parameters we therivé an analytical representation of the

score statistic in the last subsection where we assumdaudiy normal distribution.

5.1 Linear State Space Model with White System Noise and Calioed Observation Noise

Chui and Chen (1999), Chapter 5, considered the followiagschbf linear state space models with white

system noise and coloured observation noise:

(26) Transition equation: X1 = A X + Th&,,
27) Observation equation: Z, = Cp Xy +ny,
whereX; € R, £, € Rmi, Z € R™K . Thereforen,, € R Aj, € RM+1Xme Ty € RMk+1 XM,

andC, € R™ *mi T is assumed to be either a selection matrix, i.e. only songodi elements are

equal to one, as all the other elements are equal to zero beraamatrix of the form

block 1
I, = ,
block p
wherep € N andblock m is a selection matrixin € {1,...,p}, andblockl = 0forl =1,...,m —

1,m + 1,...,p. In the latter case we say thBj, is a block selection matrix. For the transition noise
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{¢,,k > 1} and the observation noidey;,, & > 1} Chui and Chen (1999) assume
(28) E(&;) =0, var(&;) < o0, E(ny) = 0, var(ny,) < oo,
Er L Xp & LE (KAL), & Lmy (k1 >1),m, L X, (k12>1).

For the observation noisg, they additionally assume

(29) e = Ni_im_1 +; (k>2), withy, Ln,_1, v, L, (k#1).

Ny 1isam? x mf | real matrix. If N;_; = 0 Chui and Chen (1999) speak of white observation
noise, and if on the other harl¥,_, # 0 they say that the observation noise is coloured. Of course
all their derivations and our derivations given below hadd thoth cases. So we can regard the case of

coloured observation noise as a more general case thanetisiéevation noise.

The state vectorsX; are assumed to be unobserved. Thus they have to be estimatedhie data.

For this we denote fok > 1

Yz, =var(Zy)

3

zk=(Z2,,2s,...,2}),

Xy := L(X x| ZY).

The estimation error is defined by
Xy = Xp — X

The Kalman filter is a recursion for calculating the lineadesquare estimatéék‘k and the correspond-

ing mean square error matr&y, ;. := var(X ;).

Kalman one step prediction deals with the computation of
X = D(Xpi1|12"),
i3k+1\k = WT(Xk+1\k)7

whereX’kH‘k = Xga1 — X’kﬂ‘k denotes the one step prediction error&ar 1.

Let N denote the number of state vectdXs, ..., X n. Further definez := (Z,,...,Zxy)". The

3 3

Kalman fixed point smoother is a recursion algorithm for tomputation of

Xy = L(X|ZV),

f}k\N = UGT(XMN),

wheref(k‘N =X — Xkuv denotes the estimation error &f;, in terms of Z™ fork =1,..., N.
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Kalman filtering, prediction and fixed point smoothing rely decomposition of the data vectérinto

so called innovation8 which are defined fok > 2 as linear least squares prediction errors
(30) 0k = Zy — L(Z| 2" ),

whereZ*~! denotes the vectdiZ, ..., Z,_,)'. With Schneider (1986) (Satz (2-15)) the relatiiyn L
Z*=1 holds and thus{ek, k> 2} is serially orthogonal. Similarly to Chui and Chen (1999) gan
derive two representations féy,. Using the Observation Equation (27) and the Transitionaiqo (26)
wegetfork=1,..., N

Zy=CpXp+n =CiXp+ Nipimy | +7;
= Cr(Ap1 X1+ Tpoi&g1) + N1 (Zior — Croai Xm1) + 94
= (CrA 1 — N 1C )X 1+ N1 Zy  + Crhl 1&g + s
(31) =H, 1 Xy 1+ Ny 1Zp 1+ CrTy_ 1€+, With

(32) Hj_1:=CpAj_1 — Ny_1Ciq.

Since¢), 1 X and¢, L ~, we conclude thafs(¢,,Z}) = 0 and thusL(¢,|Z*) = 0. From Assump-
tion (29) it follows thatL(~,|Z* ') = 0. Substitution of (31) into (30) yields

@3) 0, =2Zr— L(Hp 1\ Xp_1 +Ny_1Zj1 +CiTro1&p 1 +7:l 257
=Zy— Hp 1 X1 — N1 2y 1.
Further substitution leads to

(34) 0 =H), 1 X1+ Ny 1Zp 1+ CrTro1€p 1+, — Hi i X oo — N1 23y
=H; (X1 — Xy qj4-1) + Culk—1€4 1 + 4

Note thatX’k,H,g,l is a linear function ofX,_; and Z*~!, ThereforeE(X,g,Hk,lgjﬂ_l) = 0 and
E(Xy 15 17)) = 0holds fork =2,...,N. Thus

(35) Ay :=var(6) = Hy 1Sy_y 1 H) | + Cili_var(&,_)Ty Cy + var(vy).

5.2 Kalman Filter and One Step Predictor for State Space Modis with White System
and Coloured Observation Noise

In Chui and Chen (1999) the Kalman filter is initialized by

Xy = B(X1) —var(X1)C12, C1(BE(X1) - 21),

(36) . _ _
X = var(Xy) — var(Xl)CIIEZCwar(Xl).
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Then the following recursion formulas hold for the Mod26), (27) with & > 2 (Chui and Chen (1999),
(5.21), page 73):

(37) Gi = (A1 Zy 1 1 Hy_y + Tp_rvar(€,_)Tp_ Cl) - AL

(38) Fip:=A, -G Hj_q,
(39) Sk = FrEp_ip-14y 1 + (Imy, — GuC)Ty_yvar (&, )T} 4,
Xy = A1 X151 + G-
In Equation (39) the Representation (33) is used. Note leaRepresentation (34) contains unobserved
components. These are the filtering equations. With TiansEquation (26) we get for the one step

predictions fork > 1

Xpin = A Xy,
(40) ) o
ik = ArBpg kA

sinceL(&,|Z%) = 0.

To obtainXk‘N andf]k‘N fork =1,..., N we have to apply a Kalman fixed point smoothing algorithm.
Since the algorithm makes use of the innovati@gsrather than of the data vecta#,, we can replace

Z . by 0, successively to save memory space. The matm']cg% and G have to be stored. It may be

the case, that these matrices are not different fok &t A;' = A; ! holds for soméd = 2,..., N
andG, = G, forsomem = 2,..., N. Then only the different matrices have to be stored, togethe
with the information to which indices they correspond. Thatrices{F,k = 2,..., N} need not

to be stored, if sufficient memory space is a problem. It mayheecase, that there are as well only
a relative small number of different matric#,. On the other hand, they could be computed in the
smoothing step again. In our applicatioAs andC}, k = 1,..., N — 1 happen to be sparse matrices
of simple structure, where matric®é,, have relatively small dimensions and may be only a small num-
ber of differentN, for k = 1,...,N — 1. ThusA;, C}, and N}, need not much memory space and
computation ofF';, and H;, can be done without much effort. Matric€%, are needed anyway for the
computation Oék\N andvar(ékw). Matrices{T';,k = 1,..., N —1} are also needed in the smoothing
step. {I‘k, k=1,...,N — 1} are sparse selection matrices. For smoothing we need a&sudlrices
{var(y;),k = 2,...,N} and{var(&;),k = 1,...,N — 1}. Again, there may be only a relatively

small number of differentar(v,) andvar(&).
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5.3 Kalman Fixed Point Smoother for Linear State Space Moda with White System
and Coloured Observation Noise

Similarly to Durbin and Koopman (2001) (4.25) and (4.30) veéiiake recursively fok = N, ..., 2

(41) Py :=H, A, 'H;_ + F}P,Fy,

(42) Ry := H}_,A;'6) + F} Ry,

wherePy = 0andRy = 0. Ifindexk = N — 1,...,1 is interpreted as a time index thd®, is a
linear function of the inverse variance matrices of innmrag occurring after timé, and Ry, is a linear
function of innovations occurring after tinie Then we compute fok = N —1,...,1 using X, and
34 & from the Kalman filtering (36) - (39)

Xpn = Xk + S Re,
(43) 8 s s 8

YN = Vg — Ve P ek
Note thatXN‘N and le\N were already computed by the filtering step (36) - (39). Thivdion of
(43) is given in Appendix B.

For the derivation of the score vector we need the smooth&drtiancesy,, y = L(v.|ZN), k =

N,...,2 andfm‘N = L(gm‘N|ZN), m = N —1,...,1. The corresponding smoothed estimation

’

errors are denoted by

Y =1k — Ll ZV),

gm\N =& — L(&m\N‘ZN)

The mean squared error matrices (¥ y) and var(fmw) are also needed for the derivation of the
score vector. Computation of the smoothed disturbancesttendorresponding mean squared error

matrices can be done using the following recursion formulas

Yy = var(y,) (A, ' 0x — GLRy),
(44)

var (g ) = var(yy) — var () (Ap ' — GLPLGy)var(vy),
Exiv = var (&) Cl | ALl 041 +var(€,) (T — Giy1Crit) Ris,
(45) var (€ y) = var(&y) —var(€)TCh Ayt Crii Trvar (€),)
—var (&) (T, — Gi41Cx41) Pyt (Tk — Gy Cppa Jvar(€y).-

In Appendix C the derivation of the equations fpf andékw and in Appendix D the derivation of

the equations fovar (¥ v) andvar(ékw) are given.
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5.4 Missing Observations

In our applications of Kalman filter and smoother algorithimslinear state space models with white
system and coloured observation noise we might have to dtlowissing observations, that is there is
no observation connected with the state ve&qrfor somek = 1,..., N. In this case we defin€}, to

be a zero matrix of appropriate dimension and we re-defing (29) and (32) more generally as:

{C’ka-f—’f)k ,forCy #0
Zk =

VA ,forék:(],

Nj_ forC #0
w e {0

Ni_1 ,forC, =0,

{ékl‘ik—l — Ny_1Cy—y ,forCyr #0
Hy | :=

,forCj =0.

For C}), = 0 (46) impliesN;_; = I andv, = 0. There is no new information related #, and the
innovation@, = Z, — L(Zk|Zk‘1) is a zero vector with variance matriX;, = 0. But derivations of
Kalman filter and smoother algorithms hold also for the cagegn the inverse variance matrices that
occur are replaced by their generalized inverse (see e.qiltda (1994), Section 4.1). FaA, = 0

the generalized inverse matrix 48; = 0, implying for (37) and (38)G), = 0 andF;, = A;_;. The
filtering and the smoothing equations can then be appliedtin tases when observations connected to

a specific state vector are observed or not.

5.5 Derivation of the Score Statistic

Since often model parameters are unknown in practice they teebe estimated. For linear state space
models maximum likelihood estimation is commonly used, esge Durbin and Koopman (2001) and
Harvey (1987). Here the score statistic becomes importarihé application of an EM algorithm or for
numerical maximization. For this reason we give in thisiseca derivation of an analytic representation
of the score statistic for linear state space models withentnansition noise and coloured observation

noise.

Let ¢ denote the vector of the unknown parameters in a parametee$h The parameter vector
1) might consist of unknown variance and covariance parametst some nonnegative weights. There-
fore we assume th& C R’ xR with ¢, » € N. The likelihood function o#/ formed from the observed
data is given by

L(yp; ZN) = p(Z":4p),

wherep(Z " ;4)) denotes the probability density function 8f" in terms of the parametets. Similarly

the likelihood function ofyy formed from the complete set of the unobserved state vectol's :=
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(X1,..., X )" and the observed da@" is given by

’

L(yp; XN, ZN) = p(XN, ZN;4p)

3

wherep(XN, ZN: ) is the joint density ofX ¥ and Z" in terms of the parametets.

As in McLachlan and Krishnan (1997) we define the score $iatimsed on the observed dafd’

as
N
S(ZN ) = %jz), and corresponding to the complete da®’’, Z™V) by
47 N N
S(XN, 2N = PO DT

Under regularity conditions like continuity, the intercigge of integration and differentiation is valid. For
this case McLachlan and Krishnan (1997) show that for a fixederp € © S(Z" ;) can be written
as

- 0
(48) S(ZN; ) = @Eq/—,[log L(y; XN, ZN

We use (48) for the derivation of the analytic represematigor this we assume th& Y and Z" are

)] ‘w:&

jointly normally distributed in addition to assumption §28urther,var(§,) andwvar(vy,,) are either
non-singular or zero matriceB,= 0,..., N —1,m = 1,..., N. Inthe latter case the termar(€¢,) ",

var(v,)~! in equations below have to be replacedy

We will need the following result (see e.g. Kailath et al. @0 Appendix 3.C): LelU, V' be two

jointly normally distributed random vectors. Then

LU|V) = E[U|V),
(49)
var[U — L(U|V)] = var(U|V),
whereE(U|V') denotes the conditional expectation ana (U |V') the conditional variance d¥ given
V. Furthermore, the random vectb| V' conditioned orV" is normally distributed with meaR (U | V)
and variance matrixar(U|V).

Applying Bayes Theorem yields
(50) p(XN,ZN ) =p(X N ;9p)p(ZN | X N 59p)=p(X 139) [Ty P(X k| X1, X i 159).

Using (26), (28) and (49) we get

1) L(Xp X1, Xpy1) = (X Xpo1) = B(Xg| X 1) = A1 X1,
var(X | Xg_1) = var[ Xy — BE(X k| Xg_1)] = Tr_1var(€&,_)Th_;.
In addition we have

N N

52)  p(XViy) =p(X 1Y) [[p(Xul X1, Xpoii9) = p(X159) [[ (X k| Xim1:9),
k=2 k=2
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wherep(X 1| X y_1; ) is a multivariate normal density with meaty,_; X ;,_; and variance matrix

Ty_jvar(&, ;)T,_,. Using again Bayes Theorem we have

N

p(ZY| XN ) =p(Z1| XV ) [[ p(241 251, XN 4p).
k=2

Applying (27) and (28) together with (49) it follows
E(Z,|X1) = C1E(X | X1) + E(n,|X1) = C1 X,
var(Z1|X1) =var|Z, — E(Z,|X1)] = var(n,)

3

E(Zy| 2" XN) = CLE(X12" ', XN) + E(n,|Z2¥ ', X)
(53) _
= CLE(X 4| X k) + Ny 1 E(ny_1| 2", XN) + E(v,| 21, X)
= CrE(X 4| Xk) + Ny 1 E(ny_11Zp—1, X 1) + 0

=E(Zy|Z) 1, X1, X})

3

sincen, | = Zy_, — Cj_1 X _, is alinear function 0Z;_; andX;_;, andvy, L Z¥~', X", This

yields

E(Zy|ZF 1L, XN)=Cr X+ Ni_1m4_1,
&9 var(Zy| 281, XN) = var[Z), — E(Z|ZF71, X V)] = var(v,).
We define

Sincel' is a selection matrix or a block selection matrix the rellig I, = I holds and it follows that
& =T Tréy = Ty (X py1 — T Xy).

The complete log likelihood can now be calculated as follows

(55)
log L(y; XN ,ZN) =log p(XN,ZN p)=log p(X " ;1) +log p(ZN | XN ;ap)

=log p(X 1;9)+ 31y log p(X | X k—159)+log p(Z1| X 159)+ 0o log P(Zk| Zy—1,X =1, X 3)

=const-— 3 | log(|var (§,))+&qvar(€9) ™" €g+log(Jvar (v1) )+ var(y1) ™

+ N [log(jvar (€4 1)) +€)_ var(€_1) €y +Hog(lvar(vy) )+vivar (vi) " vk ]
= const—1 SN, [log([var(€;,_;)|)+log(Jvar (v,,) )+€4_ var (€, 1)~ &,y +7ivar(vi) ™ vy

Since for a random vectdr of sizen and M € R™*™ symmetric

(56) E(VMV) = tr[Mvar(V)+ E(V)E(V)']
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(Seber (1977), Theorem 1.7) holds we haveyor 1)

(57)
S(ZN )= B [log Liwi XV, ZN)] ‘¢=1/7

=—12 5 {tog(lvar (&4_ ) +og(jvar (v )+ Fg (€ yvar(€y_ )~ 6112V |+ B [ var(yy) ~tvi 2V ] }
=L 8 5N [tog(jvar (&) )+Hog(lvar (y) )+t (€ -y nEhm v +oar (€ y) ~ var (€, |ZY)

ttr (3 5y Fvar (v) " var (4 2V)) |
Pp=1p

Note thatF(g;,_,|Z") = ék—l\N andE(v,|Z") = Yk|N- Sinceék—l\N! var(€,_11ZV) = Ua?"(ék—uN)
and9y, n, var(v,|ZN) = var (Y y) Were computed in (44) and (45), respectively, under thenagsu
tion 4» = 1) these terms do not vary withh. Thus in (57) only the terms inar(¢) andvar(~) require

differentiation with respect tep.

In the case of missing observations in the state space moelelumber of state vector§x is greater
than the number of observatio® z. We have augmented the original data vecd¥? by some vec-
tors Z,, = Z;_, when there was no observation connected with the staten&ctok = 1,..., Nx.
Let ZVx denote the augmented data vec®f'2. Then for the likelihoodL(y; XVx K ZVx) =
L(v; XVx, ZNz) holds. Thus we can skip the corresponding terms in EquaioyvhenZ, = Z,_;.

Therefore we write Equation (57) as

(58)
— 1 0 Nx ~ o
S(ZN7; ) = 20w Z[log(\”ar(ﬁkq)\) + 17 (€1 Ny €hoi vy +var(€_y) var (g, |Z277))]
k=
Nz 1
+ Z[l09(|m7”(’7k)|NZ) (VN Ty + var(yy) 'var(vg ZV7)]|
k=1 P=1

6 Autoregressive Models on Acyclic Directed Graphs

6.1 Introduction

Huang and Cressie (2001) relaxed the tree-structure amaeall for structures on more general acyclic
directed graphs. As Huang et al. (2002) they assume whiterayand observation noise. For these
models they derive so-called junction trees. The treesgirad Kalman filter and smoother work now
on these junction trees. We took these models as a startingtpdormulate a model for time series,

omitting mass balance. For this we drop the assumption dédgmartitioning and use an overlapping
arrangement of sub-intervals instead. We will now defineaé&d acyclic graphs and required additional
notation. Finally we define stochastic processes, indeyatbtdes of a specific class of acyclic directed
graphs. System noise and observation noise are then maddieear state space form where we do not

require white noise but can allow for coloured noise.
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6.2 Overlapping Interval Arrangement and Acyclic Directed Graphs

Definition 6.1. Overlapping Interval Arrangement
Let interval I C R with length|I| > 0, a natural number/ € N and a family of natural numbers

(Nj)j:1 with N;.; > N; (j = 1,...,J) be given. A collection of sub-intervald;, C I : j =

1,...,J, k=1,...,N,} is called an overlapping interval arrangement 6yif the following conditions
hold:
0) Lig >0 (7=1,...,J; k=1,...,N;),
(II) Ij7kﬁIj7k+17é®(jzl,...,J;I{}ZI,...,Nj—l),
N;j
(iii) ULk=IG=1....0)
k=1

We consider the indices of these sub-intervals as nodes imeetetl acyclic graph, which is defined in

graph theory as follows:

Definition 6.2. Let a finite set of nod€E and a set of edgeE € V x V be given. If for all(v,v') € E'it
follows that(v',v) ¢ E, then the paifT, V) is called an acyclic graph. A path of length> 1 from v
tov, € T is a sequence of nodeg, vy, . .., v, such that(v;, v;;1) is an edge for each= 0, ...,k — 1.
A cycle of lengttk > 1 is a pathvg, v1,. .., v; such thatyy = v;. An acyclic directed graph is a directed
graph that has no cycles in it. For a directed edgev’), v is said to be a parent af, andv’ is said to
be a child ofv. A nodewv of a directed graph is said to be a root, if it has no parent, d@nd called a

terminal node, if it has no children.

These definitions were used by Huang and Cressie (2001).thadterith this definition a graph can have
more than one root. For the models we consider we make adalitifinitions:

We say that a node is on scalej = 1 if a root is the parent of. Roots are then nodes on scale= 0.
The further scales are defined recursively: We say that aisamtescalej + 1 if its parent or parents are
on scalej. We call the scale with only terminal nodes on it the finest scale. The numberoofas on a
scalej = 0,...,J is denoted byV;. The numbering of nodes on a scalstarts withl at the left and pro-

ceeds to the right up ;. Thus thekth node on the scalg= 0, ..., J can be denoted by the paii, k).

The nodes are allowed to have up to two parents:

A node (j, k) is called a left parent of the nodg + 1, ') if (4, k) is the only parent or ifj, k) is a
parent of(j + 1, k') and if there is a nodgy, k + 1) that is also a parent ¢f + 1, k£'). We denote the left
parent of(j + 1, k') by lpa(j + 1, k"). Anode(j, k) is called a right parent dfj + 1, k'), if (5, k) is the

only parent or if(j, k) is a parent of j + 1, ') and if there is a nodé¢j, k — 1) that is also a parent of
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(4 + 1,k"). We denote the right parent of + 1, k') by rpa(j + 1, k').

A path from the root to the terminal nodd, k) is called the left path from the root to/, k) if only
(J, k) and left parents of nodes of the path are on the path. A path fhe root to the terminal node
(J, k) is called the right path from the root {0, k) if only (7, k) and right parents of nodes of the path

are on the path.

Let P; denote the number of nodes on scalthat are left parents fof = 0,...,J — 1 and N; the
number of nodes on scajej = 0,...,J. Forj =1,...,.J we can specifyk; € N, P;_; < K; < N;
andl; ., rj € Nwith ;, < r;, fork = 1,..., K; such that the nodeg.; ), ..., (j,7;x) have the

3 3

same left parent. We st :== {(5,1x),-- - (j,7; )} and denote the cardinal number:gf, by n; ;.

For the models discussed below we will consider only acydiliected graphs with one root and where
all the terminal nodes are on the finest scélenly. Furthermore we assume that the nodes of scale
j = 2,...,J have up to two parents. For easier reference we call sucthgram-parent-terminal

graphs.

The whole observation interval and the sub-intervals okthiby overlapping interval arrangement can

now be indexed by the nodes of an acyclic directed graph.

Example 3. To illustrate these notations we give an example Witk 2 and three sub-intervals on the

scalej = 1 and six sub-intervals on the scale= 2, see Figure 3.

0 o /’\

(11 (12) @
@1 1.2) 13 1

2,1 2,3 2,5
G o —BF— o —BI e

(21 22y (23) (24 (25 (2

() (b)

Figure 3: Overlapping Interval Arrangement (a) and Comesiing Acyclic Directed Graph (b) for
Example 3

Since we have no nested partitioning as in Definition 3.1 batlapping sub-intervals we don’t have to
pay attention to the linearity of the integral and thus no srzeslance is needed. One possible acyclic
directed graph, corresponding to this overlapping infea@ngement is given in Figure 3(b). The nodes
onj = 1 have only one parent, the root, while each nodg en2. ... .J has a left parenfp and a right

parentrp.
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Following Huang and Cressie (2001) we define a stochasticeps” := {Y0,Y; 4, {j.k} € T} in-
dexed by the nod€B of a two-parent-terminal graph, starting with at the root:

(59) Transition Eq.j =1 Yie=Yo+Wy (E=1,...,Ny).

(60) TransitionEqj =2,...,J: Yik = iYip(ik) + BikYepGihy + Wik (E=1,...,Nj).
(61) Observation Eq.: Zy = cp Yy + Q.

wherecyis a real number an@,, a random variable fok = 1,..., N;. We also say thaY}  is a child
of Yipa(jk) @ndY,pa(j k) @nd thatVy,a ey, Yepa(jk) @re parents ot for j =2,...,J, k=1,..., Kj.
Note that if we setv; ;, = 0V 7,k and consider e. g. right parents as the only parents in thEhgree

are back to trees discussed in Chapter 4.

In this model observations again are only associated wéliitiest scale/. Further assumptions are:
Yo, Wjk, Qi are zero mean random variables with finite variancg,, 5, € Ry := {z € R: 2 > 0}
with Ok + 6]"]{; =1, Wj,kz 1Y%, Wch 1 Ql, Ql 1Y, andWM 1 Wi,la (j 7'5 ’i).

For j fixed, the transition nois¢W; s,k = 1,...n;} is modeled in linear state space form:
(62) Wj,lﬁ»l :Bj,ij,k+Vj,ka k= 1,...,Kj -1

where the elements of the random vech; ;, are the elements of the sgt; » : (j,A) € v;}, and
B;; € Rtk andV ;, is a zero mean random vector with ;. ; elements. Further we assume
{Vjrk=1,...,K;} to be a family of uncorrelated random vectors, also uncateel toW ; ;. The

state space representation (62) implies
(63) LW k1 Wi, oo, Wik) = LW 1 [W ).

3 ’

Kailath et al. (2000) call this weak Markov property, sinnggeneral the Markov property is defined by

conditional independence rather then by covariance.

The observation nois{an, m=1,... ,NJ} is modeled in a similar manner with
(64) Qui1=D;Q,+Uy, kE=1,...,K; -1

where the elements of the random vedi@r are the elements of the s{eQA () € yJ,k}, D, e

Rre+1 %10k andU g, @ zero mean random vector with, | Q. andUy L U, for k # 1.

6.3 Linear State Space Representation for Models on AcycliDirected Graphs

We explain how to find a linear state space representatidm wiiite system and coloured observation

noise by a simple example.
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Figure 4: Two-parent-terminal Graph for Example 4

Example 4. Consider the graph shown in Figure 4. On the finest sdate 3 the nodeg3, 1) and (3, 2)
have both parents in common. Thus weisgt := {(3,1), (3,2)}, Y31 := (¥3,1,Y32) and W3 :=

(W3,1,W34)'. Proceeding in the same manner on scalee get random vector¥’s ;,...,Y 55 and

Wi,...,Ws. ObservationsZ,,, m = 1,..., 10, are similarly compounded into vectors:

3

On scalej = 2 we get the random vectoM/ o | := (Wo,1, Wa2)', Wao = (Wa3, Way4)', Was :=
(Waos, Wag) andY o := (Ya,1,Y22), Yoo := (Y3, Y24), Y3 := (Yo5,Y26)". The nodes on scale
j = 1 have the root as parent. Therefore we defié® ; := (Wi, Wio), Wig = (Wis, Wia)
andY ;= (Y11,Y12), Y12 := (Y13,Y14). Using Transition Equations (59) and (60) yields the
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transition equations for the vectorized model:

Y11 Yo+ W1 1
Yi1 = = =Yp
Y12 Yo+Wr, 2

Yi3 Yo+Wi, 3 Wi,3

Yio = = =
Y14 Yo+ W1 4 Wi,4

S You\  [a2aYi,1+82,1Y1,2+Wa

2,1 = =

Yoo 022Y1,1+B2,2Y1 2+Wa o 2,2 B2,2
Yo 3 a2,3Y1,24+82,3Y1,3+Wa 3 0 B2,3 0

Yoo = = = Yi1+ Yi2+Waoo
Y24 02,4Y1,24+B2,4Y1,3+Wa 4 0 B2,4 0

a2 5Y1,3+82,5Y1,4+Wa 5

1 B2
= ( >Y1,1+W2,1:A2,1Y1,1+W2,1,

5
) Yi20+Wa3=A>3Y12+Wpy 3,

Y23 =
(65) 02,6Y1,3+832,6Y1,4+Wae B2,6

a3,1Y2,1+63,1Y2,2+W3 1
Y31 =

a3,2Y2 1+832Y2 2+W3 2 3,2

=AY, Y1 1+A Y12+ W,

1 Bsn
= ( Y2 1+W31=431Y 2 1+W3 1,
azs  f

0 83,4

53 5
Y22+W33=:A33Y22+Wj33,

0

Y33 0 B3z O ! r
v = Y21+ 0 Y22+ W3 2=tA5 Y 21+AL Y22+ W3,
3

0 Baz 0 . ,
Y22+ 5 0 Yo 3+W3u=:A4;3 ,Y22+A% ;Y23+W34,
3,7

Y39 30  fBae
Y35 = = Yo3+W35=:A435Y23+W3s.
Y310 3,10 f3,10

For the observation equations in the vectorized model wevighatEquation (61):

Zy Y31—|—Q1>
Z = = (¢ =: C I 5
1 (ZQ> ( 1 ) <Y32 +Q2 1+ 3,1 +Q1

(66)

Zg Y39 + Qo
Z5 ey (Zm) = (Cg 610) <Y37i0 + Qlo = C5Y3_/5 + Q5.

This is a model on a new directed acyclic graph shown in Fidure

Transition noise vectors on the same scale are modeled astarv&R(1) model, i.e.
Wias=B11Wi1+ Vi,
Wyoo =By 1Wsy1+Vay,
Wz =ByosWoo+ Voo,

(67)
W3o=B3 W31+ Vs,

W35 =B3sW34+ Vsa.
Modeling the observation noise vectors as vector AR(1) inoelels
Q,=D.Q,+U,,
(68)
Qs =D4Q, + Uy
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Figure 5: Graph for Vectorized Nodes for Example 4

To put the vectorized model (65)-(68) into linear state gpgaem we specify the initial state vector such
that Yy and allY'; ; and W; ; indexed by node§j, 1), j = 1,...,J, on the left path from the root to

(J,1) of the vectorized graph are elementsXf. In our example
X = (Yo, Y11,Y21, Y31, Wi, Wa, Wi,

We will denote the observations in (26) and (27)Zyto distinguish them from the observations in the

acyclic graph model. The first observation equation candfoee be written as
Z,=C X, +mn,

with p, := Q, andC; := (025 C; 035), where0, , denotes a zergp x ¢) matrix andI, the

identity matrix of dimensiop. Similarly, let0, denote the zero matrix of dimensipnx p.

In model (65)-(68) the data vectdf, is connected withy” ;5 by (66). SinceY ;5 ¢ X theY
and W ; ;, indexed by the nodes on the right path from the root.t®) have to be successively inte-
grated into state vectors. Sindé;» = Yyl,, + W 2, wherel, denotes a column vector pfones,
the first step is to update fro; ; to W, in X, using (67). Generally, before integrating; ,,,
i=1,...,J,m = 1,..., Kj, into a state vector we have to integrék®; ,,, into the state vector. All
Wini=1,...,J,k=1,...,K;, inthe actual state vector that are not needed for the irztign of

W . into the next state vector are retained in the next stateoveas long ask < K;,j = 1,...,J.
TheY ;; in the actual state vector are retained in the next stateoress long as not all their children
are either in the actual state vector, have been in previtaie yectors or will be in the next state vector.
Y ;1 has no child and therefore “all children & ;;” are in Xy, implyingY ;; is not needed iX,.

The transition matrix

block(1,1) ... block(1,ep)

Ay = : : :
block(ems1,1) ... block(ema,em)
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consists of block matrices denoted #yck(r,c), r = 1,...,ems1, ¢ = 1,..., ey, Wheree,, denotes
the number of sub-vectors X ,,, m > 1. In our examplez; = 7. W ; is the fifth sub-vector oX'; in

our example and¥ ; » will be the fourth sub-vector aX',. Thus inA; we haveblock(4,5) defined to
be B, ;. If the n;th sub-vector ofX; will be thensth sub-vector ofX 5, we defineblock(ng, n,) to be

the identity matrix of appropriate dimension. In our exaenple get

Yo I 01p 012 01 012 012 09
Y1 021 I, 02 02 02 02 O 05
Y21 | |01 0 I 02 0 0o 09 ’ %
Xy = Wil |0 0, 0. 0, B, 0, 0, X+ 012 Vii=: A1 X +I'&;.
Wi 027 02 0 02 0y Io O 42
W3 021 02 Oz 02 02 02 I

No observation is connected with state vec®r since there is no terminal node elementXf.
We interprete this as a case of missing observation and défine= 0511, Z, := Z; = Z; and

N, =1, = Q. Like in (46) this impliesV; = I, andvy, = 02;.

Now we can integrat&”; » into X3 using (65). For this we note that is the first sub-vector and
W is the fourth sub-vector ifX,. Y, will be the third sub-vector inX3. Thus inA, we set
block(3,1) := 157 andblock(3,4) := Iy, wherel, , is a(p x ¢) matrix of ones. We further update
from W, ; to W ». Since there is n®V | 3 we can skip'; » in X3. The other sub-vectors &, are

retained inX 5.

Yo I 01p 012 012 012 093
Y 0210 I, 02 02 02 0o 0r s
| Yi2 ] 121 02 02 I, 0, 09 ’ %
X3 := Yoo | |02 00 I, 0, 0, 0 X+ gz Vo1 =1 Ay X9 +T9¢,,
Wao 021 02 02 02 By; 0
Wi 027 02 02 02 0 1o

Again there is no observation connected wKh and thus we se€s := 0911, Z5 := Z5 = Z; and

N3 =1y = @, implying thatNy = I, and~y; = 03 ;.

Going down the right path from the root {@,2) the next step is done by integratifig, » into X 4.
Using (65) we note thaY’ ; is the second sub-vectd; » is the third sub-vector an8 , » is the fifth
sub-vector ofX'3. Y, » will be the third sub-vector iX 4. Thus inA4 we defineblock(3,2) := Alm,
block(3,3) := A}, andblock(3,5) := I,. We further update fror# 3 ; to W35, Yy andY';; are no
longer needed in the state vector since all their childree, @iready have been or will be in the state

vectorsX; to X 4.

Yio 021 02 I, 0y 0o 0o

Yo 0;; 0 02 Io 02 0o 0 B
Xy=|Ya | =|0; Aby, AL, 0, I, 0 | X3+ <182> Vi1 = A3 X3+ T,

W 021y 02 02 0y Io Oy E

Wi 02; 02 0y 0y 02 Bj,
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Again this is treated as a case of missing observationsinge@y := 025, Z4 := Z3 = Z; and

N, =13 = Q,. ThisimpliesN3 = I, andvy, = 0.

Now we can easily put's » into X5, noting thatY ; » has the parenty¥s ; and Y, » which are sub-
vectors ofX 4. Then all the children oY, ; are, already have been or will be in the state vectATs to
X 5 and thus we can omk' ; in X'5. We also update frori 5 » to W3 3. In Equation (66) observation

Z, is connected witfY 3 » and thus connected witK 5. In particular we have

Yi» I, 0, 0, 02 O
Yoo 0, 0y I, 0y 09 0 B
X: = Y372 = | 09 Aé./? Ag,Q 0, I, X3+ ( 18’2) V3’2 = Ay X4+ r.¢,.
Wy 02 09 0, I, O ?
Wi 0 0, 02 02 B3y

The corresponding observation equation is given by
Z5:=Z5= (034 Cs 094) X5+ Q5=:C5X5+n;,

and we set for the observation noid&; := D; and~; := Uj.

In the next state vector we integra¥e; 3 and update frontV, 5 to W 3. Y3 5 is omitted inX g since

it has no child. Therefore we define

Yio I, 03 02 02 09

Yoo 0, I, 02 02 09 06,2 _
Xe:=|Y33 | =02 Az3 02 02 Io| X5+ | Io | Voo = AsX5+T5&5,

Wys 0 02 02 By 09 0,

W3 0 02 02 0o Iy

together with the observation equation
ZG =43 = (0274 C; 02’4) X¢+ Q3 =: égXG + ng-

For the observation noise we sBf; := D, and~, := Us.

Now we have to integrat® ; 3 into the state vector sinc¥, 3 is the right parent oly’; 4. We omitY’; »
because all of its children are or already have been or wilibéhe state vector. We update fraif; 5

to W3 4. Since there is n®V , 4 we do not need® , 5 in the state vector any more. This gives

Yoo 0, I, 0 02 0y Ois _
X7 = Y2,3 = Ag,g 0, 0o Iy 0y X¢+ ( I; > V373 =: Ag X + FGEG-
W34 0 02 02 0o Bjj3
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Again we have a case of missing observation andset= 036, Z7 := Zg = Z3 andn; == ng = Q5.

It follows thatNg = I, andy; = 03 1.

Now we pufY”s 4 into the next state vectaXg. Y, o is not needed any longer. Therefore we have

Y2’3 02 I2 02 042 _
Xgi=|Ysu | =| A4, A, I |X7+ (I; ) Vg =t Ar X7 + Ir&r.
Wi 0, 02 B3y

Zg ::Z4:(02 C, 02)X8+'I’]8,

whereng := Q,, N7 := D3 and~g := Us.

The last state vectaK g is simply given by

Xg = Y3,5 = (A3,5 02 I2) Xg =: Ang.

Zy:=Z5=C9Xg+mny,

Whereég =C'5, Ng = Q5, Ng = D3 and79 =Ujy.

Let NX denote the number of state vectds,. Form = 1,..., NX we have¢,, = 0 or there is g €
{1,...,J}andak € {1,..., K;} such that,, = V; ;. From§,, =V it follows thatW  , € X,,.
SinceV ;) L W, we get¢,, L X,,. Furthermore, sincV;;.j =1,....J. k=1,...,K;}isa
family of uncorrelated random vecto{:{m, m=1... ,NX} is also a family of uncorrelated random
vectors. Similarly, forn = 1..., NX we have sety,, = Q, withk € {1,..., K} andk < m. N,
was then defined either by ,,, | := I or N,,, | := Djy_, and~,, was defined byy,, := 0 or~,, :=
Ug_1. Since{Uy. k = 1,...,K,} is a family of uncorrelated random vectofs,,,,m = 1...,NX}

is also a family of uncorrelated random vectors. Wifh L Q,, kK = 1,..., K it also follows that
Ym L m,,,_1. Therefore we have a state space representation such thet sguations (26), (28) and
(29) are satisfied. Though the state vectors have relatiglgimension the system matricds,, I';, and
have a block structure such that calculation can be doneegffiz. For the initialization of the Kalman
filter we have to derivear(X ). This will be done element wise. Recall that; , L W;;, (j # 7).
At first we notecov (Yo, W; ) = 0 andcov(Yj,, W) =0forj =1,....J -1,i =j5+1,...,J,
k.l =1,2. Using (59) and (60) yields fgi = 1, 2, 3:

(69) cov(Yj1, W) = var(W;,) cov (Yo, W;1) = cov(W; o, W;1),

3

(70) cov(Yj 1, Wjo) = cov(Wj1, Wia),  cov(Yj2, Wja) = var(Wj2).
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Forj = 1,2 we get

cov(Yjt1,1, Wj) = cov[(e11,1 Y51 + Biv11Yj2 + Wig1), Wi
= ajy1,10ar(Wii) + Bjri,1c00(Wi2, Wit),

cov(Yjt1,1, Wj2) = aji1,1c00(Wj, Wia) + Bj11,1var (W),

cov(Yjy1,2, W) = cov[(aj12Yj1 + Bjr11Yj2 + Wit12), Wi
= aj+1,20ar(Wii) + Bjy1,2c00 (W2, Wi1),

cov(Yjq1,2, Wj2) = ajp12c00(Wj 1, Wj2) 4 Bjg1,2v0ar(Wj ).
Forj = 1 we get recursively

cov(Y3 1, Wi1) = covl(as 1Yo 1 + B31Y20 + Wi1), Wi 1]

= azcov(Yo 1, Wi1) + B31c00(Ya 2, Wi1),
cov(Y3 1, W12) = agcov(Ya 1, Wi 2) + B31c00(Ya 2, Wi 9),
cov(Y3 2, Wi1) = covl(az2Yo1 + B32Y22 + W32), Wi 1]

= azacov(Yo 1, Wi 1) + B3 2cov(Yi2, Wi1),

cov(Yjro1, Wj2) = aja2c00(Yjp11, Wi2) + Bjre2cov(Yitr 2, Wie).

Finally the quantitiesvar (Y} ) andcov(Y;1,Y;2) can be computed recursively using (59) and (60)

starting at the root or at the first scale, respectively. htigaar we obtain at the first scale fér= 1, 2

var (Y1 i) = var(Yy) + var(Wy k)

3

COU(YLl, YLQ) = COU[(YO + Wl,l), (Yg + WLQ)} = UCL’I“(Y()) + COU(WLl, WLQ).
Forj =2,3 andk = 1,2 we get
var(Yjy) = aikvar(Yj_m) + ﬁikvar(}’}_m) + 20 185 kcov(Yi—11, Y1 2) + var(Wj),
cov(Y;,1,Yj 2)=cov([o, 1Y 1,1+85,1Y5 1,1+ Wi 1],[0,2Yj 1,24 85,2Yj 1,2+ W 2])

=aj10,20ar(Yi—1,1)+84,185,2var(Yj—1.2)+(aj185,2+j,285,1)cov(Yj—1,1,Yj-1,2)

+cov(W;,1,Wj 2).

7 Discussion

We reviewed and presented three classes of models on adiyelited graphs. The first class, introduced
by Chou (1991) and Huang et al. (2002) applies nested et that makes the assumption of mass
balance necessary. The restrictions implied by mass malagether with the white noise assumption

for transition and observation noise imply an artificialddstructure of the correlation matrix of the data
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Z and thus it is not possible to obtain a stationary autocaticei function forZ. Huang et al. (2002)
suggest as a possible solution of this problem to computprédictions as an average over a number of
mass balanced, tree-structured models with differentaraeches that represent children shifted to have
different parents. As they point out, the prediction vacesmand covariances will be more complicated
and the computational complexity will increase with the tiemof trees used. The models imply that
all average value¥;; , have the same mean. The advantage of their models is thatutatiop can be
done efficiently by a change-of-resolution Kalman filter urtls a way that computations can be easily
performed in parallel problems of smaller dimensions. Ikenmmnore, the number of parameters to be

estimated is smaller then in the models defined in Sectiomsl6a

We generalized their models by modeling the transitionenoisa same scale in linear state space form.
Mass-balance implies restrictions to the covariance m@(W ;. W', ;) that are, at least so far, not
easy to deal with. They also imply an artificial structure la torrelation matrix o such that a sta-
tionary autocorrelation o cannot be obtained. Here there are not only variance pagasnetit also
covariance parameters to estimate. It is questionablasifithy of modeling is an improvement to the
models by Chou (1991) and Huang et al. (2002).

The third class of models requires no mass balance. Thewatber interval is divided into sub-intervals

by overlapping interval arrangement. The stochastic m®tzindexed by the nodes of a directed acyclic
graph which allows the nodes to have up to two parents. Thightileg parameters are additionally

needed, which also have to be estimated. These models olicatiyected graphs have a linear state
space representation with white system and coloured adis@nnoise. The linear least squares predic-
tion of interval averages was done by a Kalman filter and Kalfireed point smoother. The advantage
of this model is that now dynamic structures in transitiod anobservation noise can be modeled, that

may be a matter of interest in themselves. Thus the zero nesamngption for thé’; ,, can be relaxed.

Further topics for future research are incorporation oflaxgtory variables and terms to capture sea-
sonality and trend in the data. The score vector needed fanper estimation depends on the value
of the initial state vectoX'; which will often be unknown in practice. The approach in Ko@m and
Durbin (2001) using so called diffuse initial state vector linear state space models with white system
and observation noise should also work for state space kil coloured observation noise. A further
important topic is to find concepts to reduce the number dgawuae, covariance and weighting parame-
ters. For some applications one could model the observatise process for itself and then integrate
this model into a model on an acyclic directed graph. Thewdhniance and covariance parameters of the
observation noise are not required to be estimated witldnrtbhdel on acyclic directed graphs. Finally,

we aim on applying these models to high frequency financia.da
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A Examples for Correlation Matrix of Z

Here we give examples of possible structureswf Z) implied by tree structured models described in

Section 4.

Example 5. Figure 6 shows the correlation of the observed data ve&aarising from the following
tree-structured model: The finest scale/is= 3. The root has:;, = 4 children. Each node of = 1

hasn;; = 6 children,k = 1,...,4 and each node on the second scale has algp = 6 children,

k =1,...,24. The variance of the univariate transition noisess = o3, = 1, E(W .1 W ;) = 0,

j=1,2,3,k=1,...,N;. The variance of the observation noise is giverrfly= 1 with E(Q,Q,,,) =

0,m,l=1,...,144, m # [.

Example 6. Figure 7 shows the correlation of the observed data vegtarising from the tree-structured

model with finest scalé = 3. The root hasy = 4 children. Each node on the the first scale hag, = 6

children,k = 1,...,4 and each node on the second scale has alsp = 6 children,k = 1,...,24.
Forj=1,2,3andk =1,..., N; we have chosemar (W, ) := afk =1land
R T S R S
U T
E(W W/ _ —0.13 ﬁ _% % _é é
( j.k+1 j,kz) | po0s _L 1 1 1 _1
’ 8

==
M
—_

-0.08 & -
031  —0.08 0.

[
RS

e =)
5 sl

3 0.

Furthermorewar(Q,,) = 72, = 1and Q11 = 0.5Qy, + Uy, m = 1,..., 144,

B Kalman Fixed Point Smoothing for Linear State Space Modelswith
White System and Coloured Observation Noise

Considering the model defined by (26), (28) and (29) we canifintite algorithm and the derivation
given in Durbin and Koopman (2001) for linear state spaceeatsodith white system and white obser-
vation noise, using Lemma 2.13 in Durbin and Koopman (200g¢re it is assumed th&X , Z, 8 are

jointly distributed random vectors of arbitrary order wit{f) = 0 andE(Z6') = 0. Defining

X 70 = X - L(X|Z.9).

Xz:=X - L(X|2)

then their Lemma 2.13 states that the following equationd: ho

L(X|Z,0) = L(X|Z) + E(X,0)var(0) '8,
(71) .

var(X z¢) = var(X z) — E(X,0)var(0) ' E(0, X).
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Figure 7: Corg) of Example 6

For N € N fixed and withz" := (Z,,..., Z")" we can use Equation (71) together with (30) and (35)
togetfork=1,...,N

N
(72) Xpy = L(X4|ZV) = L(X4| ZF, 041, ..., 0n) = X+ > E(Xp0) A0,
I=k+1
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Note that£'(6y) = 0 for k = 2,..., N. Further we compute using (34)
73 E(X,0)) = E[Xk(ljz_l)hm +CiTimi€ 1 +7)']
= E(Xk:Xl—l\l—l)Hgfl'
Forl=k+1,...,N E(Xk)zz_m_l) can be obtained recursively, starting witk & + 1:

E[X (X} — Xpp)] = B(XiX},) — B[X4(B(X 1 2")2 1 Z4)]

(74) = var(Xy) - B(X;Z¥)2 | B(Z* X)) = Sy
Using Equation (74) together with (26), (39) and (34) we get

BIX (X pi1jp1)] = BIX p(Ap Xk + Ty — ApXpp — Grs10511)']
= B[X p(Ap Xy — Gooa[Hp X pr, + Cror Ty + vi41))']
~ f — ~_/
= E(Xka:\k)A;c — B(Xy Xy ) H Gl

~ 1 _
= B(Xs X ) (A — G Hy)',
sinceE(X €),) = 0 andE(X ), ,,) = 0. With (38) we can write
~ ~ 1 ~
EX (X pi1p41) ] = BE(X kX i) Fioiq = ZppFrps
BIX (X psopit2)] = ppFh 1 Fipos
(75) \ e k1 k2
EX (X n_1n-1)] = ZppFhyy - Fy_i.

For the computation of the smoothed state space véi‘,gq)g, we will now substitutg(74) and(75) into

(72), using(42):
(76) Xy = Xy + ZppRe.

For computation of the mean squared error matrif‘]ggv we proceed in a similar way. The starting
point is again Equatio(i72). Since the innovations are serially orthogonal we get ugiiy

N
(77) Siv =i — Y B(Xi0)A]E(0,X}).
I=k+1

Using (74), (75) and (41) Equation (77) can be written as
(78) Sun = Sk — S PrSeg

C Disturbance Smoother for Linear State Space Models with Cloured
Observation Noise

The so called disturbance smoother (Durbin and Koopmanl{2@@mputesy y := L(v,|2Z") and

ék‘N = L(¢&,|Z"). We follow their approach for linear state space models witfite system and
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coloured observation noise and modify it where needed. it \ile need a recursive representation for

the state estimation errors. Using Equations (39) and (84he innovations gives:
Xy = Xpr1 — Xppije
= Ay X+ T — A Xy — Grp10ppn
= Ap Xy + Téy — Gen Hy Xy, — Gr1Cra Ty, — Gror Ve
(79) = Frn Xy + (T — Gr1 Cri)€ — Gy Vit

whereF';, was defined in (38). With (71) we have
n =Ly ZY) = L7, | 257", 0k, ..., 0n) = L(v,| 2"1) + ZE(’YkGE)Aflel-

Sincey, L Z¥ ! andE(y,) = 0 we haveL(v,|Z* ') = 0. Thus

N

(80) Ye|N = ZE(’Ykag)Aflel-
I=k

Using Equation (34) we yield

E(v40}) = Elvy(H 1 X ), 11+ Cul1&y + 1)),

Since X,_y;_; is a linear function ofZ*~! and X _ it follows thatE(fy,gX;C_Hk_l) = 0. With

B(v,£;) = 0 we get
(81) E(7,,0},) = var(vy).
Noting thatE(-,~;) = 0 holds we getfoi = k£ +1,...,N:
(82) E(v40) = Elvi(Hi 1 Xy 11+ CT 1€ +v)'] = E(’kaszq) -1
Here we have used Equation (33). The recursion for the stéiteation errors (79) yields
Xpp =FpXp 51+ (Tro1 — GeCr)€p_ — Givy.

SinceX ;41 L v, andg, , L v, we get
(83) E(7,0)11) = E(’YkX-;c\k)H;c = Elvp(=Gryi) [ H), = —var(v;) G H,.
Further lags are now computed recursively:

E(7,0)12) = E('YkX;c-«—l\k-i—l)H;{:Jrl = E('Yk)z;c\k)F;chlH;{:Jrl

= —var(v,) G}, 2+1H;c+17

~ / =/
E(7k92+3) = E(7ka+2\k+2)H;c+2 = E(7ka+1\k+l)F;c+2H;€+2

. ! ! '
= —UW(’Yk)Gk k+1Fk+2Hk+25

~/ ~/
E(’Ykelzv) = E('YkXNfl\Nfl)Hlel = E('YkXNfQ\NfQ) lNAHlNA

= —var(V;)GFpyy .. Fiy_Hiy_y.
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Substitution into (80) yields
A = var(yp) Ay 0k — var(v,) Gy (HL AL Ok 1 + Fl Hip o A0k o+
Using (42) we can write

(84) Apn = var(v) A 0x — var(v,) G Ry = var(v,) (A, 10, — Gy Ry)

Similarly it follows for £,y that

N
Erv = L& ZN) = L(&,| 2%, 0 41,...,0n) = L&, ZF) + D B(£,6)A]'0
I=k+1
N
(85) = Y E(0)A; 0,
I=k+1
since¢,, | Z"¥andE(¢,) = 0fork = 1,...,N — 1, which is a consequence of the assumptions (28).

Using Equation (34) we can write

E(€40)41) = BlEL(H X 1, + CriTi€y + 1)1
X, is a linear function ofX; and Z* and thusE(¢, X ) = 0. SinceE(£y) = 0 for k =
l,...,.N—1,1=2,..., N this gives
(86) E(£,0}11) = B[€,(Cr1Tr&y)'] = var(€,)T,,Cly.
(34) yields
E(£40)12) = El&,(H 1 X 11 + CraoThr€n +vi0)']-
Since¢;, L &, for k # [ and using (79) this leads to
BE(£40)10) = El&(Hp X 1541)'] = Blép(Fr Xpgp + (Tk — Grp1Crs1)€p)]

= var(€)(Ty — Gs1Crs1) Hyy 1.
Proceeding recursively we get

B(€40)45) = Bl€,(H X rok12)'] = Bl€p(FrooX py1ps) 1 Hlpo

= var(&) Tk — Gpy1Chi1) Fiy o Hy .

(87)

(88)

E(EkalN) = E[&k(HN—l)ZNfl\Nfl)l] = E[ék(FN—IXNfQ\Nfﬂ,]Hlel
= var(€,)(Tk — Gr11Ck41) Flpn .. Fiy | Hly_y.
Substitution into (85) yields

~ _ 1 ~! —1
v = var(§)TLCL AL 10k
+var(€)(Th—Gri1 Crit) (Hyy Ay L0104 Fl oy HY AL L0y 5+ Fl o Fiy_ HYy_ A0y ).

Using Equation (42) we get

(89) ék\N = Uar(gk)rgﬂé;ﬂ—i—lA];}_lak—l—l + var (&) Tk — Gr+1Ck11) Ryt
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D Smoothed Disturbance Variance Matrices for Linear State $ace Mod-
els with Coloured Observation Noise

Defining

Ye|N =Yk — VRN andék\N =&, — &,
we want to derive an algorithm for recursive computationvef (¥, ) and var(ékw) for £ > 1.
These are also needed for maximum likelihood parametemattin. For the derivation of this al-
gorithm we can again follow Durbin and Koopman (2001), whire derivation for a linear state
space model with white system is shown. Using (2) we consadidirst var (y,_1) = var(vy;) —
E(v,2" V)var(Z2¥ )T E(ZY 1y)), wheredy,, = v, — Ly, 25 ) for k = 2,...,N. Since
vy L Z* Vit follows thatvar (5, ) = var(vy). Thus Equation (71) yields

N

(90) var(Jy ) = var(yy) = > E(vi0) AT B(6,7),)
=k

By (81)-(84) we get

var (yn) = var(v;) — (var () Ay fvar(vy,)
—var(v;) Gy [H AL Hy Groar(yy) + Fio Hy AL L Hy 1 Fr Groar () +
+Fpyy . Fy_ (Hy AV HN_1Fy_1... Fr1Grvar(v;)])
= var(y;) — var(y,) Ay tvar (yy,) +var(v,) G [H Ay Hy,
+F Hi A Hp Frg+ ...+ Fyy . Fiy (Hy AV HN (Fy_y... Fyy

Grvar(vy)-

Using (41) we can write

var (Y n) = var(yy) — var(vy) Ay 'var (v;) + var(v;) G, PGroar (vy,)
(91) =var(y;) — var(v,) (A, — GLPrGy)var(vy).

We derivevar(fkw) analogously, starting by using again (71), recalling hat. Z* and thusvar(f,g‘k) =
var(€):

n

(92) var(€yy) = var(&) — Y E(£,0) A, E(0.£),).

I=k+1

Substitution of (86)-(88) into (92) yields

Ua?"(ékw) = var (&) — Ua?"(fk)I‘;cé;nglA;Z}rlc_'kJrlI‘kW?"(fk) —var (&) (T — Grr1Crin)"
’ ( ;c+1Al:+1-2Hk+1 + F2+2H2+2A1;_|1.3Hk+2Fk+2 +.o..

+Fl .. . Fy_(Hy AV HN Fy_i...F2) (T, — Gi1 Cryr)var(€y).
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Using Definition (41) we get

WT(ék\N) = var (&) — W”“(519)1‘2;0;@“Aﬁlékﬂrk”ar(ﬁk)

—var(&,)(Tk — Gi+1Ck41) Pr1 (T — Gr1 Crpr)var(€y,).

(93)
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