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Behavior of realized volatility and correlation in exchange markets 
 
 
 Amir Safari and Detlef Seese 
 
 KIT and KIT 

 
ABSTRACT 

 
We study time-varying realized volatility and related correlation measures as proxies for 
the true volatility and correlation. We investigate measures of Two-Scale realized 
Absolute Volatility (TSAV) and correlation (TSACORxy) which are helpful to cope 
effectively with the problem of market microstructure effects at very high frequency 
financial time series. The measures are constructed based on subsampling and averaging 
method so that they possess rather less bias even in presence of market microstructure 
noise. Absolute transformation of return values has been proved in literature to be more 
robust than squared transformation when considering large values. With respect to some 
stylized facts of markets, realized squared correlation does not display dynamic behavior. 
Motivated by robustness of realized absolute volatility, we study an alternative measure 
of correlation, built on absolute-transformed volatility. This measure of correlation 
exhibits experimentally some dynamics and hence some predictability capability on 
minute-by-minute frequency exchange market data. We show that the distribution of 
realized correlation series computed based on TSACORxy tends to comply a rightward 
asymmetric shape implying that upside co-movements are greater than downside ones. 
Moreover we study the association between realized volatility and correlation. According 
to the two-scale measure, our findings empirically suggest that when returns in Euro/USD 
exchange rate are highly volatile, the relation between Euro/USD and Euro/GBP 
exchange markets is strong, and when Euro/USD calms down, the relationship relaxes. 
 
Key words: Realized Volatility and Correlation, Long Memory, Scaling Law, Self-
Similarity Dimension, Market Microstructure Effects. 
JEL Classifications: C14, C51, C58, F31, G15 

 
 
1. INTRODUCTION 
 
Measuring and forecasting financial volatility is of crucial importance to asset and derivative 
pricing, asset allocation and risk management. Hence, financial economists have been 
intrigued by the very high precision with which volatility can be estimated under the diffusion 
assumption routinely invoked in theoretical work. Although most textbook models assume 
volatilities and correlations to be constant, it is widely recognized among both finance 
academics and practitioners that they vary importantly over time, with persistent dynamics. 
Furthermore, their fluctuations display substantial volatility persistence (Andersen et al., 
1999a). The basic insight follows from the observation that precise estimation of diffusion 
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volatility does not require a long calendar span of data; rather, volatility can be estimated 
arbitrarily well from an arbitrarily short span of data, provided that returns are sampled with 
sufficient frequency. This contrasts sharply with precise estimation of the drift, which 
generally requires a long calendar span of data, regardless of the frequency with which returns 
are sampled. Consequently, the volatility literature has steadily progressed toward the use of 
higher frequency data (Andersen et al., 1999a). Most of what we have learned from this 
burgeoning literature is based on the estimation of parametric ARCH or stochastic volatility 
models (SV) for the underlying returns. However, the validity of such volatility measures 
generally depends upon specific distributional assumptions (Andersen et al., 2001a).  
 
The use of higher frequency data, now increasingly available, has also been concurred the 
emerging theories emphasizing the advantages of the so-called realized volatility and realized 
power variation as well as correlation estimators. 
 
It has been recognized that volatility is inherently unobserved, and evolves stochastically 
through the time. Volatility models are cast either in discrete time or continuous time. It is 
clear, however, that the trading and pricing of securities in many of today's liquid financial 
asset markets is evolving in a near continuous fashion throughout the trading day. As such, it 
is natural to think of the price and return series of financial assets as arising through discrete 
observations from an underlying continuous time process (Andersen et al., 2006). Any log-
price process subject to a no-arbitrage condition and weak auxiliary assumptions will 
constitute a semi-martingale that may be decomposed into a locally predictable mean 
component and a martingale with finite second moments. Andersen et al. (2006) argue that 
the return variance is approximately equal to the expected squared return innovation. This 
suggests that we may be able to measure the return volatility directly from the squared return 
observations. However, this feature is not of much direct use as the high frequency returns 
have a large idiosyncratic component that induces a sizeable measurement error into the 
actual squared return relative to the underlying variance. In reality, there is a definite lower 
bound on the return horizon that can be used productively for computation of the realized 
volatility, both because we only observe discretely sampled returns and, more important, 
market microstructure frictions on intradaily level such as discreteness of the price grid, 
asymmetries in information, transaction costs, bid-ask spreads, lunch-time effects, and U-
shape volatility of trading volume over the day induce gross violations of the semi-martingale 
property at the very highest return frequencies. This implies that we typically will be 
sampling returns at a high frequency that leaves a non-negligible error term in the estimate of 
integrated volatility. 
 
By construction, the realized squared volatility is an observed proxy for the underlying 
quadratic variation and the associated measurement errors are uncorrelated. This suggests a 
straightforward approach where the temporal features of the series are modelled through 
standard time series techniques, letting the data guide the choice of the appropriate 
distributional assumptions and the dynamic representation. This is akin to the standard 
procedure for modelling macroeconomic data where the underlying quantities are measured 
(most likely with a substantial degree of error) and then treated as directly observed variables 
(Andersen et al., 2006). 
 
We proceed under the convenient assumption that we are dealing with correctly specified 
models and the associated full information sets, so that the conditional first and second 
moments are directly observable and well specified. It is useful to think of the returns as 
arising from an underlying continuous-time process. In particular, suppose that this 
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underlying model involves a continuous sample path for the (logarithmic) price process. 
Under general assumptions, the price process may then be written in standard stochastic 
differential equation form as 
 )()()()( tdWtdtttdp σµ +=   (1.1) 
where time t ≥ 0, p(t) is a price at (t) and indeed a semimartingale or a Brownian 
semimartingale, µ(t) denotes the drift, σ(t) refers to the or spot volatility, and W(t) denotes a 
standard Brownian motion. The σ is called the spot volatility process and µ the mean or risk 
premium process. Intuitively, over infinitesimal small time intervals, i, 
 )()()()()(),( tiWitiititptpitr −+⋅−≈−−≡ σ   

where iW(t) ≡ W(t) – W(t–i) ∼ N(0,i). Of course, for i = 1, and constant drift, µ(τ) ≡ µt | t –1, and 
volatility, σ(τ) ≡ σt | t –1, for t – 1 < τ ≤ t, this reduces to the discrete time return decomposition 
 r t = µt | t –1 + �t = µt | t –1 + σt | t –1zt  (1.2) 
where zt denotes an i.i.d. with mean zero, variance one, serially uncorrelated disturbance 
(white noise) process, and r t, the discretely sampled return process, which is readily 
decomposed into an expected conditional mean return and an innovation, where the latter may 
be expressed as a standardized white noise process scaled by the time-varying conditional 
volatility. The drift, µt, and instantaneous volatility, σ(t), for the continuous time model in 
(1.1) need not be constant over the [t–1, t] time interval, resulting in the general expression 
for the one-period return, 

 ∫∫ −−
+=−−=

t

t

t

t
sdWsdsstptptr

11
)()()()1()()( σµ  (1.3) 

 
Similarity between this representation and the previous one-period return for the discrete-time 
model in (1.2) is clear. The conditional mean and variance processes in the discrete 
formulation are replaced by the corresponding integrated realizations of the (potentially 
stochastically time-varying) mean and variance process over the following period, with the 
return innovation driven by the continuously evolving standard Brownian motion. Intuitively, 
the volatility for the continuous-time process in (1.1) over [t–1, t] is intimately related to the 
evolution of the diffusive coefficient, σ(t), which is also known as the spot volatility. In fact, 
given the i.i.d. nature of the return innovation governed by the Brownian motion process, the 
return variation should be related to the cumulative (integrated) spot variance. It is, indeed, 
possible to formalize this intuition: the conditional return variation is linked closely and – 
under certain conditions in an ex-post sense – equal to the so-called Integrated Power 
Volatility of order r (IPV), 

 ∫−
=

t

t

r dsstIPV
1

)()( σ  (1.4) 

as the sampling frequency increases. In other words, the estimation error of the realized power 
volatility diminishes. Here, r denotes a positive value.  
 
In order to get a discrete approximation to the IPV(t), Barndorff-Nielsen and Shephard (2003) 
propose the realized power variation of order r, ��, �� �RP, as a proxy for the true integrated 
power volatility as 

 ��, �� �RP

 
∑ −=

+

T

t

r

tt

i

ii
YY

1
 (1.5) 

where i=1,...,n is ith intraday observation with an integer n and r is a positive value. Here, Yti 
is a price observed on day t at time i which follows the price process (1.1), and Yti+1

 – Yti gives 
a return of high frequency prices which follows (1.2). Definitely where r=2 in (1.5), the 
realized power variation would approximate the so-called Realized Volatility as introduced by 
Andersen and Bollerslev (1998) and Andersen et al. (2001b). In this case, the result of 
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realized power variation considerably strengthens the quadratic variation result that realized 
quadratic variation converges in probability to Integrated Volatility, IV(t)=∫tt–1σ2(s)ds 
(Barndorff-Nielsen and Shephard, 2003). Realized power variation theory covers also 
Realized Absolute (RA) variation in which case r=1 (Barndorff-Nielsen and Shephard, 2003). 
 
According to (1.4) and Theorem 1 in Barndorff-Nielsen and Shephard (2003), the realized 
power variation of order r, ��, �� �RP, computed from the highest frequency data (as n →∞) 
should provide the best possible estimate for the integrated power volatility. However, this is 
not the general point of view adopted in the empirical finance literature. In practice, sampling 
at the very high frequency (for example higher than 5 minute frequency) leads to a well-
known bias problem due to market microstructure noise (Zhou, 1996 and Andreou and 
Ghysels, 2002). It is generally accepted that the return process should not be sampled too 
often (Zhang et al., 2005); since the market microstructure effects intervene to cause noise 
and hence a bias of estimation due to for example the bid-ask bounce, when applying very 
high frequency data in real situations. 
 
To cope with the problem of market microstructure effects when approximating realized 
power variation, a successful alternative approach1 called Two-Scale Realized Volatility 
(TSRV), based on a subsampling and averaging procedure has been proposed by Zhang et al. 
(2005). Their device, constructed based on a squared transformation of returns, is model-free 
too and takes advantage of the rich sources of tick-by-tick data, and to a great extent corrects 
for the adverse effects of microstructure noise on volatility estimation. However, on one side, 
according to the literature, for example Ding et al. (1993), Forsberg and Ghysels (2005), 
Andersen et al. (2006) and Ghysels et al. (2006), a squared transformation of returns in a 
TSRV model in turn reinforces jumps to appear in volatility series as large values. Thus, this 
model seems theoretically not to be robust against jumps, meanwhile construction of volatility 
based on realized power variation with absolute transformation is somewhat robust to rare 
jumps (Barndorff-Nielsen and Shephard, 2004a), in particular in case of r=1 (or Realized 
Absolute variation). On the other side, their approach can be seen as a specific case of what 
we are trying to explain; since realized volatility is seen as a specific case of realized power 
variation as stated above. Therefore, in this regard, we generalize the TSRV approach on the 
broader realized power variation. In summary, realized power variation suffers from 
microstructure noise in particular in the form of higher bias, and TSRV suffers from jumps in 
the form of higher variance at higher frequencies. 
 
To solve the problem of the market microstructure effects, inspired by the TSRV modeling of 
realized volatility and the robustness of absolute transformation of power variation, the Two-
Scale realized Power Volatility (TSPV) measure is assumed to be consistent for integrated 
power volatility (IPV), (1.4), at very high frequency. The TSPV estimator of volatility should 
be robust against jumps, since it is based on absolute transformation inspired by realized 
power variation, and should be unbiased against microstructure noise inspired by two-scale 
procedure, since it is built on a bias-corrector method. 
 

                                                 
1 There are many approaches to correct the microstructure noise, including for example a kernel-based correction 
introduced by Zhou (1996), an optimal sampling introduced by Bandi and Russell (2006), a moving average 
filter introduced by Maheu and McCurdy (2002), an autoregressive filter introduced by Bollen and Inder (2002), 
and of course a subsampling and averaging approach introduced by Zhang et al. (2005). However, it has been 
experimentally shown by Ghysels and Sinko (2006) that the subsampling and averaging class of estimators 
predicts volatility the best among microstructure noise correctors. 
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A realized correlation estimator is also drawn based on the TSPV estimator which seems to be 
more sound. An observable correlation model which does not fail to describe stylized facts as 
much as possible, observed in financial time series, is here desired.  
 
The paper is organized as follows: Starting with realized squared volatility, in section 2, we 
construct realized volatility and correlation measures. In section 3, applying minute-by-
minute frequency exchange rate data, the measures are evaluated by simulation. In section 4, 
some distributional and dynamic properties of measures are experimentally studied. It is 
shown that the volatility series are far from a normal distribution. However, in a relative 
sense, absolute based volatility measures are closer to normal distribution, because they react 
less sensitively to jumps. Two self-similar dimensions which statistically indicate regularity 
and dynamic properties of measures are investigated. The distributional and dynamic 
behaviors of correlation measures are also compared. In section 5, relationship between 
realized volatilities and realized correlations is studied. In section 6, the results are 
summarized and discussed. 
 
2. REALIZED VOLATILITY AND CORRELATION MEASUREMENTS 
 
Merton (1980) showed that the integrated volatility of a Brownian motion (1.3) and hence 
(1.4) over a fixed interval can be approximated to an arbitrary precision using the sum of 
intraday squared returns, provided the data are available at a sufficiently high sampling 
frequency. More recently Andersen and Bollerslev (1998) and Andersen et al. (2001b), 
applying the quadratic variation theory, generalized this result to the class of special (finite 
mean) semimartingales. This class encompasses processes used in standard arbitrage-free 
asset pricing applications, such as, Ito diffusions, jump processes, and mixed jump diffusions. 
In fact, under such conditions, the sum of intraday squared returns converges to the integrated 
volatility of the prices, as the maximal length of returns goes to zero, allowing us, in principle, 
to construct an error free estimate of the actual volatility over a fixed-length time interval 
(Engle and Bollerslev, 1986). The standard definition for an equally spaced returns series of 
the Realized Squared (RS) volatility over a time interval is 

 ��, �� �RS ( )∑ −=
+

T

t
tt

i

ii
YY 2

1
 (2.6) 

where ��, �� �RS is the estimated realized squared volatility, and Yti with 0 = t0 ≤ t1 ≤…≤ tn=T, is 
an observed log transformed high frequency price of a financial asset. 
  
Ding et al. (1993) found that not only there is substantially more correlation between absolute 
returns than returns themselves, but the power transformation of the absolute return, |Yti+1

– Yti|
r, 

also has quite high autocorrelation for long lags. It is possible to characterize |Yti+1
 – Yti|

r to be 
long memory and this property is strongest when r is around 1. This result appears to argue 
against ARCH type specifications based upon squared returns. Granger and Sin (2000) treated 
observed absolute return as a measure of risk against unobserved (conditional) conventional 
variance and explored its forecastability. They applied models using two measures to three 
stock indices, and reported that the model applied to absolute measure largely outperforms the 
alternative model applied to variance both in-sample goodness of fit and post-sample 
forecastability. The distribution theory for quadratic variation under the continuous sample 
path assumption has been extended to cover cumulative absolute returns raised to an arbitrary 
power. The leading case involves cumulating absolute returns of high-frequency. These 
quantities display improved robustness properties relative to realized squared volatility as the 
impact of jumps are mitigated. Limit theorems were also derived for measures, called realized 
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power variation, over a fixed interval of time, as the number of high frequency increments 
goes to infinity by Barndorff-Nielsen and Shephard (2003). Indeed, they presented a theory, 
in particular, for the use of sums of absolute returns for example, the analysis of volatility 
models using high frequency information and turbulence and image analysis. Based on a 
simulation with different number of daily observations, they found that the realized power 
variation version of the statistic has much better finite sample behavior, while the realized 
quadratic variation behaves quite poorly. Measures built on absolute values are less sensitive 
to possible large movements in high frequency data. There is evidence that if returns do not 
possess fourth moments then using absolute values rather than squares would be more reliable 
(Barndorff-Nielsen and Shephard, 2003). 
 
As mentioned above, Barndorff-Nielsen and Shephard (2003) introduced the estimator based 
on power returns which they call Realized Power (RP) measure, ��, �� �RP, in the form of (1.5) 
with a positive r and the same previous notation. Again Barndorff-Nielsen and Shephard 
(2004a) and Barndorff-Nielsen et al. (2004b) extended the estimator of Realized Power (RP) 
measure to the wider versions, called realized bipower, multipower, normalized and 
generalized multipower variations. 
 
In order for dealing with microstructure noise resulting, for example, to the bias problem of 
sampling at a very high frequency and for increasing accuracy of measure, Zhang et al. (2005) 
have introduced the Two-Scale Realized Volatility estimator (TSRV), which combines the 
realized squared volatility estimators from two time scales. The volatility estimator ��, �� �TSRV 

combines the sum of squared estimators from two different time scales; ��, �� �avg from the 
returns on a slow time scale, whereas ��, �� �RS

 

is computed from the returns on a fast time 
scale using the latter as a means for bias-corrector of the subsampling and averaging based 
measure. The ��, �� �avg estimator is constructed based on subsampling and averaging 
procedure. 
  
 Motivated by superiority of realized power volatility measure (RP) in relative less variation, 
on one hand, and benefits of subsampling and averaging frequencies procedure in the Two-
Scale squared Realized Volatility (TSRV) for dealing with microstructure noise, on the other 
hand, we extended Safari and Seese (2008) a realized power volatility measure to the Two-
Scale realized Power Volatility (TSPV) estimator for Integrated Power Volatility (1.4). The 
bias of the estimator TSPV can be lessened by the averaging on samples. The TSPV has less 
variation relative to TSRV, in particular where r=1, since it is less sensitive to the large points 
in a given time series than squared values.  
  
In order to prescribe the TSPV estimator, at first the subsampling method has to be shortly 
illustrated. The method looks like the Jackknife method. The goal of reducing bias of 
estimation for a statistic in two methods seems the same. Efron and Gong (1983) conclude 
that like the bootstrap, the Jackknife can be applied to any statistic that is a function of $n$ 
independent and identically distributed variables. It performs less well than the Bootstrap but 
requires less computation. The Jackknife resamples the statistic at the n points. Efron and 
Gong (1983) state that the Jackknife is almost a Bootstrap itself. Goncalves and Meddahi 
(2005) propose bootstrap methods for statistics evaluated on high frequency data such as 
realized volatility. 
 
The subsampling method includes two time scales, one fast and one slow. Let g(k) be a disjoint 
subset of the full set of observation times with union g and n be the number of sampling 
intervals over [0,T]. Here an averaging estimator is defined based on selecting a number of 
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subgrids of the original grid of observation times, g = {t0 ,..., tn}, and then on averaging the 
estimators derived from the subgrids. We suppose that the full grid g, g={ t0 ,..., tn}, is 
partitioned into K non-overlapping subgrids g(k), k=1,...,K. It is easy to define an average 
estimator according to the subgrids. The average estimator, ��, �� �avg, is defined on a slow 
scale estimator as 

 ��, �� �avg

 
∑ ∑
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and, in a special case when the sampling points are regularly allocated, as 

 ��, �� �avg
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where g(k) is a subset of the full set of observations.  
  
We then estimate the Two-Scale realized Power Volatility (TSPV), ��, �� �TSPV, by 

 ��, �� �TSPV = ��, �� �avg

 

– 
n

n
��, �� �RP (2.9) 

and when a small-sample adjustment (1–n̄/n)
-1 is needed, by 

 ��, �� �TSPV = 
1

1
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n

n  (��, �� �avg

 

– 
n

n
��, �� �RP) (2.10) 

where ��, �� �RP is simply computed in (1.5) on a fast scale. A profound theoretical justification 
for application of the subsampling method in the area of realized volatility can be found in 
Zhang et al. (2005).  
 
The benefits of a high frequency realized volatility approach for measuring, modelling and 
forecasting univariate volatilities may motivate one to construct similarly realized covariance 
and correlation. By the theory of realized variation, Andersen et al. (2001a) and Andersen et 
al. (2001b) also derived realized standard deviation, RSstd =(��, �� �RS)

½; logarithmic standard 
deviation, RSlstd = ½.log��, �� �RS; covariance, RCOVxy=∑

T
ti (Yti+1

 – Yti)x
.(Yti+1

 – Yti)y; and realized 
squared-based correlation, RSCORxy, as follow 
 RSCORxy = RCORxy /(RSstd,x

.RSstd,y) (2.11) 
where x and y are two assets or high frequency time series.  
 
If the idea of an extension of high the frequency realized volatility approach to the measures 
of covariance and correlation is already convincing, then the extension of absolute-based 
realized volatility to absolute-based realized correlation would apparently seem a promising 
of this idea. Also the subsampling and averaging procedure, in order to enhance precision and 
to reduce microstructure noise problems and hence the bias problem, may help to realize the 
purpose of constructing time-varying realized covariance and correlation which are more 
robust to jumps and may be more predictable. Squared transformation instead of absolute one 
for constructing a measure of correlation might lead to overestimation in correlation. Thus, 
based on absolute transformation, in Safari and Seese (2008) we derived absolute-based 
realized standard deviation, RAstd=(��, �� �RA)

½ (note ��, �� �RA=��, �� �RP where r = 1), logarith-
mic standard deviation, RAlstd=½.log��, �� �RA, covariance, RCOVxy=∑

T
ti (Yti+1

 – Yti)x
.(Yti+1

 – Yti)y, 
and realized absolute correlation, RACORxy, as follows 
 RACORxy = RCORxy /(RAstd,x

.RAstd,y) (2.12) 
where x and y are two assets or high frequency time series. We note that covariance remaines 
the same. Also these measures could simply be extended to measures based on subsampling 
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and averaging procedure, so that we will have TSAVstd=(��, �� �TSAV)
½ (note that r=1), 

TSAVlstd=½.log��, �� �TSAV, and TSCOVxy, as follows 

 TSCOVxy = RCOVxy,avg – 
n

n
 RCOVxy,all (2.13) 

where RCOVxy,all is the same as RCOVxy, built on the all scale (the full grid). Here ��, �� �TSAV is 
the same as ��, �� �TSPV where r=1. In case of need for the small-sample adjustor, the term can 
be multiplied by the right hand of (2.13). Here RCOVxy,avg can be computed by 

 RCOVxy,avg ∑ ∑
= ∈+
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The Two-Scale Absolute Correlation, TSACORxy (based on r=1), is computed as follows 
  TSACORxy = TSCOVxy /(TSAVstd,x

.TSAVstd,y) (2.15) 
where TSACORxy denotes the time-varying and instantaneous conditional correlation between 
the returns of two time series x and y.  
  
In the next section, we evaluate the asymptotic convergence and unbiasedness of the 
estimators by simulations. The RP and TSRV estimators are compared with TSPV just in a 
special case of r=1 for RP and TSPV and of r=2 for TSRV. Therefore, RA and TSRV are 
considered as benchmarks for TSAV.  
  
3. SIMULATION EXPERIMENTS 
 
The GARCH(1,1) model has appeared as a base for modeling volatility in financial time 
series, as it tends to provide a simple estimation to the main statistical features of the return 
series across a wide range of assets. For the simulation part of the present work, we advocate 
Andersen and Bollerslev (1998) and Andersen et al. (1999b) and establish the diffusion 
foundation for analysis. Following Nelson (1990) and Drost and Werker (1996), the 
continuous-time diffusion limit of the GARCH(1,1) model is given by 
  dpt = σ t dW1,t (3.16) 

  tttt dWdtd ,2
2/22 2

1

)2()( σλθσωθσ +−=  (3.17) 

where W1,t and W2,t denote independent standard Brownian motions. According to Drost and 
Werker (1996) the discretely sampled returns from the continuous-time process defined by 
Eqs. (3.16) and (3.17), satisfy the weak GARCH(1,1) model  
  2

/1),(
2

/1),(
2

),( mtmmmtmmmtm r −− ++= σβαϕσ  (3.18) 

with m observations per day t, where σ2
(m),t ≡ P(m),t–1/m (r2

(m),t) denotes the best linear predictor 
of r2

(m),t. Note that here in this paper r2
(m),t has different alternatives defined previously in (1.5), 

(2.6) and (2.10). The relationship between the discrete-time parameters ϕm, αm, and βm with 
the continuous-time parameters ω, θ and λ may be obtained in closed form, as outlined by 
Drost and Werker (1996). Hence, in this weaker interpretation a GARCH(1,1) specification 
for any discrete frequency is compatible with the diffusion in Eqs. (3.16) and (3.17), and in 
this sense the setting provides a coherent framework for analysis of the model forecasts at 
different sampling intervals. Now, following Baillie and Bollerslev (1992) the h-period linear 
projection from the weak GARCH(1,1) model with returns that span 1/m day(s) is 
conveniently expressed as 
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where σ2
(m) ≡ ϕm(1–αm–βm)–1.  

 
As for market microstructure noise, �, advocated by Barndorff-Nielsen et al. (2004b), Bandi 
and Russell (2005), Zhang et al. (2005) and Hansen and Lunde (2006) and recalling our 
assumptions about price and return processes, we assume that it follows a Gaussian process 
and is small. We assume a pure noise (i.e., noise is i.i.d. and independent with the efficient 
price). Specifically, we set (E�2)½=0.005, i.e., the standard deviation of the noise is 0.05% of 
the value of the variable of interest. 
 
Like Andersen and Bollerslev (1998) and Andersen et al. (1999b) our theoretical assessment 
of performance of the discrete-time GARCH(1,1) approximation in Eq. (3.19) for predicting 
the subsequent realized volatility models defined by the stochastic volatility diffusion in Eqs. 
(3.16) and (3.17) rely on numerical means. More specifically, sample-path realizations of the 
underlying stochastic volatility diffusion are obtained via simulation using an Euler scheme. 
 
Based on our daily real world data sample of Euro/USD exchange rate from June 1, 2006 to 
August 23, 2007, we estimate the parameters of continuous-time GARCH(1,1) models (3.16) 
and (3.17) equal to θ=0.0241 (Std Error=0.0128, T stat.=9.607), ω=3.3e-007 (Std Error=3.1e-
007, T stat.=7.003), and λ=0.8325 (Std Error=0.0430, T stat.=27.014) with R2=0.692 by MLE 
parameter estimation. The GARCH parameters are fixed at the values obtained from 
maximum likelihood estimation based on real daily observations of the Euro/USD exchange 
rate for simulation. Random variables are generated by MATLAB. For generating data, we 
assume 252 working days a year as usual and generate data at different frequencies according 
to Table 3.1. The simulations are based on 5 years of data samples and 8,000 sample paths 
(realizations). For all three alternative estimators, we assume equally distance sampling 
interval. 
  
The values are transformed into logarithm form. After simulations the residuals are 
standardized in further estimations. The results of Monte Carlo simulation in terms of RMSE 
and bias in Table 3.1 show how the estimators converge to the integrated variation across 
frequencies when the sampling interval is going to diminish. Comparing the rows reveals 
asymptotic convergence in small sample distribution. Moreover, the following table shows a 
different behavior of estimators.  
 
As expected by the theories of realized volatility and realized power variation, the variance of 
all estimators diminishes as the frequency increases. Therefore, all measures converge in 
terms of RMSE. This implies that the estimators are consistent for the targets, i.e., Integrated 
Volatility (in our special case of order 2 for TSRV, i.e., r=2) and Integrated Power Volatility 
(in our special case of order 1 for RA and TSAV, i.e., r=1). Hence, the estimators converge 
asymptotically as the frequency increases. This convergence is consistent with Zhang et al. 
(2005) and Barndorff-Nielsen and Shephard (2003). A comparison between estimators gives 
some information. There are obvious differences between the estimated RMSE errors of 
different estimators, since the estimators are converging in different rates. In fact, absolute 
based estimators converge faster in terms of RMSE. Differences in convergence rates are akin 
to the fact that the absolute based estimators are inherently somewhat immune against jumps 
in a relative sense. Consistent with Zhang et al. (2005), the subsampling and averaging 
method leads to a difference between RA and TSAV in terms of variation. 
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Frequency at every 

TSRV RA TSAV 

RMSE Bias RMSE Bias RMSE Bias 

60 min. 0.3826 0.0083 0.3602 0.0213 0.3519 0.0079 

30 min. 0.3815 0.0072 0.3486 0.0214 0.3483 0.0057 

15 min. 0.3503 0.0060 0.2772 0.0215 0.2731 0.0053 

5 min. 0.3103 0.0031 0.1882 0.0230 0.1863 0.0025 

1 min. 0.2907 0.0025 0.1036 0.0236 0.1034 0.0019 

30 sec. 0.2599 0.0019 0.0765 0.0239 0.0704 0.0015 

15 sec. 0.1323 0.0015 0.0432 0.0243 0.0430 0.0009 

10 sec. 0.0815 0.0012 0.0112 0.0245 0.0109 0.0006 

5 sec. 0.0117 0.0009 0.0039 0.0248 0.0038 0.0004 

1 sec. 0.0095 0.0006 0.0003 0.0249 0.0002 0.0002 

Table 3.1 Results of simulation (values*1000). 
 
Consistent with the literature, the table simply shows that realized power volatility of order 1 
(RA) is not an unbiased estimator of realized power variation as the frequency increases. Even 
the bias of the estimator is increasing across the frequencies caused by market microstructure 
frictions. From the table based on simulation, we find that the bias grows almost less than 
linearly in the number of intraday observations, when we consider RA estimator. This finding 
suggests that market microstructure noise is almost a linear direct function of observations or 
frequencies. This condition, however, is somewhat different around 5 minute frequency. 
Nonetheless, the bias of both subsampling and averaging based estimators converges to zero 
as the frequency increases. This is consistent with the theory mentioned above. Both TSRV 
and TSAV estimators are an unbiased estimator for realized volatility and realized power 
volatility. Meanwhile the bias of estimators can be compared. Considering both bias and 
variation of the estimators, TSAV estimates its true integrated power volatility (IPV) 
consistent and unbiased relative to others.  
 
In the following section, distributional and dynamic properties of measures will 
experimentally be compared. Since there exists no two-scale realized squared correlation, we 
compare the results of measures with realized squared based correlation.  
 
4. EMPIRICAL BEHAVIORS OF MEASURES 
 
4.1. Data and Facilities 
 
The empirical evidence suggests that daily realized volatility serves as a simple, yet effective, 
aggregator of the volatility information inherent in the intraday data (Andersen et al., 2006). 
For this section, our empirical analysis is based on returns of Euro/USD and Euro/GBP 
exchange rates at every 1 minute frequency. Our sample time series cover a period from June 
1, 2006 to August 23, 2007. Both exchange rates are considered as a market with a high 
degree of liquidity and very active. We define return of an exchange rate by Yti+1

 – Yti = 
log(Yti+1

) – log(Yti), which is the return from holding the currencies at time ti to time ti+1, where 
Yti is the observed exchange rate value. 
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All computations and estimations in this work have been facilitated by the use of the software 
R, a system for statistical computation and graphics, and of the libraries therein including 
e1071, fBasics, tseries, and KernSmooth2. 
 

Statistic Euro/USD Euro/GBP 

Minimum -5.58e-03 -6.07e-03 

Maximum 5.61e-03 5.70e-03 

Mean 1.31e-07 -4.78e-08 

Median 0.00e+00 0.00e+00 

Sum 5.72e-02  -2.09e-02 

Variance 3.88e-08 1.92e-07 

Skewness 1.15e-01 -2.21e-02 

Kurtosis 1.31e+01 3.97e-01 

Jarque-Bera test 2.2e-16 2.2e-16 

Table 4.2 Basic statistics and tests for return time series in exchange market. 
 
Some more important descriptive statistics of our time series are contained in Table 4.2. 
Positive mean of return in Euro/USD explains an average positive return trend. In particular, 
an excess kurtosis with positive skewness in Euro/USD, and low kurtosis with negative 
skewness in Euro/GBP obviously show our time series depart from normality. Leptokurtosis 
in returns of Euro/USD is a sign of heavy tail in its distribution. This implies that there is a 
higher probability for extreme events than in data that is normally distributed. Negative 
coefficient of skewness for Euro/GBP (-0.022) series describes that our probability density 
function is negatively skewed. Therefore the distribution is asymmetric to the left side. 
However, the skewness coefficient for Euro/USD (0.115) indicates an asymmetry to the right 
side. Jarque-Bera test3 for normality simply reveals that the time series with p-value equal to 
2.2e-16 do not form a normal distribution. 
 
4.2. Distributional Properties of Volatilities and Correlations 
 
Considering the fact that volatility is now effectively observable and measurable, based on 
squared or absolute values and subsampling procedure, we can characterize their 
distributional properties with relying on conventional statistical procedures. Then, comparison 
of empirical distributions of different measures can be simply implemented.  
 
Time series of realized volatility measures calculated based on (2.6), (1.5), and (2.10) with 
r=1 are depicted in Figure 4.1. Actually the figure unveils that volatility, constructed by all 
realized measures, is time-varying. This is in contrast to the conventional approach which 
views the volatility as constant.  
 

                                                 
2 More information about included packages, documents and downloading source codes can be found on: 
http://www.r-project.org. 
3 Note that the Jarque-Bera test of normality is likely the most widely used procedure for testing normality of 
economic time series returns. The algorithm provides a joint test of the null hypothesis of normality in that the 
sample skewness equals zero and the sample kurtosis equals three. 
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Figure 4.1 Time series of realized volatility measures constructed based on squared, absolute, and two-scale 
absolute transformations. They show daily volatility series for Euro/USD and Euro/GBP. Evidently volatility is 
viewed time-varying. 

 
 
A simple comparison of realized volatilities, computed based on models (2.6, 1.5, and 2.10) 
for Euro/USD and Euro/GBP, with a traditional constant variance using Tables 4.2 and 4.3 
detects that all realized measures tend to report volatility higher than a constant value. 
However in Table 4.3, the mean of RS realized volatility is smaller than that of two others.  
 

 
Statistic 

Euro/USD Euro/GBP 

��, �� �RS ��, �� �RA ��, �� �TSAV ��, �� �RS ��, �� �RA ��, �� �TSAV 

Mean  5.06e-05 1.88e-01 1.87e-01 2.51e-04  0.434 0.434 

Median 4.74e-05 1.86e-01 1.86e-01 2.65e-04 0.453 0.452 

Variance 2.24e-10 6.80e-04 6.78e-04 4.79e-09 0.005 0.005 

Skewness 1.09e+00 5.88e-01 6.11e-01 -2.95e-01 -1.12 -1.12 

Kurtosis 1.68e+00 3.08e-01 4.81e-01 2.11e+00 0.697 0.691  

Jarque-Bera 2.2e-16 2.6e-05 4.7e-06 9.9e-16 2.2e-16 2.2e-16  

Table 4.3 Basic statistics and tests of realized volatility measures. 
 
Based on exchange rate data, Andersen et al. (2001b) found that the distributions of realized 
daily variances are skewed to the right side and leptokurtic. In line with this finding, based on 
stock exchange data, Andersen et al. (2001a) also confirm that the unconditional distributions 
of realized variances are highly right-skewed. The volatilities of Euro/USD in Table 4.3 are 
rightward too. But all volatility measures in case of Euro/GBP show leftward skewness. A 
part of values of Euro/GBP rate, as can be observed in Figure 4.1, lies below the average for a 
while and will form leftward asymmetry. Four moments of realized volatility measures plus 
median are included in Table 4.3. Skewness and kurtosis of measures determine in more 
detail, none of the measures possess exactly a normal distribution. In terms of the Jarque-Bera 
test for normality reported in the table, none of measures hold normal distribution. With p-
values equal to or smaller than 2.6e-05, normality for all measures is significantly rejected. 
However, a relative comparison may include informative facts. In case of Euro/USD rate, 
skewness coefficients for absolute based volatility measures are close together and closer to 
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that of a normal distribution than that for squared based measure. Because of this, the 
normality in absolute based measures in Euro/USD rate is not rejected as strongly as in square 
based measure. The main reason for the difference among the distribution of volatility series 
may most likely be akin to different sensitivity to jumps. According to Andersen et al. 
(2001a) squared returns approach, over the relevant return horizon, provides model-free 
unbiased estimates of the ex post realized volatility. Unfortunately, however, squared returns 
are also a very noisy volatility indicator and hence do not allow for reliable inference 
regarding the true underlying latent volatility. Construction of realized volatility based on 
squared transformation seems not to be immune against jumps. In turn, this kind of 
transformation can be considered as a source of generating higher jumps in a series. In fact, 
squared based volatility measures reinforce jumps in original series. However, realized 
volatility constructed by absolute transformation seems relatively to be more monotonous. 
These arguments are also confirmed by Figure 4.2. The shapes show heavy tails. Presence of 
big jumps in squared based volatility is obviously evident in Figure 4.2. As such, these jumps 
lead the time series of measure to form a longer tail in distribution. The distribution holding 
the longer tail among others in Figure 4.2 is simply distinguishable. These jumps are the 
cause of greater positive skewness coefficient (to the right side) for Euro/USD in Table 4.3. 
Overall all daily time series of measures shape a kind of non-normal distribution, but absolute 
based series seem closer to normal. A part of these findings is in agreement with that of 
Andersen et al. (2001a). Of course, this phenomena was well documented as the fact of 
markets where the distribution of relative price changes is strongly non-Gaussian: these 
distributions can be characterized by power law tails with an exponent close to 3 for rather 
liquid markets. Emerging markets have even more extreme tails, with an exponent that can be 
less than two - in which case the volatility is infinite (Bouchaud, 2002). We will study this 
phenomenon in detail under dynamical properties of measures below. 
 
Figure 4.2 Empirical cumulative distribution plots for Euro/USD and Euro/GBP seem skewed rightward and 
leftward respectively. However, the shapes are not the same. Asymmetry degree seems different among volatility 
series. Relative big positive jumps are present especially in RS volatility.  

 
 
Since the most commonly used measure to analyze comovements and cointegration among 
international financial markets is correlation analysis; realized correlation is applied on 1 
minute frequency exchange rates. Based on models (2.11, 2.12, and 2.15) our study is focused 
on correlation between the returns of the previous time series. In our analysis, both series 
belong to very developed, active and liquid markets. A main difference of our correlation with 
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that of traditional analysis includes variation and hence likely dynamics of realized measure 
over time. In Figure 4.3, some distributional properties of different realized correlation 
measures are graphically embodied. First row plots explicitly imply that realized correlation 
series, against classical formulation of correlation, are time-varying, what is a profound 
property of many financial phenomena, and that they may have some dynamics. Their kernel 
density can be found in the second row of plots. As Andersen et al. (2001a) and Andersen et 
al. (2001b) reported the distributions of standardized realized squared correlation between 5 
minute stocks and between 5 minute exchange rates are approximately normal. In our 
experiment here on 1 minute frequency data, the RSCORxy and RACORxy correlation series 
provide a normal distribution.  
 
Figure 4.3 Distributional properties of realized correlations between Euro/USD and Euro/GBP are graphically 
embodied. Evidently realized correlations, based on first row plots, fluctuate over the time. The correlations 
oscillate almost around zero mean. The RS and RA based correlations possess a near symmetric density 
approximately with zero mean, while density of the other is positively skewed. These findings are more 
informatively supplemented by QQ-normal plots. Both RS and RA based correlations seem to shape a normal 
distribution.  

 
 

Table 4.4 reports some basic distribution-related statistics of realized correlations. All 
correlations have a positive mean. RSCORxy in particular, shows the highest correlation 
between returns of the rates on average and hence the strongest degree of integration between 
markets over our time period. RACORxy and TSACORxy correlations behave relatively more 
stable over the time, since they have much less variance than RSCORxy correlation. 
Comparing both mean and variance of different correlations, we observe that RSCORxy 
correlation shows a stronger (based on mean value), and at the same time, more unstable 
(based on variance) relation between markets. Both RSCORxy and RACORxy correlations are 
slightly skewed to the right side. But rightward skewness of TSACORxy measure is relatively 
considerable. Regarding to the Table 4.4, the p-values of Jarque-Bera test for null normality 
test are statistically significant at the 5 percent level for RSCORxy and rather for RACORxy 
correlations. Normality in TSACORxy correlation series can not be significantly accepted. 
 
Based on rather high skewness of TSACORxy correlation, we found that positive asymmetry is 
present in the conditional realized correlation distribution. If relationship between markets 
complies the TSACORxy correlation, then based on our data, upside comovements are greater 
than downside ones.  
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Statistic RSCORxy RACORxy TSACORxy 

Mean  2.75e-03 1.03e-06 1.84e-08 

Median -5.16e-04 -1.84e-07 8.44e-09 

Variance 1.10e-03 1.61e-10 4.41e-14 

Skewness 1.61e-01 1.60e-01 2.07e+00 

Kurtosis 2.26e-01 1.68e-01 1.53e+01  

Jarque-Bera test 0.315 0.379 2.2e-16  

Table 4.4 Basic statistics and test of realized correlations. 
 
Figure 4.4 Autocorrelation function and long memory autocorrelation function plots (ACF and log-log) of 
volatilities, computed based on returns on Euro/USD data. For all functions of both kind of autocorrelation 
function and long memory autocorrelation function, the number of lags is equal to 70. The top row belongs to 
the RS measure, the middle to RA, and the bottom to TSAV. Left plots are autocorrelation functions and right 
ones are long memory autocorrelation functions. The estimated Hurst exponents (self-similarity parameter) in 
the long memory process for RS, RA, and TSAV are respectively equal to 0.76, 0.79, and 0.81.  

 
 
4.1. Dynamic Behaviour of Volatilities and Correlations 
 
Behavior analysis of the estimators, for example, study of stylized facts of financial time 
series could be interesting and informative. For some useful information about several 
stylized facts refer to Cont (2001). Now, issues related to dynamic behaviors of measures are 
extracted by detailed examinations with particular focus on the long memory and scaling law.  
 
In Figures 4.4 (for Euro/USD) and 4.5 (for Euro/GBP), on the left panel, autocorrelation 
function (ACF) plots and on the right panel, long memory plots for realized volatilities have 
been drawn. Ding et al. (1993) and Andersen and Bollerslev (1997) have argued that the 
autocorrelations of squared and absolute returns decay at a much slower hyperbolic rate over 
longer lags. Consistent with these authors, the figures almost identically indicate a slow decay 
in autocorrelation over time for all measures. Long memory may be a very interesting 
signature for series dynamics. Usually it is spoken of a long memory behavior, if the decay in 
the ACF is slower than a hyperbolic rate, i.e. the correlation function decreases algebraically 
with increasing (integer) lag. Thus it makes sense to investigate the decay on a double 
logarithmic scale and to estimate the decay exponent. Graphically, if the time series exhibits 
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long memory behavior, it can easily be observed as a straight line in plot on the right panels 
of Figures 4.4 and 4.5. Corresponding long memory plots of volatility series in Figures 4.4 
and 4.5 show a slow decay for measures, meanwhile absolute based measures indicate longer 
memory numerically estimated by Hurst exponents which will explained below. So, the 
volatility measures include long memory behavior as a dynamic stylized fact of market. This 
finding at 1 minute frequency is consistent with those empirical experiments on tickers 
included in NASDAQ by Andersen et al. (2001a) and in DM/US dollar and Yen/US dollar 
exchange rates by Andersen et al. (2001b) both in 5 minute frequency. 
 
Figure 4.5 Autocorrelation function and long memory autocorrelation function plots of volatilities, computed 
based on returns on Euro/GBP data. For all functions of both kind of autocorrelation function and long memory 
autocorrelation function, the number of lags is arbitrarily equal to 70. The top row belongs to RS measure, the 
middle to RA, and the bottom to TSAV. Left plots are autocorrelation functions and right ones are long memory 
autocorrelation functions. Estimated Hurst exponent (self-similarity parameter) in long memory process for RS, 
RA, and TSAV are respectively equal to 0.68, 0.70, and 0.71.  

 
 
Another striking fact of markets is the regular fractal structure of the financial series in the 
sense of Mandelbrot (1986). This is illustrated by the scaling laws usually reported for the 
volatility time series under aggregation. The scaling law for the volatility relates the volatility 
over a time interval to the size of this interval. In other words, considering the average 
absolute return over individual data periods, one finds a scaling power law which relates the 
mean volatility over given time intervals to the size of these intervals. The power law is in 
many cases valid over several orders of magnitude in time. Its exponent usually deviates 
significantly from a Gaussian random walk model which implies 0.5. This other implication 
of self-similarity and long memory associated with fractional integration concerns the 
behavior of variance of partial sums. In particular, let [xt] t ≡ ∑j=1,...,h} xh.(t-1)+j, denote the h-fold 
partial sum process for xt, where t=1,2,...,[T/h]. Then, if xt is fractionally integrated, the partial 
sums obey a scaling law, 
 Var([xt]h)= c.h2d+1 (4.20) 
where c is a constant, and d is scaling parameter. The variance of realized volatility should 
grow at rate h2d+1. Scaling parameter refers to the elasticity of volatility series with respect to 
the timescale. Estimated parameters for Euro/USD are equal to 2.04, 2.14, and 2.13; and for 
Euro/GBP to 1.94, 1.96, and 1.97 in the structures of RS, RA, and TSAV volatility measures 
respectively. Figure 4.6 illustrates that all volatilities in Euro/USD and Euro/GBP follow a 
regularity based on which log variance of partial sum proportional to log variance of the 
whole period; and that the plots of scaling law for volatilities are almost similar to each other. 
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Like for the Hurst exponent, this regularity also stimulates one to think of predictability in 
financial markets. 
 
Figure 4.6 A scaling law plot of realized volatilities displays regularity based on which partial sums of volatility 
against the time intervals follow the scaling law. This regular behavior is also considered as a statistical self-
similarity in volatilities time series. The left panel indicates Euro/USD and the right one, Euro/GBP. First, 
middle, and bottom rows belong to RS, RA, and TSAV volatilities respectively. Since all points in plots are 
close to the red line, scaling law exists in all volatilities. Estimated parameters for Euro/USD are equal to 2.04, 
2.14, and 2.13; and for Euro/GBP equal to 1.94, 1.96, and 1.97 in the structures of RS, RA, and TSAV volatility 
measures respectively.  

 
 
A self-similar series statistically means that the statistical properties for the entire data set are 
the same as for sub-sections of the data set. In other words, the self similar dimension of 
fractional integration is invariant to the horizon. From the slope of log-log plot in Figures 4.5 
and 4.6, an exponent called Hurst exponent is derived. Usually the Hurst exponent is 
considered as the statistical self-similarity parameter (dimension) in the structure of a 
financial time series. The Hurst exponent, H, can be defined as H:=log(R/S)/log(T), where T is 
the duration of the sample of data, and R/S is the corresponding value of rescaled range. In 
this way, Hurst (1951) and Hurst (1955) generalized an equation valid for the Brownian 
motion process in order to include a broader class of time series. In fact, Einstein studied the 
properties of the Brownian motion and found that the distance R covered by a particle 
undergoing random collisions is directly proportional to the square-root of time T:  
 R = k.T0.5  
where k is a constant which depends on the time series. The generalization proposed by Hurst 
was 
 R/S= k.TH (4.21) 
where H is the Hurst exponent. Estimating the Hurst exponent for a data set provides a 
measure of whether the data is a pure random walk or has underlying trends. The values of the 
Hurst exponent range between 0 and 1. A Hurst exponent value within a range of 0.5 < H < 1 
indicates persistent behavior (e.g., a positive autocorrelation and hence a long memory). 
Furthermore, the closer H is to 1, the stronger the dependence of the process is. Data sets like 
this are sometimes referred to as fractional Brownian motion. A value of 0.5 indicates a true 
random walk (a Brownian time series with no autocorrelation). The fractal dimension is 
directly related to the Hurst exponent for a statistically self-similar data set. In a random walk 
there is no correlation between any element and a future element. A small Hurst exponent has 
a higher fractal dimension and a rougher surface. A larger Hurst exponent has a smaller 
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fractional dimension and a smoother surface. A Hurst exponent value 0 < H < 0.5 will exist 
for a time series with anti-persistent behavior (or negative autocorrelation). Here an increase 
will tend to be followed by a decrease and inversely. This behavior is sometimes called mean 
reversion. There are many estimators that are used to estimate the value of the Hurst 
parameter4. Estimated Hurst exponents by R/S method are equal to 0.76, 0.79, and 0.81 for 
Euro/USD and to 0.68, 0.70, and 0.71 for Euro/GBP in the structure of RS, RA, and TSAV 
volatility measures respectively. As an example in a simulation study for an artificial capital 
market, the Hurst exponent for the prices generated by the trading of the agents is estimated 
between 0.65 and 0.71 (Schlottmann and Seese, 1999). In fact, there is the strong evidence to 
suggest that volatility is a long memory process, consistent with Andersen et al. (1999a). 
 
An investigation of the fact that if the patterns and temporal dependencies of comovements 
across equity markets behave regularly, can help here too. Existence of such regularities 
imply the dynamics of correlation series. We are now interested to find regular patterns in 
correlations, if there are any. Considering Figure 4.7, a long autocorrelation (ACF plot) in the 
structure of RSCORxy and RACORxy has been now completely disappeared. Based on the long 
memory autocorrelation plot in Figure 4.7, a temporal dependence for RSCORxy and RACORxy 
can not be reported. Of course, TSACORxy seems to keep still its dynamic properties. It 
exhibits the long memory dependence with Hurst exponent equal to 0.92.  
 
Figure 4.7 Autocorrelation function and long memory autocorrelation function plots (ACF and log-log) of 
correlations between Euro/USD and Euro/GBP. For all functions of both kind of autocorrelation function and 
long memory autocorrelation function, the number of lags is equal to 300. The top row belongs to RSCORxy, the 
middle to RACORxy, and the bottom to TSACORxy correlation. Left plots are autocorrelation functions and right 
ones are long memory autocorrelation functions. The estimated Hurst exponent (self-similarity parameter) in 
long memory plot for TSACORxy is equal to 0.92. RACORxy and RSCORxy exhibit no long memory and 
consequently have no Hurst exponent.  

 
 
The calculated points in scaling law plots for RSCORxy and RACORxy correlations are far from 
the estimated red line in Figure 4.8. It is not possible to fit a straight line which links all points 
and hence the corresponding plots can not show the scaling law. However, the plot related to 
TSACORxy correlation shows well scaling law property with scaling parameter equal to 1.93. 
 

                                                 
4 Some more common methods include Absolute value method, Variance method, R/S method, Periodogram 
method, Whittle estimator, Variance of residuals, and Abry-Veitch method. 
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Analyzing 40 series of returns, Taylor (1986) observes that the sample autocorrelations of 
absolute returns seem to be larger than the sample autocorrelations of squares. Let Yt, t=1,...,T 
be the series of returns and rθ(k) denotes the sample autocorrelation of order k of |yt|

θ, θ > 0; 
the Taylor Effect can be defined as r1(k) > rθ(k) for any θ ≠ 1. The autocorrelations of absolute 
returns to the power of theta reach their maximum at θ = 1. In Figure 4.8, plots display 
autocorrelations as a function of the exponent θ for each lag from 1 to the maximum lag (e.g., 
10 lags). In case that the above formulated hypothesis is supported, all the curves should peak 
at the same value around θ = 1. Figure 4.8 indicates that none of the curves in corresponding 
plots for RSCORxy and RACORxy correlations reach their pinnacle around θ = 1 and the points 
are distant from vertical line of θ = 1. In contrast, the plot related to the TSACORxy measure 
exhibits somewhat Taylor Effect. 
 
Figure 4.8 According to scaling law plots in left panel, TSACORxy has a high performance of dynamics. The 
points on a scaling plot for RSCORxy and RACORxy correlations are far from the estimated line and hence they 
can not show the scaling law. The estimated exponent is equal to 1.93 in TSAVCORxy correlation series. The 
Taylor effect plot indicates that Taylor Effect exists in a series, where the curves peak at the value around θ=1 
which is on the x axis. Top, middle, and bottom rows belong to RSCORxy, RACORxy and TSAVCORxy correlations 
respectively. This effect is present in TSACORxy correlation regarding to the number of lags which is arbitrarily 
selected to be equal to 8. In the TSACORxy correlation, the Taylor Effect plot peaks around θ=1 with 1 lag against 
with no lag for both other correlations  

 
 

The Hurst exponent and scaling law promise a gleam of hope for predictability in financial 
markets which seemingly sound unpredictable at all, under the efficient market hypothesis; 
since they show well regularity in chaotic and stochastic behaviors of particles or agents. 
Peters (1996) suggests that a Hurst exponent value between 0.5 < H < 1.0 shows that the 
efficient market hypothesis is incorrect. Returns are not randomly distributed. There is some 
underlying predictability. But the problem of estimating the Hurst exponent itself, involves a 
complex problem of accurate calculation. Moreover, we are not certain about a especial 
variable of interest to be a representative for predictability of the market. In our investigation 
here, volatility reflects regularity in market. But as reported by many, for example Ding et al. 
(1993), original prices do not show such the regularity, at least by Hurst exponent, among 
statistics. It is now well established that the stock market returns themselves contain little 
serial correlation which is in agreement with the efficient market theory. But this empirical 
fact does not necessarily imply that returns are independently identically distributed as many 
theoretical financial models assume. It is possible that the series is serially uncorrelated but is 
dependent. For the stock market data is especially so, since if the market is efficient, a stock’s 
price should change with the arrival of information. If information comes in bunches, the 
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distribution of the next return will depend on previous returns although they may not be 
correlated. As the return period increases, the return values reflect longer trends in the time 
series. Perhaps the higher Hurst exponent value is actually showing the increasing upward or 
downward trends. This does not, by itself, show that the efficient market hypothesis is 
incorrect. Even if we accept the idea that a non-random Hurst exponent value does damage to 
the efficient market hypothesis, estimation of the Hurst exponent seems of little use when it 
comes to time series forecasting. At best, the Hurst exponent tells us that there is a long 
memory process. The Hurst exponent does not provide the local information needed for 
forecasting. Nor can the Hurst exponent provide much of a tool for estimating periods that are 
less random, since a relatively large number of data points are needed to estimate the Hurst 
exponent. For example a constant Hurst exponent over time also does not seem a sound and 
reasonable conclusion. However, this statistic can be useful in analyzing the behavior of 
market models. 
 
5. RELATIONSHIP BETWEEN VOLATILITY AND CORRELATION 
 
A study on multivariate relationship between estimators, in particular, volatility and 
correlation estimators, can help to figure out whether and how TSAV, and TSACORxy move 
together. Such questions are difficult to answer using conventional volatility models, but they 
are relatively easy to address using the time-varying realized volatilities and correlations. A 
strong evidence has been observed that realized volatilities and correlations move together. 
Realized correlation is itself correlated with realized volatility, which is called the volatility 
effect in correlation (VIC) (Andersen et al., 2001a).  
 
Andersen et al. (2001b) estimate a kernel density of relationship between realized correlation 
and logarithmic realized standard deviation when the medians of both logarithmic realized 
standard deviations of Deutsche Mark and Yen are less than a threshold equal to -0.46 and 
when both are greater than -0.46 and show density distributions of high volatility days differ 
from that of low volatility days. Huang and Nieh (2004) approximate a linear regression and 
show a positive relationship between realized correlation and volatilities significantly. To do 
this task, we have to turn back to the conventional techniques which fail to formulate directly 
observable instantaneous and contemporaneous relationship. We intend to estimate a simple 
linear least square regression. It is assumed that the realized correlation follows the realized 
volatility. In Table 4.5, the results of linear regression estimation are reported. In an 
experiment, the realized correlation between realized volatility of returns on Euro/USD and 
on Euro/GBP is modeled to follow the realized volatility of returns on Euro/USD and in 
another experiment, on Euro/GBP exchange rate. Different estimators of volatility and 
correlation are considered. 
 
In the first experiment, different results in terms of the type and intensity of the relationship 
were obtained, while P-values for parameters a (constant value) and b (slope) for three 
estimators, particularly in case of TSAV, are high. The relationship between realized 
correlation and volatility in case of Euro/USD rate, estimated to be negatively strong (-67.93 
for parameter b) based on RS estimator and to be negatively mild (-2.2e-05) based on RA 
estimator. Meanwhile, the relationship is reported to be positive (6.1e-07) by TSAV estimator. 
As a matter of fact, according to the latter relationship, when the Euro/USD exchange market 
is highly volatile (measured by realized volatility), the relationship (measured by realized 
correlation) between the two markets (Euro/USD and Euro/GBP) becomes stronger, and when 
the Euro/USD market goes to calm down, the association between the markets goes to relax. 
So, two markets tend to be highly correlated when the Euro/USD market is highly volatile and 
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inversely. A similar correlation effect in volatility was documented for international equity 
returns by Solnik et al. (1996).  
 

 
Model 

RS RA TSAV 

Parameter P-value Parameter P-value Parameter P-value 

Corr=f(vol. of returns on Euro/USD):parameter a 0.0062 0.33 5.1e-06 0.31 -3.4e-08 0.78 

Corr=f(vol. of returns on Euro/USD):parameter b -67.93 0.56 -2.2e-05 0.42 6.1e-07 0.56 

Corr=f(vol. of returns on Euro/GBP):parameter a 0.0058 0.39 3.1e-06 0.46 4.6e-07 7.4e-07 

Corr=f(vol. of returns on Euro/GBP):parameter b -12.21 0.64 -4.8e-06 0.62 -1.7e-06 3.2e-06 

Table 4.5 Results of regression estimation: Correlation as a function of volatility. 
 
In the second experiment, it is assumed that the correlation between Euro/USD and Euro/GBP 
is associated with the volatility in Euro/GBP exchange market. As the table reports, existence 
of such the relationship is rejected by the two-scale measure, since the p-values are very small 
(for example 3.2e-06 for parameter b). However, a negative relationship in terms of RS and 
RA measures is meaningfully approximated.  
  
6. CONCLUSION AND DISCUSSION 
 
The study of some important distributional and dynamic aspects of different alternative 
realized volatility and correlation measures was the score of the present article. The 
distribution of realized squared volatility tends to be highly rightward skewed. The two-scale 
realized absolute volatility measure is so formulated that more accuracy and less bias is 
additionally added to the realized absolute volatility measure by inclusion of sampling and 
averaging procedure while applying higher frequency data contaminated by microstructure 
noise. Here, market microstructure noise is effectively damped by constructing K series of 
aggregate returns of K samples which are then used to compute K intermediate and 
inconsistent estimators that will be averaged to obtain, at last, the desired consistent estimator 
and to be improved by bias-corrector term. Likewise, the Jackknife method resamples the 
statistic at the n points. The estimators investigated in this paper are constructed based on the 
subsampling method. Goncalves and Meddahi (2005) propose bootstrap methods for statistics 
evaluated on high frequency data such as realized volatility. However, application of other 
bias-corrector methods, in particular, the Jackknife method is worthy to investigate further in 
the area of realized volatility. A comparison of different methods for bias-correction may 
reveal some valuable results. 
 
Regarding to our 1 minute data of exchange rates, a comparison of different volatility 
measures suggests that daily realized absolute based volatilities appear closer to the normal 
distribution relative to realized squared based volatility. However, none of investigated 
measures absolutely pose a normal daily distribution tested by Jarque-Bera test of normality. 
In our experiments, we found that absolute based volatility measures include longer memory 
behavior as a dynamic stylized fact of markets, although squared based measure exhibits long 
memory behavior too. Self-similarity structures computed by the Hurst exponent and regular 
fractal scaling law were documented in the structures of series generated by realized 
measures. 
 
The normality of two-scale based correlation can not be accepted. But the realized squared 
and absolute correlations are viewed to pose a shape of the normal distribution, and in terms 
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of the Jarque-Bera test the normality can not be rejected. According to our experiment, two 
latter correlations seem to fail containing dynamic properties such as long memory as well as 
scaling law. While two-scale based correlation measure suffers from non-normality, 
autocorrelation, long memory and scaling law, which have been well documented in real 
world time series processes, are included in its structure. This may mean predictability in the 
market by this measure. According to our empirical work, we could document statistical self-
similarity dimension estimated by a Hurst parameter as well as a fractal structure illustrated 
by scaling law as another implication of self-similarity structure in our TSACORxy correlation 
measure. Strong positive asymmetry in TSAVCORxy correlation implies that upside co-
movements are greater than downside comovements between markets. 
 
Time-varying volatility and correlation measures offer a good tool for more profound analysis 
of, for example, association between volatilities and correlations. We found that when the 
Euro/USD market is highly volatile, relationship between the Euro/USD and Euro/GBP 
becomes stronger, and when the Euro/USD time series goes to calm down, the association 
between the markets goes to relax.  
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