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Abstract

Most econometric analyses of patent data rely on regression meth-
ods using a parametric form of the predictor for modeling the depen-
dence of the response given certain covariates. These methods often
lack the capability of identifying non-linear relationships between de-
pendent and independent variables. We present an approach based on
a generalized additive model in order to avoid these shortcomings. Our
method is fully Bayesian and makes use of Markov Chain Monte Carlo
(MCMC) simulation techniques for estimation purposes.

Using this methodology we reanalyze the determinants of patent
oppositions in Europe for biotechnology/pharmaceutical and semicon-
ductor/computer software patents. Our results largely confirm the
findings of a previous parametric analysis of the same data provided
by Graham, Hall, Harhoff & Mowery (2002). However, our model
specification clearly verifies considerable non-linearities in the effect of
various metrical covariates on the probability of an opposition. Fur-
thermore, our semiparametric approach shows that the categorizations
of these covariates made by Graham et al. (2002) cannot capture those
non–linearities and, from a statistical point of view, appear to somehow
ad hoc.

Keywords: Markov Chain Monte Carlo, Bayesian semiparametric bi-
nary regression, Latent utility models, Bayesian P–splines, Patent op-
position.
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1 Introduction

The analysis of patent data has a long tradition in economic research. The
availability of large scale data sets drove researchers from different economic
disciplines to address a broad range of questions by exploiting patent data
in empirical analyses.

Traditional empirical work uses patent statistics as economic indicators
linking patent data to some notion of inventiveness. This literature mainly
deals with questions about the sources of economic growth, the rate of tech-
nical change, knowledge spill-overs or the competitive position of different
firms and countries. Griliches (1990) provides a broad survey on patent
statistics as economic indicators.

In a more specialized field, progress has been made in the difficult assess-
ment of monetary value to patent rights driven by the analysis of citation
and renewal data. Among the latest contributions to this field are Harhoff,
Scherer & Volpel (1999) and Lanjouw, Pakes & Putnam (1998).

Most recently, empirical work focuses on the patent system itself. Es-
pecially the analysis of opposition and reexamination as well as litigation
procedures attracted the interest of numerous researches. Harhoff & Reitzig
(2002) and Graham et al. (2002) or Cockburn, Kortum et al. (2002) con-
sider those legal actions as mechanisms to ensure a certain level of quality
of issued patents while Lanjouw & Schankermann (2001) as well as Somaya
(2003) interpret legal activities as good indicators for competition and con-
flict within different industries.

Existing empirical literature on patent data generally employs regression
methods using a parametric form of the predictor for modeling the depen-
dence of the response given certain covariates. Lanjouw & Lerner (1998)
provide a comprehensive survey on recent empirical work. In this paper,
we apply a semiparametric approach described in Fahrmeir & Lang (2001b)
and Lang & Brezger (2003) to analyze the determinants and the effects
of patent oppositions in Europe. Within a Bayesian framework we apply
Markov Chain Monte Carlo methods (MCMC) for estimation purposes. In
order to characterize the benefits from applying semiparametric models we
compare our specification to the results of a simple parametric probit model
employed by Graham et al. (2002) using their dataset on EPO patents from
the biotechnology and pharmaceutical sector as well as from the semicon-
ductor and computer software area.

Our results reveal some significant non-linearities in the effect of various
covariates and show that the model specification of Graham et al. (2002)
is not able to capture these non-linear effects correctly. Especially non-
linearities in the effect of the number of states in which an invention seeks
patent protection and in the effect of the number of a patent’s forward
citations leads to different results. Additionally, it turns out, that our semi-
parametric approach is superior to the parametric approach in terms of
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the deviance information criterion (DIC) introduced by Spiegelhalter, Best,
Carlin & van der Linde (2002), which can be used as a tool for model com-
parison in complex hierarchical Bayesian models and can be regarded as a
Bayesian analogue to the Akaike information criterion.

Most of the methodology presented in this paper is implemented in
BayesX, a software package for Bayesian generalized additive regression
based on MCMC techniques. The program is available free of charge at

http://www.stat.uni-muenchen.de/∼lang
The rest of the paper is structured as follows: Section 2 gives a brief

review of the institutional background of patent opposition and litigation at
the European Patent Office and summarizes previous findings from empir-
ical studies of opposition/litigation activities. In Section 3 we discuss the
Bayesian semiparametric regression framework and the MCMC simulation
techniques which we use to analyze the data. Section 4 presents results from
our semiparametric approach for modeling the probability of an opposition
and compares them to the results of Graham et al. (2002). This section also
includes a formal model comparison in terms of DIC. The paper closes with a
short conclusion and some directions for further applications of the Bayesian
semiparametric regression framework to the analysis of patent data.

2 The opposition mechanism of the European Pa-
tent Office

2.1 Institutional Background

From an economic point of view, the major purpose of a patent system is
to spur innovation by providing the right incentives for innovative activity.
Obtaining patent protection for an invention is equivalent to obtaining a
temporary right to exclude others from using it. This allows the patent
owner to benefit from the returns of his innovation while competitors are
prohibited to copy the protected invention. In exchange for this temporary
exclusion right the technical details of the underlying invention are made
available to the public in the patent role. After the lapse of a patent any
third party is allowed to copy and to commercially use the previously pro-
tected invention. Since welfare losses might be associated with the grant
of patent protection, not every invention is suitable for patent protection.
Only inventions which satisfy stringent patentability criteria can be pro-
tected by patents. A more detailed economic analysis of the economics of
patent systems is given in Kaufer (1989).

In Europe, inventions which are seeking patent protection are exam-
ined (1) for their novelty, (2) their commercial applicability, (3) whether
they mark an inventive step and (4) whether they are not excluded from
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patentability for other reasons (European Patent Convention, 1973, Art. 52).
Only inventions which satisfy these criteria can be protected by a European
Patent. Patent applications at the European Patent Office (EPO) can be
seen as a centralized process which leads to a bundle of individual patents
in a subset of the 31 member and associated states of the EPC. Once a
European patent is granted (and its validity is not challenged) it becomes
a bundle of national patents in those states, which where specified in the
application (European Patent Convention, 1973, Art. 3, 66, 79). According
to the annual reports of the EPO about 65 % to 70 % of the applications at
the EPO are granted.

Even if the examination process of the patentability of an invention is
carried out by the patent examiner with the highest degree of diligence
possible, it might lead to erroneous grant decisions. In order to correct such
mistakes (and the associated welfare losses) most patent systems contain
some post-grant mechanisms, which allows third parties to challenge the
validity of granted patents. In general, patents can be challenged either
within the patent office or before litigation courts. However, the possibilities
of disputing a patent’s validity differ considerably between patent systems.

Considering the EPO, any third party can oppose a patent by filing and
substantiating an opposition within nine months after the grant decision,
which is the case for about 8 to 10 % of all granted patents. An opposi-
tion can be substantiated by presenting evidence that one or more of the
patentability criteria isn’t satisfied by the protected invention. The opposi-
tion leads to one of three possible outcomes: the opposition may be rejected,
the patent may be upheld with amendments or it may be revoked (European
Patent Convention, 1973, Art. 101, 102). Once the nine months opposition
period has lapsed, the validity of a patent can only be challenged in court.
However, this may become a tedious and costly endeavor, since single suits
have to be filed in each of the designated countries under the respective legal
rules. A more detailed description of the possible legal procedures is given
in Graham et al. (2002).

In the US there is no procedure comparable to the opposition mechanism
of the EPO. The only possibility to challenge a patent’s validity at the US
Patent and Trademark Office (USPTO) is requesting a reexamination of the
grounds upon which a patent was granted. Filing a reexamination requires
the presentation of a previously undisclosed and relevant piece of prior art
to the patent office. Any reexamination is proceeded if and only if it raises
“a substantial new question of patentability” (United States Code Title 35,
2002, § 303 (a)) in the opinion of the examiner assigned by the USPTO. The
patent office is required to make a determination of the validity of the patent
if the reeaxmination goes forward (United States Code Title 35, 2002, § 307).
During the procedure the patent-owner remains in contact with the USPTO
and can offer amendments or new claims, while the role of possibly involved
third parties remains limited. Reexamination can lead to the cancellation
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of either some or even all or to the confirmation of either some or all of the
claims specified in patent.

The validity of US patents can also be challenged in federal courts. De-
spite the high costs associated with going to court especially in the US,
litigations are the dominant way of challenging a patent’s validity in the
US. Merges (1999) and Somaya (2003) find that only about 0.3 % of all
issued US patents trigger reexamination while the rate of patents ending in
courts is about 2 %.

A number of recent contributions observing a rapid growth in the number
of so-called low-quality patents (patents that have been granted erroneously
or with misspecified claims) in the US raised the interest in the efficiency
of different systems of challenging a patent’s validity. In this context, the
reexamination system of the USPTO is widely seen as a rather inefficient
mechanism for the correction of low-quality patents since it is too slow and
too friendly to the patent-owner. According to Merges (1999) reexamination
leads to a revocation of the challenged patent in only 12 % of the filed cases
(the according revocation rate at the EPO is approximately 33 %). As a
consequence it is rarely used. Some observers claim that the US system as a
whole is an inefficient mechanism to correct for potential shortcomings in the
examination of patent applications at the USPTO, since litigation in court
as the second way of challenging a patent’s validity also has drawbacks - it
is a very costly and uncertain endeavor for the involved parties. In contrast,
the EPO opposition system is seen as a ’role model’. Hall, Graham, Harhoff
& Mowery (2003) as well as Levin & Levin (2002) argue that the adoption
of an opposition system resembling the European system in the US could
bring substantial welfare gains.

2.2 Empirical analysis of patent opposition

The current interest in the post-grant patent validity challenge came along
with numerous empirical studies of the available mechanisms. The existing
work mainly addresses incidence and outcomes of such procedures. Due to
the infrequent use of the reexamination procedure at the USPTO, studies of
challenging mechanisms for granted patents within patent offices focuses on
the EPO opposition system. Among the most recent papers on this subject
are Harhoff & Reitzig (2002) and Graham et al. (2002). Considering studies
of litigation in courts, the contrary is true: Since European data is virtually
not available, existing literature focuses on patent litigation in US federal
courts as Lanjouw & Schankermann (2001) and Somaya (2003) did. A survey
of the litigation literature can be found in Lanjouw & Lerner (1998).

The common methodology used in these papers is to model the proba-
bility of the occurrence of the discrete event ‘opposition/litigation or not’
dependent on a variety of patent indicators in order to analyze, which are
the patents who are challenged more frequently than others. Among the
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most prominent indicators is the number of citations made in the patent ap-
plication (backward citations), the number of citations received by younger
patents (forward citations), the number of claims stated in the patent (claims)
and the number of states in which an innovation seeks patent protection
(designated states). Additionally, measures of patent breadth as well as in-
formation on the filing strategy are usually included. Most of the indicators
have been extensively discussed with respect to their theoretical and em-
pirical validity in the literature on patent valuation. Interested readers are
kindly addressed to the relevant sources for a detailed discussion of the cur-
rent knowledge on patent indicators like Hall, Jaffe & Trajtenberg (2001).
A detailed discussion on how to use patent statistics in order to build in-
dicators for empirical analysis can be found in the Patent Manual of the
OECD (1994). In the following, we briefly summarize the key findings for
the influence of patent indicators on the incidence of a patent opposition
giving also a short description of their economic interpretation. We limit
ourselves to a description of the metrical indicators which are of primary
interest in our analysis.

Citations: An inventor must cite all related prior patents and also non-
patent literature within the patent application. During the examination
process, the patent examiner is responsible for ensuring that all appropriate
literature has been cited in the application, providing the right incentives
that all relevant previous patents are cited in the application. It is gen-
erally assumed that backward citations (citations made in the application)
operationalize existing market potential while forward citations (citations
received by younger patents) are seen as a good indicator of a patent’s
social and monetary value. A detailed discussion on the economic inter-
pretation of patent citations is found in Trajtenberg (1990). Econometric
studies consistently find a significant positive influence of forward citations
on the probability of the occurrence of opposition or litigation cases. Most
recent studies comprise Lanjouw & Schankermann (2001), Harhoff & Re-
itzig (2002) and Graham et al. (2002). Harhoff & Reitzig (2002) argue, that
given the cost of filing an opposition or litigation suit patents with higher
economic value are more likely to be litigated than patents with a lower
value.

Patent Claims: A patent comprises a set of claims that marks the bound-
aries of the patent. The principal claims state essential features of the under-
lying invention while subordinate claims usually describe detailed features
of the innovation. Lanjouw & Schankermann (1999) interpret the number of
claims as one measure of a patent’s breadth and they find that this measure
is highly correlated with the value of a patent. Additionally, Harhoff & Re-
itzig (2002) and Lanjouw & Schankermann (2001) find that the number of
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claims in a patent significantly rises the probability of an opposition respec-
tive litigation. Again the rationale is that the number of claims is correlated
with the value of patents and that valuable patents are more likely to be
litigated.

Designated States: The number of designated states (or the ‘family size’
of a patent) is equivalent to the number of jurisdictions in which patent pro-
tection is sought. The number of designated states can be used as a measure
for the territorial size of a patent. Lanjouw et al. (1998) find a strong corre-
lation between the number of designated states and the life span of a patent.
They argue that the number of states is positively correlated with the value
of patents (which is confirmed in Harhoff et al. (1999)) and more valuable
patents are more likely to be prolongated, since prolongation is costly to the
patent holder.

A variety of other indicators has been used as covariates in the analysis
of patent litigation. Among those are patent breadth, ownership variables
(mainly whether the owner of a patent is an individual, a corporation or
a university) and indicators referring to the filing strategy of the patent
applicant (indicators whether an accelerated search or examination of the
application was requested by the applicant and whether a PCT applica-
tion has been filed). However, empirical evidence of the validity of these
indicators varies among different studies.

Note that the use of classical parametric regression methods is a com-
mon feature of the largest part of the empirical literature on patent opposi-
tion/litigation. However, the recent advances in computing power and the
structure of the available data makes it possible to estimate more flexible
models. In the following, we present a semiparametric model for the proba-
bility of an opposition. The unknown parameters and functions of the model
are estimated in a Bayesian framework using Markov Chain Monte Carlo
simulation techniques. Furthermore, we show that our approach has major
advantages over pure parametric specifications.

3 Bayesian semiparametric binary regression

3.1 Structural assumptions

Consider regression situations, where observations (yi, zi), i = 1, . . . , n, on a
binary response y and covariates z are given, which can be divided into met-
rical covariates x1, . . . , xp and categorical covariates w1, . . . , wq. The most
widely used models for binary data are logit or probit models. Given the
covariates the responses yi are binomially distributed, i.e. yi|zi ∼ B(1, πi)
with the probability of success πi = P (yi = 1|zi) = E(yi|zi) being modeled
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as
πi =

exp(ηi)
1 + exp(ηi)

for logit models or
πi = Φ(ηi)

for probit models. Here, ηi is the predictor that models the influence of the
covariates on the probability πi.

An alternative way of obtaining a probit model, which is very useful for
Bayesian inference, is to express binary regression models in terms of latent
utilities, see e.g. Fahrmeir & Tutz (2001) or Fahrmeir & Lang (2001b).
Introducing the metric latent utilities

Ui = ηi + εi

with i.i.d. errors εi, we define yi = 1 if Ui > 0 and yi = 0 if Ui < 0. Then,
the assumption εi ∼ N(0, 1) yields the well known probit model.

Concerning the form of the predictor and the type of the influence of
metrical covariates x1, . . . , xp the following three approaches will be distin-
guished for the rest of the paper

Setting M1: In the simplest approach the effects of the metrical covari-
ates x1, . . . , xp are incorporated into the model by additive linear terms
x′1β1, . . . , x

′
pβp. The predictor can then be written by

η1 =
p∑

j=1

x′jβj + w′γ

with the unknown regression parameters given by θ = (β1, . . . , βp, γ).

Setting M2: In many practical situations, as in our application on patent
opposition data, the assumption of linear effects of the metrical covariates
on the predictor is too restrictive. A simple and widely used way to allow for
non–linearities in the effects of metrical covariates is to categorize some or
all x1, . . . , xp and then construct a set of rj dummy variables x̃j , j = 1, . . . , p.
The linear terms x′jβj are then replaced by x̃′j β̃j with β̃j = (β̃j1, . . . , β̃jrj )

′

and the predictor can be defined by

η2 =
p∑

j=1

x̃′j β̃j + w′γ

with the unknown regression parameters θ = (β̃1, . . . , β̃p, γ). Note that in
this setting the number rj and location of the intervals defining the com-
ponents of the dummy vector x̃j has a crucial influence on the degree and
shape of non–linearity in the estimated effect. In general, increasing rj leads
to more flexible regression effects β̃j but also to an inflation in the number
of effective parameters which have to be estimated and interpreted.
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Setting M3: An alternative, more flexible and data-driven method for
modeling non–linear effects of metrical covariates is to incorporate them
additively into the predictor by using smooth regression functions fj(xj)
instead of linear terms xjβj or x̃′j β̃j . This leads to a semiparametric additive
predictor of the form

η3 =
p∑

j=1

fj(xj) + w′γ

where we assume possibly nonlinear effects f1, . . . , fp for the metrical co-
variates. The unknown parameters are given by θ = (f1(x1), . . . , fp(xp), γ)
with fj(xj) representing a vector of function evaluations. Compared to M2

the semiparametric approach allows for the modeling of very complex, non–
linear regression functions without suffering from the parameter inflation
problem if a very flexible effect has to be estimated. Furthermore, the degree
of non–linearity does not have to be predefined by choosing the number and
location of the categories in the construction of the set of dummy variables
x̃j , but can be estimated jointly with the unknown regression parameters
depending only on the observed data.

Note that M2 can be regarded as a special case of M3 by choosing a step
function defined on given categorization intervals as the regression function
and that we omitted the intercept term γ0 in the predictors notationally,
which is tacitly assumed to be included in the parametric part w′γ.

To demonstrate the differences between our three approaches, we want
to present some preliminary results from the analysis of EPO patent op-
position data discussed in more detail in Section 4. For our example, the
probability of the occurence of an opposition is modeled only depending on
the number of designated states, a metrical covariate. Figure 1 (a) shows
the empirical rate of opposition plotted against the number of designated
states and indicates that the probability for an opposition is higher for more
designated states with a small drop for 12 to 14 states.

To model this probability, in M1 the effect of the number of designated
states is incorporated into the predictor by a simple linear term. Following
the example of Graham et al. (2002) the set of dummy variables in M2 is
constructed by categorizing the number of states into the three categories
”less than 6” (reference category), ”between 6 and 10”, and ”more than
10”. For M3 a nonparametric regression function with a P–spline approach
described in more detail in Section 3.2 is used. The estimation of the un-
known parameters in all three cases is fully Bayesian and will be explained
in Section 3.2.

Figure 1 (b) shows the estimated probabilities for M1, M2, M3 and re-
veals that only the semiparametric approach M3 is capable of detecting the
drop in opposition rate for 12 to 14 designated states. Furthermore it is
obvious that both M1 and M2 are not able to capture the underlying depen-
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dence structure between opposition probability and number of designated
states as accurately as M3 does.

3.2 Bayesian inference via Markov Chain Monte Carlo

Prior assumptions

In a Bayesian approach unknown functions f1, . . . , fp and parameters β =
(β1, . . . , βp), β̃ = (β̃1, . . . , β̃p), γ of fixed effects are considered as random
variables and have to be supplemented by appropriate prior distributions.

In the absence of any prior knowledge a typical assumption for the
parameters of the fixed effects is to use independent diffuse priors, i.e.
p(β) ∝ const, p(β̃) ∝ const and p(γ) ∝ const.

For the unknown regression functions fj , we will use a P–splines ap-
proach originally introduced by Eilers & Marx (1996) and formulated in
a Bayesian setting by Lang & Brezger (2003). In a P–splines approach it
is assumed that the unknown functions fj can be approximated by linear
combinations

fj(xj) =
mj∑

k=1

δjkBjk(xj)

of mj = lj +rj linearly independent B–spline basis functions Bjr of degree lj
defined on a set of rj equally spaced knots xj,min = ξj0 < . . . < ξjrj = xj,max.
The basis functions can be regarded to have compact local support in the
sense that they are nonzero only on a domain spanned by the lj + 2 knots,
whereas the B–spline coefficients δj = (δj1, . . . , δjmj )

′ act as weights assigned
to each single basis function.

To ensure both enough flexibility and sufficient smoothness of the fit-
ted curves, Eilers & Marx (1996) proposed to use a relatively large number
of knots but, in order to prevent overfitting, to penalize adjacent B–spline
coefficients with differences of order d. In their frequentist approach this
leads to penalized likelihood estimation with roughness penalties, where the
penalized likelihood is maximized with respect to the unknown regression
parameters and the trade off between flexibility and smoothness is controlled
by additional smoothing parameters λj . In general, large values of λj give
large weight to the roughness penalty term thereby enforcing smooth func-
tions, while for small λj , the functions tend to be closer to the data.

In a Bayesian setting, the difference penalties are replaced by their
stochastic analogues, i.e. random walks of order d. For simplicity, we will
restrict to d = 2, which corresponds to a second order random walk

δjk = 2δj,k−1 − δj,k−2 + ujk

for adjacent B–splines coefficients δjk with Gaussian errors ujk ∼ N(0, τ2
j )

and diffuse priors p(δj1) and p(δj2) ∝ const for initial values. Note, that
this prior may be equivalently defined in a symmetric form by specifying
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the conditional distributions of a particular parameter δjk given its left and
right neighbors. Then, for d = 2, the conditional means can be interpreted
as locally quadratic fits at the knot positions ξjk, see e.g. Besag, Green,
Higdon & Mengerson (1995). The amount of smoothness is controlled by
the additional variances τ2

j , which are related to the smoothness parameters
λj in a frequentist approach by λj = (τ2

j )−1. Thus, larger (smaller) values
for the variances lead to rougher (smoother) estimates for the regression
function.

The joint prior of the B–splines coefficients δj is Gaussian and can easily
be computed as

δj |τ2
j ∝ exp

(
− 1

2τ2
j

δ′jKjδj

)

with a penalty matrix Kj = D′D, where D is a second order difference
matrix. For second order random walks, for example, Kj is given by

Kj =




1 −2 1
−2 5 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
1 −4 6 −4 1

1 −4 6 −4 1
1 −4 5 −2

1 −2 1




with zero elements outside the second off–diagonals.
For a fully Bayesian analysis, variance or smoothness parameters τ2

j are
also considered to be unknown and estimated simultaneously with the un-
known regression parameters. Therefore, hyperpriors are assigned to them
in a second stage of the hierarchy by assuming highly dispersed inverse
gamma distributions τ2

j ∼ IG(aj , bj) with known hyperparameters aj and
bj . A common choice for the hyperparameters is aj = 1 and bj = 0.0005
leading to an almost diffuse prior for τ2

j . Results are rather insensitive to the
choice of aj and bj for moderate to large datasets, but, for small datasets,
a sensitivity analysis is useful. Note, that these prior assumptions for the
smoothness parameters are a major advantage over a classical frequentist ap-
proach, where smoothness parameters usually have to be specified by hand
or a complex grid search algorithm has to be performed.

Posterior analysis

As it would be beyond the scope of this paper to present a detailed intro-
duction into Bayesian inference using MCMC in semiparametric regression
models for binary response, we will focus only on some key results given
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in Fahrmeir & Lang (2001b) and Lang & Brezger (2003). For a thorough
treatment of MCMC in general refer, for example, to Green (1999) or Gilks,
Richardson & Spiegelhalter (1996).

Bayesian inference is based on the posterior and is carried out using re-
cent MCMC simulation techniques. Let θ denote the vector of all unknown
parameters in the model. Then, under usual conditional independence as-
sumptions, the posteriors augmented by the latent variables for the three
approaches described in Section 3.1 are given by

M1 : p(θ|Y ) ∝ p(Y |U) · p(U |η) · p(β) · p(γ)
M2 : p(θ|Y ) ∝ p(Y |U) · p(U |η) · p(β̃) · p(γ)

M3 : p(θ|Y ) ∝ p(Y |U) · p(U |η) ·
p∏

j=1

{p(δj |τ2
j )p(τ2

j )} · p(γ)

Because the direct maximization of all three posterior distributions is not
possible, MCMC methods have to be applied in order to be able to estimate
the unknown parameters β, β̃, γ, δj and τ2

j , which make use of the full
conditionals, i.e. the distribution of a certain parameter block given all the
other parameters.

The full conditionals for the fixed effects parameters β, β̃ and γ as well as
for the parameter vectors δ1, . . . , δp are multivariate Gaussian. For the vari-
ance components τ2

j the full conditionals are inverse gamma distributions.
Finally, it can be shown that the full conditionals of the latent variables U
are truncated normals, subject to the constrains Ut > 0 if yt = 1 and Ut < 0
if yt = 0.

Thus, a Gibbs sampler originally introduced by Geman & Geman (1984)
can be used for MCMC simulation, drawing successively from the full con-
ditionals for the latent variables U , for the fixed effects parameters β, β̃
and γ, for the B–splines coefficients δj and for the variances τ2

j . Running
this Gibbs sampler yields random samples from the marginal distributions
of the regression parameters β, β̃, γ, δj and τ2

j , from which Bayesian point
estimates like posterior means or posterior medians can be calculated. Ad-
ditionally, in order to assess the significance of the estimates, it is possible
to compute credible regions, an analogue to confidence intervals in a fre-
quentist approach, by calculating suitable quantiles based on the obtained
random samples.

4 Analysis of patent opposition at the EPO

In this section we reinvestigate a dataset of approximately 4800 patents
from the biotechnology/pharmaceutical and semiconductor/computer soft-
ware sectors granted by the EPO between 1980 and 1997, which has previ-
ously been analyzed by Graham et al. (2002). For reasons of brevity we skip
descriptive details of the data–set, which are given in the original paper.
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The aim is to model the probability that an opposition against a granted
patent occurs yielding the binary response variable

yi = 1 ⇔ Opposition
yi = 0 ⇔ No opposition

As our main focus was to show that a semiparametric regression approach
does have clear benefits compared to a simple linear probit model, we used
only the significant covariates found by Graham et al. (2002), which are
summarized in Table 1.

As a first step for modeling the probability of an opposition given the
covariates, we use a simple linear model M1 with the predictor

η1 = β0 + x′1β1 + x′2β2 + x′3β3 + x′4β4 + w′γ

where the influence of the metrical covariates is assumed to be linear. The
estimation results for the unknown regression parameters in this setting are
given in Table 3 (a) and show, that the probability for an opposition de-
creases over time, but increases with increasing number of EPO forward
citations, number of EPO claims and number of designated states. These
results are in line with previous findings described in Section 2.2. Con-
cerning the effect of the binary covariates w1, . . . , w7 it turns out, that the
opposition probability is higher for patents from the biotech/pharmaceutical
sector, for patents with a patentholder from Switzerland, Germany or Great
Britain, for patents with an accelerated examination request and for patents
with a PCT filing. Adversely, for patents with a US twin, for patents with
a patentholder from the US and for patents with an accelerated search re-
quest, the probability for an opposition is reduced. The computed 95 %
credible regions for the estimated parameters given in Table 3 (b) and (c)
do not include zero, so all effects are significant on the 5 % error level. Fi-
nally, Table 3 (d), summarizes the marginal changes in probability for a unit
change of the covariate/dummy if all other covariates are set to zero. For
example, each additional designated state increases the opposition probabil-
ity by approximately 1.8 % while for patents with a US twin this probability
is lowered by approximately 8 % compared to a patent with no US twin.

Extending this fully linear model in order to incorporate possible non–
linearities in the effects of the metrical covariates x1, . . . , x4, we now compare
M1 to the approach M2 used by Graham et al. (2002) with a set of dummy ef-
fects for categorized versions of the metrical covariates and to our semipara-
metric approach M3, where smooth regression functions f1(x1), . . . , f4(x4)
are used. The predictors can then be defined by

η2 = β0 + x̃′1β̃1 + x̃′2β̃2 + x̃′3β̃3 + x̃′4β̃4 + w′γ
η3 = β0 + f1(x1) + f2(x2) + f3(x3) + f4(x4) + w′γ
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with the dummy vectors x̃2, . . . , x̃4 based on the categories given in Graham
et al. (2002) and summarized in Table 2. Differing slightly from Graham
et al. (2002), we only used 9 biannual categories for the grant year repre-
sented in M3 by x̃1.

Figure 2 displays the estimated effects of the metrical covariates for both
M2 and M3. Note that the effects have been centered appropriately to en-
sure identifiability and comparability. Roughly speaking, the results for the
metrical covariates are similar to the ones obtained from M1, but it is obvi-
ous that especially the effects for the number of designated states depicted
in Figure 2 (b) and the number of EPO forward citations depicted in Figure
2 (c) are clearly non–linear and that the dummy effects obtained from M2

are very raw approximations of the true underlying dependency structure
represented by the smooth effects in M3. Additionally, Figure 2 (d) shows,
that especially for the number of a patent’s EPO claims the categorization
used by Graham et al. (2002) is not chosen very well in putting all patents
with more than 15 EPO claims into one category with a constant effect. In
fact, for patents with more than about 30 EPO claims the estimated smooth
effect f4(x4) indicates that the probability for an opposition increases dra-
matically and is much higher than indicated by the corresponding dummy
effect. The significance of the smooth effects in M3 is supported by the
pointwise 95 % credible regions also depicted in Figure 2, which are clearly
different from zero for most values of the corresponding covariate. Concern-
ing the results for the binary covariates w1, . . . , w7 we will omit a detailed
discussion for both M2 and M3 as they are similar to the results obtained
from the fully linear model M1 presented in Table 3.

To give a more formal rationale for the benefits in using our semipara-
metric approach, we compared the three approaches M1,M2,M3 in terms of
the deviance information criterion (DIC) introduced by Spiegelhalter et al.
(2002). The DIC is a Bayesian analogue to the Akaike information criterion
penalizing the fit of a model measured by the deviance with the complexity
of a model represented by the effective number of model parameters. The
results are given in Table 4 and show, that the DIC is clearly minimized by
the semiparametric approach M3 and that the approach M2 used by Gra-
ham et al. (2002) is in fact even worse than the simple fully linear probit
model M2.

5 Conclusions and further work

In this paper, we have used a Bayesian semiparametric regression approach
to model the probability of an opposition for EPO patents from the biotech-
nology/pharmaceutical and semiconductor/computer software sectors. The
opposition probability turned out to increase with increasing number of des-
ignated states, number of EPO patent claims and number of EPO forward
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citations, but, unlike previous researchers, we could show that this increase
was clearly non–linear by incorporating the effects of these metrical covari-
ates in form of smooth regression functions instead of simple linear terms.
Due to the hierarchical structure of our Bayesian approach, the smoothness
of the estimated functions is totally data–driven and estimated jointly with
the unknown regression parameters. A formal model comparison based on
the deviance information criterion (DIC) supported the benefits of our ap-
proach compared to a fully parametric model used by Graham et al. (2002).

One focus for future research could be a segmentation routine detecting
similarities in patent/opposition characteristics independent of prespecified
technology or geographical classifications based on an extension of Bayesian
additive mixed models. Additionally, the application of Bayesian semipara-
metric models for multicategorical response and for survival analysis might
be useful in the analysis of the outcome as well as the duration of the op-
position procedure. For an introduction into the named model classes refer
to Fahrmeir & Lang (2001a), Fahrmeir & Lang (2001b) and Hennerfeind,
Brezger & Fahrmeir (2003).
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Metrical covariates
x1 Grant year
x2 Number of EPO forward citations
x3 Number of designated states
x4 Number of EPO claims

Binary covariates (1 = Yes / 0 = No)
w1 Patent from biotech/pharma sector
w2 US twin exists
w3 Patentholder from US
w4 Patentholder from Switzerland, Germany or Great Britain
w5 Accelerated exam requested
w6 Accelerated search requested
w7 PCT filing

Table 1: EPO patent opposition. Summary of covariates.
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Grant year (x1)
9 categories {1980/1981}, {1982/1983},. . ., {1996/1997}
with reference category {1980/1981}

Number of EPO forward citations (x2)
5 categories {0}, {1}, {2− 5}, {6− 10}, {> 10}
with reference category {0}

Number of designated states (x3)
3 categories {< 6}, {6− 10}, {> 10}
with reference category {< 6}

Number of EPO claims (x4)
5 categories {< 6}, {6− 9}, {10}, {11− 15}, {> 15}
with reference category {< 6}

Table 2: EPO patent opposition. Summary of categories for metrical co-
variates in M2.
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(a) (b) (c) (d)
Covariate Posterior Mean 2.5%-Quant. 97.5%-Quant. dπ/dx

Intercept -0.4392 -0.6053 -0.2828
x1 -0.0479 -0.0586 -0.0381 −1.7 %
x2 0.0915 0.0721 0.1105 +3.4 %
x3 0.0492 0.0363 0.0613 +1.8 %
x4 0.0133 0.0084 0.0180 +0.5 %
w1 0.3696 0.2692 0.4697 +14.2 %
w2 -0.2363 -0.3178 -0.1524 −8.0 %
w3 -0.1418 -0.2305 -0.0535 −4.9 %
w4 0.1760 0.0747 0.2759 +6.6 %
w5 0.5992 0.3531 0.8472 +23.3 %
w6 -0.3760 -0.7312 -0.0390 −11.9 %
w7 0.2754 0.1708 0.3810 +10.5 %

Table 3: EPO patent opposition. Results for model M1. (a) Posterior mean
estimate of regression parameter. (b) Lower value of 95 % credible region.
(c) Upper value of 95 % credible region. (d) Marginal change in probability
for a unit change of the covariate/dummy.
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Deviance pD DIC
M1 5680.63 11.88 5704.39
M2 5671.49 25.41 5722.31
M3 5629.36 30.89 5691.14

Table 4: EPO patent opposition. Comparison of deviance, effective number
of parameters (pD) and DIC for models M1, M2 and M3.
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Figure 1: Comparison of considered model settings. (a) Rate of opposition
versus number of designated states. (b) Probabilities of opposition estimated
with M1 (· · ·), M2 (—), M3 (- - -) and number of designated states as
covariate.
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Figure 2: EPO patent opposition. Results for effect of (a) grant year, (b)
number of forward EPO cites, (c) number of designated states, (d) number
of EPO claims. Shown is for model M2 the posterior mean (—) of the
corresponding dummy effects, for model M3 the posterior mean (- - -) of the
corresponding regression function within 95 % credible regions (· · ·).
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