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Abstract

Three classes of models for time series on acyclic directed graphs are considered. At first a
review of tree-structured models constructed from a nestedpartitioning of the observation interval
is given. This nested partitioning leads to several resolution scales. The concept of mass balance
allowing to interpret the average over an interval as the sumof averages over the sub-intervals implies
linear restrictions in the tree-structured model. Under a white noise assumption for transition and
observation noise there is an change-of-resolution Kalmanfilter for linear least squares prediction of
interval averages (Chou 1991). This class of models is generalized by modeling transition noise on
the same scale in linear state space form. The third class deals with models on a more general class
of directed acyclic graphs where nodes are allowed to have two parents. We show that these models
have a linear state space representation with white system and coloured observation noise.

Key words: linear least squares prediction, tree-structured model, mass-balance, acyclic directed graph,

linear state space model, linear Kalman filter, score vector.
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1 Introduction

The main problem considered in this paper is the optimal prediction and smoothing of stochastic pro-

cesses based on irregularly time-spaced observations for large or even huge data sets. Here optimality

means minimal linear least square errors. It is assumed thatthe data is generated by a continuous time

stochastic process. Distorted observations are made in discrete time points, where the distance between

them may very short compared to the length of the observationinterval. It is also allowed that the time

points are irregularly spaced in time. Dacorogna et al. (2001) refer to such time series as irregular time

series. As they point out, most methods in time series analysis rely on homogeneously time spaced time

series. If the data is observed in irregularly spaced time points then a homogeneous time series has to be

constructed from the raw data. For this they propose linear interpolation, previous-value interpolation or

other operators such as the moving average operator. One drawback of these methods is that the length

of the homogeneous intervals between two time points has to be chosen carefully and some information

contained in the data may be lost. After making the time series homogeneous standard time series tech-

niques can be applied.

We review and introduce models that are formulated by averages over different time horizons, where

we do not need to construct homogeneous time series. The observation interval is divided on several

resolution scales into sub-intervals where these sub-intervals become shorter from resolution scale to

resolution scale. At the finest resolution scale therefore there are only short intervals that contain either

no observation, one or just a few observations. The aim of these models is to allow for fast summaries for

different time resolutions that are estimated by linear least squares prediction and smoothing. Another

matter of interest may be the relationship between the averages for different time resolutions.

Three classes of models are discussed in this paper. At first areview of models of Huang et al. (2002)

is given, which was formulated for spatial data. The spatialregion is divided by nested partitioning into

sub-regions on several resolution scales. Corresponding to the nested partitioning they define a tree-

structured autoregressive stochastic process. Due to their application of nested partitioning they need

and introduce the concept of mass balance. In their model they assume the transition and the observation

noise to be independent, serially and mutually. In this casewe speak of white noise otherwise the noise

is coloured. They also develop an algorithm for linear leastsquare prediction of the averages over the

sub-regions which is connected to a tree-structure. Their algorithm is based on results of Chou (1991).

Formulation of these models for time series is straightforward. Hence we consider these models as a

starting point for modeling interval averages.

We first generalize these models by modeling transition noise on the same resolution scale in linear
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state space form. The observation noise is treated in the same manner. The concept of nested partition-

ing and mass balance was retained.

Due to restrictions implied by mass balance these models imply an artificial structure of the correla-

tion matrix of the given data. So we formulate a third class ofmodels where mass balance is omitted. As

a consequence the concept of nested partitioning is no longer applicable and replaced by an overlapping

interval arrangement. The tree-structure is no longer maintained when overlapping intervals are used so

we formulate models on a more general class of acyclic directed graphs.

Autoregressive stochastic processes on acyclic directed graphs with white transition and observation

noise and a corresponding algorithm are discussed by Huang and Cressie (2001). Again we generalize

these models by allowing a linear state space model for the transition and observation noise.

Since the algorithm proposed by Chou (1991) and Huang and Cressie (2001) is no longer applicable

for models on graphs with coloured noise we show how to find a linear state space representation with

white system noise and coloured observation noise for thesemodels. Therefore we give a brief review

of these linear state space models. A Kalman filter (Chui and Chen 1999) is applicable and an exist-

ing Kalman fixed point smoothing algorithm (Durbin and Koopman 2001) was modified to allow for

coloured transition noise in the state space domain. With regard to maximum likelihood estimation of

the unknown model parameters we derive an analytical representation of the score vector.

2 Linear Least Squares Prediction of Interval Averages in anAdditive
Error Model

Huang et al. (2002) consider a continuous time stochastic processX(s) = �(s) + �(s) over an spatial

regionG. Since we are interested in models for time series we replacethe spatial region by the ob-

servation intervalI. �(s) is assumed a deterministic mean process and�(s) a stochastic process with

finite variance and zero mean. We assume that distorted observationsZ(ti) of the processX are made

at discrete time pointsti which are irregularly spaced in time, i.e.Z(ti) = X(ti) + �(ti) (ti 2 I);
where�(ti) is a random error variable with zero mean and finite variance.

As in Huang et al. (2002) we are interested in fast summaries of the processX(s) over sub-intervals

of I with different lengths. For this Y := 1jIj ZI �(s)ds
5



is considered as the average value of� over the intervalI. HerejIj denotes the length of the intervalI. In particularI is divided on a first scale into several sub-intervals. Thesesub-intervals are divided

into shorter sub-intervals on following scales. Letj denote the scale. On each scale the sub-intervals are

numbered starting withk = 1 from the left to the right.

The goal is to find linear least square estimates in terms of the complete data vectorZ of

(1) Yj;k := 1jIj;kj ZIj;k �(s)ds:
LetL(Y jZ) denote the linear least square prediction operator of a random variableY given dataZ andA� the generalized inverse of the matrixA. Then linear least square estimates are given by

(2) L(Yj;kjZ) = E(Y ) + ov(Yj;k;Z)��Z(Z �E(Z);
where�Z := var(Z). Formula (2) can be found e.g. in Hamilton (1994), Section 4.1.

For application of (2) one has to know the complete covariance-structure ofYj;k andZ and has to invert

the matrix�Z . For big or even massive data-setsZ this may be very consuming of computation time.

Thus we introduce in the following sections algorithms for recursive computation.

3 Tree-structured Models with White Noise

Chou (1991) introduces tree-structured models with white system and observation noise. He derives

a tree-structured Kalman filter and smoother for calculation of linear least squares prediction. In this

section we review this model including the notion of mass balance, since we will consider this model

as a first model for interval averagesYj;k defined in (1). Huang et al. (2002) partition the observation

intervalI into nested sub-intervalsIj;k. This means, they allow for no overlapping of intervals, andeach

sub-interval has just one parent. A precise formulation is given in the following definition

Definition 3.1. (Nested Partitioning (Huang et al. 2002):)

Let a real intervalI with length jIj > 0, a natural numberJ 2 N and a family of natural numbers(Nj)Jj=1 with Nj+1 � Nj (j = 1; : : : ; J) be given. A collection of sub-intervalsfIj;k � I : j =

6



1; : : : ; J; k = 1; : : : ; Njg is called a nested partitioning onI, if the following conditions hold:jIj;kj > 0 (j = 1; : : : ; J ; k = 1; : : : ; Nj);(i) Nj\k=1 Ij;k = ; (j = 1; : : : ; J);(ii) Nj[k=1 Ij;k = I (j = 1; : : : ; J);(iii) 8Ij;k (j = 2; : : : ; J; k = 1; : : : ; Nj)9 k0 2 f1; : : : ; Nj�1g(iv)

such thatIj;k � Ij�1;k0:
3.1 The Tree-structure

Huang et al. (2002) consider a (univariate or multivariate)random process indexed by the nodes of a tree

(T,E). T denotes the set of the nodes and E the set of the directed edges. For the tree (T,E) we introduce

the following notation: J : finest scale:j : scale, withj = 0; : : : ; J:Nj : number of nodes on the scalej (j = 0; : : : ; J):(j; k) : kth root on the scalej, counted from the left to the right.pa(j; k) : parent node of(j; k):an(i; j; k) : ancestor node on the scalei of the node(j; k):n0 : number of children of the root node.nj;k : number of children of the node(j; k):h(j; k; l) : lth child of the node(j; k):de(i; j; k) : the descendants on the scalei of the node(j; k):
Example 1. As an example we show a tree with the finest scaleJ = 3, andnj;k = 3 (j = 0; : : : ; J �1; k = 1; : : : Nj) in Figure 1. For example take the node(2; 1). Then the following relations hold:

parent node of(2; 1) : pa(2; 1) = (1; 1);
ancestor node of(2; 1) on the scalej = 1 : an(1; 2; 1) = (1; 1);

first child of(2; 1) : h(2; 1; 1) = (3; 1);
descendants of(2; 1) on the scalej = 3 : de(3; 2; 1) = �(3; 1); (3; 2); (3; 3)�:

Together with the nested partitioning from Definition 3.1 weimmediately get a tree of intervals, where

the original intervalI is assigned to the root. The intervalIj;k from Definition 3.1(iv) could then be

called a child of intervalIj�1;k0 (j = 1; 2; 3; k = 1; : : : ; Nj).
7



 

 

    root

(1,1) (1,2)  (1,3)

(2,1)  (2,2) (2,3) (2,4)  (2,5)  (2,6)  (2,8)  (2,9)  (2,7)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9) (3,10) (3,11)(3,12) (3,13) (3,14)(3,15) (3,16) (3,17)(3,18) (3,19) (3,20)(3,21) (3,22) (3,23)(3,24) (3,25)(3,26) (3,27)

Figure 1: Tree-structure of Example 1

It is assumed that the process evolves from parents to children in an autoregressive manner. The process

itself is considered as hidden. The corresponding observations are connected with the random variables

on the finest scale by observation equations. Thus Chou (1991) considers the following model:

Definition 3.2. (Univariate Tree-structured Model:)

Let a tree(E; T ) with the finest scaleJ andnj;k children(j = 0; : : : ; J � 1; k = 1; : : : ; Nj) be given. A

tree-structured stochastic process can then be defined as follows:

Root: Y0;
Transition equation: Yj;k = Ypa(j;k) +Wj;k (j = 1; : : : ; J ; k = 1; : : : ; Nj);(3)

Observation equation: Zk = YJ;k +Qk (k = 1; : : : ; NJ):(4)

We restrict ourselves to the special case where observationsZk are available only at the finest scaleJ .

Then we can index them with a single indexk. Wj;k is called transition noise andQk observation noise.

Let X ? Y denote that random variablesX and Y are uncorrelated. If normal joint distribution of

the random variables is assumed this is equivalent to independence. Chou (1991) makes the following

white noise assumptions: E(Y0) = 0; E(Y 20 ) <1;E(Wj;k) = 0; �2j;k := E(W 2j;k) <1;E(Qk) = 0; �2k := E(Q2k) <1;Wj;k ? Y0; Wj;k ?Wi;l (j 6= i);Wj;k ? Ql; Qk ? Y0:(5)

Further assumptions necessary for the transition and observation noise will be given in the following

subsection.
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3.2 The Concept of Mass Balance

The concept of mass balance was introduced by Huang et al. (2002). In (1) the average value of�(s)
was defined by Yj;k := 1jIj;kj ZIj;k �(s)ds:
It is natural to assume that the average value of the process�(s) over the intervalIj;k is the sum of the

average values of�(s) over the sub-intervalsIh(j;k;l), l = 1; : : : ; nj;k. That is, it is assumed that

(6) Yj;k = nj;kXl=1 Yh(j;k;l)
holds forj = 0; : : : ; J�1, k = 1; : : : ; Nj . This assumption was denoted by Huang et al. (2002) as mass

balance. This is equivalent to requiringZIj;k �(s)ds = nj;kXl=1 ZIh(j;k;l) �(s)ds:
It can easily be shown that mass balance in (6) can be characterized bynj;kXl=1 jIh(j;k;l)jWh(j;k;l) = 0; or(7) var�nj;kXl=1 jIh(j;k;l)jWh(j;k;l)� = 0(8)

for j = 0; : : : ; J � 1, k = 1; : : : ; Nj , l = 1; : : : ; nj;k. We can solve Equation(7) for a chosenWh(j;k;l):Wh(j;k;l) = � 1jIh(j;k;l)j nj;kX�=1�6=l jIh(j;k;�)jWh(j;k;�)(j = 0; : : : ; J � 1; k = 1; : : : ; Nj ; l = 1; : : : ; nj;k):(9)

If jIh(j;k;l)j = jIh(j;k;1)j (l = 1; : : : ; nj;k), i.e. for (l = 1; : : : ; nj;k) the sub-intervals have equal length

Equation (9) simplifies to

(10) Wh(j;k;l) = �nj;kX�=1�6=lWh(j;k;�):
3.3 Vectorized Tree-structured Models

Since the mass balance of a particular node involves conditions on all children of this node, it is con-

venient to combine these children in a vector. Together withDefinition 3.2 this yields the following

vectorization (see Huang et al. (2002), Subsection 3.2):

9



Definition 3.3. Given a tree-structured model as in Definition 3.2. Forj = 0; : : : ; J � 1, k = 1; : : : ; Nj
Huang et al. (2002) defineY h(j;k) := (Yh(j;k;1); Yh(j;k;2); : : : ; Yh(j;k;nj;k))0;(11) W h(j;k) := (Wh(j;k;1);Wh(j;k;2); : : : ;Wh(j;k;nj;k))0;(12) Zk := (Zh(pa(J;k);1); Zh(pa(J;k);2); : : : ; Zh(pa(J;k);rJ;k))0;(13) Qk := (Qh(pa(J;k);1); Qh(pa(J;k);2); : : : ; Qh(pa(J;k);rJ;k))0:(14)(j = 0; : : : ; J � 1; k = 1; : : : ; Nj).
We introduce some additional notation:Kj : Number of nodes on the scale j in the vectorized tree-structured model:rj;k : Number of elements in the random vectorY j;k (j = 1; : : : ; J ; k = 1; : : : ;Kj):
With this notation the following relations holdKj = Nj�1 (j = 1; : : : ; J);rj;k = npa(j;k) (j = 1; : : : ; J ; k = 1; : : : ;Kj);W j+1;k =W h(j;k) (j = 2; : : : ; J � 1; k = 1; : : : ; Nj):
We illustrate this vectorization by the following Example:

Example 2. For the tree in Figure 1 we defineY 1;1 := 0�Y1;1Y1;2Y1;31A W 1;1 := 0�W1;1W1;2W1;31Aj=1: Y 2;1 := 0�Y2;1Y2;2Y2;31A W 2;1 := 0�W2;1W2;2W2;31Aj=2: Y 2;2 := 0�Y2;4Y2;5Y2;61A W 2;2 := 0�W2;4W2;5W2;61AY 2;3 := 0�Y2;7Y2;8Y2;91A W 2;1 := 0�W2;7W2;8W2;91AY 3;1 := 0�Y3;1Y3;2Y3;31A W 3;1 := 0�W3;1W3;2W3;31Aj=3:

...
...Y 3;9 := 0�Y3;25Y3;26Y3;271A W 3;9 := 0�W3;25W3;26W3;271A
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(3,1) (3,2) (3,3)���� HHHH(2,1) (3,4) (3,5) (3,6)���� HHHH(2,2) (3,7) (3,8) (3,9)���� HHHH(2,3)(((((((((( hhhhhhhhhh(1,1)root
Figure 2: Tree for vectorized nodes in Example 2

This vectorized tree is shown in Figure 2.

We now consider the variance matrix ofW j;k, j = 1; : : : ; J , k = 1; : : : ; Nj , under mass balance. For

this let�W h(j;k) := var(W h(j;k))= 0BBBB� E(W 2h(j;k;1)) E(Wh(j;k;1)Wh(j;k;2)) : : : E(Wh(j;k;l)Wh(j;k;nj;k))E(Wh(j;k;2)Wh(j;k;1)) E(W 2h(j;k;2)) : : : E(Wh(j;k;2)Wh(j;k;nj;k))
...

...
...

...E(Wh(j;k;nj;k)Wh(j;k;1)) E(Wh(j;k;nj;k)Wh(j;k;2)) : : : E(W 2h(j;k;nj;k))
1CCCCA(j = 0; : : : ; J � 1; k = 1; : : : ;Kj):

Using Equation (9) the elementsl = 1; : : : ; nj;k � 1 of the last column of�W h(j;k) have to satisfy:E(Wh(j;k;l)Wh(j;k;nj;k)) = E�Wh(j;k;l) nj;k�1X�=1 � jIh(j;k;�)jjIh(j;k;nj;k)jWh(j;k;�)�= � 1jIh(j;k;nj;k)j nj;k�1X�=1 jIh(j;k;�)jE�Wh(j;k;l)Wh(j;k;�)�(15)

and the last element of the last column isE(W 2h(j;k;nj;k)). Since�W h(j;k) is symmetric, the last row

of �W h(j;k) is simply the transponse of the last column of�W h(j;k) . Huang et al. (2002) proposed a

simple method for constructing positive semi-definite matrices satisfying mass balance which are used

as variance matrices�W j;k (j = 1; : : : ; J , k = 1; : : : ;Kj). They assume that the conditionmin�jIh(j;k;1)j2�2h(j;k;1); jIh(j;k;2)j2�2h(j;k;2); : : : ; jIh(j;k;nj;k)j2�2h(j;k;nj;k)	 �1nj;k(nj;k � 1) nj;kXl=1 jIh(j;k;l)j2�2h(j;k;l)(16)
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is satisfied. Recall that�2j;k := var(Wj;k) for j = 1; : : : ; J , k = 1; : : : ; Nj . Further they defineF h(j;k) := 1nj;k � 1(nInj;k � 1nj;k10nj;k);Gh(j;k) := �1� 1(nj;k � 1)2�Inj;k + 1(nj;k � 1)21nj;k10nj;k ;rh(j;k) := �jIh(j;k;1)j2; : : : ; jIh(j;k;nh(j;k))j2�0;ah(j;k) := �jIh(j;k;1)j2�2h(j;k;1); : : : ; jIh(j;k;nh(j;k))j2�2h(j;k;nh(j;k))�0;h(j;k) := G�1h(j;k)rh(j;k);
then the matrix defined by�W h(j;k) := �diag(rh(j;k))��1F h(j;k)diag(h(j;k))F h(j;k)�diag(rh(j;k))��1
(17)

is semi positive-definite and can be used as variance matrix.If for a node(j; k) in a univariate tree-

structured model�2h(j;k;l) = �2h(j;k;1) (l = 2; : : : ; nj;k) andjIh(j;k;l)j = jIh(j;k;1)j holds, (17) reduces

to �W h(j;k) := �2j+1(Inj + 1nj � 1Inj � 1nj � 11nj10nj ) (j = 1; : : : ; J � 1):
Transition Equation (3) and Observation Equation (4) can berewritten for the vectorized model given by

Definition 3.3 as follows:

Transition equation: Y j+1;k = 1nj;kYj;k +W j+1;k;(18)

Observation equation: Zk = Y J;k +Qk (k = 1; : : : ;KJ ):(19)

The white noise assumptions (5) for the univariate model imply for j = 1; : : : ; J , k = 1; : : : ;Kj
(20) W j;k ? Y0; Qk ? Y0;
and

�W j;k; j = 1; : : : ; J; k = 1 : : : ;Kj	 and
�Qk; k = 1; : : : ;KJ	 are families of mutually and seri-

ally orthogonal random vectors.

Chou (1991) introduced an efficient tree-structured Kalmanfilter and smoother for these models. The

algorithm has the advantage that, in case of a huge number of observationsZ, it can be easily performed

in parallel problems of smaller dimensions. Estimation of unknown variance parameters of the transition

noise can be done by an EM algorithm, as formulated in Huang etal. (2002). They assumed the variance

of the observation noise to be known, for instance by information available for the measuring device or

from independent experiments.

The most severe drawback of this setup in our opinion is the fact, that the model given by (18) and

12



(19) implies an artificial block structure of the correlation matrix ofZ. In Appendix A we give an Ex-

ample that demonstrates this behavior. It is not possible togenerate a stationary correlation function forZ. As a possible solution Huang et al. (2002) suggested to compute the estimates as an average over a

number of mass balanced, tree-structured models with different tree branches. They also pointed out, that

the estimation variances and covariances will be considerably more complicated and the computational

complexity will increase with the number of trees used.

4 Tree-structured Models with Coloured Transition and Observation Noise

In order to smooth the block structure of the implied correlation ofZ we relax the white noise assumption

while maintaining the orthogonality of transition noise ondifferent scales and the orthogonality on the

observation noise, i.e.W j;k ?W i;l for j 6= i andW j;k ? Ql for j = 1; : : : ; J; k; l = 1; : : : ;Kj :
But we now allow for correlation of the transition noise on the same scale. For this we note that there is

only one node on the first scale of the vectorized tree. Further we assume for a given scalej = 2; : : : ; J
andk = 1; : : : ;Kj�1 the vectorized transition noise to be a vector AR(1)-process (see for example Wei

(1990), Section 14.3) given by

(21) W j;k+1 = Bj;kW j;k + V j;k;
whereV j;k is a zero-mean random variable and all of its components havefinite variance. Furthermore

we assumeV j;k ?W j;1 andV j;k ? V j;l for k 6= l. This impliesL(W j;k+1jW j;1; : : : ;W j;k) = L(W j;k+1jW j;k) = ov(W j;k+1;W j;k)��W j;kW j;k:
Therefore,Bj;k = E(W j;k+1W 0j;k)��W j;k .

Let wj;k be a realization of the random vectorW j;k. The Mass Balance Equation(9), which is still

assumed to hold, states that a single element inwj;k is uniquely determined by the other elements. This

implies a restriction on the covariance matrixE(W j;k+1W 0j;k). More precisely, from Equation(8) it

follows that for� = 1; : : : ; nj;k � 1E(Wh(j;k+1;nj;k+1)Wh(j;k;�)) =� 1jIh(j;k+1;nj;k+1)jPnj;k+1�1l=1 jIh(j;k+1;l)jE(Wh(j;k+1;l)Wh(j;k;�));(22) E(Wh(j;k+1;�)Wh(j;k;nj;k)) =� 1jIh(j;k;nj;k)jPnj;k�1l=1 jIh(j;k;l)jE(Wh(j;k+1;�)Wh(j;k;nj;k));(23) E(Wh(j;k+1;nj;k+1)Wh(j;k;nj;k)) =� 1jIh(j;k+1;nj;k+1)jPnj;k�1�=1 jIh(j;k;�)jE(Wh(j;k+1;nj;k+1)Wh(j;k;�)):(24)

Note thatE(Wh(j;k+1;nj;k+1)Wh(j;k;�)) for � = 1; : : : ; nj;k is computed in Equation (22).
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LetW yh(j;k) denote the vectorW h(j;k) without its last elementWh(j;k;nj;k). As seen from Equation

(24)E(Wh(j;k+1;nj;k+1)Wh(j;k;nj;k)) is a weighted sum of all of the elements in the matrixE(W yj;k+1W y0j;k).
Sincejov(X1;X2)j �pvar(X1)var(X2) holds for two random variablesX1;X2,

(25) 1jIh(j;k+1;nj;k+1)j �� nj;k�1X�=1 jIh(j;k;�)jE(Wh(j;k+1;nj;k+1)Wh(j;k;�))�� � �h(j;k+1;nj;k+1)�h(j;k;nj;k)
has to hold. In simulations with several covariance matricesE(W j;k+1W 0j;k) Condition (25) turned out

to be just a necessary but not a sufficient condition to obtaina positive semidefinite matrixvar(V j;k) = var(W j;k+1 �Bj;kW j;k) = �W j;k+1 �Bj;k�W j;kB0j;k:
SinceBj;k = E(W j;k+1W 0j;k)��W j;k holds, the matrixvar(V j;k) depends onE(W j;k+1W 0j;k). Thus

one problem of this model is to find sufficient conditions for the matrixE(W j;k+1W 0j;k) to obtain a

positive semidefinite matrixvar(V j;k) such that mass balance is satisfied.

For the observation noise we proceed in a similar manner:Qk+1 =DkQk +Uk;
with E(Uk) = 0,Uk ? Q1 andUk ? U l. Since we do not require mass balance for the observations,

the problems discussed for the transition noise don’t occurhere.

Since the derivation of the tree-structured Kalman filter and smoother mentioned in the previous sec-

tion make distinct use of the orthogonality of the noise it doesn’t apply to Model (18),(19) and (21).

But this model has a state space representation with white system noise and coloured observation noise.

This state space representation will be derived in Section 6for more general models defined on acyclic

directed graphs which allow several parents of a node. Chui and Chen (1999) derived a Kalman filter

for such state space models. A Kalman smoothing algorithm, as in Durbin and Koopman (2001) can be

modified for such state space models. Estimation of the unknown parameters can again be carried out by

an EM-Algorithm.

Foror(Z) the vector AR(1)-structure of the observation noise seems to have no great effect. The major

effect is brought in by the vector AR(1)-structure of the transition noise. The structure ofor(Z) depends

on the specification of the covariance matricesE(W j;k+1W 0j;k) for j = 2; : : : ; J andk = 1; : : : ;Kj�1.

But stationarity of the correlation function ofZ was still not obtained. The correlation matrix ofZ now

depends also on specification ofE(W j;k+1W 0j;k) orBj;k, respectively. Example 6 given in Appendix

A illustrates this. On the other side we have to specifyE(W j;k+1W 0j;k) carefully and therefore have

more parameters to estimate than in the tree-structured model with white noise. Thus it is questionable,
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whether the model with coloured noise is really an improvement for the desired inference of time series

data. It seems that these problems are the result from using the concept of mass balance. In the next

section we therefore introduce a model, where no mass balance is assumed.

5 Extensions of White Noise Linear State Space Models

In the next section we will derive a linear state space representation for an autoregressive stochastic

process indexed by the nodes of an acyclic directed graph. For this reason we give in this section a

short review about extensions of linear state space models.For a detailed discussion see e.g. Chui

and Chen (1999). This section is arranged into several subsections. At first, we discuss linear state

space models with coloured observation noise which are needed in Section 6 for autoregressive models

on acyclic directed graphs. Then we give a brief summary of the Kalman filter and Kalman one step

predictor for these state space models. These two subsections refer to Chui and Chen (1999). In the

next subsections we state smoothing algorithms, where we follow the approach in Durbin and Koopman

(2001) for white noise linear state space models. Since we consider linear state space models with

white system and coloured observation noise some modifications have to be made. Then we discuss

the treatment of missing observations, which are necessaryto consider for the models in Section 6. For

maximum likelihood estimation of model parameters we then derive an analytical representation of the

score statistic in the last subsection where we assume additionally normal distribution.

5.1 Linear State Space Model with White System Noise and Coloured Observation Noise

Chui and Chen (1999), Chapter 5, considered the following class of linear state space models with white

system noise and coloured observation noise:

Transition equation: Xk+1 = �AkXk + �k�k;(26)

Observation equation: Zk = �CkXk + �k;(27)

whereXk 2 Rmk , �k 2 Rm�k , Z 2 RmZk . Therefore�k 2 RmZk , �Ak 2 Rmk+1�mk , �k 2 Rmk+1�m�k
and �Ck 2 RmZk �mk . �k is assumed to be either a selection matrix, i.e. only some diagonal elements are

equal to one, as all the other elements are equal to zero, or tobe a matrix of the form�k := 0B�blok 1
...blok p1CA ;

wherep 2 N andblok m is a selection matrix,m 2 f1; : : : ; pg, andblok l = 0 for l = 1; : : : ;m �1;m + 1; : : : ; p. In the latter case we say that�k is a block selection matrix. For the transition noise

15



��k; k � 1	 and the observation noise
��k; k � 1	 Chui and Chen (1999) assumeE(�k) = 0; var(�k) <1; E(�k) = 0; var(�k) <1;�k ?Xk; �k ? �l (k 6= l); �k ? �l (k; l � 1);�k ?X l (k; l � 1):(28)

For the observation noise�k they additionally assume

(29) �k = �Nk�1�k�1 + k (k � 2); with k ? �k�1; k ? l (k 6= l):�Nk�1 is amZk �mZk�1 real matrix. If �Nk�1 = 0 Chui and Chen (1999) speak of white observation

noise, and if on the other hand�Nk�1 6= 0 they say that the observation noise is coloured. Of course

all their derivations and our derivations given below hold for both cases. So we can regard the case of

coloured observation noise as a more general case than whiteobservation noise.

The state vectorsXk are assumed to be unobserved. Thus they have to be estimated from the data.

For this we denote fork � 1 �Zk := var(Zk);Zk := (Z1;Z2; : : : ;Zk)0;X̂kjk := L(XkjZk):
The estimation error is defined by ~Xkjk :=Xk � X̂kjk:
The Kalman filter is a recursion for calculating the linear least square estimateŝXkjk and the correspond-

ing mean square error matrix~�kjk := var( ~Xkjk).
Kalman one step prediction deals with the computation ofX̂k+1jk := L(Xk+1jZk);~�k+1jk := var( ~Xk+1jk);
where ~Xk+1jk := Xk+1 � X̂k+1jk denotes the one step prediction error fork � 1.

Let N denote the number of state vectorsX1; : : : ;XN . Further defineZN := (Z1; : : : ;ZN )0. The

Kalman fixed point smoother is a recursion algorithm for the computation ofX̂kjN := L(XkjZN );~�kjN := var( ~XkjN );
where ~XkjN :=Xk � X̂kjN denotes the estimation error ofXk in terms ofZN for k = 1; : : : ; N .
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Kalman filtering, prediction and fixed point smoothing rely on decomposition of the data vectorZ into

so called innovations� which are defined fork � 2 as linear least squares prediction errors

(30) �k := Zk � L(ZkjZk�1);
whereZk�1 denotes the vector(Z1; : : : ;Zk�1)0. With Schneider (1986) (Satz (2-15)) the relation�k ?Zk�1 holds and thus

��k; k � 2	 is serially orthogonal. Similarly to Chui and Chen (1999) wecan

derive two representations for�k. Using the Observation Equation (27) and the Transition Equation (26)

we get fork = 1; : : : ; NZk = �CkXk + �k = �CkXk + �Nk�1�k�1 + k= �Ck( �Ak�1Xk�1 + �k�1�k�1) + �Nk�1(Zk�1 � �Ck�1Xk�1) + k= ( �Ck �Ak�1 � �Nk�1 �Ck�1)Xk�1 + �Nk�1Zk�1 + �Ck�k�1�k�1 + k=Hk�1Xk�1 + �Nk�1Zk�1 + �Ck�k�1�k�1 + k; with(31) Hk�1 := �Ck �Ak�1 � �Nk�1 �Ck�1:(32)

Since�k ? Xk and�k ? k we conclude thatE(�kZ 0k) = 0 and thusL(�kjZk) = 0. From Assump-

tion (29) it follows thatL(kjZk�1) = 0. Substitution of (31) into (30) yields�k = Zk � L(Hk�1Xk�1 + �Nk�1Zk�1 + �Ck�k�1�k�1 + kjZk�1)= Zk �Hk�1X̂k�1jk�1 � �Nk�1Zk�1:(33)

Further substitution leads to�k =Hk�1Xk�1 + �Nk�1Zk�1 + �Ck�k�1�k�1 + k �Hk�1X̂k�1jk�1 � �Nk�1Zk�1=Hk�1(Xk�1 � X̂k�1jk�1) + �Ck�k�1�k�1 + k:(34)

Note that ~Xk�1jk�1 is a linear function ofXk�1 andZk�1. ThereforeE( ~Xk�1jk�1�0k�1) = 0 andE( ~Xk�1jk�1 0k) = 0 holds fork = 2; : : : ; N . Thus

(35) �k := var(�k) =Hk�1 ~�k�1jk�1H 0k�1 + �Ck�k�1var(�k�1)�0k�1 �C 0k + var(k):
5.2 Kalman Filter and One Step Predictor for State Space Models with White System

and Coloured Observation Noise

In Chui and Chen (1999) the Kalman filter is initialized byX̂1j1 := E(X1)� var(X1) �C 01��1Z1 �C1�E(X1)�Z1�;~�1j1 := var(X1)� var(X1) �C 01��1Z1 �C1var(X1):(36)
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Then the following recursion formulas hold for the Model(26); (27) with k � 2 (Chui and Chen (1999),

(5.21), page 73): Gk := ( �Ak�1 ~�k�1jk�1H 0k�1 + �k�1var(�k�1)�0k�1 �C 0k) ���1k ;(37) F k := �Ak�1 �GkHk�1;(38) ~�kjk = F k ~�k�1jk�1 �A0k�1 + (Imk �Gk �Ck)�k�1var(�k�1)�0k�1;X̂kjk = �Ak�1X̂k�1jk�1 +Gk�k:(39)

In Equation (39) the Representation (33) is used. Note that the Representation (34) contains unobserved

components. These are the filtering equations. With Transition Equation (26) we get for the one step

predictions fork � 1 Xk+1jk = �AkX̂kjk;~�k+1jk = �Ak ~�k+1jk �A0k;(40)

sinceL(�kjZk) = 0.

To obtainX̂kjN and~�kjN for k = 1; : : : ; N we have to apply a Kalman fixed point smoothing algorithm.

Since the algorithm makes use of the innovations�k, rather than of the data vectorsZk, we can replaceZk by �k successively to save memory space. The matrices��1k andGk have to be stored. It may be

the case, that these matrices are not different for allk but��1k = ��1l holds for somel = 2; : : : ; N
andGk = Gm for somem = 2; : : : ; N . Then only the different matrices have to be stored, together

with the information to which indices they correspond. The matrices
�F k; k = 2; : : : ; N	 need not

to be stored, if sufficient memory space is a problem. It may bethe case, that there are as well only

a relative small number of different matricesF k. On the other hand, they could be computed in the

smoothing step again. In our applications�Ak and �Ck, k = 1; : : : ; N � 1 happen to be sparse matrices

of simple structure, where matrices�Nk have relatively small dimensions and may be only a small num-

ber of different �Nk for k = 1; : : : ; N � 1. Thus �Ak; �Ck; and �Nk need not much memory space and

computation ofF k andHk can be done without much effort. Matrices�Ck are needed anyway for the

computation of̂�kjN andvar(~�kjN ). Matrices
��k; k = 1; : : : ; N�1	 are also needed in the smoothing

step.
��k; k = 1; : : : ; N � 1	 are sparse selection matrices. For smoothing we need also the matrices�var(k); k = 2; : : : ; N	 and

�var(�k); k = 1; : : : ; N � 1	. Again, there may be only a relatively

small number of differentvar(k) andvar(�k).
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5.3 Kalman Fixed Point Smoother for Linear State Space Models with White System
and Coloured Observation Noise

Similarly to Durbin and Koopman (2001) (4.25) and (4.30) we define recursively fork = N; : : : ; 2P k�1 :=H 0k�1��1k Hk�1 + F 0kP kF k;(41) Rk�1 :=H 0k�1��1k �k + F 0kRk;(42)

wherePN = 0 andRN = 0. If index k = N � 1; : : : ; 1 is interpreted as a time index thenP k is a

linear function of the inverse variance matrices of innovations occurring after timek, andRk is a linear

function of innovations occurring after timek. Then we compute fork = N � 1; : : : ; 1 usingXkjk and~�kjk from the Kalman filtering (36) - (39)X̂kjN = X̂kjk + ~�kjkRk;~�kjN = ~�kjk � ~�kjkP k ~�kjk:(43)

Note thatX̂N jN and ~�N jN were already computed by the filtering step (36) - (39). The derivation of

(43) is given in Appendix B.

For the derivation of the score vector we need the smoothed disturbanceŝkjN := L(kjZN ), k =N; : : : ; 2 and �̂mjN := L(�mjN jZN ), m = N � 1; : : : ; 1. The corresponding smoothed estimation

errors are denoted by ~kjN := k � L(kjZN );~�mjN := �m � L(�mjN jZN ):
The mean squared error matricesvar(~kjN) andvar(~�mjN ) are also needed for the derivation of the

score vector. Computation of the smoothed disturbances andthe corresponding mean squared error

matrices can be done using the following recursion formulas:̂kjN = var(k)���1k �k �G0kRk�;var(~kjN ) = var(k)� var(k)���1k �G0kP kGk�var(k);(44) �̂kjN = var(�k)�0k �C 0k+1��1k+1�k+1 + var(�k)(�k �Gk+1 �Ck+1)0Rk+1;var(~�kjN ) = var(�k)� var(�k)�0k �C 0k+1��1k+1 �Ck+1�kvar(�k)� var(�k)(�k �Gk+1 �Ck+1)0P k+1(�k �Gk+1 �Ck+1)var(�k):(45)

In Appendix C the derivation of the equations for̂kjN and �̂kjN and in Appendix D the derivation of

the equations forvar(~kjN) andvar(~�kjN ) are given.
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5.4 Missing Observations

In our applications of Kalman filter and smoother algorithmsfor linear state space models with white

system and coloured observation noise we might have to allowfor missing observations, that is there is

no observation connected with the state vectorXk for somek = 1; : : : ; N . In this case we define�Ck to

be a zero matrix of appropriate dimension and we re-define (27), (29) and (32) more generally as:Zk := ( �CkXk + �k , for �Ck 6= 0Zk�1 , for �Ck = 0;�k := ( �Nk�1�k�1 + k , for �Ck 6= 0�k�1 , for �Ck = 0;Hk�1 := ( �Ck �Ak�1 � �Nk�1 �Ck�1 , for �Ck 6= 00 , for �Ck = 0:(46)

For �Ck = 0 (46) implies �Nk�1 = I andk = 0. There is no new information related toZk and the

innovation�k = Zk � L(ZkjZk�1) is a zero vector with variance matrix�k = 0. But derivations of

Kalman filter and smoother algorithms hold also for the case,when the inverse variance matrices that

occur are replaced by their generalized inverse (see e.g. Hamilton (1994), Section 4.1). For�k = 0
the generalized inverse matrix is��k = 0, implying for (37) and (38)Gk = 0 andF k = �Ak�1. The

filtering and the smoothing equations can then be applied in both cases when observations connected to

a specific state vector are observed or not.

5.5 Derivation of the Score Statistic

Since often model parameters are unknown in practice they have to be estimated. For linear state space

models maximum likelihood estimation is commonly used, seee.g. Durbin and Koopman (2001) and

Harvey (1987). Here the score statistic becomes important for the application of an EM algorithm or for

numerical maximization. For this reason we give in this section a derivation of an analytic representation

of the score statistic for linear state space models with white transition noise and coloured observation

noise.

Let  denote the vector of the unknown parameters in a parameter space
. The parameter vector might consist of unknown variance and covariance parameters and some nonnegative weights. There-

fore we assume that
 � Rq+�Rr with q; r 2 N. The likelihood function of formed from the observed

data is given by L( ;ZN ) := p(ZN ; );
wherep(ZN ; ) denotes the probability density function ofZN in terms of the parameters . Similarly

the likelihood function of formed from the complete set of the unobserved state vectorsXN :=
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(X1; : : : ;XN )0 and the observed dataZN is given byL( ;XN ;ZN ) := p(XN ;ZN ; );
wherep(XN ;ZN ; ) is the joint density ofXN andZN in terms of the parameters .

As in McLachlan and Krishnan (1997) we define the score statistic based on the observed dataZN
as S(ZN ; ) := �log L( ;ZN )� ; and corresponding to the complete data(XN ;ZN ) byS(XN ;ZN ; ) := �log L( ;XN ;ZN )� :(47)

Under regularity conditions like continuity, the interchange of integration and differentiation is valid. For

this case McLachlan and Krishnan (1997) show that for a fixed value � 2 
 S(ZN ; � ) can be written

as

(48) S(ZN ; � ) = �� E � �log L( ;XN ;ZN )��� = � 
We use (48) for the derivation of the analytic representation. For this we assume thatXN andZN are

jointly normally distributed in addition to assumption (28). Further,var(�k) andvar(m) are either

non-singular or zero matrices,k = 0; : : : ; N � 1, m = 1; : : : ; N . In the latter case the termsvar(�k)�1,var(l)�1 in equations below have to be replaced by0.

We will need the following result (see e.g. Kailath et al. (2000), Appendix 3.C): LetU ;V be two

jointly normally distributed random vectors. ThenL(U jV ) = E(U jV );var[U � L(U jV )℄ = var(U jV );(49)

whereE(U jV ) denotes the conditional expectation andvar(U jV ) the conditional variance ofU givenV . Furthermore, the random vectorU jV conditioned onV is normally distributed with meanE(U jV )
and variance matrixvar(U jV ).
Applying Bayes Theorem yields

(50) p(XN ;ZN ; )=p(XN ; )p(ZN jXN ; )=p(X1; )QNk=2 p(XkjX1;:::Xk�1; ):
Using (26), (28) and (49) we getL(XkjX1; : : : ;Xk+1) = L(XkjXk�1) = E(XkjXk�1) = �Ak�1Xk�1;var(XkjXk�1) = var[Xk �E(XkjXk�1)℄ = �k�1var(�k�1)�0k�1:(51)

In addition we have

(52) p(XN ; ) = p(X1; ) NYk=2 p(XkjX1; : : :Xk�1; ) = p(X1; ) NYk=2 p(XkjXk�1; );
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wherep(XkjXk�1; ) is a multivariate normal density with mean�Ak�1Xk�1 and variance matrix�k�1var(�k�1)�0k�1. Using again Bayes Theorem we havep(ZN jXN ; ) = p(Z1jXN ; ) NYk=2 p(ZkjZk�1;XN ; ):
Applying (27) and (28) together with (49) it followsE(Z1jX1) = �C1E(X1jX1) +E(�1jX1) = �C1X1;var(Z1jX1) = var[Z1 �E(Z1jX1)℄ = var(�1);E(ZkjZk�1;XN ) = �CkE(XkjZk�1;XN ) +E(�kjZk�1;X)= �CkE(XkjXk) +Nk�1E(�k�1jZk�1;XN ) +E(kjZk�1;XN )= �CkE(XkjXk) +Nk�1E(�k�1jZk�1;Xk�1) + 0= E(ZkjZk�1;Xk�1;Xk);(53)

since�k�1 = Zk�1 � �Ck�1Xk�1 is a linear function ofZk�1 andXk�1, andk ? Zk�1;XN . This

yields E(ZkjZk�1;XN ) = �CkXk +Nk�1�k�1;var(ZkjZk�1;XN ) = var[Zk �E(ZkjZk�1;XN )℄ = var(k):(54)

We define �0 := X1 �EX1 and1 := �1:
Since�k is a selection matrix or a block selection matrix the relation�0k�k = I holds and it follows that�k = �0k�k�k = �0k(Xk+1 � �kXk):
The complete log likelihood can now be calculated as followslog L( ;XN ;ZN ) =log p(XN ;ZN ; )=log p(Xn; )+log p(ZN jXN ; )=log p(X1; )+PNk=2 log p(XkjXk�1; )+log p(Z1jX1; )+PNk=2 log p(ZkjZk�1;Xk�1;Xk; )=const.� 12�log(jvar(�0)j)+�00var(�0)�1�0+log(jvar(1)j)+01var(1)�11+PNk=2�log(jvar(�k�1)j)+�0k�1var(�k�1)�1�k�1+log(jvar(k)j)+0kvar(k)�1k��= const.� 12 PNk=1�log(jvar(�k�1)j)+log(jvar(k)j)+�0k�1var(�k�1)�1�k�1+0kvar(k)�1k:
(55)

Since for a random vectorV of sizen andM 2 Rn�n symmetric

(56) E(V 0MV ) = tr[Mvar(V ) +E(V )E(V )0℄
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(Seber (1977), Theorem 1.7) holds we have for = � S(ZN ; � )= �� E � �log L( ;XN ;ZN )��� = � =� 12 �� PNk=1�log(jvar(�k�1)j)+log(jvar(k)j)+E � ��0k�1var(�k�1)�1�k�1jZN�+E � �0kvar(k)�1kjZN�	���� = � =� 12 �� PNk=1�log(jvar(�k�1)j)+log(jvar(k)j)+tr��̂k�1jN �̂0k�1jN+var(�k�1)�1var(�k�1jZN )�+tr�̂kjN ̂0kjN+var(k)�1var(kjZN )������ = � 
(57)

Note thatE(�k�1jZN ) = �̂k�1jN andE(kjZN ) = ̂kjN . Since�̂k�1jN , var(�k�1jZN ) = var(~�k�1jN )
and̂kjN , var(kjZN ) = var(~kjN) were computed in (44) and (45), respectively, under the assump-

tion  = � these terms do not vary with . Thus in (57) only the terms invar(�) andvar() require

differentiation with respect to .

In the case of missing observations in the state space model the number of state vectorsNX is greater

than the number of observationsNZ . We have augmented the original data vectorZNZ by some vec-

torsZk = Zk�1 when there was no observation connected with the state vector Xk, k = 1; : : : ; NX .

Let ZNX denote the augmented data vectorZNZ . Then for the likelihoodL( ;XNX ;ZNX ) =L( ;XNX ;ZNZ ) holds. Thus we can skip the corresponding terms in Equation (57) whenZk = Zk�1.
Therefore we write Equation (57) asS(ZNZ ; � ) = �12 �� NXXk=1�log(jvar(�k�1)j) + tr��̂k�1jNZ �̂0k�1jNZ + var(�k�1)�1var(�k�1jZNZ )��+ NZXk=1�log(jvar(k)jNZ) + tr�̂kjNZ ̂0kjNZ + var(k)�1var(kjZNZ )������ = � 
(58)

6 Autoregressive Models on Acyclic Directed Graphs

6.1 Introduction

Huang and Cressie (2001) relaxed the tree-structure and allowed for structures on more general acyclic

directed graphs. As Huang et al. (2002) they assume white system and observation noise. For these

models they derive so-called junction trees. The tree-structured Kalman filter and smoother work now

on these junction trees. We took these models as a starting point to formulate a model for time series,

omitting mass balance. For this we drop the assumption of nested partitioning and use an overlapping

arrangement of sub-intervals instead. We will now define directed acyclic graphs and required additional

notation. Finally we define stochastic processes, indexed by nodes of a specific class of acyclic directed

graphs. System noise and observation noise are then modeledin linear state space form where we do not

require white noise but can allow for coloured noise.
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6.2 Overlapping Interval Arrangement and Acyclic Directed Graphs

Definition 6.1. Overlapping Interval Arrangement

Let interval I � R with lengthjIj > 0, a natural numberJ 2 N and a family of natural numbers(Nj)Jj=1 with Nj+1 � Nj (j = 1; : : : ; J) be given. A collection of sub-intervalsfIj;k � I : j =1; : : : ; J; k = 1; : : : ; Njg is called an overlapping interval arrangement onI, if the following conditions

hold: jIj;kj > 0 (j = 1; : : : ; J ; k = 1; : : : ; Nj);(i) Ij;k \ Ij;k+1 6= ; (j = 1; : : : ; J ; k = 1; : : : ; Nj � 1);(ii) Nj[k=1 Ij;k = I (j = 1; : : : ; J);(iii)

We consider the indices of these sub-intervals as nodes in a directed acyclic graph, which is defined in

graph theory as follows:

Definition 6.2. Let a finite set of nodesT and a set of edgesE 2 V �V be given. If for all(v; v0) 2 E it

follows that(v0; v) 62 E, then the pair(T; V ) is called an acyclic graph. A path of lengthk � 1 from v0
to vk 2 T is a sequence of nodesv0; v1; : : : ; vk such that(vi; vi+1) is an edge for eachi = 0; : : : ; k� 1.

A cycle of lengthk � 1 is a pathv0; v1; : : : ; vk such thatv0 = vk. An acyclic directed graph is a directed

graph that has no cycles in it. For a directed edge(v; v0), v is said to be a parent ofv0, andv0 is said to

be a child ofv. A nodev of a directed graph is said to be a root, if it has no parent, andit is called a

terminal node, if it has no children.

These definitions were used by Huang and Cressie (2001). Notethat with this definition a graph can have

more than one root. For the models we consider we make additional definitions:

We say that a nodev is on scalej = 1 if a root is the parent ofv. Roots are then nodes on scalej = 0.

The further scales are defined recursively: We say that a nodeis on scalej+1 if its parent or parents are

on scalej. We call the scaleJ with only terminal nodes on it the finest scale. The number of nodes on a

scalej = 0; : : : ; J is denoted byNj . The numbering of nodes on a scalej starts with1 at the left and pro-

ceeds to the right up toNj . Thus thekth node on the scalej = 0; : : : ; J can be denoted by the pair(j; k).
The nodes are allowed to have up to two parents:

A node (j; k) is called a left parent of the node(j + 1; k0) if (j; k) is the only parent or if(j; k) is a

parent of(j+1; k0) and if there is a node(j; k+1) that is also a parent of(j+1; k0). We denote the left

parent of(j + 1; k0) by lpa(j + 1; k0). A node(j; k) is called a right parent of(j + 1; k0), if (j; k) is the

only parent or if(j; k) is a parent of(j + 1; k0) and if there is a node(j; k � 1) that is also a parent of
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(j + 1; k0). We denote the right parent of(j + 1; k0) by rpa(j + 1; k0).
A path from the root to the terminal node(J; k) is called the left path from the root to(J; k) if only(J; k) and left parents of nodes of the path are on the path. A path from the root to the terminal node(J; k) is called the right path from the root to(J; k) if only (J; k) and right parents of nodes of the path

are on the path.

Let Pj denote the number of nodes on scalej that are left parents forj = 0; : : : ; J � 1 andNj the

number of nodes on scalej, j = 0; : : : ; J . Forj = 1; : : : ; J we can specifyKj 2 N, Pj�1 � Kj � Nj
andlj;k; rj;k 2 N with lj;k � rj;k for k = 1; : : : ;Kj such that the nodes(j; lj;k); : : : ; (j; rj;k) have the

same left parent. We set�j;k := �(j; lj;k); : : : ; (j; rj;k)	 and denote the cardinal number of�j;k by nj;k.

For the models discussed below we will consider only acyclicdirected graphs with one root and where

all the terminal nodes are on the finest scaleJ only. Furthermore we assume that the nodes of scalej = 2; : : : ; J have up to two parents. For easier reference we call such graphs two-parent-terminal

graphs.

The whole observation interval and the sub-intervals obtained by overlapping interval arrangement can

now be indexed by the nodes of an acyclic directed graph.

Example 3. To illustrate these notations we give an example withJ = 2 and three sub-intervals on the

scalej = 1 and six sub-intervals on the scalej = 2, see Figure 3.

(0) j=0
(1,1)

(1,2)
(1,3)

j=1

j=2
(2,1)

(2,2)
(2,3) (2,5)

(2,6)(2,4)

(a)

(2,1)      (2,2)      (2,3)      (2,4)     (2,5)      (2,6)

(1,1)                           (1,2)                         (1,3)

   root

(b)

Figure 3: Overlapping Interval Arrangement (a) and Corresponding Acyclic Directed Graph (b) for
Example 3

Since we have no nested partitioning as in Definition 3.1 but overlapping sub-intervals we don’t have to

pay attention to the linearity of the integral and thus no mass balance is needed. One possible acyclic

directed graph, corresponding to this overlapping interval arrangement is given in Figure 3(b). The nodes

on j = 1 have only one parent, the root, while each node onj = 2; : : : ; J has a left parentlp and a right

parentrp.
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Following Huang and Cressie (2001) we define a stochastic processY := �Y0; Yj;k; fj; kg 2 T	 in-

dexed by the nodesT of a two-parent-terminal graph, starting withY0 at the root:

Transition Eq.j = 1 : Y1;k = Y0 +W1;k (k = 1; : : : ; N1):(59)

Transition Eq.j = 2; : : : ; J : Yj;k = �j;kYlp(j;k) + �j;kYrp(j;k) +Wj;k (k = 1; : : : ; Nj):(60)

Observation Eq.: Zk = kYJ;K +Qk;(61)

wherekis a real number andQk a random variable fork = 1; : : : ; NJ . We also say thatYj;k is a child

of Ylpa(j;k) andYrpa(j;k) and thatYlpa(j;k), Yrpa(j;k) are parents ofYj;k for j = 2; : : : ; J , k = 1; : : : ;Kj .
Note that if we set�j;k = 0 8 j; k and consider e. g. right parents as the only parents in the graph, we

are back to trees discussed in Chapter 4.

In this model observations again are only associated with the finest scaleJ . Further assumptions are:Y0;Wj;k; Qk are zero mean random variables with finite variance,�j;k; �j;k 2 R+ := fx 2 R : x � 0g
with �j;k + �j;k = 1, Wj;k ? Y0, Wj;k ? Ql,Ql ? Y0 andWj;k ?Wi;l; (j 6= i).
For j fixed, the transition noise

�Wj;k; k = 1; : : : nj	 is modeled in linear state space form:

(62) W j;k+1 = Bj;kW j;k + V j;k; k = 1; : : : ;Kj � 1
where the elements of the random vectorW j;k are the elements of the set

�Wj;� : (j; �) 2 �j;k	, andBj;k 2 Rnj;k+1�nj;k andV j;k is a zero mean random vector withnj;k+1 elements. Further we assume�V j;k; k = 1; : : : ;Kj	 to be a family of uncorrelated random vectors, also uncorrelated toW j;1. The

state space representation (62) implies

(63) L(W j;k+1jW j;1; : : : ;W j;k) = L(W j;k+1jW j;k):
Kailath et al. (2000) call this weak Markov property, since in general the Markov property is defined by

conditional independence rather then by covariance.

The observation noise
�Qm;m = 1; : : : ; NJ	 is modeled in a similar manner with

(64) Qk+1 =DkQk +Uk; k = 1; : : : ;KJ � 1:
where the elements of the random vectorQk are the elements of the set

�Q� : (J; �) 2 �J;k	, Dk 2RnJ;k+1�nJ;k andUk a zero mean random vector withUk ? Qk andUk ? U l for k 6= l.
6.3 Linear State Space Representation for Models on AcyclicDirected Graphs

We explain how to find a linear state space representation with white system and coloured observation

noise by a simple example.
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(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3)  (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9) (3,10)

root

Figure 4: Two-parent-terminal Graph for Example 4

Example 4. Consider the graph shown in Figure 4. On the finest scaleJ = 3 the nodes(3; 1) and(3; 2)
have both parents in common. Thus we set�3;1 := f(3; 1); (3; 2)g, Y 3;1 := (Y3;1; Y3;2)0 andW 3;1 :=(W3;1;W3;2)0. Proceeding in the same manner on scale3 we get random vectorsY 3;1; : : : ;Y 3;5 andW 3;1; : : : ;W 3;5. ObservationsZm, m = 1; : : : ; 10, are similarly compounded into vectors:Z1 := (Z1; Z2)0; : : : ;Z5 := (Z9; Z10)0;Q1 := (Q1; Q2)0; : : : ;Q5 := (Q9; Q10)0:
On scalej = 2 we get the random vectorsW 2;1 := (W2;1;W2;2)0, W 2;2 := (W2;3;W2;4)0, W 2;3 :=(W2;5;W2;6)0 andY 2;1 := (Y2;1; Y2;2)0, Y 2;2 := (Y2;3; Y2;4)0, Y 2;3 := (Y2;5; Y2;6)0. The nodes on scalej = 1 have the root as parent. Therefore we defineW 1;1 := (W1;1;W1;2)0, W 1;2 := (W1;3;W1;4)0
andY 1;1 := (Y1;1; Y1;2)0, Y 1;2 := (Y1;3; Y1;4)0. Using Transition Equations (59) and (60) yields the
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transition equations for the vectorized model:Y 1;1 = �Y1;1Y1;2� = �Y0+W1;1Y0+W1;2� =Y00�111A+0�W1;1W1;21A;Y 1;2 = �Y1;3Y1;4� = �Y0+W1;3Y0+W1;4� =Y00�111A+0�W1;3W1;41A;Y 2;1 = �Y2;1Y2;2� = ��2;1Y1;1+�2;1Y1;2+W2;1�2;2Y1;1+�2;2Y1;2+W2;2� = ��2;1 �2;1�2;2 �2;2�Y 1;1+W 2;1=:A2;1Y 1;1+W 2;1;Y 2;2 = �Y2;3Y2;4� = ��2;3Y1;2+�2;3Y1;3+W2;3�2;4Y1;2+�2;4Y1;3+W2;4� = �0 �2;30 �2;4�Y 1;1+0��2;3 0�2;4 01AY 1;2+W 2;2=:Al2;2Y 1;1+Ar2;2Y 1;2+W 2;2;Y 2;3 = �Y2;5Y2;6� = ��2;5Y1;3+�2;5Y1;4+W2;5�2;6Y1;3+�2;6Y1;4+W2;6� = ��2;5 �2;5�2;6 �2;6�Y 1;2+W 2;3=:A2;3Y 1;2+W 2;3;Y 3;1 = �Y3;1Y3;2� = ��3;1Y2;1+�3;1Y2;2+W3;1�3;2Y2;1+�3;2Y2;2+W3;2� = ��3;1 �3;1�3;2 �3;2�Y 2;1+W 3;1=:A3;1Y 2;1+W 3;1;Y 3;2 = �Y3;3Y3;4� = �0 �3;30 �3;4�Y 2;1+0��3;3 0�3;4 01AY 2;2+W 3;2=:Al3;2Y 2;1+Ar3;2Y 2;2+W 3;2;Y 3;3 = �Y3;5Y3;6� = ��3;5 �3;5�3;6 �3;6�Y 2;2+W 3;3=:A3;3Y 2;2+W 3;3;Y 3;4 = �Y3;7Y3;8� = �0 �3;70 �3;8�Y 2;2+0��3;7 0�3;7 01AY 2;3+W 3;4=:Al3;4Y 2;2+Ar3;4Y 2;3+W 3;4;Y 3;5 = � Y3;9Y3;10� = � �3;9 �3;9�3;10 �3;10�Y 2;3+W 3;5=:A3;5Y 2;3+W 3;5:

(65)

For the observation equations in the vectorized model we getwith Equation (61):Z1 = �Z1Z2� = �1 2��Y3;1 +Q1Y3;2 +Q2� =: C1Y 3;1 +Q1;
...Z5 = �Z9Z10� = �9 10�� Y3;9 +Q9Y3;10 +Q10� =: C5Y 3;5 +Q5:(66)

This is a model on a new directed acyclic graph shown in Figure5.

Transition noise vectors on the same scale are modeled as a vector AR(1) model, i.e.W 1;2 = B1;1W 1;1 + V 1;1;W 2;2 = B2;1W 2;1 + V 2;1;W 2;3 = B2;2W 2;2 + V 2;2;W 3;2 = B3;1W 3;1 + V 3;1;
...W 3;5 = B3;4W 3;4 + V 3;4:(67)

Modeling the observation noise vectors as vector AR(1) model yieldsQ2 =D1Q1 +U1;
...Q5 =D4Q4 +U4:(68)
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  root

(1,1) (1,2)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3) (3,4) (3,5)

Figure 5: Graph for Vectorized Nodes for Example 4

To put the vectorized model (65)-(68) into linear state space form we specify the initial state vector such

that Y0 and allY j;1 andW j;1 indexed by nodes(j; 1), j = 1; : : : ; J , on the left path from the root to(J; 1) of the vectorized graph are elements ofX1. In our exampleX1 := (Y0;Y 1;1;Y 2;1;Y 3;1;W 1;1;W 2;1;W 3;1)0:
We will denote the observations in (26) and (27) by�Zk to distinguish them from the observations in the

acyclic graph model. The first observation equation can therefore be written as�Z1 = �C1X1 + �1;
with �1 := Q1 and �C1 := �02;5 C1 02;6�, where0p;q denotes a zero(p � q) matrix andIp the

identity matrix of dimensionp. Similarly, let0p denote the zero matrix of dimensionp� p.

In model (65)-(68) the data vectorZ2 is connected withY J;2 by (66). SinceY J;2 62 X1 the Y j;k
andW j;k indexed by the nodes on the right path from the root to(J; 2) have to be successively inte-

grated into state vectors. SinceY 1;2 = Y01n0 +W 1;2, where1p denotes a column vector ofp ones,

the first step is to update fromW 1;1 to W 1;2 in X2 using (67). Generally, before integratingY i;m,i = 1; : : : ; J , m = 1; : : : ;Kj , into a state vector we have to integrateW i;m into the state vector. AllW j;k, j = 1; : : : ; J , k = 1; : : : ;Kj , in the actual state vector that are not needed for the integration ofW i;m into the next state vector are retained in the next state vector as long ask < Kj , j = 1; : : : ; J .

TheY j;k in the actual state vector are retained in the next state vector as long as not all their children

are either in the actual state vector, have been in previous state vectors or will be in the next state vector.Y J;1 has no child and therefore “all children ofY J;1” are in X1, implyingY J;1 is not needed inX2.

The transition matrix �Am = 0B� blok(1; 1) : : : blok(1; em)
...

...
...blok(em+1; 1) : : : blok(em+1; em)1CA
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consists of block matrices denoted byblok(r; ), r = 1; : : : ; em+1,  = 1; : : : ; em, whereem denotes

the number of sub-vectors inXm, m � 1. In our examplee1 = 7. W 1;1 is the fifth sub-vector ofX1 in

our example andW 1;2 will be the fourth sub-vector ofX2. Thus in �A1 we haveblok(4; 5) defined to

beB1;1. If then1th sub-vector ofX1 will be then2th sub-vector ofX2, we defineblok(n2; n1) to be

the identity matrix of appropriate dimension. In our example we getX2 := 0BBBBBB� Y0Y 1;1Y 2;1W 1;2W 2;1W 3;1
1CCCCCCA = 0BBBBBB� 1 01;2 01;2 01;2 01;2 01;2 01;202;1 I2 02 02 02 02 0202;1 02 I2 02 02 02 0202;1 02 02 02 B1;1 02 0202;1 02 02 02 02 I2 0202;1 02 02 02 02 02 I2

1CCCCCCAX1+0�05;2I204;21AV 1;1 =: �A1X1+�1�1:
No observation is connected with state vectorX2 since there is no terminal node element ofX2.

We interprete this as a case of missing observation and define�C2 := 02;11, �Z2 := �Z1 = Z1 and�2 := �1 = Q1. Like in (46) this implies�N 1 = I2 and2 = 02;1.
Now we can integrateY 1;2 into X3 using (65). For this we note thatY0 is the first sub-vector andW 1;2 is the fourth sub-vector inX2. Y 1;2 will be the third sub-vector inX3. Thus in �A2 we setblok(3; 1) := 12;1 and blok(3; 4) := I2, where1p;q is a (p � q) matrix of ones. We further update

fromW 2;1 toW 2;2. Since there is noW 1;3 we can skipW 1;2 inX3. The other sub-vectors ofX2 are

retained inX3.X3 := 0BBBBBB� Y0Y 1;1Y 1;2Y 2;1W 2;2W 3;1
1CCCCCCA = 0BBBBBB� 1 01;2 01;2 01;2 01;2 01;202;1 I2 02 02 02 0212;1 02 02 I2 02 0202;1 02 I2 02 02 0202;1 02 02 02 B2;1 0202;1 02 02 02 02 I2

1CCCCCCAX2 +0�07;2I202 1AV 2;1 =: �A2X2 + �2�2;
Again there is no observation connected withX3 and thus we set�C3 := 02;11, �Z3 := �Z2 = Z1 and�3 := �2 = Q1, implying that �N 2 = I2 and3 = 02;1.
Going down the right path from the root to(J; 2) the next step is done by integratingY 2;2 into X4.

Using (65) we note thatY 1;1 is the second sub-vector,Y 1;2 is the third sub-vector andW 2;2 is the fifth

sub-vector ofX3. Y 2;2 will be the third sub-vector inX4. Thus in �A4 we defineblok(3; 2) := Al2;2,blok(3; 3) := Ar2;2 andblok(3; 5) := I2. We further update fromW 3;1 toW 3;2. Y0 andY 1;1 are no

longer needed in the state vector since all their children are, already have been or will be in the state

vectorsX1 toX4.X4 := 0BBBB�Y 1;2Y 2;1Y 2;2W 2;2W 3;2
1CCCCA = 0BBBB�02;1 02 I2 02 02 0202;1 02 02 I2 02 0202;1 Al2;2 Ar2;2 02 I2 0202;1 02 02 02 I2 0202;1 02 02 02 02 B3;1

1CCCCAX3 +�08;2I2 �V 3;1 =: �A3X3 + �2�3:
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Again this is treated as a case of missing observations, setting �C4 := 02;8, �Z4 := �Z3 = Z1 and�4 := �3 = Q1. This implies �N3 = I2 and4 = 02;1.
Now we can easily putY 3;2 into X5, noting thatY 3;2 has the parentsY 2;1 andY 2;2 which are sub-

vectors ofX4. Then all the children ofY 2;1 are, already have been or will be in the state vectorsX1 toX5 and thus we can omitY 2;1 inX5. We also update fromW 3;2 toW 3;3. In Equation (66) observationZ2 is connected withY 3;2 and thus connected withX5. In particular we haveX5 := 0BBBB�Y 1;2Y 2;2Y 3;2W 2;2W 3;3
1CCCCA = 0BBBB�I2 02 02 02 0202 02 I2 02 0202 Al3;2 Ar3;2 02 I202 02 02 I2 0202 02 02 02 B3;2

1CCCCAX3 +�08;2I2 �V 3;2 =: �A4X4 + �4�4:
The corresponding observation equation is given by�Z5 := Z2 = �02;4 C2 02;4�X5 +Q5 =: �C5X5 + �5;
and we set for the observation noise�N 4 := D1 and5 := U 1.
In the next state vector we integrateY 3;3 and update fromW 2;2 toW 2;3. Y 3;2 is omitted inX6 since

it has no child. Therefore we defineX6 := 0BBBB�Y 1;2Y 2;2Y 3;3W 2;3W 3;3
1CCCCA = 0BBBB�I2 02 02 02 0202 I2 02 02 0202 A3;3 02 02 I202 02 02 B2;2 0202 02 02 02 I2

1CCCCAX5 +0�06;2I202 1AV 2;2 =: �A5X5 + �5�5;
together with the observation equation�Z6 := Z3 = �02;4 C3 02;4�X6 +Q3 =: �C6X6 + �6:
For the observation noise we set�N5 :=D2 and6 := U2.

Now we have to integrateY 2;3 into the state vector sinceY 2;3 is the right parent ofY 3;4. We omitY 1;2
because all of its children are or already have been or will bein the state vector. We update fromW 3;3
toW 3;4. Since there is noW 2;4 we do not needW 2;3 in the state vector any more. This givesX7 := 0�Y 2;2Y 2;3W 3;41A = 0� 02 I2 02 02 02A2;3 02 02 I2 0202 02 02 02 B3;31AX6 +�04;2I2 �V 3;3 =: �A6X6 + �6�6:
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Again we have a case of missing observation and set�C7 := 02;6, �Z7 := �Z6 = Z3 and�7 := �6 = Q3.

It follows that �N 6 = I2 and7 = 02;1.
Now we putY 3;4 into the next state vectorX8. Y 2;2 is not needed any longer. Therefore we haveX8 := 0�Y 2;3Y 3;4W 3;51A = 0� 02 I2 02Al3;4 Ar3;4 I202 02 B3;4 1AX7 +�04;2I2 �V 3;4 =: �A7X7 + �7�7:�Z8 := Z4 = �02 C4 02�X8 + �8;
where�8 := Q4, �N 7 :=D3 and8 := U3.
The last state vectorX9 is simply given byX9 := Y 3;5 = �A3;5 02 I2�X8 =: �A8X8:�Z9 := Z5 = �C9X9 + �9;
where �C9 := C5, �9 := Q5, �N 8 :=D3 and9 := U4.
LetNX denote the number of state vectorsXk. Form = 1; : : : ; NX we have�m = 0 or there is aj 2f1; : : : ; Jg and ak 2 f1; : : : ;Kjg such that�m = Vj;k. From�m = V j;k it follows thatW j;k 2 Xm.

SinceV j;k ? W j;k we get�m ? Xm. Furthermore, since
�V j;k; j = 1; : : : ; J; k = 1; : : : ;Kj	 is a

family of uncorrelated random vectors
��m;m = 1 : : : ; NX	 is also a family of uncorrelated random

vectors. Similarly, form = 1 : : : ; NX we have set�m = Qk with k 2 f1; : : : ;KJg andk � m. �Nm�1
was then defined either by�Nm�1 := I or �Nm�1 := Dk�1 andm was defined bym := 0 or m :=Uk�1. Since

�Uk; k = 1; : : : ;KJ	 is a family of uncorrelated random vectors
�m;m = 1 : : : ; NX	

is also a family of uncorrelated random vectors. WithUk ? Qk, k = 1; : : : ;KJ it also follows thatm ? �m�1. Therefore we have a state space representation such that model equations (26), (28) and

(29) are satisfied. Though the state vectors have relativelybig dimension the system matrices�Ak,�k and

have a block structure such that calculation can be done efficiently. For the initialization of the Kalman

filter we have to derivevar(X1). This will be done element wise. Recall thatWj;k ? Wi;l; (j 6= i).
At first we noteov(Y0;Wj;k) = 0 andov(Yj;k;Wi;l) = 0 for j = 1; : : : ; J � 1, i = j + 1; : : : ; J ,k; l = 1; 2. Using (59) and (60) yields forj = 1; 2; 3:ov(Yj;1;Wj;1) = var(Wj;1); ov(Yj;2;Wj;1) = ov(Wj;2;Wj;1);(69) ov(Yj;1;Wj;2) = ov(Wj;1;Wj;2); ov(Yj;2;Wj;2) = var(Wj;2):(70)
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For j = 1; 2 we getov(Yj+1;1;Wj;1) = ov[(�j+1;1Yj;1 + �j+1;1Yj;2 +Wj+1;1);Wj;1℄= �j+1;1var(Wj;1) + �j+1;1ov(Wj;2;Wj;1);ov(Yj+1;1;Wj;2) = �j+1;1ov(Wj;1;Wj;2) + �j+1;1var(Wj;2);ov(Yj+1;2;Wj;1) = ov[(�j+1;2Yj;1 + �j+1;1Yj;2 +Wj+1;2);Wj;2℄= �j+1;2var(Wj;1) + �j+1;2ov(Wj;2;Wj;1);ov(Yj+1;2;Wj;2) = �j+1;2ov(Wj;1;Wj;2) + �j+1;2var(Wj;2):
For j = 1 we get recursivelyov(Y3;1;W1;1) = ov[(�3;1Y2;1 + �3;1Y2;2 +W3;1);W1;1℄= �3;1ov(Y2;1;W1;1) + �3;1ov(Y2;2;W1;1);ov(Y3;1;W1;2) = �3;1ov(Y2;1;W1;2) + �3;1ov(Y2;2;W1;2);ov(Y3;2;W1;1) = ov[(�3;2Y2;1 + �3;2Y2;2 +W3;2);W1;1℄= �3;2ov(Y2;1;W1;1) + �3;2ov(Y1;2;W1;1);ov(Yj+2;1;Wj;2) = �j+2;2ov(Yj+1;1;Wj;2) + �j+2;2ov(Yj+1;2;Wj;2):
Finally the quantitiesvar(Yj;k) and ov(Yj;1; Yj;2) can be computed recursively using (59) and (60)

starting at the root or at the first scale, respectively. In particular we obtain at the first scale fork = 1; 2var(Y1;k) = var(Y0) + var(W1;k);ov(Y1;1; Y1;2) = ov[(Y0 +W1;1); (Y0 +W1;2)℄ = var(Y0) + ov(W1;1;W1;2):
For j = 2; 3 andk = 1; 2 we getvar(Yj;k) = �2j;kvar(Yj�1;1) + �2j;kvar(Yj�1;2) + 2�j;k�j;kov(Yj�1;1; Yj�1;2) + var(Wj;k);ov(Yj;1 ;Yj;2)=ov([�j;1Yj�1;1+�j;1Yj�1;1+Wj;1℄;[�j;2Yj�1;2+�j;2Yj�1;2+Wj;2℄)=�j;1�j;2var(Yj�1;1)+�j;1�j;2var(Yj�1;2)+(�j;1�j;2+�j;2�j;1)ov(Yj�1;1 ;Yj�1;2)+ov(Wj;1;Wj;2):
7 Discussion

We reviewed and presented three classes of models on acyclicdirected graphs. The first class, introduced

by Chou (1991) and Huang et al. (2002) applies nested partitioning that makes the assumption of mass

balance necessary. The restrictions implied by mass balance together with the white noise assumption

for transition and observation noise imply an artificial block structure of the correlation matrix of the data
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Z and thus it is not possible to obtain a stationary autocorrelation function forZ. Huang et al. (2002)

suggest as a possible solution of this problem to compute thepredictions as an average over a number of

mass balanced, tree-structured models with different treebranches that represent children shifted to have

different parents. As they point out, the prediction variances and covariances will be more complicated

and the computational complexity will increase with the number of trees used. The models imply that

all average valuesYj;k have the same mean. The advantage of their models is that computation can be

done efficiently by a change-of-resolution Kalman filter in such a way that computations can be easily

performed in parallel problems of smaller dimensions. Furthermore, the number of parameters to be

estimated is smaller then in the models defined in Sections 4 and 6.

We generalized their models by modeling the transition noise on a same scale in linear state space form.

Mass-balance implies restrictions to the covariance matrix E(W j;k+1W 0j;k) that are, at least so far, not

easy to deal with. They also imply an artificial structure of the correlation matrix ofZ such that a sta-

tionary autocorrelation ofZ cannot be obtained. Here there are not only variance parameters but also

covariance parameters to estimate. It is questionable if this way of modeling is an improvement to the

models by Chou (1991) and Huang et al. (2002).

The third class of models requires no mass balance. The observation interval is divided into sub-intervals

by overlapping interval arrangement. The stochastic process is indexed by the nodes of a directed acyclic

graph which allows the nodes to have up to two parents. Thus weighting parameters are additionally

needed, which also have to be estimated. These models on acyclic directed graphs have a linear state

space representation with white system and coloured observation noise. The linear least squares predic-

tion of interval averages was done by a Kalman filter and Kalman fixed point smoother. The advantage

of this model is that now dynamic structures in transition and in observation noise can be modeled, that

may be a matter of interest in themselves. Thus the zero mean assumption for theYj;k can be relaxed.

Further topics for future research are incorporation of explanatory variables and terms to capture sea-

sonality and trend in the data. The score vector needed for parameter estimation depends on the value

of the initial state vectorX1 which will often be unknown in practice. The approach in Koopman and

Durbin (2001) using so called diffuse initial state vector for linear state space models with white system

and observation noise should also work for state space models with coloured observation noise. A further

important topic is to find concepts to reduce the number of variance, covariance and weighting parame-

ters. For some applications one could model the observationnoise process for itself and then integrate

this model into a model on an acyclic directed graph. Then thevariance and covariance parameters of the

observation noise are not required to be estimated within the model on acyclic directed graphs. Finally,

we aim on applying these models to high frequency financial data.
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A Examples for Correlation Matrix of Z
Here we give examples of possible structures ofor(Z) implied by tree structured models described in

Section 4.

Example 5. Figure 6 shows the correlation of the observed data vectorZ arising from the following

tree-structured model: The finest scale isJ = 3. The root hasn0 = 4 children. Each node onj = 1
hasn1;k = 6 children, k = 1; : : : ; 4 and each node on the second scale has alson2;k = 6 children,k = 1; : : : ; 24. The variance of the univariate transition noise is�20 = �2j;k = 1, E(W j;k+1W j;k) = 0,j = 1; 2; 3, k = 1; : : : ; Nj . The variance of the observation noise is given by�2m = 1 withE(QlQm) =0, m; l = 1; : : : ; 144, m 6= l.
Example 6. Figure 7 shows the correlation of the observed data vectorZ arising from the tree-structured

model with finest scaleJ = 3. The root hasn0 = 4 children. Each node on the the first scale hasn1;k = 6
children,k = 1; : : : ; 4 and each node on the second scale has alson2;k = 6 children,k = 1; : : : ; 24.

For j = 1; 2; 3 andk = 1; : : : ; Nj we have chosenvar(Wj;k) := �2j;k = 1 and

E(W j;k+1W 0j;k) = 0BBBBBB��0:39 110 � 18 16 � 14 120:19 � 112 110 � 18 16 � 14�0:13 114 � 112 110 � 18 160:09 � 116 114 � 112 110 � 18�0:08 118 � 116 114 � 112 1100:31 �0:08 0:10 �0:13 0:19 �0:39
1CCCCCCA :

Furthermore,var(Qm) := �2m = 1 andQm+1 = 0:5Qm + Um, m = 1; : : : ; 144.

B Kalman Fixed Point Smoothing for Linear State Space Modelswith
White System and Coloured Observation Noise

Considering the model defined by (26), (28) and (29) we can modify the algorithm and the derivation

given in Durbin and Koopman (2001) for linear state space models with white system and white obser-

vation noise, using Lemma 2.13 in Durbin and Koopman (2001) where it is assumed thatX;Z;� are

jointly distributed random vectors of arbitrary order withE(�) = 0 andE(Z�0) = 0. Defining~XZ� :=X � L(XjZ;�);~XZ :=X � L(XjZ)
then their Lemma 2.13 states that the following equations hold:L(XjZ;�) = L(XjZ) +E(X;�)var(�)�1�;var( ~XZ�) = var( ~XZ)�E(X ;�)var(�)�1E(�;X):(71)

35



0

50

100

150

0

50

100

150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

matrix index
matrix index

Figure 6: Cor(Z) of Example 5
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Figure 7: Cor(Z) of Example 6

ForN 2 N fixed and withZN := (Z1; : : : ;ZN )0 we can use Equation (71) together with (30) and (35)

to get fork = 1; : : : ; N
(72) X̂kjN := L(XkjZN ) = L(XkjZk;�k+1; : : : ;�N ) = X̂kjk + NXl=k+1E(Xk�0l)��1l �l:
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Note thatE(�k) = 0 for k = 2; : : : ; N . Further we compute using (34)E(Xk�0l) = E[Xk(H l�1 ~X l�1jl�1 + �C l�l�1�l�1 + l)0℄= E(Xk ~X 0l�1jl�1)H 0l�1:(73)

For l = k + 1; : : : ; N E(Xk ~X 0l�1jl�1) can be obtained recursively, starting withl = k + 1:E[Xk(Xk � X̂kjk)0℄ = E(XkX 0k)�E[Xk(E(XkZk0)��1ZkZk)0℄= var(Xk)�E(XkZk0)��1ZkE(ZkX 0k) = ~�kjk:(74)

Using Equation (74) together with (26), (39) and (34) we getE[Xk( ~Xk+1jk+1)0℄ = E[Xk( �AkXk + �k�k � �AkX̂kjk �Gk+1�k+1)0℄= E[Xk( �Ak ~Xkjk �Gk+1[Hk ~Xkjk + �Ck+1�k�k + k+1℄)0℄= E(Xk ~X 0kjk) �A0k �E(Xk ~X 0kjk)H 0kG0k+1= E(Xk ~X 0kjk)( �Ak �Gk+1Hk)0;
sinceE(Xk�0k) = 0 andE(Xk0k+1) = 0. With (38) we can writeE[Xk( ~Xk+1jk+1)0℄ = E(Xk ~X 0kjk)F 0k+1 = ~�kjkF 0k+1;E[Xk( ~Xk+2jk+2)0℄ = ~�kjkF 0k+1F 0k+2;

...E[Xk( ~XN�1jN�1)0℄ = ~�kjkF 0k+1 : : :F 0N�1:(75)

For the computation of the smoothed state space vectorX̂kjN we will now substitute(74) and(75) into(72), using(42):
(76) X̂kjN = X̂kjk + ~�kjkRk:
For computation of the mean squared error matrices~�kjN we proceed in a similar way. The starting

point is again Equation(72). Since the innovations are serially orthogonal we get using(71)

(77) ~�kjN = ~�kjk � NXl=k+1E(Xk�0l)��1l E(�lX 0k):
Using (74), (75) and (41) Equation (77) can be written as

(78) ~�kjN = ~�kjk � ~�kjkP k ~�kjk:
C Disturbance Smoother for Linear State Space Models with Coloured

Observation Noise

The so called disturbance smoother (Durbin and Koopman (2001)) computeŝkjN := L(kjZN ) and�̂kjN := L(�kjZN ). We follow their approach for linear state space models withwhite system and
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coloured observation noise and modify it where needed. At first we need a recursive representation for

the state estimation errors. Using Equations (39) and (34) for the innovations gives:~Xk+1jk+1 :=Xk+1 � X̂k+1jk+1= �AkXk + �k�k � �AkX̂kjk �Gk+1�k+1= �Ak ~Xkjk + �k�k �Gk+1Hk ~Xkjk �Gk+1 �Ck+1�k�k �Gk+1k+1= F k+1 ~Xkjk + (�k �Gk+1 �Ck+1)�k �Gk+1k+1;(79)

whereF k was defined in (38). With (71) we havêkjN := L(kjZN ) = L(kjZk�1;�k; : : : ;�N ) = L(kjZk�1) + NXl=k E(k�0l)��1l �l:
Sincek ? Zk�1 andE(k) = 0 we haveL(kjZk�1) = 0. Thus

(80) ̂kjN = NXl=k E(k�0l)��1l �l:
Using Equation (34) we yieldE(k�0k) = E[k(Hk�1 ~Xk�1jk�1 + �Ck�k�1�k�1 + k)0℄:
Since ~Xk�1jk�1 is a linear function ofZk�1 andXk�1 it follows thatE(k ~X 0k�1jk�1) = 0. WithE(k�0k) = 0 we get

(81) E(k�0k) = var(k):
Noting thatE(k 0l) = 0 holds we get forl = k + 1; : : : ; N :

(82) E(k�0l) = E[k(H l�1 ~X l�1jl�1 + �Cl�l�1�l�1 + l)0℄ = E(k ~X 0l�1jl�1)H 0l�1:
Here we have used Equation (33). The recursion for the state estimation errors (79) yields~Xkjk = F k ~Xk�1jk�1 + (�k�1 �Gk �Ck)�k�1 �Gkk:
Since ~Xk�1jk�1 ? k and�k�1 ? k we get

(83) E(k�0k+1) = E(k ~X 0kjk)H 0k = E[k(�Gkk)0℄H 0k = �var(k)G0kH 0k:
Further lags are now computed recursively:E(k�0k+2) = E(k ~X 0k+1jk+1)H 0k+1 = E(k ~X 0kjk)F 0k+1H 0k+1= �var(k)G0kF 0k+1H 0k+1;E(k�0k+3) = E(k ~X 0k+2jk+2)H 0k+2 = E(k ~X 0k+1jk+1)F 0k+2H 0k+2= �var(k)G0kF 0k+1F 0k+2H 0k+2;

...E(k�0N ) = E(k ~X 0N�1jN�1)H 0N�1 = E(k ~X 0N�2jN�2)F 0N�1H 0N�1= �var(k)G0kF 0k+1 : : :F 0N�1H 0N�1:
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Substitution into (80) yieldŝkjN = var(k)��1k �k � var(k)G0k�H 0k��1k+1�k+1 + F 0k+1H 0k+1��1k+2�k+2 + : : :+ F 0k+1 : : :F 0N�1H 0N�1��1N �N�:
Using (42) we can write

(84) ̂kjN = var(k)��1k �k � var(k)G0kRk = var(k)���1k �k �G0kRk�
Similarly it follows for �̂kjN that�̂kjN := L(�kjZN ) = L(�kjZk;�k+1; : : : ;�N ) = L(�kjZk) + NXl=k+1E(�k�0l)��1l �l= NXl=k+1E(�k�0l)��1l �l:(85)

since�k ? Zk andE(�k) = 0 for k = 1; : : : ; N � 1, which is a consequence of the assumptions (28).

Using Equation (34) we can writeE(�k�0k+1) = E[�k(Hk ~Xkjk + �Ck+1�k�k + k)0℄:~Xkjk is a linear function ofXk andZk and thusE(�k ~X 0kjk) = 0. SinceE(�k 0l) = 0 for k =1; : : : ; N � 1, l = 2; : : : ; N this gives

(86) E(�k�0k+1) = E[�k( �Ck+1�k�k)0℄ = var(�k)�0k �C 0k+1:
(34) yields E(�k�0k+2) = E[�k(Hk+1 ~Xk+1jk+1 + �Ck+2�k+1�k+1 + k+1)0℄:
Since�k ? �l for k 6= l and using (79) this leads toE(�k�0k+2) = E[�k(Hk+1 ~Xk+1jk+1)0℄ = E[�k(F k+1 ~Xkjk + (�k �Gk+1 �Ck+1)�k)0℄= var(�k)(�k �Gk+1 �Ck+1)0H 0k+1:(87)

Proceeding recursively we getE(�k�0k+3) = E[�k(Hk+2 ~Xk+2jk+2)0℄ = E[�k(F k+2 ~Xk+1jk+1)0℄H 0k+2= var(�k)(�k �Gk+1 �Ck+1)0F 0k+2H 0k+2:
...E(�k�0N ) = E[�k(HN�1 ~XN�1jN�1)0℄ = E[�k(FN�1 ~XN�2jN�2)0℄H 0N�1= var(�k)(�k �Gk+1 �Ck+1)0F 0k+2 : : :F 0N�1H 0N�1:(88)

Substitution into (85) yields�̂kjN = var(�k)�0k �C 0k+1��1k+1�k+1+var(�k)(�k�Gk+1 �Ck+1)0�H0k+1��1k+2�k+2+F 0k+2H0k+2��1k+3�k+3+F 0k+2:::F 0N�1H0N�1��1N �N�:
Using Equation (42) we get

(89) �̂kjN = var(�k)�0k �C 0k+1��1k+1�k+1 + var(�k)(�k �Gk+1 �Ck+1)0Rk+1:
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D Smoothed Disturbance Variance Matrices for Linear State Space Mod-
els with Coloured Observation Noise

Defining ~kjN := k � ̂kjN and~�kjN := �k � �̂kjN ;
we want to derive an algorithm for recursive computation ofvar(~kjN ) and var(~�kjN ) for k � 1.

These are also needed for maximum likelihood parameter estimation. For the derivation of this al-

gorithm we can again follow Durbin and Koopman (2001), wherethe derivation for a linear state

space model with white system is shown. Using (2) we considerat first var(~kjk�1) = var(k) �E(kZk�10)var(Zk�1)�1E(Zk�10k), where~kjk�1 := k � L(kjZk�1) for k = 2; : : : ; N . Sincek ? Zk�1 it follows thatvar(~kjk�1) = var(k). Thus Equation (71) yields

(90) var(~kjN ) = var(k)� NXl=k E(k�0l)��1l E(�l0k)
By (81)-(84) we getvar(~kjN) = var(k)� �var(k)��1k var(k)� var(k)G0k�H 0k��1k+1HkGkvar(k) + F 0k+1H 0k+1��1k+2Hk+1Fk+1Gkvar(k) + : : :+ F 0k+1 : : :F 0N�1H 0N�1��1N HN�1FN�1 : : :F k+1Gkvar(k)��= var(k)� var(k)��1k var(k) + var(k)G0k�H 0k��1k+1Hk+ F 0k+1H 0k+1��1k+2Hk+1F k+1 + : : :+ F 0k+1 : : :F 0N�1H 0N�1��1N HN�1FN�1 : : :F k+1�Gkvar(k):
Using (41) we can writevar(~kjN) = var(k)� var(k)��1k var(k) + var(k)G0kP kGkvar(k)= var(k)� var(k)���1k �G0kP kGk�var(k):(91)

We derivevar(~�kjN ) analogously, starting by using again (71), recalling that�k ? Zk and thusvar(~�kjk) =var(�k):
(92) var(~�kjN) = var(�k)� nXl=k+1E(�k�0l)��1l E(�l�0k):
Substitution of (86)-(88) into (92) yieldsvar(~�kjN) = var(�k)� var(�k)�0k �C 0k+1��1k+1 �Ck+1�kvar(�k)� var(�k)(�k �Gk+1 �Ck+1)0�� �H 0k+1��1k+2Hk+1 + F 0k+2H 0k+2��1k+3Hk+2F k+2 + : : :+ F 0k+2 : : :F 0N�1H 0N�1��1N HN�1FN�1 : : :F k+2�(�k �Gk+1 �Ck+1)var(�k):
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Using Definition (41) we getvar(~�kjN ) = var(�k)� var(�k)�0k �C 0k+1��1k+1 �Ck+1�kvar(�k)� var(�k)(�k �Gk+1 �Ck+1)0P k+1(�k �Gk+1 �Ck+1)var(�k):(93)
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