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Modelling time-varying effetsin Cox model under orderrestritionsGeorgia Salanti, Kurt Ulm



AbstratThe violation of the proportional hazards assumption in Cox model oursquite often in studies onerning solid tumours or leukaemia. Then the timevarying oeÆients model is its most popular extension used. The funtion�(t) that measures the time variation of a ovariate, an be assessed throughseveral smoothing tehniques, suh as ubi splines. However, for pratialpropose, it is more onvenient to assess �(t) by a step funtion. The maindrawbak of this approah is the lak of stability sine there is no standardmethod of de�ning the utpoints of the underlined step funtion.The variation in the e�et of a preditor an be assumed to be mono-toni during the observational period. In these ases, we propose a methodto estimate �(t) based on the isotoni regression framework. Applying theidea of Grambsh and Therneau, where smoothing the Shoenfeld residualsplotted against time reveal the shape of the underlined �(t) funtion, we usethe Pooled Adjaent Violators Algorithm as smoother. As a result a set ofutpoints is returned without any a priori information about their loation.Subsequently, the orresponding step funtion is introdued in the model andthe standard likelihood-based method is applied to estimate it while adjust-ing for other ovariates. This approah presents the advantage that additionaldeisions that an e�et the result, as the number of knots in ubi splines,do not need to be taken. The performane of the provided PH test and thestability of the method are explored in a simulation study.
1



1 Introdution and bakgroundThe Cox model is by far the most popular proedure for analyzing survival data.Consider the ase where P preditors X : X1;X2; :::;XP , have been identi�ed toa�et signi�antly the survival probability. The Cox model spei�es the hazard foran individual i as �(tjX) = �0(t)e~�X: (1)A key assumption of this model is that the ratio of two hazards is independent ontime (proportional hazards model or PH model), i.e. the impat of eah preditorinluded in the model does not hange during the observation period and there-fore the relative risk RR regarding two levels xi, xj of an explanatory variable isexp(�(xi � xj)) at any time. However this assumption may not hold for some vari-ables inluded in the model. In that ase the oeÆient �i and therefore the RR arefuntions of time � = �(t) and RR = exp(�(t)(xi� xj)):The appliation of the Cox model requires validation of the proportional hazardsassumption. In this diretion, several tests have been proposed so far to hek thepreditors for time-dependeny. In ase of evidene, the usual PH model needstransformation, in order to inlude the dynami strutures.Many graphial approahes have been proposed in order to hek for proportional-ity. Although the judgment is rather subjetive, they an be used as a �rst guide.Consider again a preditor in ategories, a �rst intuitive way is to hek the Kaplan-Meier urves for parallelism. If that is true, proportionality is rather likely to befull�eld. The equivalent multivariate approah would be to �t a Cox model strati-�ed for the fator of interest and plot the survival urves for the mean value of theother preditors. The resulting urves should be parallel but also in agreement withthe survival urves estimated non-parametrially (for example the Altshuler-Nelsonestimates).Another more sophistiate graphial estimation of PH assumption an be performedby plotting the log minus log survival funtions against time for eah level of the2



preditor 1. If the proportionality assumption holds, the two urves should be par-allel. To assess the survival funtion in eah level of the preditor one has to �tagain a strati�ed Cox model. Alternatively one an use the umulative Shoenfeldresiduals. Under the proportional hazard assumtion eah urve should be a randomwalk starting and ending at 0 (Brownian bridge). All graphial approahes desribedabove present diÆulties of visualizing the atual pattern of time-dependeny andto reveal the onsequenes of the underlying violation of proportional hazards.Alternatively, one an split the data in subgroups that orrespond to pre-seletedtime intervals. In eah data set a Cox model is �tted and the oeÆients obtainedare ompared to the on�dene interval of the overall oeÆient. Moreover, in aseof violation, the pattern of interval-oeÆients an roughly indiate the form of thetime dependeny. The time-intervals are usually seleted to inlude enough events,but no further ut-o� riteria an be established.The most aurate approah is to apply time-varying oeÆients model [3℄ wherethe oeÆient ~� is allowed to be a funtion of time ~�(t): It provides a test forproportional hazards and a modeling alternative in ase of violation. As speialpart of this approah, the Grambsh and Therneau test is de�ned whih is basedon saled Shoenfeld residuals. Regarding this approah, a new proposal will bepresented in this paper: the inorporation of isotoni regression [6℄ in the Grambshand Therneau test to improve power.The prinipal motivation for using isotoni regression in modeling time variationin Cox model, is that it provides a hangepoint model regarding time. Therefore,optimal utpoints an be assessed to split time in intervals within whih the e�et ofthe variable of interest remains onstant. That is an important task in many linialstudies. Isotoni regression provides unbiased estimators for hangepoints withoutany additional requirements.This paper fouses on ombining the bene�ts from isotoni regression and the ex-ibility of the varying-oeÆients approah. The �rst part deals with an isotoni1That is beause: S(t) = S0(t)e�x ! Sl(t) = Sk(t)RR ! ln(Sl(t)) = RRln(Sk(t)) !ln(�ln(Sl(t))) = ln(RR) + ln(�ln(Sk(t))) 3



version of the Grambsh and Therneau test [2, 9℄. Further, we will present howone an use the isotoni smoother to model the funtion ~�(t) in a time-varyingCox model. The gain of introduing isotoni regression in testing and modelingPH departures will be outlined and a simulation study will be performed to assessthe properties of the approah. Finally we will present an appliation in data setontaining hildren with aute lymphoblasti leukemia.Notation:AsD is denoted the total number of events and t the random variable for the survivaltime. As tj, j = 1; :::; J are denoted the unique failure times with dj > 0 individualsfailing at tj and Rj the observations having t > tj:2 The time-varying oeÆients Cox ModelAs pointed out in the introdution setion one easily expressed alternative to pro-portional hazards is provided by applying models with a time-dependent oeÆient.That is simply an extension of the Cox model where the time onsisteny assump-tion on ~� = (�p; p = 1; :::; P ) is relaxed and is allowed to be a funtion of time�p(t) = �0p + �1pfp(t). Model (1) takes the following form:�(t) = �0(t)e~�(t)X (2)where ~�(t) is the vetor (�1(t); �2(t); :::; �P(t)): If the preditor is a binary variable,�p(t) measures the di�erene in log(relative risk) between the two groups as a fun-tion of time. The advantage of this approah is twofold: On one hand it o�ers astraightforward way to investigate time-dependent strutures, by testing for �1i = 0:On the other hand, in ase of PH rejetion, it provides automatially an alternativemodel that �ts adequately the data.In ase that all oeÆients in ~� vary ( ~� = ~�(t) = (�1(t); �2(t); :::; �P(t))0) the usualpartial likelihood of the model takes the form:4



L(�1(t); �2(t); :::; �P(t); t) = JYj=1 exp(Pdjl=1Xl ~�(tj))[Ps2Rj exp(Xs ~�(tj))℄dj (3)where Xl is the ovariate vetor orresponding to lth failure at time j:For one preditor p a funtion fp is used so that ~�p(t) = �0+ �pfp(t): The adequayof this approah depends learly on the hoie of funtion fp: There are severalproposals about how to estimate the appropriate funtion fp: The two main meth-ods that an be used - smoothing splines and frational polynomials - are shortlypresented in setion 3.1 together with a new method using isotoni regression. Forisotoni estimation, �tting algorithms and tests, see [6℄.3 Deteting PH departures under order restri-tionAssume that if there is any PH violation, it follows a monotoni pattern. Startingfrom a time-varying Cox model (equation 2), the Shoenfeld residuals provide auseful tool in deteting time-variation for the preditors of interest. That an beaomplished either graphially, or by applying a spei� test as outlined below.3.1 Smoothing Shoenfeld residuals satterplotThe Shoenfeld residuals are de�ned at eah unique failure times. In absene of tiesthey are equal to the di�erene between the observed ovariate vetor for an eventat time tj; j = 1; :::; J and its expeted value.~rj = ~Xj � E( ~Xj jRj)! ~rj = ~Xj � Pl2Rj ~Xle~�XlPl2Rj e~�Xl : (4)In the presene of P ovariates, the Shoenfeld residuals ~r an be presented as aJ � P matrix. 5



Assume that for eah variable p we have one estimated oeÆient for eah eventtime i.e. �pj. Grambsh and Therneau [2℄ showed that if �p is the oeÆient froman ordinary PH Cox model, thenE(r�pj) + �p � �pj(t) (5)where r� = V �1~� r are the saled Shoenfeld residuals and V~� is the variane matrixfor the estimated oeÆients ~�: This suggests to plot r�pj + �p versus time, to revealthe funtional form of time variation. In ase that the PH assumption holds, theresiduals should form approximately a horizontal line at the onstant oeÆient �pfrom model (1). One an used any kind of smoother for this purpose.A popular hoie are the natural ubi splines. The prinipal idea is to split the time-axis by seleting an appropriate number of nodes and to �t pieewise polynomials.The hoie of number of nodes (whih determines the degrees of freedom) an a�etthe result, and no spei� funtional form is given. Frational polynomials [7, 8℄provide an interesting alternative, and result in a funtional estimation of the timevariation, but again one has to hoose a set of exponents and maximal number ofomponents.The isotoni smoother provides an alternative to standard used smoothers. It re-quires monotoni trend, whih is true for many prognosti fators. For example,onsider a long-time therapy in whih younger people respond better, but its prog-nosti value dereases with age. Additional onsiderations as for example the numberof nodes need not be taken. The main advantage is that it detets jumps in riskthe for the time axis. Without any a priori information, the proedure returns someutpoints, and segments the observational time in homogenous groups. The riskwithin eah group is onsidered to be onstant.3.2 Grambsh and Therneau test and its isotoni versionNext to this graphial approah, Grambsh and Therneau introdued a version ofthe sore test based on the weighted Shoenfeld residuals. Assume that all P pre-6



ditor variables are time-dependent. The oeÆient for the p variable has the time-depended form �p(t) = �0p+�1p(fp(t)� �fp) where �fp is the mean of fp(t) over time.Then, the PH hypothesis implies that H0 : �1p = 0:Using matrix notation the test statisti takes the following formGTtestPx1 = [(~t� �t)0r�℄2diag(V~�)DP(ti � �t)2 (6)where V~� is the variane-ovariane matrix for the estimated oeÆients ~�: Eahone of the resulting values orresponds to a variable and tests for time-dependeny.This test is approximately �2 distributed with one degree of freedom for eah testedoeÆient.This test an be thought of as a generalization of the least-square statisti for esti-mating �(t) given equation (5). Under the assumption of monotoni trend, one ansubstituted funtion f(t) by the isotoni funtion is(t): if is(�p(t)) is a onsistentestimator of �p(t) then is(r�pj) + �p � �pj (7)where is(r�pj) is the residual matrix divided in bloks that orrespond to time inter-vals. Substituting r� by the isotoni estimation is(r�) in equation 6 results to anisotoni version of the GT test.Note that the idea to use pieewise onstant and non overlapping time intervals toestimate f(t) was �rst proposed by O'Quigley and Pessione [5℄. However, as noted intheir paper, the investigator has to hoose the partition of the time axis. Althoughthe authors introdue some useful guidelines, the hoie of the utpoints remainsrather subjetive. Applying isotoni regression this disadvantage is bypassed. Insetion 5 the performane of isotoni transformation in the residuals is assessed andompared to the standard Grambsh and Therneau test.7



4 Fitting the generalized additive model using iso-toni smoothing tehniquesFitting smoothing splines in estimating �(t) within the Cox model requires maxi-mization of the penalized likelihood funtion. The result is a natural ubi spline,having nodes at eah failure time point. The osillation of the �tted spline inreasesas the penalty parameter dereases. This parameter need to be pre-spei�ed andde�nes the degrees of freedom. With frational polynomials, one has to �t a strat-i�ed Cox model where the unique failure time points tj; j = 1; :::; k determine thestrata. At eah suh strata the orresponding ovariate values are attributed andthe new observational time is set to tj+1� tj: Using then X and ~f (t)X as preditors,the strati�ed Cox model applied in the new data set will provide ~�(t):With step funtions modeling time-varying e�ets is easier. One the time-intervalsare estimated the varying oeÆients model (2) shall be estimated. Assuming thatPAVA returns m time utpoints regarding the e�et of a variable, the time-varyingoeÆient for this variable takes the form:�(t) = �0 + �1It1(t) + �2It2(t) + :::+ �mItm(t) (8)Itj(t) = 8<: 0 if t <= tj1 if t > tj .The funtional form of �(t) has to be introdued in the model in order to estimate~� = (�1; �2; :::; �m). Standard Likelihood based methods are applied for this pur-pose. Thereafter the usual Sore test or the Likelihood Ratio test with m degrees offreedom an be applied to ompare the PH model to the dynami model, by testingall time-spei� oeÆients to be zero:H0 : �1 = ::: = �m = 0: (9)The parameter �i measures the inrease (or derease) in the risk from time ti�1 totime ti on a logit sale.It is very often the ase that the time axis seems oversegmented. Some of theobserved utpoints do not orrespond in an important inrease (or derease) in risk.8



One has to proeed to a bakward elimination of the level sets. First the time groupsontaining few events (less than 10% of the total number of events) are deleted. Onethose groups are eliminated, the likelihood ratio test an be applied to test one byone the oeÆients �i = 0 in order to de�ne the neighboring level sets that donot di�er signi�antly. The deletion of a oeÆient ai and its time-interval Iti isequivalent to its union to the previous interval. The elimination proeeds by suhtime-interval unions, re-�ts the Cox model and stops when all �i are found to besigni�ant. The (1��)% on�dene band for a time varying preditor is expressedby CI1�� = ~� �qX2df;1��=2diag(ZV~�Z 0) (10)where V~� is the large sample variane-ovariane matrix for ~� = (�0; �1; �2; :::; �m):When more than one ovariate is time-varying, the bak�tting strategy is appliedto �t the model. The general idea is to �t the time-varying oeÆients allowingvariation at one variable at time while the rest ovariates remain time-independent�it=1(t) = (�it=10 + ~�it=11 f1(t); �it=12 ; :::; �it=1P )where f(t) is a step funtion. The likelihood ratio test will assess the gain in the�t i.e will test �1it=1 = 0: In ase of evidene f(t) is retained. In the next step alloeÆients are reestimated, allowing now variation for the �rst two variables�it=2(t) = (�it=20 + ~�it=21 f1(t); �it=20 + ~�it=21 f2(t); :::; �it=2P )where only f1(t) is estimated from the previews step and held onstant in step 2.The proedure goes on like that updating in eah iteration only the oeÆients.Suh loops are repeated until a small hange in the likelihood is ahieved.5 Simulation studyA simulation study was onduted to explore the properties of the new proposalfor testing proportional hazards applying the isotoni version of Grambsh and Th-erneau test (equation 6). This setion fouses on revealing the advantages of the9



isotoni GT test against the onventional test. When forming assumptions aboutthe funtional form of the regression, we tried to be as onsistent as possible withsituations frequently observed in linial studies. The simulations are designed toavoid ties.Only the ase of a simple binary preditor is onsidered. One proportional and threenon proportional hazard models are analyzed. In the baseline group the ovariatehas been set X = 0 and the hazard e�41 + e�4 : The treatment group has X = 1 andhazard e�4+�(t)1 + e�4+�(t) : Eah group ontains 100 observations.
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the hazard funtion. For the observations remaining at risk, the number ensoredobservations is alulated, as a random binary proess. The proedure is repeatedfor time=2 and stops when no more observations remain at risk. The ensoringprobability used here was 0.5%. To model dynami strutures that derease withtime the following senarios are made:Linear: a dereasing linear time-dependeny where �(t) = �0:02t+ 1:Quadrati: where �(t) = �0:04t� 0:004t2 � 1 representing a dereasing umbrellashapeStep funtion: having shift at t=24 and �(t) = 8<: 1:5 t � 240 t > 24 .Constant: �(t) = 1 for estimating the properties in ase where the PH assumptionis not violated.Simulations under the �rst three funtions will give information about the powerof the ompared tests, whereas with the onstant funtion the type I error will beassessed. Three test are ompared: a) a test based on frational polynomials modeldesribed in [1℄ b) the GT test (6) assuming linear transformation for time and )the isotoni version of GT test (5). The results are presented in �gure 1.The isotoni test presents the best power for all non-onstant funtions, whereasthe onventional GT test gives the lowest power. For every shape the power fromfrational polynomial is lower that this from isotoni regression. One would expetthat this advantage of the isotoni test is eliminated in ase of a non-monotonifuntion. The more exible approah as the frational polynomials should presenta better performane in ase of the at quadrati funtion. This is not the ase, asoutlined in �gure 1: isotoni regression gives higher power for this shape as it givesfor a step funtion. However, the prie one has to pay for the inreasing power inthe isotoni test is a higher type I error.11



6 Case Study in time-varying Cox modelThe data set used to illustrate the above approahes ontains 141 observations fromhildren having aute leukemia (ALL). The endpoint was overall survival time. Theprobability to die within a period of 7 days to about 10 years follow up, has beenfound to be dependent upon the following binary variables:- Remission after the �rst indution (REMI, 1: yes )- ALL relapse after the �rst Chemotherapy (RELP, 1: yes )- The size of massive spleen below the rib (MSPS, 1: > 1 m )- White blood ell ount (WBC, 1: > 60:6 109=L )The survival time is measured in YEARS. The main of the study was to estimate ifthere is a time variation in the e�et of MSPS, and in ase of evidene to desribethis variation. The sample is haraterized by a high event rate (122/141), and thevalue of deviane in absene of any preditor is estimated to be 1037.59.The Cox PH model with forward LR seletion has been applied and table 1 showsthe estimated oeÆients. Time variation in the preditive value of MSPS has beentested applying Grambsh and Therneau test, Kaplan-Meier urves (�gure 6) andsmoothing the Shoenfeld residuals using splines, frational polynomials and isotoniregression (�gure 3).Table 1: Aute lymphoblasti leukemia study: The PH Cox model. The deviane is957.08 with 5 degrees fo freedom.Variables CoeÆients SE p-valueRELP 0.507 0.219 0.021REMI -0.991 0.387 0.010MSPS 0.549 0.203 0.007WBC 0.785 0.232 0.000CONTS -0.974 0.362 0.007These di�erent methods are more or less in agreement: there is a dynami e�etfor MSPS. The Grambsh and Therneau test results in a test value 3.930 and the12
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Figure 2: Kaplan-Meier umulative survival urves for MSPS.orresponding p-value is 0.047. Fitting the varying oeÆients model using splines,the onstant preditor lies out of the on�dene bands for more than 10% of the totalnumber of events (�gure not shown). There is a dereasing positive prognosti valuefor MSPS. Children that do not have massive spleen have better prognosis thatdereases progressively, and after about four years the diretion of the prognosishanges. This onlusion is quite strange and against any biologial plausibility.However a possible explanation ould be the following: perhaps many hildren geta very intensive hemotherapy that is e�etive against the tumor but is also tooburdensome. So, it may ause a preliminary death to many hildren. But one ahild overomes that ruial period and does not relapse, it has the best hanes tosurvive.By isotonizing the Shoenfeld residuals (�gure 3) the appropriate time-utpoints arerevealed. The on�dene intervals orrespond to frational polynomials. Howeversome of the resulting steps ontain very few events and therefore do not o�er a lotof information while inreasing the degrees of freedom. Eah group is restritedto ontain at least 10% of the total number of events. After elimination of those13
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Table 2: Elimination of the time level sets for MSPS dynami oeÆient.CoeÆient Deviane p-value�0 957.08 0.0000�1 928.59 0.0000�2 915.64 0.0013The �nal ahieved deviane have been estimated 915.64, that yields an overall LRtest for PH of 41.44 (p < 0:001). Finally the model ontaining all the signi�antpreditors and their time dependent e�ets is:h(t) = h0(t)e�(t;x)where�(t; x) = 0:490 �RELP� 1:105 � REMI++[1:568 � 1:184 � I1:98(t)� 2:851 � I3:52(t)℄ �MSPS + 0:235 �WBC� 0:604 � CONTS7 ExtensionsOne an image implementations of isotoni regression in several approahes regard-ing survival settings. John O'Quigley [5℄ for example introdued a test for pro-portional hazards based on the model: �(t) = �0(t)exp[( ~� + 	~�)0X℄ The matrix	 = diag( ~ 1; ~ 2; :::; ~ P) is a sore matrix determined by the user. Obviously if~� = 0 the proportional hazards model is reovered. The model is �tted using thestrati�ed Likelihood, where arbitrary time utpoints de�ne the strata, and a sort ofsore test is applied to test for ~� = 0: Isotoni regression an be easily introduedinto this ontext and improve the performane of this approah.Another assumption undertaken by the Cox model is that eah variable enters themodel linearly, assumption that may also be violated. This ase entails that bothoeÆient and RR depend on the variable (� = �(X); RR = exp(�(xi) � �(xj))).The adequay of the linear form of a preditor in the Cox model an be visualized bysmoothing the martingale residuals plotted against the preditor. If the shape seems15



0 2 4 6

TIME

-4
-2

0
2

4

be
ta

(T
IM

E
)

Figure 4: Isotoni �t for time-dependent oeÆient for MSPS.not linear, the preditor has to be transformed. An approah similar to this usedfor modeling time variation an be applied to model properly non linear preditors.An alternative approah that uses step funtions in modeling dynami strutures isaomplished with CART [10℄. The main advantage provided is that the time-utpoints are not prespei�ed, but the pruning parameter has to be alulatedthrough ross validation. The PAVA algorithm an modify the splitting riteria,to inlude monotoniity restrains if so required.
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