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Loal Prinipal CurvesJohen Einbek Gerhard Tutz Ludger Eversfeinbek,tutz,ludgerg�stat.uni-muenhen.deLudwig-Maximilians-Universit�at M�unhen, Akademiestra�e 1,80799 M�unhen, Germany8th May 2003AbstratPrinipal omponents are a well established tool in dimension redution. Theextension to prinipal urves allows for general smooth urves whih pass throughthe middle of a p� dimensional data loud. In this paper loal prinipal urves areintrodued, whih are based on the loalization of prinipal omponent analysis. Theproposed algorithm is able to identify losed urves as well as multiple urves whihmay or may not be onneted. For the evaluation of performane of data redutionobtained by prinipal urves a measure of overage is suggested. The seletion oftuning parameters is onsidered expliitely yielding an algorithm whih is easy toapply. By use of simulated and real data sets the approah is ompared to variousalternative onepts of prinipal urves.Key Words: Loal smoothing, mean shift, prinipal omponents, prinipal urves.1 IntrodutionThe lassial problem of how to �nd the best urve passing through some data points(xi; yi); i = 1; : : : ; n an be handled in two fundamentally di�erent ways. Let us regardthe data points as realizations of i.i.d. random variables (Xi; Yi) drawn from a population(X;Y ). A ommon approah is to regard X as an explanatory variable for the dependentvariable Y . This onept is used in all methods where the fous is on regression or smooth-ing and is espeially useful when the objetive is predition of the dependent variable from1



the observations xi. Thereby X and Y have an asymmetri relationship and annot beinterhanged without hanges of the results.In ontrast, X and Y may be regarded as symmetri, thus we do not assume that onevariable an be made reponsible for the value of the other one. Rather they are generatedsimultanuously from a ommon underlying distribution. These approahes are useful whenthe fous is on dimension redution or simply desription of the data. Representantshere are methods like the ACE algorithm, anonial orrelation or prinipal omponentanalysis. Linear Prinipal omponents, introdued by Pearson (1901), are a ommon toolin multivariate analysis, applied for example in feature extration or dimension redution.Jolli�e (1986) gave an overview on properties and appliations of prinipal omponents.Nonlinear prinipal omponents have been developed by Sh�olkopf & Smola (1998) andsuessfully employed for pattern reognition.A natural extension of prinipal omponents are prinipal urves, whih are desrip-tively de�ned as one-dimensional smooth urves that pass through the \middle" of ap�dimensional data set. Though this onept is intuitively lear, there is muh exibilityin how to de�ne the \middle" of a distribution or a data loud. Hastie & Stuetzle (1982)(hereafter HS), who did the groundbreaking work on prinipal urves, use the onept ofself-onsisteny (Tharpey & Flury, 1996), meaning that eah point of the prinipal urveis the average of all points that projet there. A variety of other de�nitions of prinipalurves have been given subsequently by Tibshirani (1992), K�egl, Krzyzak, Linder & Zeger(2000) (hereafter KKLZ), and more reently Deliado (2001), whih di�er essentially inhow the \middle" of the distribution is found.Apart from Deliado (2001), all onepts mentioned above work more or less as follows:They start with a straight line, whih is mostly the �rst prinipal omponent of the dataset, and try to dwell out this line or onatenate other lines to the initial line until theresulting urve is passing satisfatory through the middle of the data. This methodologyleads to some tehnial problems. HS generally exlude interseting urves from the def-inition of prinipal urves and are not able to handle losed urves. Ban�eld & Raftery(1992) (hereafter BR) provide a bias orreted version of the HS algorithm whih solves thelatter problem, but yields more wiggly results than HS. Chang & Ghosh (1998) ombinethe algorithms of HS and BR and show that this yields a smooth and unbiased prinipalurve, at least for simple data situations. Tibshirani's theoretially attrative approahseems to have the same problems as HS, though not expliitely stated, and further seems2



to have a lak of exibility for strongly skewed data. These diÆulties have been solvedby Verbeek, Vlassis & Kr�ose (2001), but at the expense of an apparent wiggly prinipalurve, sine polygonal lines are onneted in a somehow unsmooth manner. KKLZ workalso with polygonal lines and obtain with high omputational e�ort a smooth and exibleprinipal urve, whih only fails for very ompliated data strutures. None of these algo-rithms seems to be able to handle urves whih onsist of some multiple or disonnetedparts. Reently, K�egl & Krzyzak (2002) provided a promising algorithm to obtain prini-pal graphs, i.e. multiple onneted pieewise linear urves, in the ontext of skeletonizationof hand-written haraters.All these methods have to be regarded as global, sine in every step of their algorithms,or at least in the initial step, all available data points are used. As alternative to theglobal methods, whih lead to exploding omputational osts for large data sets or high-dimensional data, it would be desirable to have a loal method at hand, whih onlyonsiders data whih are lose to the target point. Lately, Deliado (2001) proposed the�rst prinipal urve approah whih an be alled loal. Assume a d-dimensional randomvetor X and n random samples Xi 2 Rd ; i = 1; : : : ; n from X, where Xi = (Xi1; : : : ;Xid).For eah point x, Deliado onsiders the hyperplane H(x; b) whih ontains x and isorthogonal to a vetor b. The set of vetors b�(x) minimizing the total variane �(x; b) =TV (XjX 2 H(x; b)) de�nes a funtion ��(x) = E(XjX 2 H(x; b�(x))). Prinipal orientedpoints (POPs) are introdued as �x points of the funtion ��(�). For a suitable intervalI 2 R, � is alled a prinipal urve of oriented points (PCOP) if f�(s)js 2 Ig is a subsetof the �x point set of ��. Deliado shows that POPs exist, and that in ase b�(x) is unique(this implies that the prinipal urve is a funtion), to eah POP exists a PCOP passingthrough it. Sine the hyperplanes H are sets of measure zero, it is neessary to employa kind of smoothing for alulating the onditional expetation on the hyperplane. Thisis ahieved by projeting all data points on H(x; b), obtaining points XHi , and assigningweights wi = w(j(Xi � x)T bj); (1)where w is a dereasing positive funtion, e.g. w(d) = K(d=h), with a kernel funtionK. Let ~�(x; b) denote the weighted expetation of the XHi with weights wi. Now ��(x)is approximated by ~��(x) = ~�(x;~b�(x)), where ~b�(x) (and hene H) is onstruted suhthat the variane of the projeted sample, weighted with wi, is minimized. Loalizationenters here twofold. Firstly, by applying (1), points near to the hyperplane are upweighted.Seondly, a luster analysis is performed on the hyperplane, and only data in the loal3



luster are onsidered for averaging. How is the prinipal urve found in pratie? Thealgorithm searhes the �x point set of ~m�(x) as follows. Repeatedly, hoose a pointrandomly from the sample X1; : : : ;Xn and all it x(0). Then iterate x(`) = ~��(x(`�1))until onvergene. In this manner a �nite set of POPs is obtained. However, no �xpoint theorem guarantees onvergene of this algorithm, although Deliado reports quikonvergene for some real data sets. In order to obtain a PCOP from a set of POPs,Deliado proposes an idea whih we will further exploit. Assume an POP x1 alulatedas explained. From the set of prinipal diretions ~b�(x1), hoose one vetor b1. Now walka step of length � from x1 in diretion of b1, i.e.x02 = x1 + �b1; (2)where � is previously �xed. The point x02 serves as a new starting point for a new iteratingproess, leading to a new point x2 of the prinipal urve. This is repeated k times until nopoints Xi an be onsidered to be near the hyperplane H(x0k; bk). Then return to (x1; b1)and omplete the prinipal urve in diretion of �b1. Afterwards move on to another ofthe previously hosen POPs and ontinue analogously.Deliado's onept is mathematially elegant, theoretially well elaborated, and works�ne in the examples he provided. It might work �ne even for ompliated data strutures(spirals, disonneted branhes, et.), though he didn't provide examples for those ases.One might onsider it as a drawbak that the onept is mathematially demanding andnot intuitively lear. Further, Deliado does not reet the hoie of parameters � and h.In this paper, we introdue a onept similar to that of Deliado. However, we replaethe �x points of ~�� by loal enters of mass, and replae the prinipal diretion b1 bya loal prinipal omponent. We all the resulting urve, whih onsists of a series ofloal enters of mass, loal prinipal urve. We introdue the notion of overage, whihevaluates the performane of the prinipal urve approximation and is a helpful tool toompare the performane of di�erent prinipal urve algorithms. We show that, using thisonept of overage, the parameters whih are neessary for our algorithm an easily beseleted in a data-adaptive way. The prie paid for the easiness of the onept is that inontrast to Deliado's approah there is no statistial model and onsequently it is hardto derive theoretial results. However, in Setion 5 we give a theoretial justi�ation forour method. The algorithm will be presented in the following setion.
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2 Loal Prinipal ComponentsAssume a d-dimensional data loud Xi 2 Rd ; i = 1; : : : ; n, where Xi = (Xi1; : : : ;Xid). Wetry to �nd a urve whih passes through the \middle" of the data loud. The urve willbe alulated by means of a series of loal enters of mass of the data, aording to thefollowing strategy:1. Choose a suitable starting point x(0). Set x = x(0).2. Calulate the loal enter of mass �x around x.3. Perform a prinipal omponent analysis loally at x.4. Find the new value x by following the �rst loal prinipal omponent x starting at�x.5. Repeat steps 2 to 4 until �x remains (approximately) onstant.The series of the �x make up the desired urve. In the sequel we will explain these stepsin detail:1. Seletion of the starting pointIn priniple, every point x(0) 2 Rd whih is in or lose to the data loud an be hosen asstarting point. There are two ideas whih suggest themselves:� Based on a density estimate the point with the highest density x(0) = maxx2Rf̂(x)is hosen.� A point x(0) = Xi is hosen at random from the set of observations.The advantage of the density method is that one an be quite sure not to start in ablind alley, whereas a randomly hosen point ould be an outlier far from the data loudwhih stops the algorithm already in the �rst loop. However, this is not very likely, andthe omputational osts of the seond approah are muh lower. Moreover, for handlingrossings a randomly hosen starting point is even superior to a high density point.2. Calulating the loal enter of massLet H be a bandwidth matrix and KH(�) a d� dimensional kernel funtion. Given thatall omponents of X are measured on the same sale, we set H = fh2 � I : h > 0g, with Istanding for the d-dimensional identity matrix. For a detailed desription of multivariate5



kernels and bandwidth matries see Wand & Jones (1993). For seletion of h, see Setion7. The loal enter of mass around x is given by�(x) = Pni=1KH(Xi � x)XiPni=1KH(Xi � x) (3)This estimator and its relation to the Nadaraya-Watson estimator have been analyzed inComaniiu & Meer (2002). For ease of notation, we will abbreviate �x = �(x) in thefollowing. We denote by �xj the j-th omponent of �(x).3. Calulating the loal prinipal omponentLet �x = (�xjk) denote the loal ovariane matrix of x, whoose (j; k)-th entry (1 � j; k �d) is given by �xjk = nXi=1 ki(Xij � �xj )(Xik � �xk) (4)with weights ki = KH(Xi � x)=Pni=1KH(Xi � x), and H as in 2. Let x be the �rsteigenvetor of �x. Then x is the �rst olumn of the loadings matrix �x from the prinipalomponents deomposition (�x)T�x�x = �x, where �x = (�x1 ; : : : ; �xp) is a diagonal matrixontaining the ordered eigenvalues of �x, with �x1 � : : : � �xp.Note that the denotation \loal prinipal omponents" is not new, but has been previouslyused for linear prinipal omponents loalized in lusters (Skarbek, 1996; Kambhatla &Leen, 1997) or based on ontiguity relations (Aluja-Banet & Nennell-Torrent, 1991) ratherthan by kernel funtions.4. Obtaining an updated valueThe loal prinipal omponent line vx an now be parameterized asvx(t) = �x + tx (t 2 R); (5)and we obtain an updated value of x by settingx := �x + t0x; (6)in analogy to step (2) of Deliado's algorithm. A suitable value of t0 thereby has to behosen beforehand. We defer the task of how to selet t0 to Setion 7.5. Stop when �x remains onstantWhen the end of the data loud is reahed, the algorithm will naturally get stuk andprodue approximately onstant values of �x. One might stop before this state oures,6



e.g. when the di�erene between previous and urrent enter of mass falls below a ertainthreshold.The mehanism is demonstrated in Fig. 1. The starting point x(0) is denoted by 0. Theradius of the irle is equal to the bandwith h = 0:2. Calulating the loal enter of massaround 0 yields the nearby point m. Moving along the �rst prinipal omponent witht0 = 0:2 leads to the new point x denoted by \1", and so on. The series of m's is theloal prinipal urve. Note that the algorithm is based on �nding an equilibration betweenopposing tendenies: On the one hand, the loal prinipal omponents are oversteering,i.e. tending \outside" to the onave side of the urvature of the data loud. On the otherhand, the alulation of the loal enter of mass is smoothing the data towards the interiorand thus in the opposite diretion. These two e�ets together ensure that the estimatedprinipal urve is not systematially biased.
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Figure 1: Demonstration of the loal prinipal urve algorithm.
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3 Tehnial detailsIn pratie, some modi�ations of the above algorithm are useful, whih we desribe inthe following.3.1 Maintainig the diretionA prinipal omponent line always has two diretions, thus the orresponding eigenvetorx ould be replaed by its negative value �x. Depending on the orientation of theeigenvetor, the onstruted urve moves in opposite diretions. If this diretion hangesfrom one step to another, the algorithm dangles between these two points and will neveresape. Therefore one should hek in every step that the loal eigenvetor has the samediretion as in the previous step. This an be done by alulating the angle �x(i) betweenthe eigenvetors x(i�1) and x(i) belonging to the (i� 1)-th resp. i-th step , whih is givenby os(�x(i)) = x(i�1) Æ x(i);where Æ denotes the salar produt. If os(�x(i)) < 0, set x(i) := �x(i), and ontinue thealgorithm as usual. This \signum ipping" has been applied in the step from \2" to \3"in Figure 1.3.2 Running bakwards from x(0)When one starts at a point x(0) and moves by means of loal prinipal omponents to one\end\ of the loud, one has omitted to onsider the part between the starting point andthe other end of the loud, exept if the data desribe a losed urve, e.g. a irle or aellipse. Therefore it is advisable to run from the starting point in both diretions of the�rst prinipal omponent, what in pratie means adding a 6th step to the algorithm:6. For the starting diretion �x(0) := �x(0) , perform steps 4 and 5.3.3 Angle penalizationIf the data loud loally forms rossings, at eah rossing the loal prinipal urve hasthree possibilities where to move on. Often one desires that the urve goes straight on ateah rossing, and does not turn arbitrarily to the left or right. In order to ahieve this8



e�et, we reommend to perform an angle penalization in addition to the signum ippingin eah step of the algorithm. This might be done as follows:Let k be a positive number. For the angle �x(i), setax(i) := j os(�x(i))jkand orret the eigenvetors aording tox(i) := ax(i) � x(i) + (1� ax(i)) � x(i�1)Thus, the higher the value of k, the more the urve is fored to move straight on. Wereommend to set set k = 1 or 2. For higher values of k the loal prinipal urve loosestoo muh exibility.3.4 Multiple initializationsAssume that the data loud onsists of several branhes, whih might or might not beonneted. Then one single loal prinipal urve will fail to desribe the whole data set,but will only �nd one branh. This is a problem inherent to all global prinipal urvealgorithms. In our approah this problem an be solved by doing multiple initializations,i.e. we hoose subsequently a series of starting points, so that �nally at least one startingpoint is situated on eah branh, and perform the algorithm for eah starting point. Inthis manner the whole data loud will be overed by the loal prinipal urve. The startingpoints an be imposed by hand on eah of the branhes, or, if this is not possible or tooumbersome, they might be hosen randomly. If one has for example two disonnetedbranhes of the data loud, whih ontain more or less the same amount of data, then theappliation of four randomly hosen starting points already e�ets that with 93:75% prob-ability at least one starting point is on eah loud. For an arbitrary number of branhes,Borel-Cantelli's Lemma tells us that with the number of starting points inreasing to in-�nity, eah branh is visited with probability 1. In pratie this tehnique proves to worksatisfatory, even for a high number of branhes. To onlude, for a set of starting pointsS0, we add a 7th step to the algorithm:7. If S0 6= ;, hoose (without replaement) a new starting point x(0) 2 S0 and startagain with step 1.It should be noted that our algorithm is deterministi given the starting points, but yieldsdi�erent prinipal urves for di�erent starting points. However, sine in eah ase the loal9



enters of mass of the same data are alulated, di�erenes of prinipal urves on the samebranh are usually negletable. In ontrary, KKLZ's implementation of their algorithm isstrongly indeterministi, and that even for equal starting onditions.4 Examples4.1 2-dimensional dataFirstly, we ompare the results of our algorithm with some standard examples whih werealso examined by KKLZ (In this and the following examples, the urves from KKLZ andBR are obtained via the Prinipal Curves Java program from Bal�azs K�egl, available athttp://www.iro.umontreal.a/�kegl/researh/purves/. The HS urves were ob-tained by Hastie's Splus funtion http://lib.stat.mu.edu/S/prinipal.urve). Westart with a irle with radius r = 1, whih is ontaminated with bivariate unorrelatedGaussian noise with variane 0.04 in eah omponent. The result is demonstrated in Fig.2.We notie that only the BR and the proposed loal prinipal urve (hereafter: LPC)algorithm produe a losed urve, whereas HS and KKLZ lead to an open urve. TheLPC urve seems to be a bit wiggly in omparison to the other urves, but it should benoted that the LPC approah is fully nonparametri and is only steered by the data, butnot by an initial line like the other approahes. This leads to more exibility (looking atthe data, the bump in the left top is not unlikely to be a real feature of the distribution)at the prie of a higher variane.Seondly, we examine the spiral data from KKLZ, Fig. 10, b) and ) (where the on-taminated big spiral is newly simulated). The standard deviation of the noise is equal to0:01 for both spirals, and in in eah experiment 1000 data points were generated. Thesmall spiral, see Fig. 3, is found nearly perfetly by KKLZ and LPC, however the HSalgorithm shows a fairly bad performane here. The big spiral is only found by LPC.KKLZ's polygonal line algorithm fails here and yields errati results, whih di�er in eahrun of the algorithm. The result of HS is even worse (ompare KKLZ, page 21, Fig. 11.).Finally, we onsider real data reorded by the OÆe of Remote Sensing for Earth Re-soures, Pennsylvania State University, whih show the loation of oodplains in Beaver10
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Figure 2: Loal prinipal urve for an underlying irle in omparison to other prinipalurve algorithms.
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Figure 4: Floodplains in Beaver County, PA. (left: original, right: digitalized).County, PA, USA, 1996 (Fig. 4). For analyzing the data, we digitalized the map to agrid of 106 � 70 = 7420 digits. Fig. 5 shows the result of a run of the LPC algorithmusing the digitalized oodplain data. We used 50 initializations and a bandwidth h = 1:5(The automati seletion routine from Setion 7 suggests 2.5, but a smaller bandwidthseemed more appropriate in this ase.). The prinipal urve unovers niely the prinipalourses of the oodplains. Taking a look at maps from Beaver ounty, we see that ourprinipal urve reonstruts the underlying rivers resp. valleys in this distrit (The data aswell as orresponding maps are available at PASDA - Pennsylvania Spatial Data Aess,www.pasda.psu.edu. The best form to regard those maps is to open the ArExplorerWebat http://www.esri.om/software/arexplorer and searh in the opening menue forPennsylvania Spatial Data Aess, \PA Streams" or \PA Floodplains"). Note that aquite big luster in the entral bottom is not overed - this simply ours beause none ofthe randomly hosen starting points is situated there, and this isolated luster annot bereahed by an external prinipal urve. More initializations would be neessary to solvethis.4.2 3-dimensional dataWe now onsider a data set inluded in the Splus software pakage, namely the \radial ve-loity of galaxy NGC7531". This data frame, reorded by Buta (1987), ontains the radialveloity of 323 points of that spiral galaxy overing about 200 ar seonds in north-south13
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Figure 6: Galaxy data (o) with prinipal urves (+).and 135 ar seonds in east-west diretion in the elestial sphere. All the measurements liewithin seven slots rossing the origin. The x- and y-oordinate desribe the east-west resp.north-south oordinate, and the z-oordinate is the radial veloity measured in km/se.For simpliity, we only onsider the �rst 61 data points of the data set (this orrespondsto two slots rossing the origin).Sine the data are now situated on two (onneted) branhes, we need to inititialize morethan one. We hoose to initialize 4 starting points. We apply an angle penalization usingk = 2, whih serves to keep the urve on the orret slot at the rossing. The result isshown in Fig. 6.
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Figure 7: Kernel density estimation of simulated irle data.5 Theoretial justi�ationThis approah seems to be heuristi to some extent, sine we have provided neither amodel for the data nor a mathematial preise de�nition of a loal prinipal urve. Inthis setion we will give some idea whih urve we are atually estimating via the LPCalgorithm. When we started to work on prinipal urves, we were not primarily inuenedby Deliado's work, but were guided by a simple and appealing idea. It is instrutive totake a look at the irle data in Setion 4.1. A kernel density estimation yields Figure 7.Looking at this �gure, the ourse of the prinipal urve is easily to imagine - one simply hasto walk along the rest of the mountain. Unfortunately this rest line, whih everybody isable to draw rapidly with a penil, is mathematially intratable. To our knowledge, thereexists no mathematial de�nition of a rest point. However, we will argue in the followingthat the prinipal urve we are estimating by means of our algorithm is approximatingthis rest line.Comaniiu, Ramesh & Meer (2001) and Comaniiu & Meer (2002), among others, studythe properties of the so-alled mean shift vetorM(x) = �(x)� x; (7)16



with �(x) being the loal enter of mass (3). They provide two results whih are of interestfor us:For a Gaussian kernel K and a bandwidth matrix H = fh2 � I : h > 0g,(A) the mean shift vetor (7) is proportional to the estimated gradient funtion r̂fK(x),where the estimated gradient is the gradient of the kernel density estimatorf̂K(x) = 1nhd nXi=1 K �Xi � xh � ; (8)(B) the sequene m(0) = xm(k+1) = �(m(k))onverges to a nearby point where the estimator (8) has zero gradient, i.e. to a modeandidate of the kernel density.For other kernels these statements ontinue to hold under ertain onditions, if in (8) Kis substituted by its shadow, see Comaniiu & Meer (2002).Let us return to our algorithm now. For any point x, we an alulate a loal enter ofmass �(x) via funtion (3). It is easy to imagine, that the loser x is to the middle of thedistribution of the data, the smaller is the mean shift. Aording to (7) this mean shift iszero for the �x point set of funtion (3), i.e. the setfxj�(x) = xg(what shows another analogy of our onept to that of Deliado). Considering (A) werealize that these are the points where the estimated gradient funtion of the density isminimized, whih is the ase for modes of the estimated density. By applying (B), we thushave a tool for estimating the modes of the density of the data. This is however not ourintention: An algorithm like this would get stuk at the modes and be unable to onnetthe modes in a proper way. Therefore, in eah step of the algorithm, we employ only the�rst loop of the iterative proess (B), whih brings us near the rests, but not nesessarilyin a mode point. Then, for not getting stuk in a mode, we move along a little step indiretion of the loal prinipal omponent (what means in pratie: along a rest). Ifthereby, after one or more steps, a point x(k) is approahed whih is near to a new mode,then the loal enter of mass �(x(k)) will tend to this mode, as the following (quite trivial)17



lemma shows. If no further modes exists, the algorithm will stop itself when the end ofthe data loud is reahed.Lemma 1. Let Xi 2 Rd ; i = 1; : : : ; n be a data loud and H be a bandwidth matrix. Let�0 a �x point of (3) resp. H and x �! �0. Then, applying the same bandwidth matrixH, we have onvergene �(x) �! �0.Proof j�(x)� �0j = ����Pni=1KH(Xi � x)XiPni=1KH(Xi � x) � Pni=1KH(Xi � �0)XiPni=1KH(Xi � �0) ���� �! 0for ontinuous non-zero kernel-funtions.6 CoverageThere is need for some riterion to evaluate the performane of a prinipal urve. This isusually done by means of a quantitative measure as the expeted squared distane4(m) = E �inft jjX �m(t)jj2� (9)between data X and the urve m. Prinipal urves aording to HS are ritial pointsof (9), whereas prinipal urves by KKLZ are minimizing (9) over a lass of urves withbounded length. Another quantitative measure is the generalized total variane (Deliado,2001). However, de�nitions of this type are onneted to an underlying stohasti modelfor the data, whih is not used in our ase. Therefore we propose a model-independentriterion to assess the quality of a prinipal urve. We de�ne the overage of a prinipalurve m by the fration of all data points whih are situated in a ertain neighborhoodof the prinipal urve. More preisely, let a prinipal urve algorithm selet a prinipalurve m onsisting of a set Pm of points. ThenCm(�) = #fx 2 Xj9p 2 Pm with jjx� pjj � �g=nis the overage of urve m with parameter � . Obviously the overage is a monotoneinreasing funtion of � and will reah the value 1 for � tending to in�nity. Note thatthe overage an be interpreted as the empirial distribution funtion of the \residuals",i.e. the shortest distane between data and prinipal urve. For evaluating the qualityof a prinipal urve �t it is neessary to take a look at the whole overage urve Cm(�).In Fig. 8 we provide the overage plots for the spiral data (Fig. 4), eah for the HS,18



KKLZ and LPC algorithms and for prinipal omponent analysis. For the small spiral,the overage of the LPC and the polygonal line algorithm from KKLZ are omparable,whereas HS is falling bak signi�antly and is performing only slightly better than theprinipal omponent approah. For the big spiral, the LPC algorithm learly outperformsall other algorithms.Certainly a onave overage urve is desirable, i.e. it is \best" when rising rapidly forsmall � . The better the prinipal urve, the smaller is the area in the left top above theoverage urve, i.e. the area between Cm(�), the line � = 0 and the onstant funtion(�) = 1. This area orresponds to the mean length of the observed residuals. To obtain aquantitative measure for the performane of a prinipal urve, we set this area in relationto the orresponding area obtained by standard prinipal omponent analysis. The smallerthis quotient, the smaller is the relative mean length of the observed residuals and thebetter is the prinipal urve ompared to prinipal omponents. The following tableprovides this quotient AC for HS, KKLZ and LPC, where the latter one is alulatedapplying the optimal bandwidths aording to Setion 7.small spiral big spiralalgorithm AC ACHS 0:79 0:92KKLZ 0:03 0:66LPC 0:06 0:08Table 1: Area-quotient AC for some prinipal urve algorithms.For the HS algorithm, the quotient AC takes values near 1, whih means a quite bad per-formane. KKLZ yields an exellent value for the small spiral and a rather unsatisfatoryvalue for the big spiral. LPC performs �ne in both ases.7 Seletion of parametersThe algorithm is based on two parameters whih have to be seleted beforehand: Thebandwidth h for the radius of the loal enter of mass and the value t0 whih determinesthe step length. Assume a enter of mass �x(i) at step i, using the data within a radius haround a nearby value x(i). Starting from �x(i), it seems sensitive to walk along the �rstprinipal omponent x(i) until the border of the irle around x(i) is reahed, what leads19
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roughly to the update rule x(i+1) = �x(i) + hx(i):This means that we employ t0 = h:This rule works �ne in pratie and was applied in all examples in this paper. It nowremains to selet the value h, whih plays the role of a lassial smoothing parameter, thusthe smaller the value of h, the more details are unveiled by the loal prinipal urve andthe more wiggly it is. To selet h, we make use of the onept of overage introdued in theprevious setion. The idea is the following: If a ertain bandwidth h is supposed to servesatisatory for alulating the loal enter of mass around x, we assume impliitely thatthis value h overs more or less the width of the data loud around x. Thus, as a riterionfor the adequay of a prinipal urve m(h) alulated with a ertain bandwidth h we anapply its proper overage Cm(h)(h). We will will refer to this overage as self-overagehereafter. This urve has a typial behaviour: It starts with small values, then inreasesrapidly until a loal maximum is reahed, where the best �t is ahieved. Afterwardsthe self-overage urve is falling again or shows errati behaviour, but �nally rises up to 1sine for large bandwidths the overage naturally takes the value 1. Note that the fat thatCm(h)(h) is falling is not in ontradition with the property of monotoneness mentionedin the previous setion: In ontrast to Cm(h)(h), the overage Cm(�) is alulated for thesame prinipal urve m for all � ! Our parameter seletion rule is the following:Choose the lowest parameter h for whih� the funtion Cm(h)(h) ahieves its �rst loal maximum,� or, if no loal maximum exists, the funtion Cm(h)(h) ahieves the value 1.We want to illustrate this methodology by means of the spiral data shown in Fig. 3. Forthe small and the big spiral, we alulate the self-overage over a grid from h = 0:01 upto h = 1:0 in steps of 0:01. The results are presented in Fig. 9. Sine the maxima arepartially very at, we provide in addition the numeri values (for the ruial range of h)in Table 2.
21
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small spiral big spiralh Cm(h)(h) Cm(h)(h)0:01 0:013 0:1770:02 0:961 0:5890:03 0:996 0:9900:04 0:999 0:9970:05 1:00 0:9980:06 1:00 1:000:07 1:00 1:000:08 1:00 1:000:09 1:00 1:000:1 1:00 0:998Table 2: Self-overage for spiral data.For the small spiral, the �rst loal maximum is ahieved at value h = 0:05 withCm(0:05)(0:05) = 1. Thus we hoose h = 0:05. For the whole span from h = 0:05 toh = 0:16 we would however obtain an ideal prinipal urve (see the at maximum). Af-terwards the self-overage is unstable and partially deteriorating. For large values of hthe self-overage tends to 1. The big spiral data lead to a �rst loal maximum startingat h = 0:06. Afterwards the urve shows errati behaviour and approahes slowly to theonstant value 1, whih is reahed at h = 0:88. In these alulations, we worked with one�xed starting point (more starting points should not be neessary, sine the data loud isonneted and onsists of only one branh).8 DisussionWe demonstrated that the onept of applying loal prinipal omponents in onnetionwith the mean shift is a simple and useful tool for alulating prinipal urves, whihshows mostly superior performane in simulated data sets ompared to other prinipalurve algorithms. We showed that the algorithm works in simulated and real data setseven for highly ompliated data strutures. This inludes data situations whih yet ouldonly be handled unsatisfatory, as data with multiple or disonneted branhes. Espeiallyfor noisy spatial data as the oodplain data the approah has a high potential to detetthe underlying struture. We further provided a tool to selet the neessary parametersin a data-adaptive way. 23



There is still need for further researh onerning the theoretial bakground of themethod. Though working �ne, we still don't have a theoretial justi�ation why we useloal prinipal omponents to onnet the modes of the density. This hoie is sensiblebut in no way unique, and there seem to be many alternatives, suh as the extrapolationof the already estimated part of the urve. Due to the nie properties of the mean shift,it might even work to use a line in an arbitrary diretion, as long it is not orthogonal tothe prinipal urve in the observed point. Important is simply that a movement is made- the mean shift will afterwards adjust the prinipal urve in diretion of the \middle" ofthe data loud. However, by applying loal prinipal omponents the algorithm is fastest,most stable, and the results are as intuitively expeted. We onsider the �rst loal prin-ipal omponent to be a (biased) approximation of the tangent to the rest line: One aneasily derive from its de�nition that the �rst loal prinipal omponent around � is theline through � whih minimizes the weighted distane between the Xi and the line, usingthe weights ki as in (4). The �rst loal prinipal omponent is therefore that line through� that loally gives the best �t.Furthermore, it will be interesting to investigate if the proposed algorithm an be extendedto obtain loal prinipal surfaes or even loal prinipal manifolds of higher dimensions.This might be a quite diÆult job, sine yet easy tehniques as the signum ipping orthe mean shift will probably not be transferable to higher dimensional urves withoutumbersome extra work.AknowledgementsWe gratefully aknowledge support from Deutshe Forshungsgemeinshaft (Sonder-forshungsbereih 386: Statistial Analysis of Disrete Strutures).ReferenesAluja-Banet, T. and Nennell-Torrent, R. (1991). Loal prinipal omponent analysis.Q�uestio�o 3, 267{278.Ban�eld, J. D. and Raftery, A. E. (1992). Ie ow identi�ation in stallite im-ages using mathematial morphology and lustering about prinipal urves.J. Amer. Statist. Asso. 87, 7{16.Buta, R. (1987). The struture and dynamis of ringed galaxies, III: Surfae photometryand kinematis of the ringed nonbarred spiral NGC 7531. The Astrophysial Journal24
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