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Modelling time-varying effe
tsin Cox model under orderrestri
tionsGeorgia Salanti, Kurt Ulm



Abstra
tThe violation of the proportional hazards assumption in Cox model o

ursquite often in studies 
on
erning solid tumours or leukaemia. Then the timevarying 
oeÆ
ients model is its most popular extension used. The fun
tion�(t) that measures the time variation of a 
ovariate, 
an be assessed throughseveral smoothing te
hniques, su
h as 
ubi
 splines. However, for pra
ti
alpropose, it is more 
onvenient to assess �(t) by a step fun
tion. The maindrawba
k of this approa
h is the la
k of stability sin
e there is no standardmethod of de�ning the 
utpoints of the underlined step fun
tion.The variation in the e�e
t of a predi
tor 
an be assumed to be mono-toni
 during the observational period. In these 
ases, we propose a methodto estimate �(t) based on the isotoni
 regression framework. Applying theidea of Grambs
h and Therneau, where smoothing the S
hoenfeld residualsplotted against time reveal the shape of the underlined �(t) fun
tion, we usethe Pooled Adja
ent Violators Algorithm as smoother. As a result a set of
utpoints is returned without any a priori information about their lo
ation.Subsequently, the 
orresponding step fun
tion is introdu
ed in the model andthe standard likelihood-based method is applied to estimate it while adjust-ing for other 
ovariates. This approa
h presents the advantage that additionalde
isions that 
an e�e
t the result, as the number of knots in 
ubi
 splines,do not need to be taken. The performan
e of the provided PH test and thestability of the method are explored in a simulation study.
1



1 Introdu
tion and ba
kgroundThe Cox model is by far the most popular pro
edure for analyzing survival data.Consider the 
ase where P predi
tors X : X1;X2; :::;XP , have been identi�ed toa�e
t signi�
antly the survival probability. The Cox model spe
i�es the hazard foran individual i as �(tjX) = �0(t)e~�X: (1)A key assumption of this model is that the ratio of two hazards is independent ontime (proportional hazards model or PH model), i.e. the impa
t of ea
h predi
torin
luded in the model does not 
hange during the observation period and there-fore the relative risk RR regarding two levels xi, xj of an explanatory variable isexp(�(xi � xj)) at any time. However this assumption may not hold for some vari-ables in
luded in the model. In that 
ase the 
oeÆ
ient �i and therefore the RR arefun
tions of time � = �(t) and RR = exp(�(t)(xi� xj)):The appli
ation of the Cox model requires validation of the proportional hazardsassumption. In this dire
tion, several tests have been proposed so far to 
he
k thepredi
tors for time-dependen
y. In 
ase of eviden
e, the usual PH model needstransformation, in order to in
lude the dynami
 stru
tures.Many graphi
al approa
hes have been proposed in order to 
he
k for proportional-ity. Although the judgment is rather subje
tive, they 
an be used as a �rst guide.Consider again a predi
tor in 
ategories, a �rst intuitive way is to 
he
k the Kaplan-Meier 
urves for parallelism. If that is true, proportionality is rather likely to befull�eld. The equivalent multivariate approa
h would be to �t a Cox model strati-�ed for the fa
tor of interest and plot the survival 
urves for the mean value of theother predi
tors. The resulting 
urves should be parallel but also in agreement withthe survival 
urves estimated non-parametri
ally (for example the Alts
huler-Nelsonestimates).Another more sophisti
ate graphi
al estimation of PH assumption 
an be performedby plotting the log minus log survival fun
tions against time for ea
h level of the2



predi
tor 1. If the proportionality assumption holds, the two 
urves should be par-allel. To assess the survival fun
tion in ea
h level of the predi
tor one has to �tagain a strati�ed Cox model. Alternatively one 
an use the 
umulative S
hoenfeldresiduals. Under the proportional hazard assumtion ea
h 
urve should be a randomwalk starting and ending at 0 (Brownian bridge). All graphi
al approa
hes des
ribedabove present diÆ
ulties of visualizing the a
tual pattern of time-dependen
y andto reveal the 
onsequen
es of the underlying violation of proportional hazards.Alternatively, one 
an split the data in subgroups that 
orrespond to pre-sele
tedtime intervals. In ea
h data set a Cox model is �tted and the 
oeÆ
ients obtainedare 
ompared to the 
on�den
e interval of the overall 
oeÆ
ient. Moreover, in 
aseof violation, the pattern of interval-
oeÆ
ients 
an roughly indi
ate the form of thetime dependen
y. The time-intervals are usually sele
ted to in
lude enough events,but no further 
ut-o� 
riteria 
an be established.The most a

urate approa
h is to apply time-varying 
oeÆ
ients model [3℄ wherethe 
oeÆ
ient ~� is allowed to be a fun
tion of time ~�(t): It provides a test forproportional hazards and a modeling alternative in 
ase of violation. As spe
ialpart of this approa
h, the Grambs
h and Therneau test is de�ned whi
h is basedon s
aled S
hoenfeld residuals. Regarding this approa
h, a new proposal will bepresented in this paper: the in
orporation of isotoni
 regression [6℄ in the Grambs
hand Therneau test to improve power.The prin
ipal motivation for using isotoni
 regression in modeling time variationin Cox model, is that it provides a 
hangepoint model regarding time. Therefore,optimal 
utpoints 
an be assessed to split time in intervals within whi
h the e�e
t ofthe variable of interest remains 
onstant. That is an important task in many 
lini
alstudies. Isotoni
 regression provides unbiased estimators for 
hangepoints withoutany additional requirements.This paper fo
uses on 
ombining the bene�ts from isotoni
 regression and the 
ex-ibility of the varying-
oeÆ
ients approa
h. The �rst part deals with an isotoni
1That is be
ause: S(t) = S0(t)e�x ! Sl(t) = Sk(t)RR ! ln(Sl(t)) = RRln(Sk(t)) !ln(�ln(Sl(t))) = ln(RR) + ln(�ln(Sk(t))) 3



version of the Grambs
h and Therneau test [2, 9℄. Further, we will present howone 
an use the isotoni
 smoother to model the fun
tion ~�(t) in a time-varyingCox model. The gain of introdu
ing isotoni
 regression in testing and modelingPH departures will be outlined and a simulation study will be performed to assessthe properties of the approa
h. Finally we will present an appli
ation in data set
ontaining 
hildren with a
ute lymphoblasti
 leukemia.Notation:AsD is denoted the total number of events and t the random variable for the survivaltime. As tj, j = 1; :::; J are denoted the unique failure times with dj > 0 individualsfailing at tj and Rj the observations having t > tj:2 The time-varying 
oeÆ
ients Cox ModelAs pointed out in the introdu
tion se
tion one easily expressed alternative to pro-portional hazards is provided by applying models with a time-dependent 
oeÆ
ient.That is simply an extension of the Cox model where the time 
onsisten
y assump-tion on ~� = (�p; p = 1; :::; P ) is relaxed and is allowed to be a fun
tion of time�p(t) = �0p + �1pfp(t). Model (1) takes the following form:�(t) = �0(t)e~�(t)X (2)where ~�(t) is the ve
tor (�1(t); �2(t); :::; �P(t)): If the predi
tor is a binary variable,�p(t) measures the di�eren
e in log(relative risk) between the two groups as a fun
-tion of time. The advantage of this approa
h is twofold: On one hand it o�ers astraightforward way to investigate time-dependent stru
tures, by testing for �1i = 0:On the other hand, in 
ase of PH reje
tion, it provides automati
ally an alternativemodel that �ts adequately the data.In 
ase that all 
oeÆ
ients in ~� vary ( ~� = ~�(t) = (�1(t); �2(t); :::; �P(t))0) the usualpartial likelihood of the model takes the form:4



L(�1(t); �2(t); :::; �P(t); t) = JYj=1 exp(Pdjl=1Xl ~�(tj))[Ps2Rj exp(Xs ~�(tj))℄dj (3)where Xl is the 
ovariate ve
tor 
orresponding to lth failure at time j:For one predi
tor p a fun
tion fp is used so that ~�p(t) = �0+ �pfp(t): The adequa
yof this approa
h depends 
learly on the 
hoi
e of fun
tion fp: There are severalproposals about how to estimate the appropriate fun
tion fp: The two main meth-ods that 
an be used - smoothing splines and fra
tional polynomials - are shortlypresented in se
tion 3.1 together with a new method using isotoni
 regression. Forisotoni
 estimation, �tting algorithms and tests, see [6℄.3 Dete
ting PH departures under order restri
-tionAssume that if there is any PH violation, it follows a monotoni
 pattern. Startingfrom a time-varying Cox model (equation 2), the S
hoenfeld residuals provide auseful tool in dete
ting time-variation for the predi
tors of interest. That 
an bea

omplished either graphi
ally, or by applying a spe
i�
 test as outlined below.3.1 Smoothing S
hoenfeld residuals s
atterplotThe S
hoenfeld residuals are de�ned at ea
h unique failure times. In absen
e of tiesthey are equal to the di�eren
e between the observed 
ovariate ve
tor for an eventat time tj; j = 1; :::; J and its expe
ted value.~rj = ~Xj � E( ~Xj jRj)! ~rj = ~Xj � Pl2Rj ~Xle~�XlPl2Rj e~�Xl : (4)In the presen
e of P 
ovariates, the S
hoenfeld residuals ~r 
an be presented as aJ � P matrix. 5



Assume that for ea
h variable p we have one estimated 
oeÆ
ient for ea
h eventtime i.e. �pj. Grambs
h and Therneau [2℄ showed that if �p is the 
oeÆ
ient froman ordinary PH Cox model, thenE(r�pj) + �p � �pj(t) (5)where r� = V �1~� r are the s
aled S
hoenfeld residuals and V~� is the varian
e matrixfor the estimated 
oeÆ
ients ~�: This suggests to plot r�pj + �p versus time, to revealthe fun
tional form of time variation. In 
ase that the PH assumption holds, theresiduals should form approximately a horizontal line at the 
onstant 
oeÆ
ient �pfrom model (1). One 
an used any kind of smoother for this purpose.A popular 
hoi
e are the natural 
ubi
 splines. The prin
ipal idea is to split the time-axis by sele
ting an appropriate number of nodes and to �t pie
ewise polynomials.The 
hoi
e of number of nodes (whi
h determines the degrees of freedom) 
an a�e
tthe result, and no spe
i�
 fun
tional form is given. Fra
tional polynomials [7, 8℄provide an interesting alternative, and result in a fun
tional estimation of the timevariation, but again one has to 
hoose a set of exponents and maximal number of
omponents.The isotoni
 smoother provides an alternative to standard used smoothers. It re-quires monotoni
 trend, whi
h is true for many prognosti
 fa
tors. For example,
onsider a long-time therapy in whi
h younger people respond better, but its prog-nosti
 value de
reases with age. Additional 
onsiderations as for example the numberof nodes need not be taken. The main advantage is that it dete
ts jumps in riskthe for the time axis. Without any a priori information, the pro
edure returns some
utpoints, and segments the observational time in homogenous groups. The riskwithin ea
h group is 
onsidered to be 
onstant.3.2 Grambs
h and Therneau test and its isotoni
 versionNext to this graphi
al approa
h, Grambs
h and Therneau introdu
ed a version ofthe s
ore test based on the weighted S
hoenfeld residuals. Assume that all P pre-6



di
tor variables are time-dependent. The 
oeÆ
ient for the p variable has the time-depended form �p(t) = �0p+�1p(fp(t)� �fp) where �fp is the mean of fp(t) over time.Then, the PH hypothesis implies that H0 : �1p = 0:Using matrix notation the test statisti
 takes the following formGTtestPx1 = [(~t� �t)0r�℄2diag(V~�)DP(ti � �t)2 (6)where V~� is the varian
e-
ovarian
e matrix for the estimated 
oeÆ
ients ~�: Ea
hone of the resulting values 
orresponds to a variable and tests for time-dependen
y.This test is approximately �2 distributed with one degree of freedom for ea
h tested
oeÆ
ient.This test 
an be thought of as a generalization of the least-square statisti
 for esti-mating �(t) given equation (5). Under the assumption of monotoni
 trend, one 
ansubstituted fun
tion f(t) by the isotoni
 fun
tion is(t): if is(�p(t)) is a 
onsistentestimator of �p(t) then is(r�pj) + �p � �pj (7)where is(r�pj) is the residual matrix divided in blo
ks that 
orrespond to time inter-vals. Substituting r� by the isotoni
 estimation is(r�) in equation 6 results to anisotoni
 version of the GT test.Note that the idea to use pie
ewise 
onstant and non overlapping time intervals toestimate f(t) was �rst proposed by O'Quigley and Pessione [5℄. However, as noted intheir paper, the investigator has to 
hoose the partition of the time axis. Althoughthe authors introdu
e some useful guidelines, the 
hoi
e of the 
utpoints remainsrather subje
tive. Applying isotoni
 regression this disadvantage is bypassed. Inse
tion 5 the performan
e of isotoni
 transformation in the residuals is assessed and
ompared to the standard Grambs
h and Therneau test.7



4 Fitting the generalized additive model using iso-toni
 smoothing te
hniquesFitting smoothing splines in estimating �(t) within the Cox model requires maxi-mization of the penalized likelihood fun
tion. The result is a natural 
ubi
 spline,having nodes at ea
h failure time point. The os
illation of the �tted spline in
reasesas the penalty parameter de
reases. This parameter need to be pre-spe
i�ed andde�nes the degrees of freedom. With fra
tional polynomials, one has to �t a strat-i�ed Cox model where the unique failure time points tj; j = 1; :::; k determine thestrata. At ea
h su
h strata the 
orresponding 
ovariate values are attributed andthe new observational time is set to tj+1� tj: Using then X and ~f (t)X as predi
tors,the strati�ed Cox model applied in the new data set will provide ~�(t):With step fun
tions modeling time-varying e�e
ts is easier. On
e the time-intervalsare estimated the varying 
oeÆ
ients model (2) shall be estimated. Assuming thatPAVA returns m time 
utpoints regarding the e�e
t of a variable, the time-varying
oeÆ
ient for this variable takes the form:�(t) = �0 + �1It1(t) + �2It2(t) + :::+ �mItm(t) (8)Itj(t) = 8<: 0 if t <= tj1 if t > tj .The fun
tional form of �(t) has to be introdu
ed in the model in order to estimate~� = (�1; �2; :::; �m). Standard Likelihood based methods are applied for this pur-pose. Thereafter the usual S
ore test or the Likelihood Ratio test with m degrees offreedom 
an be applied to 
ompare the PH model to the dynami
 model, by testingall time-spe
i�
 
oeÆ
ients to be zero:H0 : �1 = ::: = �m = 0: (9)The parameter �i measures the in
rease (or de
rease) in the risk from time ti�1 totime ti on a logit s
ale.It is very often the 
ase that the time axis seems oversegmented. Some of theobserved 
utpoints do not 
orrespond in an important in
rease (or de
rease) in risk.8



One has to pro
eed to a ba
kward elimination of the level sets. First the time groups
ontaining few events (less than 10% of the total number of events) are deleted. On
ethose groups are eliminated, the likelihood ratio test 
an be applied to test one byone the 
oeÆ
ients �i = 0 in order to de�ne the neighboring level sets that donot di�er signi�
antly. The deletion of a 
oeÆ
ient ai and its time-interval Iti isequivalent to its union to the previous interval. The elimination pro
eeds by su
htime-interval unions, re-�ts the Cox model and stops when all �i are found to besigni�
ant. The (1��)% 
on�den
e band for a time varying predi
tor is expressedby CI1�� = ~� �qX2df;1��=2diag(ZV~�Z 0) (10)where V~� is the large sample varian
e-
ovarian
e matrix for ~� = (�0; �1; �2; :::; �m):When more than one 
ovariate is time-varying, the ba
k�tting strategy is appliedto �t the model. The general idea is to �t the time-varying 
oeÆ
ients allowingvariation at one variable at time while the rest 
ovariates remain time-independent�it=1(t) = (�it=10 + ~�it=11 f1(t); �it=12 ; :::; �it=1P )where f(t) is a step fun
tion. The likelihood ratio test will assess the gain in the�t i.e will test �1it=1 = 0: In 
ase of eviden
e f(t) is retained. In the next step all
oeÆ
ients are reestimated, allowing now variation for the �rst two variables�it=2(t) = (�it=20 + ~�it=21 f1(t); �it=20 + ~�it=21 f2(t); :::; �it=2P )where only f1(t) is estimated from the previews step and held 
onstant in step 2.The pro
edure goes on like that updating in ea
h iteration only the 
oeÆ
ients.Su
h loops are repeated until a small 
hange in the likelihood is a
hieved.5 Simulation studyA simulation study was 
ondu
ted to explore the properties of the new proposalfor testing proportional hazards applying the isotoni
 version of Grambs
h and Th-erneau test (equation 6). This se
tion fo
uses on revealing the advantages of the9



isotoni
 GT test against the 
onventional test. When forming assumptions aboutthe fun
tional form of the regression, we tried to be as 
onsistent as possible withsituations frequently observed in 
lini
al studies. The simulations are designed toavoid ties.Only the 
ase of a simple binary predi
tor is 
onsidered. One proportional and threenon proportional hazard models are analyzed. In the baseline group the 
ovariatehas been set X = 0 and the hazard e�41 + e�4 : The treatment group has X = 1 andhazard e�4+�(t)1 + e�4+�(t) : Ea
h group 
ontains 100 observations.
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Type I error (constant)Figure 1: Simulations study for survival data. Compare in terms of power (�rstthree �gures) and type I error (last �gure) the Grambs
h and Therneau test (GTtest), the fra
tional polynomials test and the isotoni
 version of GT test.To generate the data sets, we pro
eed separately in ea
h group (treatment or base-line) as follows: starting from time=1 the number of failures is 
al
ulated using10



the hazard fun
tion. For the observations remaining at risk, the number 
ensoredobservations is 
al
ulated, as a random binary pro
ess. The pro
edure is repeatedfor time=2 and stops when no more observations remain at risk. The 
ensoringprobability used here was 0.5%. To model dynami
 stru
tures that de
rease withtime the following s
enarios are made:Linear: a de
reasing linear time-dependen
y where �(t) = �0:02t+ 1:Quadrati
: where �(t) = �0:04t� 0:004t2 � 1 representing a de
reasing umbrellashapeStep fun
tion: having shift at t=24 and �(t) = 8<: 1:5 t � 240 t > 24 .Constant: �(t) = 1 for estimating the properties in 
ase where the PH assumptionis not violated.Simulations under the �rst three fun
tions will give information about the powerof the 
ompared tests, whereas with the 
onstant fun
tion the type I error will beassessed. Three test are 
ompared: a) a test based on fra
tional polynomials modeldes
ribed in [1℄ b) the GT test (6) assuming linear transformation for time and 
)the isotoni
 version of GT test (5). The results are presented in �gure 1.The isotoni
 test presents the best power for all non-
onstant fun
tions, whereasthe 
onventional GT test gives the lowest power. For every shape the power fromfra
tional polynomial is lower that this from isotoni
 regression. One would expe
tthat this advantage of the isotoni
 test is eliminated in 
ase of a non-monotoni
fun
tion. The more 
exible approa
h as the fra
tional polynomials should presenta better performan
e in 
ase of the 
at quadrati
 fun
tion. This is not the 
ase, asoutlined in �gure 1: isotoni
 regression gives higher power for this shape as it givesfor a step fun
tion. However, the pri
e one has to pay for the in
reasing power inthe isotoni
 test is a higher type I error.11



6 Case Study in time-varying Cox modelThe data set used to illustrate the above approa
hes 
ontains 141 observations from
hildren having a
ute leukemia (ALL). The endpoint was overall survival time. Theprobability to die within a period of 7 days to about 10 years follow up, has beenfound to be dependent upon the following binary variables:- Remission after the �rst indu
tion (REMI, 1: yes )- ALL relapse after the �rst Chemotherapy (RELP, 1: yes )- The size of massive spleen below the rib (MSPS, 1: > 1 
m )- White blood 
ell 
ount (WBC, 1: > 60:6 109=L )The survival time is measured in YEARS. The main of the study was to estimate ifthere is a time variation in the e�e
t of MSPS, and in 
ase of eviden
e to des
ribethis variation. The sample is 
hara
terized by a high event rate (122/141), and thevalue of devian
e in absen
e of any predi
tor is estimated to be 1037.59.The Cox PH model with forward LR sele
tion has been applied and table 1 showsthe estimated 
oeÆ
ients. Time variation in the predi
tive value of MSPS has beentested applying Grambs
h and Therneau test, Kaplan-Meier 
urves (�gure 6) andsmoothing the S
hoenfeld residuals using splines, fra
tional polynomials and isotoni
regression (�gure 3).Table 1: A
ute lymphoblasti
 leukemia study: The PH Cox model. The devian
e is957.08 with 5 degrees fo freedom.Variables CoeÆ
ients SE p-valueRELP 0.507 0.219 0.021REMI -0.991 0.387 0.010MSPS 0.549 0.203 0.007WBC 0.785 0.232 0.000CONTS -0.974 0.362 0.007These di�erent methods are more or less in agreement: there is a dynami
 e�e
tfor MSPS. The Grambs
h and Therneau test results in a test value 3.930 and the12
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Figure 2: Kaplan-Meier 
umulative survival 
urves for MSPS.
orresponding p-value is 0.047. Fitting the varying 
oeÆ
ients model using splines,the 
onstant predi
tor lies out of the 
on�den
e bands for more than 10% of the totalnumber of events (�gure not shown). There is a de
reasing positive prognosti
 valuefor MSPS. Children that do not have massive spleen have better prognosis thatde
reases progressively, and after about four years the dire
tion of the prognosis
hanges. This 
on
lusion is quite strange and against any biologi
al plausibility.However a possible explanation 
ould be the following: perhaps many 
hildren geta very intensive 
hemotherapy that is e�e
tive against the tumor but is also tooburdensome. So, it may 
ause a preliminary death to many 
hildren. But on
e a
hild over
omes that 
ru
ial period and does not relapse, it has the best 
han
es tosurvive.By isotonizing the S
hoenfeld residuals (�gure 3) the appropriate time-
utpoints arerevealed. The 
on�den
e intervals 
orrespond to fra
tional polynomials. Howeversome of the resulting steps 
ontain very few events and therefore do not o�er a lotof information while in
reasing the degrees of freedom. Ea
h group is restri
tedto 
ontain at least 10% of the total number of events. After elimination of those13
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Figure 3: Smoothing the s
aled S
hoenfeld residuals for MSPS.groups, model 8 
an be written for the resulting time-
utpoints:�(t) = �0 + �1 � I1:98(t) + �3 � I3:52(t): (11)The time-strati�ed Cox model 
an now be �tted again to estimate whether some ofthe It(t) variables are non signi�
ant predi
tors and to delete them. Re
all that any
oeÆ
ient � that is found to be non signi�
ant 
orresponds in a union of the abovede�ned time-level sets (table 2). Note that p-value 
orre
tion has to be 
onsideredbe
ause of the multiple 
omparisons i.e. a = 1 � 
p0:95, 
 the number of time-segments.Both time-interval variables I1:98, I3:52 are signi�
ant. The �tted fun
tion with the
orresponding 
on�den
e bands are presented in �gure 4. The dynami
 form �(t)for MSPS is: �MSPS(t) = 1:57 � 1:18 � I1:98(t)� 2:85 � I3:52(t): (12)14



Table 2: Elimination of the time level sets for MSPS dynami
 
oeÆ
ient.CoeÆ
ient Devian
e p-value�0 957.08 0.0000�1 928.59 0.0000�2 915.64 0.0013The �nal a
hieved devian
e have been estimated 915.64, that yields an overall LRtest for PH of 41.44 (p < 0:001). Finally the model 
ontaining all the signi�
antpredi
tors and their time dependent e�e
ts is:h(t) = h0(t)e�(t;x)where�(t; x) = 0:490 �RELP� 1:105 � REMI++[1:568 � 1:184 � I1:98(t)� 2:851 � I3:52(t)℄ �MSPS + 0:235 �WBC� 0:604 � CONTS7 ExtensionsOne 
an image implementations of isotoni
 regression in several approa
hes regard-ing survival settings. John O'Quigley [5℄ for example introdu
ed a test for pro-portional hazards based on the model: �(t) = �0(t)exp[( ~� + 	~�)0X℄ The matrix	 = diag( ~ 1; ~ 2; :::; ~ P) is a s
ore matrix determined by the user. Obviously if~� = 0 the proportional hazards model is re
overed. The model is �tted using thestrati�ed Likelihood, where arbitrary time 
utpoints de�ne the strata, and a sort ofs
ore test is applied to test for ~� = 0: Isotoni
 regression 
an be easily introdu
edinto this 
ontext and improve the performan
e of this approa
h.Another assumption undertaken by the Cox model is that ea
h variable enters themodel linearly, assumption that may also be violated. This 
ase entails that both
oeÆ
ient and RR depend on the variable (� = �(X); RR = exp(�(xi) � �(xj))).The adequa
y of the linear form of a predi
tor in the Cox model 
an be visualized bysmoothing the martingale residuals plotted against the predi
tor. If the shape seems15
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Figure 4: Isotoni
 �t for time-dependent 
oeÆ
ient for MSPS.not linear, the predi
tor has to be transformed. An approa
h similar to this usedfor modeling time variation 
an be applied to model properly non linear predi
tors.An alternative approa
h that uses step fun
tions in modeling dynami
 stru
tures isa

omplished with CART [10℄. The main advantage provided is that the time-
utpoints are not prespe
i�ed, but the pruning parameter has to be 
al
ulatedthrough 
ross validation. The PAVA algorithm 
an modify the splitting 
riteria,to in
lude monotoni
ity restrains if so required.
16
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