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Lo
al Prin
ipal CurvesJo
hen Einbe
k Gerhard Tutz Ludger Eversfeinbe
k,tutz,ludgerg�stat.uni-muen
hen.deLudwig-Maximilians-Universit�at M�un
hen, Akademiestra�e 1,80799 M�un
hen, Germany8th May 2003Abstra
tPrin
ipal 
omponents are a well established tool in dimension redu
tion. Theextension to prin
ipal 
urves allows for general smooth 
urves whi
h pass throughthe middle of a p� dimensional data 
loud. In this paper lo
al prin
ipal 
urves areintrodu
ed, whi
h are based on the lo
alization of prin
ipal 
omponent analysis. Theproposed algorithm is able to identify 
losed 
urves as well as multiple 
urves whi
hmay or may not be 
onne
ted. For the evaluation of performan
e of data redu
tionobtained by prin
ipal 
urves a measure of 
overage is suggested. The sele
tion oftuning parameters is 
onsidered expli
itely yielding an algorithm whi
h is easy toapply. By use of simulated and real data sets the approa
h is 
ompared to variousalternative 
on
epts of prin
ipal 
urves.Key Words: Lo
al smoothing, mean shift, prin
ipal 
omponents, prin
ipal 
urves.1 Introdu
tionThe 
lassi
al problem of how to �nd the best 
urve passing through some data points(xi; yi); i = 1; : : : ; n 
an be handled in two fundamentally di�erent ways. Let us regardthe data points as realizations of i.i.d. random variables (Xi; Yi) drawn from a population(X;Y ). A 
ommon approa
h is to regard X as an explanatory variable for the dependentvariable Y . This 
on
ept is used in all methods where the fo
us is on regression or smooth-ing and is espe
ially useful when the obje
tive is predi
tion of the dependent variable from1



the observations xi. Thereby X and Y have an asymmetri
 relationship and 
annot beinter
hanged without 
hanges of the results.In 
ontrast, X and Y may be regarded as symmetri
, thus we do not assume that onevariable 
an be made reponsible for the value of the other one. Rather they are generatedsimultanuously from a 
ommon underlying distribution. These approa
hes are useful whenthe fo
us is on dimension redu
tion or simply des
ription of the data. Representantshere are methods like the ACE algorithm, 
anoni
al 
orrelation or prin
ipal 
omponentanalysis. Linear Prin
ipal 
omponents, introdu
ed by Pearson (1901), are a 
ommon toolin multivariate analysis, applied for example in feature extra
tion or dimension redu
tion.Jolli�e (1986) gave an overview on properties and appli
ations of prin
ipal 
omponents.Nonlinear prin
ipal 
omponents have been developed by S
h�olkopf & Smola (1998) andsu

essfully employed for pattern re
ognition.A natural extension of prin
ipal 
omponents are prin
ipal 
urves, whi
h are des
rip-tively de�ned as one-dimensional smooth 
urves that pass through the \middle" of ap�dimensional data set. Though this 
on
ept is intuitively 
lear, there is mu
h 
exibilityin how to de�ne the \middle" of a distribution or a data 
loud. Hastie & Stuetzle (1982)(hereafter HS), who did the groundbreaking work on prin
ipal 
urves, use the 
on
ept ofself-
onsisten
y (Tharpey & Flury, 1996), meaning that ea
h point of the prin
ipal 
urveis the average of all points that proje
t there. A variety of other de�nitions of prin
ipal
urves have been given subsequently by Tibshirani (1992), K�egl, Krzyzak, Linder & Zeger(2000) (hereafter KKLZ), and more re
ently Deli
ado (2001), whi
h di�er essentially inhow the \middle" of the distribution is found.Apart from Deli
ado (2001), all 
on
epts mentioned above work more or less as follows:They start with a straight line, whi
h is mostly the �rst prin
ipal 
omponent of the dataset, and try to dwell out this line or 
on
atenate other lines to the initial line until theresulting 
urve is passing satisfa
tory through the middle of the data. This methodologyleads to some te
hni
al problems. HS generally ex
lude interse
ting 
urves from the def-inition of prin
ipal 
urves and are not able to handle 
losed 
urves. Ban�eld & Raftery(1992) (hereafter BR) provide a bias 
orre
ted version of the HS algorithm whi
h solves thelatter problem, but yields more wiggly results than HS. Chang & Ghosh (1998) 
ombinethe algorithms of HS and BR and show that this yields a smooth and unbiased prin
ipal
urve, at least for simple data situations. Tibshirani's theoreti
ally attra
tive approa
hseems to have the same problems as HS, though not expli
itely stated, and further seems2



to have a la
k of 
exibility for strongly skewed data. These diÆ
ulties have been solvedby Verbeek, Vlassis & Kr�ose (2001), but at the expense of an apparent wiggly prin
ipal
urve, sin
e polygonal lines are 
onne
ted in a somehow unsmooth manner. KKLZ workalso with polygonal lines and obtain with high 
omputational e�ort a smooth and 
exibleprin
ipal 
urve, whi
h only fails for very 
ompli
ated data stru
tures. None of these algo-rithms seems to be able to handle 
urves whi
h 
onsist of some multiple or dis
onne
tedparts. Re
ently, K�egl & Krzyzak (2002) provided a promising algorithm to obtain prin
i-pal graphs, i.e. multiple 
onne
ted pie
ewise linear 
urves, in the 
ontext of skeletonizationof hand-written 
hara
ters.All these methods have to be regarded as global, sin
e in every step of their algorithms,or at least in the initial step, all available data points are used. As alternative to theglobal methods, whi
h lead to exploding 
omputational 
osts for large data sets or high-dimensional data, it would be desirable to have a lo
al method at hand, whi
h only
onsiders data whi
h are 
lose to the target point. Lately, Deli
ado (2001) proposed the�rst prin
ipal 
urve approa
h whi
h 
an be 
alled lo
al. Assume a d-dimensional randomve
tor X and n random samples Xi 2 Rd ; i = 1; : : : ; n from X, where Xi = (Xi1; : : : ;Xid).For ea
h point x, Deli
ado 
onsiders the hyperplane H(x; b) whi
h 
ontains x and isorthogonal to a ve
tor b. The set of ve
tors b�(x) minimizing the total varian
e �(x; b) =TV (XjX 2 H(x; b)) de�nes a fun
tion ��(x) = E(XjX 2 H(x; b�(x))). Prin
ipal orientedpoints (POPs) are introdu
ed as �x points of the fun
tion ��(�). For a suitable intervalI 2 R, � is 
alled a prin
ipal 
urve of oriented points (PCOP) if f�(s)js 2 Ig is a subsetof the �x point set of ��. Deli
ado shows that POPs exist, and that in 
ase b�(x) is unique(this implies that the prin
ipal 
urve is a fun
tion), to ea
h POP exists a PCOP passingthrough it. Sin
e the hyperplanes H are sets of measure zero, it is ne
essary to employa kind of smoothing for 
al
ulating the 
onditional expe
tation on the hyperplane. Thisis a
hieved by proje
ting all data points on H(x; b), obtaining points XHi , and assigningweights wi = w(j(Xi � x)T bj); (1)where w is a de
reasing positive fun
tion, e.g. w(d) = K(d=h), with a kernel fun
tionK. Let ~�(x; b) denote the weighted expe
tation of the XHi with weights wi. Now ��(x)is approximated by ~��(x) = ~�(x;~b�(x)), where ~b�(x) (and hen
e H) is 
onstru
ted su
hthat the varian
e of the proje
ted sample, weighted with wi, is minimized. Lo
alizationenters here twofold. Firstly, by applying (1), points near to the hyperplane are upweighted.Se
ondly, a 
luster analysis is performed on the hyperplane, and only data in the lo
al3




luster are 
onsidered for averaging. How is the prin
ipal 
urve found in pra
ti
e? Thealgorithm sear
hes the �x point set of ~m�(x) as follows. Repeatedly, 
hoose a pointrandomly from the sample X1; : : : ;Xn and 
all it x(0). Then iterate x(`) = ~��(x(`�1))until 
onvergen
e. In this manner a �nite set of POPs is obtained. However, no �xpoint theorem guarantees 
onvergen
e of this algorithm, although Deli
ado reports qui
k
onvergen
e for some real data sets. In order to obtain a PCOP from a set of POPs,Deli
ado proposes an idea whi
h we will further exploit. Assume an POP x1 
al
ulatedas explained. From the set of prin
ipal dire
tions ~b�(x1), 
hoose one ve
tor b1. Now walka step of length � from x1 in dire
tion of b1, i.e.x02 = x1 + �b1; (2)where � is previously �xed. The point x02 serves as a new starting point for a new iteratingpro
ess, leading to a new point x2 of the prin
ipal 
urve. This is repeated k times until nopoints Xi 
an be 
onsidered to be near the hyperplane H(x0k; bk). Then return to (x1; b1)and 
omplete the prin
ipal 
urve in dire
tion of �b1. Afterwards move on to another ofthe previously 
hosen POPs and 
ontinue analogously.Deli
ado's 
on
ept is mathemati
ally elegant, theoreti
ally well elaborated, and works�ne in the examples he provided. It might work �ne even for 
ompli
ated data stru
tures(spirals, dis
onne
ted bran
hes, et
.), though he didn't provide examples for those 
ases.One might 
onsider it as a drawba
k that the 
on
ept is mathemati
ally demanding andnot intuitively 
lear. Further, Deli
ado does not re
e
t the 
hoi
e of parameters � and h.In this paper, we introdu
e a 
on
ept similar to that of Deli
ado. However, we repla
ethe �x points of ~�� by lo
al 
enters of mass, and repla
e the prin
ipal dire
tion b1 bya lo
al prin
ipal 
omponent. We 
all the resulting 
urve, whi
h 
onsists of a series oflo
al 
enters of mass, lo
al prin
ipal 
urve. We introdu
e the notion of 
overage, whi
hevaluates the performan
e of the prin
ipal 
urve approximation and is a helpful tool to
ompare the performan
e of di�erent prin
ipal 
urve algorithms. We show that, using this
on
ept of 
overage, the parameters whi
h are ne
essary for our algorithm 
an easily besele
ted in a data-adaptive way. The pri
e paid for the easiness of the 
on
ept is that in
ontrast to Deli
ado's approa
h there is no statisti
al model and 
onsequently it is hardto derive theoreti
al results. However, in Se
tion 5 we give a theoreti
al justi�
ation forour method. The algorithm will be presented in the following se
tion.
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2 Lo
al Prin
ipal ComponentsAssume a d-dimensional data 
loud Xi 2 Rd ; i = 1; : : : ; n, where Xi = (Xi1; : : : ;Xid). Wetry to �nd a 
urve whi
h passes through the \middle" of the data 
loud. The 
urve willbe 
al
ulated by means of a series of lo
al 
enters of mass of the data, a

ording to thefollowing strategy:1. Choose a suitable starting point x(0). Set x = x(0).2. Cal
ulate the lo
al 
enter of mass �x around x.3. Perform a prin
ipal 
omponent analysis lo
ally at x.4. Find the new value x by following the �rst lo
al prin
ipal 
omponent 
x starting at�x.5. Repeat steps 2 to 4 until �x remains (approximately) 
onstant.The series of the �x make up the desired 
urve. In the sequel we will explain these stepsin detail:1. Sele
tion of the starting pointIn prin
iple, every point x(0) 2 Rd whi
h is in or 
lose to the data 
loud 
an be 
hosen asstarting point. There are two ideas whi
h suggest themselves:� Based on a density estimate the point with the highest density x(0) = maxx2Rf̂(x)is 
hosen.� A point x(0) = Xi is 
hosen at random from the set of observations.The advantage of the density method is that one 
an be quite sure not to start in ablind alley, whereas a randomly 
hosen point 
ould be an outlier far from the data 
loudwhi
h stops the algorithm already in the �rst loop. However, this is not very likely, andthe 
omputational 
osts of the se
ond approa
h are mu
h lower. Moreover, for handling
rossings a randomly 
hosen starting point is even superior to a high density point.2. Cal
ulating the lo
al 
enter of massLet H be a bandwidth matrix and KH(�) a d� dimensional kernel fun
tion. Given thatall 
omponents of X are measured on the same s
ale, we set H = fh2 � I : h > 0g, with Istanding for the d-dimensional identity matrix. For a detailed des
ription of multivariate5



kernels and bandwidth matri
es see Wand & Jones (1993). For sele
tion of h, see Se
tion7. The lo
al 
enter of mass around x is given by�(x) = Pni=1KH(Xi � x)XiPni=1KH(Xi � x) (3)This estimator and its relation to the Nadaraya-Watson estimator have been analyzed inComani
iu & Meer (2002). For ease of notation, we will abbreviate �x = �(x) in thefollowing. We denote by �xj the j-th 
omponent of �(x).3. Cal
ulating the lo
al prin
ipal 
omponentLet �x = (�xjk) denote the lo
al 
ovarian
e matrix of x, whoose (j; k)-th entry (1 � j; k �d) is given by �xjk = nXi=1 ki(Xij � �xj )(Xik � �xk) (4)with weights ki = KH(Xi � x)=Pni=1KH(Xi � x), and H as in 2. Let 
x be the �rsteigenve
tor of �x. Then 
x is the �rst 
olumn of the loadings matrix �x from the prin
ipal
omponents de
omposition (�x)T�x�x = �x, where �x = (�x1 ; : : : ; �xp) is a diagonal matrix
ontaining the ordered eigenvalues of �x, with �x1 � : : : � �xp.Note that the denotation \lo
al prin
ipal 
omponents" is not new, but has been previouslyused for linear prin
ipal 
omponents lo
alized in 
lusters (Skarbek, 1996; Kambhatla &Leen, 1997) or based on 
ontiguity relations (Aluja-Banet & Nennell-Torrent, 1991) ratherthan by kernel fun
tions.4. Obtaining an updated valueThe lo
al prin
ipal 
omponent line vx 
an now be parameterized asvx(t) = �x + t
x (t 2 R); (5)and we obtain an updated value of x by settingx := �x + t0
x; (6)in analogy to step (2) of Deli
ado's algorithm. A suitable value of t0 thereby has to be
hosen beforehand. We defer the task of how to sele
t t0 to Se
tion 7.5. Stop when �x remains 
onstantWhen the end of the data 
loud is rea
hed, the algorithm will naturally get stu
k andprodu
e approximately 
onstant values of �x. One might stop before this state o

ures,6



e.g. when the di�eren
e between previous and 
urrent 
enter of mass falls below a 
ertainthreshold.The me
hanism is demonstrated in Fig. 1. The starting point x(0) is denoted by 0. Theradius of the 
ir
le is equal to the bandwith h = 0:2. Cal
ulating the lo
al 
enter of massaround 0 yields the nearby point m. Moving along the �rst prin
ipal 
omponent witht0 = 0:2 leads to the new point x denoted by \1", and so on. The series of m's is thelo
al prin
ipal 
urve. Note that the algorithm is based on �nding an equilibration betweenopposing tenden
ies: On the one hand, the lo
al prin
ipal 
omponents are oversteering,i.e. tending \outside" to the 
on
ave side of the 
urvature of the data 
loud. On the otherhand, the 
al
ulation of the lo
al 
enter of mass is smoothing the data towards the interiorand thus in the opposite dire
tion. These two e�e
ts together ensure that the estimatedprin
ipal 
urve is not systemati
ally biased.
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Figure 1: Demonstration of the lo
al prin
ipal 
urve algorithm.
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3 Te
hni
al detailsIn pra
ti
e, some modi�
ations of the above algorithm are useful, whi
h we des
ribe inthe following.3.1 Maintainig the dire
tionA prin
ipal 
omponent line always has two dire
tions, thus the 
orresponding eigenve
tor
x 
ould be repla
ed by its negative value �
x. Depending on the orientation of theeigenve
tor, the 
onstru
ted 
urve moves in opposite dire
tions. If this dire
tion 
hangesfrom one step to another, the algorithm dangles between these two points and will neveres
ape. Therefore one should 
he
k in every step that the lo
al eigenve
tor has the samedire
tion as in the previous step. This 
an be done by 
al
ulating the angle �x(i) betweenthe eigenve
tors 
x(i�1) and 
x(i) belonging to the (i� 1)-th resp. i-th step , whi
h is givenby 
os(�x(i)) = 
x(i�1) Æ 
x(i);where Æ denotes the s
alar produ
t. If 
os(�x(i)) < 0, set 
x(i) := �
x(i), and 
ontinue thealgorithm as usual. This \signum 
ipping" has been applied in the step from \2" to \3"in Figure 1.3.2 Running ba
kwards from x(0)When one starts at a point x(0) and moves by means of lo
al prin
ipal 
omponents to one\end\ of the 
loud, one has omitted to 
onsider the part between the starting point andthe other end of the 
loud, ex
ept if the data des
ribe a 
losed 
urve, e.g. a 
ir
le or aellipse. Therefore it is advisable to run from the starting point in both dire
tions of the�rst prin
ipal 
omponent, what in pra
ti
e means adding a 6th step to the algorithm:6. For the starting dire
tion �
x(0) := �
x(0) , perform steps 4 and 5.3.3 Angle penalizationIf the data 
loud lo
ally forms 
rossings, at ea
h 
rossing the lo
al prin
ipal 
urve hasthree possibilities where to move on. Often one desires that the 
urve goes straight on atea
h 
rossing, and does not turn arbitrarily to the left or right. In order to a
hieve this8



e�e
t, we re
ommend to perform an angle penalization in addition to the signum 
ippingin ea
h step of the algorithm. This might be done as follows:Let k be a positive number. For the angle �x(i), setax(i) := j 
os(�x(i))jkand 
orre
t the eigenve
tors a

ording to
x(i) := ax(i) � 
x(i) + (1� ax(i)) � 
x(i�1)Thus, the higher the value of k, the more the 
urve is for
ed to move straight on. Were
ommend to set set k = 1 or 2. For higher values of k the lo
al prin
ipal 
urve loosestoo mu
h 
exibility.3.4 Multiple initializationsAssume that the data 
loud 
onsists of several bran
hes, whi
h might or might not be
onne
ted. Then one single lo
al prin
ipal 
urve will fail to des
ribe the whole data set,but will only �nd one bran
h. This is a problem inherent to all global prin
ipal 
urvealgorithms. In our approa
h this problem 
an be solved by doing multiple initializations,i.e. we 
hoose subsequently a series of starting points, so that �nally at least one startingpoint is situated on ea
h bran
h, and perform the algorithm for ea
h starting point. Inthis manner the whole data 
loud will be 
overed by the lo
al prin
ipal 
urve. The startingpoints 
an be imposed by hand on ea
h of the bran
hes, or, if this is not possible or too
umbersome, they might be 
hosen randomly. If one has for example two dis
onne
tedbran
hes of the data 
loud, whi
h 
ontain more or less the same amount of data, then theappli
ation of four randomly 
hosen starting points already e�e
ts that with 93:75% prob-ability at least one starting point is on ea
h 
loud. For an arbitrary number of bran
hes,Borel-Cantelli's Lemma tells us that with the number of starting points in
reasing to in-�nity, ea
h bran
h is visited with probability 1. In pra
ti
e this te
hnique proves to worksatisfa
tory, even for a high number of bran
hes. To 
on
lude, for a set of starting pointsS0, we add a 7th step to the algorithm:7. If S0 6= ;, 
hoose (without repla
ement) a new starting point x(0) 2 S0 and startagain with step 1.It should be noted that our algorithm is deterministi
 given the starting points, but yieldsdi�erent prin
ipal 
urves for di�erent starting points. However, sin
e in ea
h 
ase the lo
al9




enters of mass of the same data are 
al
ulated, di�eren
es of prin
ipal 
urves on the samebran
h are usually negle
table. In 
ontrary, KKLZ's implementation of their algorithm isstrongly indeterministi
, and that even for equal starting 
onditions.4 Examples4.1 2-dimensional dataFirstly, we 
ompare the results of our algorithm with some standard examples whi
h werealso examined by KKLZ (In this and the following examples, the 
urves from KKLZ andBR are obtained via the Prin
ipal Curves Java program from Bal�azs K�egl, available athttp://www.iro.umontreal.
a/�kegl/resear
h/p
urves/. The HS 
urves were ob-tained by Hastie's Splus fun
tion http://lib.stat.
mu.edu/S/prin
ipal.
urve). Westart with a 
ir
le with radius r = 1, whi
h is 
ontaminated with bivariate un
orrelatedGaussian noise with varian
e 0.04 in ea
h 
omponent. The result is demonstrated in Fig.2.We noti
e that only the BR and the proposed lo
al prin
ipal 
urve (hereafter: LPC)algorithm produ
e a 
losed 
urve, whereas HS and KKLZ lead to an open 
urve. TheLPC 
urve seems to be a bit wiggly in 
omparison to the other 
urves, but it should benoted that the LPC approa
h is fully nonparametri
 and is only steered by the data, butnot by an initial line like the other approa
hes. This leads to more 
exibility (looking atthe data, the bump in the left top is not unlikely to be a real feature of the distribution)at the pri
e of a higher varian
e.Se
ondly, we examine the spiral data from KKLZ, Fig. 10, b) and 
) (where the 
on-taminated big spiral is newly simulated). The standard deviation of the noise is equal to0:01 for both spirals, and in in ea
h experiment 1000 data points were generated. Thesmall spiral, see Fig. 3, is found nearly perfe
tly by KKLZ and LPC, however the HSalgorithm shows a fairly bad performan
e here. The big spiral is only found by LPC.KKLZ's polygonal line algorithm fails here and yields errati
 results, whi
h di�er in ea
hrun of the algorithm. The result of HS is even worse (
ompare KKLZ, page 21, Fig. 11.).Finally, we 
onsider real data re
orded by the OÆ
e of Remote Sensing for Earth Re-sour
es, Pennsylvania State University, whi
h show the lo
ation of 
oodplains in Beaver10
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urve algorithms.
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al prin
ipal 
urve for underlying small and big spirals in 
omparison to otherprin
ipal 
urve algorithms. 12
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Figure 4: Floodplains in Beaver County, PA. (left: original, right: digitalized).County, PA, USA, 1996 (Fig. 4). For analyzing the data, we digitalized the map to agrid of 106 � 70 = 7420 digits. Fig. 5 shows the result of a run of the LPC algorithmusing the digitalized 
oodplain data. We used 50 initializations and a bandwidth h = 1:5(The automati
 sele
tion routine from Se
tion 7 suggests 2.5, but a smaller bandwidthseemed more appropriate in this 
ase.). The prin
ipal 
urve un
overs ni
ely the prin
ipal
ourses of the 
oodplains. Taking a look at maps from Beaver 
ounty, we see that ourprin
ipal 
urve re
onstru
ts the underlying rivers resp. valleys in this distri
t (The data aswell as 
orresponding maps are available at PASDA - Pennsylvania Spatial Data A

ess,www.pasda.psu.edu. The best form to regard those maps is to open the Ar
ExplorerWebat http://www.esri.
om/software/ar
explorer and sear
h in the opening menue forPennsylvania Spatial Data A

ess, \PA Streams" or \PA Floodplains"). Note that aquite big 
luster in the 
entral bottom is not 
overed - this simply o

urs be
ause none ofthe randomly 
hosen starting points is situated there, and this isolated 
luster 
annot berea
hed by an external prin
ipal 
urve. More initializations would be ne
essary to solvethis.4.2 3-dimensional dataWe now 
onsider a data set in
luded in the Splus software pa
kage, namely the \radial ve-lo
ity of galaxy NGC7531". This data frame, re
orded by Buta (1987), 
ontains the radialvelo
ity of 323 points of that spiral galaxy 
overing about 200 ar
 se
onds in north-south13
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Figure 6: Galaxy data (o) with prin
ipal 
urves (+).and 135 ar
 se
onds in east-west dire
tion in the 
elestial sphere. All the measurements liewithin seven slots 
rossing the origin. The x- and y-
oordinate des
ribe the east-west resp.north-south 
oordinate, and the z-
oordinate is the radial velo
ity measured in km/se
.For simpli
ity, we only 
onsider the �rst 61 data points of the data set (this 
orrespondsto two slots 
rossing the origin).Sin
e the data are now situated on two (
onne
ted) bran
hes, we need to inititialize morethan on
e. We 
hoose to initialize 4 starting points. We apply an angle penalization usingk = 2, whi
h serves to keep the 
urve on the 
orre
t slot at the 
rossing. The result isshown in Fig. 6.
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Figure 7: Kernel density estimation of simulated 
ir
le data.5 Theoreti
al justi�
ationThis approa
h seems to be heuristi
 to some extent, sin
e we have provided neither amodel for the data nor a mathemati
al pre
ise de�nition of a lo
al prin
ipal 
urve. Inthis se
tion we will give some idea whi
h 
urve we are a
tually estimating via the LPCalgorithm. When we started to work on prin
ipal 
urves, we were not primarily in
uen
edby Deli
ado's work, but were guided by a simple and appealing idea. It is instru
tive totake a look at the 
ir
le data in Se
tion 4.1. A kernel density estimation yields Figure 7.Looking at this �gure, the 
ourse of the prin
ipal 
urve is easily to imagine - one simply hasto walk along the 
rest of the mountain. Unfortunately this 
rest line, whi
h everybody isable to draw rapidly with a pen
il, is mathemati
ally intra
table. To our knowledge, thereexists no mathemati
al de�nition of a 
rest point. However, we will argue in the followingthat the prin
ipal 
urve we are estimating by means of our algorithm is approximatingthis 
rest line.Comani
iu, Ramesh & Meer (2001) and Comani
iu & Meer (2002), among others, studythe properties of the so-
alled mean shift ve
torM(x) = �(x)� x; (7)16



with �(x) being the lo
al 
enter of mass (3). They provide two results whi
h are of interestfor us:For a Gaussian kernel K and a bandwidth matrix H = fh2 � I : h > 0g,(A) the mean shift ve
tor (7) is proportional to the estimated gradient fun
tion r̂fK(x),where the estimated gradient is the gradient of the kernel density estimatorf̂K(x) = 1nhd nXi=1 K �Xi � xh � ; (8)(B) the sequen
e m(0) = xm(k+1) = �(m(k))
onverges to a nearby point where the estimator (8) has zero gradient, i.e. to a mode
andidate of the kernel density.For other kernels these statements 
ontinue to hold under 
ertain 
onditions, if in (8) Kis substituted by its shadow, see Comani
iu & Meer (2002).Let us return to our algorithm now. For any point x, we 
an 
alulate a lo
al 
enter ofmass �(x) via fun
tion (3). It is easy to imagine, that the 
loser x is to the middle of thedistribution of the data, the smaller is the mean shift. A

ording to (7) this mean shift iszero for the �x point set of fun
tion (3), i.e. the setfxj�(x) = xg(what shows another analogy of our 
on
ept to that of Deli
ado). Considering (A) werealize that these are the points where the estimated gradient fun
tion of the density isminimized, whi
h is the 
ase for modes of the estimated density. By applying (B), we thushave a tool for estimating the modes of the density of the data. This is however not ourintention: An algorithm like this would get stu
k at the modes and be unable to 
onne
tthe modes in a proper way. Therefore, in ea
h step of the algorithm, we employ only the�rst loop of the iterative pro
ess (B), whi
h brings us near the 
rests, but not nesessarilyin a mode point. Then, for not getting stu
k in a mode, we move along a little step indire
tion of the lo
al prin
ipal 
omponent (what means in pra
ti
e: along a 
rest). Ifthereby, after one or more steps, a point x(k) is approa
hed whi
h is near to a new mode,then the lo
al 
enter of mass �(x(k)) will tend to this mode, as the following (quite trivial)17



lemma shows. If no further modes exists, the algorithm will stop itself when the end ofthe data 
loud is rea
hed.Lemma 1. Let Xi 2 Rd ; i = 1; : : : ; n be a data 
loud and H be a bandwidth matrix. Let�0 a �x point of (3) resp. H and x �! �0. Then, applying the same bandwidth matrixH, we have 
onvergen
e �(x) �! �0.Proof j�(x)� �0j = ����Pni=1KH(Xi � x)XiPni=1KH(Xi � x) � Pni=1KH(Xi � �0)XiPni=1KH(Xi � �0) ���� �! 0for 
ontinuous non-zero kernel-fun
tions.6 CoverageThere is need for some 
riterion to evaluate the performan
e of a prin
ipal 
urve. This isusually done by means of a quantitative measure as the expe
ted squared distan
e4(m) = E �inft jjX �m(t)jj2� (9)between data X and the 
urve m. Prin
ipal 
urves a

ording to HS are 
riti
al pointsof (9), whereas prin
ipal 
urves by KKLZ are minimizing (9) over a 
lass of 
urves withbounded length. Another quantitative measure is the generalized total varian
e (Deli
ado,2001). However, de�nitions of this type are 
onne
ted to an underlying sto
hasti
 modelfor the data, whi
h is not used in our 
ase. Therefore we propose a model-independent
riterion to assess the quality of a prin
ipal 
urve. We de�ne the 
overage of a prin
ipal
urve m by the fra
tion of all data points whi
h are situated in a 
ertain neighborhoodof the prin
ipal 
urve. More pre
isely, let a prin
ipal 
urve algorithm sele
t a prin
ipal
urve m 
onsisting of a set Pm of points. ThenCm(�) = #fx 2 Xj9p 2 Pm with jjx� pjj � �g=nis the 
overage of 
urve m with parameter � . Obviously the 
overage is a monotonein
reasing fun
tion of � and will rea
h the value 1 for � tending to in�nity. Note thatthe 
overage 
an be interpreted as the empiri
al distribution fun
tion of the \residuals",i.e. the shortest distan
e between data and prin
ipal 
urve. For evaluating the qualityof a prin
ipal 
urve �t it is ne
essary to take a look at the whole 
overage 
urve Cm(�).In Fig. 8 we provide the 
overage plots for the spiral data (Fig. 4), ea
h for the HS,18



KKLZ and LPC algorithms and for prin
ipal 
omponent analysis. For the small spiral,the 
overage of the LPC and the polygonal line algorithm from KKLZ are 
omparable,whereas HS is falling ba
k signi�
antly and is performing only slightly better than theprin
ipal 
omponent approa
h. For the big spiral, the LPC algorithm 
learly outperformsall other algorithms.Certainly a 
on
ave 
overage 
urve is desirable, i.e. it is \best" when rising rapidly forsmall � . The better the prin
ipal 
urve, the smaller is the area in the left top above the
overage 
urve, i.e. the area between Cm(�), the line � = 0 and the 
onstant fun
tion
(�) = 1. This area 
orresponds to the mean length of the observed residuals. To obtain aquantitative measure for the performan
e of a prin
ipal 
urve, we set this area in relationto the 
orresponding area obtained by standard prin
ipal 
omponent analysis. The smallerthis quotient, the smaller is the relative mean length of the observed residuals and thebetter is the prin
ipal 
urve 
ompared to prin
ipal 
omponents. The following tableprovides this quotient AC for HS, KKLZ and LPC, where the latter one is 
al
ulatedapplying the optimal bandwidths a

ording to Se
tion 7.small spiral big spiralalgorithm AC ACHS 0:79 0:92KKLZ 0:03 0:66LPC 0:06 0:08Table 1: Area-quotient AC for some prin
ipal 
urve algorithms.For the HS algorithm, the quotient AC takes values near 1, whi
h means a quite bad per-forman
e. KKLZ yields an ex
ellent value for the small spiral and a rather unsatisfa
toryvalue for the big spiral. LPC performs �ne in both 
ases.7 Sele
tion of parametersThe algorithm is based on two parameters whi
h have to be sele
ted beforehand: Thebandwidth h for the radius of the lo
al 
enter of mass and the value t0 whi
h determinesthe step length. Assume a 
enter of mass �x(i) at step i, using the data within a radius haround a nearby value x(i). Starting from �x(i), it seems sensitive to walk along the �rstprin
ipal 
omponent 
x(i) until the border of the 
ir
le around x(i) is rea
hed, what leads19
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roughly to the update rule x(i+1) = �x(i) + h
x(i):This means that we employ t0 = h:This rule works �ne in pra
ti
e and was applied in all examples in this paper. It nowremains to sele
t the value h, whi
h plays the role of a 
lassi
al smoothing parameter, thusthe smaller the value of h, the more details are unveiled by the lo
al prin
ipal 
urve andthe more wiggly it is. To sele
t h, we make use of the 
on
ept of 
overage introdu
ed in theprevious se
tion. The idea is the following: If a 
ertain bandwidth h is supposed to servesatisa
tory for 
al
ulating the lo
al 
enter of mass around x, we assume impli
itely thatthis value h 
overs more or less the width of the data 
loud around x. Thus, as a 
riterionfor the adequa
y of a prin
ipal 
urve m(h) 
al
ulated with a 
ertain bandwidth h we 
anapply its proper 
overage Cm(h)(h). We will will refer to this 
overage as self-
overagehereafter. This 
urve has a typi
al behaviour: It starts with small values, then in
reasesrapidly until a lo
al maximum is rea
hed, where the best �t is a
hieved. Afterwardsthe self-
overage 
urve is falling again or shows errati
 behaviour, but �nally rises up to 1sin
e for large bandwidths the 
overage naturally takes the value 1. Note that the fa
t thatCm(h)(h) is falling is not in 
ontradi
tion with the property of monotoneness mentionedin the previous se
tion: In 
ontrast to Cm(h)(h), the 
overage Cm(�) is 
al
ulated for thesame prin
ipal 
urve m for all � ! Our parameter sele
tion rule is the following:Choose the lowest parameter h for whi
h� the fun
tion Cm(h)(h) a
hieves its �rst lo
al maximum,� or, if no lo
al maximum exists, the fun
tion Cm(h)(h) a
hieves the value 1.We want to illustrate this methodology by means of the spiral data shown in Fig. 3. Forthe small and the big spiral, we 
al
ulate the self-
overage over a grid from h = 0:01 upto h = 1:0 in steps of 0:01. The results are presented in Fig. 9. Sin
e the maxima arepartially very 
at, we provide in addition the numeri
 values (for the 
ru
ial range of h)in Table 2.
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small spiral big spiralh Cm(h)(h) Cm(h)(h)0:01 0:013 0:1770:02 0:961 0:5890:03 0:996 0:9900:04 0:999 0:9970:05 1:00 0:9980:06 1:00 1:000:07 1:00 1:000:08 1:00 1:000:09 1:00 1:000:1 1:00 0:998Table 2: Self-
overage for spiral data.For the small spiral, the �rst lo
al maximum is a
hieved at value h = 0:05 withCm(0:05)(0:05) = 1. Thus we 
hoose h = 0:05. For the whole span from h = 0:05 toh = 0:16 we would however obtain an ideal prin
ipal 
urve (see the 
at maximum). Af-terwards the self-
overage is unstable and partially deteriorating. For large values of hthe self-
overage tends to 1. The big spiral data lead to a �rst lo
al maximum startingat h = 0:06. Afterwards the 
urve shows errati
 behaviour and approa
hes slowly to the
onstant value 1, whi
h is rea
hed at h = 0:88. In these 
al
ulations, we worked with one�xed starting point (more starting points should not be ne
essary, sin
e the data 
loud is
onne
ted and 
onsists of only one bran
h).8 Dis
ussionWe demonstrated that the 
on
ept of applying lo
al prin
ipal 
omponents in 
onne
tionwith the mean shift is a simple and useful tool for 
al
ulating prin
ipal 
urves, whi
hshows mostly superior performan
e in simulated data sets 
ompared to other prin
ipal
urve algorithms. We showed that the algorithm works in simulated and real data setseven for highly 
ompli
ated data stru
tures. This in
ludes data situations whi
h yet 
ouldonly be handled unsatisfa
tory, as data with multiple or dis
onne
ted bran
hes. Espe
iallyfor noisy spatial data as the 
oodplain data the approa
h has a high potential to dete
tthe underlying stru
ture. We further provided a tool to sele
t the ne
essary parametersin a data-adaptive way. 23



There is still need for further resear
h 
on
erning the theoreti
al ba
kground of themethod. Though working �ne, we still don't have a theoreti
al justi�
ation why we uselo
al prin
ipal 
omponents to 
onne
t the modes of the density. This 
hoi
e is sensiblebut in no way unique, and there seem to be many alternatives, su
h as the extrapolationof the already estimated part of the 
urve. Due to the ni
e properties of the mean shift,it might even work to use a line in an arbitrary dire
tion, as long it is not orthogonal tothe prin
ipal 
urve in the observed point. Important is simply that a movement is made- the mean shift will afterwards adjust the prin
ipal 
urve in dire
tion of the \middle" ofthe data 
loud. However, by applying lo
al prin
ipal 
omponents the algorithm is fastest,most stable, and the results are as intuitively expe
ted. We 
onsider the �rst lo
al prin-
ipal 
omponent to be a (biased) approximation of the tangent to the 
rest line: One 
aneasily derive from its de�nition that the �rst lo
al prin
ipal 
omponent around � is theline through � whi
h minimizes the weighted distan
e between the Xi and the line, usingthe weights ki as in (4). The �rst lo
al prin
ipal 
omponent is therefore that line through� that lo
ally gives the best �t.Furthermore, it will be interesting to investigate if the proposed algorithm 
an be extendedto obtain lo
al prini
pal surfa
es or even lo
al prin
ipal manifolds of higher dimensions.This might be a quite diÆ
ult job, sin
e yet easy te
hniques as the signum 
ipping orthe mean shift will probably not be transferable to higher dimensional 
urves without
umbersome extra work.A
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