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Abstract

A shrinkage type estimator is introduced which has favorable properties in
binary regression. Although binary observations are never very far away
from the underlying probability, in all interesting cases there is a non-—
zero distance between observation and underlying mean. The proposed
response smoothing estimate is based on a smoothed version of the ob-
served responses which is obtained by shifting the observation slightly to-
wards the mean of the observations and therefore closer to the underlying
probability. Estimates of this type are very easily computed by using com-
mon program packages and exist also when the number of predictors is
very large. Moreover, they are robust against outliers. A combination of
response smoothing estimators and Pregibon’s resistant fitting procedure
corrects for the overprediciton of the resistant fitting in a very simple way.
Estimators are compared in simulation studies and applications.

KEYWORDS: Logit model, resistant fitting, response smoothing estimator,
shrinkage, weighted estimation, data sharpening.



1 Introduction

The usual method of fitting binary regression models is maximum likelihood with
favourable asymptotic properties but high sensitivity to ’outliers’. In particular
if the number of covariates is high as compared to the number of observations,
unstable estimates are to be expected. Along with the development of diagnostic
tools for binary regression models (e.g. Pregibon (1981), Landwehr, Pregibon &
Shoemaker (1984), Fowlkes (1987)) robust estimation procedures have been sug-
gested. Pregibon’s (1982) resistant fitting procedure is based on the downgrading
of the influence of observations with high residuals. Copas (1988) considers the
substantial bias of resistant fitting which yields numerically larger coefficients,
yielding a more extreme fit, closer to 0 or 1. He considers a bias corrected version
and proposes a misclassification model where transpositions between the possible
outcomes 0 and 1 happen with a small probability. Carroll & Pederson (1993)
study an estimate which is closely related to Copas’ misclassification estimate

but which is consistent for the logistic model.

Alternative approaches to estimation in binary regression which aim at high di-
mensional settings are based on penalized likelihood estimation. Marx, Eilers &
Smith (1992), LeCessie & van Houwelingen (1992) and Segerstedt (1992) con-
sider ridge regression within the framework of generalized linear models. In ridge
regression a term is added to the likelihood which penalizes the squared length
of the vector of regression parameters yielding shrinkage of the estimate. By
avoiding the ill-conditioning of the information matrix ridge type estimators al-
low the fitting of models even when maximum likelihood estimates do not exist.
More recently, Klinger (1997) proposed shrinkage methods based on soft thresh-
olds which have similar properties. Tibshirani (1996) proposed a shrinkage type

estimator called Lasso which is also connected to subset selection.

In the following a simple and easily implemented method is proposed to obtain
improved estimates which are robust and well adapted to the case of many predic-
tors. The influence of observations may be downgraded by choosing an influence

function in the spirit of M-estimation (Hampel et al. (1986)). As Copas (1988)
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remarks, the choice of the influence function and its associated tuning constant
is essentially arbitrary. Thus he arrived at resistant fitting by modelling random
misclassification parts of transpositions between 0 and 1. The approach followed
here also starts from the observation that in binary regression the only alterna-
tive to the observations y; € {0,1} is its counterpart 1 —y; € {1,0}. But instead
of assuming transcription errors the effect of observations y; is downgraded by
introducing its counterpart 1 — y; and putting different weights on these pairs of
observation. In the extreme case where both observation have the same weight
the effect is strong shrinkage of the estimate, an effect which is comparable to
observing y; = 0.5 which is not a recordable observation in binary regression. In
contrast to other shrinkage type estimators like ridge regression and the Lasso,
shrinkage is not obtained by restricting the range of the parameters but by explic-
itly exploiting the discreteness of binary observations. The essential point is that
estimates are dramatically improved just by using common program packages

which allow weighted estimation like e.g. S-PLUS or SAS.

In Section 2 the basic concept of response smoothed estimation is outlined. Sec-
tion 3 is an illustration of the estimation in the simple setting of a binary covari-
able where estimation of parameters is strongly connected to the estimation of
odds ratios. After considering methods how to choose the tuning parameter, in
Section 5 simulation results show the performance of the estimator. In Section 6
the method is generalized by linking the transformation estimate to Pregibon’s
resistant estimate. Simulation results show the improvement of the resistant es-
timate also in the case of contaminated data. After deriving properties of the
generalized estimate the method is illustrated by an application to a real data

set.

2 Response smoothing estimators based on smoothed max-
imum likelihood estimation

The model investigated is the binary regression model



mi = P(yi = 1|2;) = h(z;B)

where h is an appropriate response function, e.g. the logistic distribution function
h(n) = 1/(1 + exp(—n)). Let the data be given by (y;,x;),7 = 1,...,n, where
y; € {0,1} are the responses and x; represents the covariates. The original data

set of n observations is doubled by defining

yn+i:1—yi7xn+i:xi7 Z:Ln

Thus in the enlarged data set one has for each observations y; its counterpart

1 — y; with identical covariate value z;.

The weighting scheme used in estimation distinguishes between the original data
(yi, 25),4 = 1,...,n, and the pseudo data (y;, z;),i = n+1,...,2n. The weighting
scheme puts weight 1 — «; on the observations from the original data and «; on
the pseudo observations corresponding to y; where «; € [0,0.5]. Instead of the

usual log-likelihood one considers the weighted log-likelihood
2n
ly(B) = Z wili (yi, mi)
i=1

where ;(y;, m;) = yilog(m;) + (1 — y;)log(l — m;) with m; = h(z}f3) is the log-
likelihood contribution of observation ¢ and

w; = { 1— o z <n

a; 1> n.

The parameters «; specify the amount of smoothing which is applied. For a; =0
only the original observations are used, and usual maximum likelihood estima-
tion is obtained. With increasing «; the pseudo observations are increasingly
influential. Since m; = m,4; = h(z}3) the log-likelihood reduces to

n

() = > (1—a){yilog(m) + (1 — yi)log(l — m;)}

2:1 +a;{ (1 — y;)log(m;) + yilog(1l — m;)}

= Z(ai + 4 (1 — 20;))log(m;) + (1L — a; — yi(1 — 2a))log(1l — m;).

1=1



It is seen that if o; = 1/2 the contribution of observations y; and y,.; = 1 — y;
reduces to

0.5{log(m;) + log(1 — m;)} = 0.5log(m; (1 — m;)).

Thus the log-likelihood depends on the data only through m; and the contribution
takes its maximum value at m; = 0.5 yielding shrinkage of B Ifa; =0,i =

1,...,n, one obtains the usual log-likelihood.

Alternative forms of the weighted log-likelihood are given by

n

lo(B) = Z(l — ;)% a; Yilog(m) + o (1 — a;)' " ¥ilog(l — m;)

1=1
n

= ) (1 —ay)log(1 — |y — ml) + alog(ly; — mil).

i1
The corresponding score function s, () = 0dl,,/00 has the form

2n

= " wi(0h(1;)/0n) (yi — ;) [0}

=1
n

= Z(l — a;)a; (Oh(1:) ) On) (i — mi) /07 + i (Oh(m:) /On) (1 — y; — ™) [0}
= Z%{yi — i + oy (1 = 2y;) (O () /On) [ o}

where Oh(n;)/0n is the derivative at ; = x}3 and o7 = m;(1 — ;) is the variance

at n;. For the logit model one obtains the simpler form

sw(f) = Ziﬁi(yi—ﬂi+ai(1—29¢))

= sz(yz — T+ (—1)%041').
i=1

From the estimation equation s,(3,) = 0 one has with #; = h(z!5,)

n

Zzi(y, 1) oy) Zx 7i;. (1)

=1

The latter form shows the effect of smoothing. In the sufficient statistic
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the observation y; is replaced by the smaller value 1 —«; if y; = 1 and replaced by
a; if y; = 0. Thus the essential effect is that the observation y; itself is shrinked
towards 0.5. It is easily seen that for a; = 0.5 the flat estimate Bw =0.01is a
solution of the estimation equation. It is noteworthy that the specific weighting
scheme with 1 — «; and «a; on the pair of observations yields estimation equations
which do not incorporate weights in the score function. For estimation equations
of this type see Carroll & Pederson (1993) and Section 6. Instead the effect of
the smoothing is seen from the term y; + (—1)%a; which replaces the original
observation by a smoothed observation closer to 0.5. This effect is the cause why

the solution Bw of the equation sw(ﬁw) = 0 is called response smoothing estimate.

The consideration of pseudo-observations may be seen as a way of deriving the
estimate and, more important, as a way how to simply obtain estimates from com-
mon program packages. As is seen from the score function, pseudo-observations
are not needed. The actual modification is that the original observations y; are
transformed into y; + (—1)¥qy, a transformation which is well motivated by the
fact that observations y; € {0, 1} are always a crude exaggeration of the underly-
ing probability 7;, since y; is never equal to ;, except in trivial cases. With the
focus on data transformation it may also be called data transformation estimate.
The concept is similar in spirit to the more recently introduced methods of 'data
sharpening’. For example Choi & Hall (1999) sharpen the data by making them
slightly more clustered than before in order to reduce bias of density estimators.
Although it is unusual to smooth across the response the method yields improved
estimates which exist in cases where the maximum likelihood estimate fails and

corrects for the overprediction of the resistant estimate.

3 Low dimensional case: log odds ratio

A simple case which is of interest of its own is given if the single covariate takes
only two values, for example treatment or placebo. Then estimation of parameters
corresponds to the estimation of odds ratios or transformations of log odds ratios.

A vast body of literature exists for this case, see e.g. Parzen, Lipsitz, Ibrahim



& Klar (2002) who recently proposed an estimate that always exists. Here odds

ratios are used as an example in low dimensions.

Let the binary covariate z given in effect coding z € {1, —1} and the two response
probabilities m = P(y = 1|z = 1),m, = P(y = 1|z = —1) be specified by a logit

model. Then the parameters are given by
1 . .
Bo = §(log1t(7r1) + logit(ms)),
1 ) .
= §(log1t(7rl) — logit(my)),

where logit(m;) = log(m; /(1 —7;)) and B = Llog({m /(1 —m)}/{me/(1 —m)}) is
(apart from the factor 1/2) the log odds ratio. Let the weights for the smoothed
estimates be given by a; = «, thus only distinguishing between original and
pseudo observations. Since the model is saturated one may compute the smoothed

estimates of my, my. With tuning parameter a one obtains after some calculation
Tla =P1+a(l = 2p1), Toq = po + a1 — 2py)

where p;(py) denotes the relative frequencies for y = 1 given x = 1(z = —1)
in the original sample. For o = 0 one obtains the relative frequencies 7 4= =
D1, T2,0=0 = p2. For 0 < o < 0.5 the estimates are smoothed towards 0.5. This is

easily seen from the reparameterization

Tia =7P1 + (1 —7)0.5, 704 = yp2 + (1 —7)0.5

where v = 1 — 2. The shrinkage of the corresponding parameter estimate Bm

towards zero is seen from

- 1 R R
Bra= §(log1t(7r17a) — logit(a4))-
Bias and variances of 7; , as estimators of 7; are given by
bias(fri,a) = E(ﬁ-i,a — 7T2‘) = (1 — ’)/)(05 — 7Ti),
var(; o) = mi(l —m)/n,

where ny(ng) is the number of observations at # = 1(x = —1). Since 0 <y <1

smoothing decreases the variance but adds some bias which is positive for 7 < 0.5
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and negative for 7 > 0.5. The MSE optimal estimator which minimizes the mean

squared error MSE= E'Y_.(m; — @i )* depends on the underlying probabilities.

By usual minimization procedures one obtains the optimal smoothing parameter
(5 —m)?+ (.5 —my)?

m (1 —my)/ny + (5 — )%+ ma(l — ) /ng + (5 — ma)?

One has Yopt = 1, i.e. the maximum likelihood estimator, if and only if 71,75 €

Topt =

{0,1}. In all other cases the maximum likelihood estimator may be improved
by choosing an appropriate tuning parameter. Thus for appropriate choice of
v the maximum likelihood estimators can be improved in all cases of practical

relevance.

The dramatic improvement of estimates in the finite sample case is demonstrated
for ny = ny = 10 and m; = 0.1, m = 0.8. Since (; corresponds to the log odds
ratio the mean squared error for ; is shown in Figure 1 for varying parameter

«. The usual maximum likelihood estimate
B = llog p/(1—p)
2 T pa/(1—po)
can equal co(p; = 1) and —oo(py = 1) with positive probability. Thus for a« — 0
the mean squared error tends to infinity. As is seen from Figure 1 there is a
distinct minimum where mean squared error is minimized. For o > 0 the estimate
always exists. It is much less sensitive if « is larger than the optimal value than in

the case where @ — 0 and therefore closer to the maximum likelihood estimate.

In the even simpler case without covariates the estimator reduces to 7, = (1 —
a)p+a(l—p) = yp+(1—~)0.5 where p is the relative frequencies and v = 1 —2a.
Thus one obtains a convex combination of the mle p and 4 = 0.5. Estimators of
this type may also derived from a Bayesian viewpoint assuming a beta binomial

distribution with prior mean 1 = 0.5 (see Santner & Duffy (1989), p.25).

4 Choice of shrinkage

In the general case the weights «; are connected to single observations. In analogy

to shrinkage in ridge regression where one shrinkage parameter is used one wants



the shrinkage to be determined by few tuning parameters which have to be chosen
appropriately. The simplest case of a constant tuning parameter o; = « chosen
from [0, 0.5] implies for o > 0 shrinkage of all parameters including the intercept.
The estimates 7; are shrinked towards 0.5. However, this seems only adequate if

the underlying probabilities are symmetrically distributed around 0.5.

If an intercept is included, which will be the case in the following, the usual

maximum likelihood estimate for the logit model has the property
1
- oy 2
y 2= )

where § = n=' Y, y; is the mean over all observations. In order to retain this

property for arbitrary y one has to use different weights for y; = 0 and y; = 1.

Let g denote the weight for y; = 0 and a; denote the weight for y; = 1, i.e.
o =agify; =0, a0 =y ify; = 1,0 =1,...,n. Then by considering the first
equation of the system of equations (1) which corresponds to the intercept one

obtains
E Yi — N1 + Nglyg = g Uy
i i

where n; is the number of observations with y; = j. Some calculations show that
g=n"'>#; is fulfilled if

—— (g (3)
where ay € [0,7]. Thus the pseudo observations in (1) are given by

1—041 if yzzl
Q if yZZO

yi + (=) = {

In the extreme case oy = 7, @1 = 1 — ¢, one obtains y; + (—1)¥; = § and 71; = §
is a solution of (1). Then the parameter §' = (5o, fi, .. ., 5,) which weights 2’ =
(1,21,...,x,) is estimated by 3 = (f,0,...,0) with Gy = exp(7)/(1 + exp(7)).
Thus reduction to just one tuning parameter, say a = «g, should be based on

using «; = o if y; = 0 and «; = «y if y; = 1 where (3) has to be fulfilled.



The corresponding weighting scheme for observations and pseudo-observations is

given by
1-{(1-9)/7}¥a i<n
w; = .
{-9)/5}¥a i>n
where y;, i = 1,...,2n are observations and pseudo-observations.

Property (2) results from the symmetry of the logistic distribution and does not
hold for models with asymmetrical response function, e.g. the log-log or the com-
plementary log-log model which have response function h(n) = 1 —exp(— exp(n))
and h(n) = exp(— exp(n)) respectively. For asymmetric distribution functions it
is suggested to reduce the number of tuning parameters by specifying the weight
o for y; = 0 and a4 for y; = 1 and performing a grid search across the values of

(Oé(), 041) € [0 05]2

A data driven choice of the tuning parameter may be based on similar concepts
as in smoothing methods. There is a wide body of literature on bandwidth
choice in nonparametric regression and density estimation. Classical methods
aim at approximately unbiased estimations of mean average squared error or the

expected Kullback-Leibler discrepancy.

Following Hurvich, Simonoff & Tsai (1998) we do not aim at the bandwidth
which minimizes mean integrated squared error or similar measures but want to
approximate the average squared error for the observed data set. Thus instead of
a measure which is optimal for given sample size and design the choice is closer
connected to the observed data set and therefore is more relevant to the data

analyst. The criteria used are the averaged squared error

ASE = Zi(m — )%,

averaged Kullback-Leibler discrepancy

iy 1_7ri
AKL:Zimlog (7%—) + (1 —m;)log (1—7%)

1 )

and averaged L;-distance
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The latter is considered since it is strongly connected to classification.

In cross validation or leaving-one-out methods successively one observation y; is
left out and the estimate 7;, based on the reduced data set, is understood as an
estimate of m;. If in the criterion 7; is replaced by y; one obtains, e.g. for the

squared error,

CVa(SE) = 3 (i — 70)*

7

In the following we will consider ASE, AKL, AL1 based on smoothing parameters

which are optimized by cross-validation for each simulated data set.

5 Comparison of maximum likelihood and response smooth-
ing estimators

In a simulation study the improvement of the estimates is investigated. The
parameters for the underlying model for the number of predictors p ranging from

2 to 16 are given by

p= 2 B =(0,1,02),

p= 4: B =(0,1,0.7,0.4,0.1),

p= 8 3 =(0,1,7/8,6/8,...,1/8),
p=16: B =(0,1,15/16,14/16,...,1/16).

For binary predictors effect coding is used with z € {—1,1}, for continuous
predictors the z;'s have been drawn from a uniform distribution with support
[—2,2]. All simulations have been performed by using the fitting procedure for
the logit model provided by R, allowing for 50 iterations and termination criterion

0.0001.

In the first column of Table 1 and Table 2 the squared error of the maximum
likelihood estimates are given. These are contrasted to the response smooth-
ing estimates where optimal smoothing parameters were chosen by cross vali-

dation based on an error measure. The resulting squared error losses are de-
noted by CV(KL), CV(SE) and CV(L1) for Kullback-Leibler, squared error and

11



Lq-distance. The individual improvements for simulation s may be measured
by CVs;/M L where CV is the loss based on cross validated tuning parameter
and ML, is the loss for the maximum likelihood estimate. Since the distribu-
tion of CV;/MLg is skewed the mean across logarithms is considered. Since
n~'> In(CV,/ML) = In((T], CVi:/M L)'/") this corresponds to the logarithm
of the geometric mean. In Table 1 the means of In(C'V;/M L) are abbreviated
by InCV(KL),InCV(MSE),InCV(L1) according to the loss function which is

used in cross—validation.

It is seen from Table 1 that for two predictors already for sample size n=20
asymptotics is kicking in and there is not much space for improvement. However,
in interesting cases, when the number of predictors is eight or higher, estimates
are strongly improved. For example with eight variables in the predictor and
n=30 the squared error loss is strongly decreased to about 53 percent. With
termination criterion 0.0001 Fisher scoring stopped below the maximum of 50

iterations for all of the 200 simulations.

The effect is illustrated in Figure 2 where the Kullback-Leibler loss for the max-
imum likelihood estimates is plotted against the loss resulting for the smoothed
estimate for 200 simulations. The underlying model is a logit model with p=8
binary predictors and sample sizes n=20 and 30. It is seen that in particular
for data sets which produce estimates which are far from the true values the
estimates are strongly improved. Only if maximum likelihood estimates are very
good with losses around 0.05 there is not much space for improvement and the

response smoothing estimate is not better than the ml estimate.

The consideration of losses which are defined for the estimation of the probabil-
ity does not show the heavy instability of the maximum likelihood estimate of 3.
Therefore Figure 3 shows the deviations || 3, — 3 || against || Bar, — 8 || for the
simulated data sets where ﬁw is the response smoothing estimate. The data are
the same as in the lower panel of Figure 2 (binary covariables, p = 8, n = 30).
The line in Figure 3 again shows the limit where maximum likelihood estimates

have better fit than response smoothing estimates. It is seen that for response
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smoothing estimates || 3, — 4 || has maximal values around 4 whereas the devi-
ations || By — B || take values up to 200, signaling that estimates deteriorate.
Even in these cases the algorithm showed convergence within 50 iterations and
0.0001 as termination criterion. The strength of the effect on the estimates of 8
is seen from Table 3, where the averaged deviations || 5 — 3 || as well as the effect

in individual data sets are given for 200 simulations.

6 Generalized response smoothing estimators

The robust-resistant estimates due to Pregibon (1982) use weights which depend
on the design point x; or/and the true probability. The weights are used to
downgrade observations with high residuals. What looks intuitively like a sen-
sible concept regrettably yields estimates with a strong tendency towards over-
prediction with the effect that estimates of # are numerically larger than the
true values. In the following it is shown how the combination with the response
smoothing estimator keeps the robustness of the estimation while correcting for

the overprediction of Pregibon’s estimate.

Let in the general case ¢; denote the weight on the original observations (y;, x;)

and ¢; denote the weight on the pseudo data (Ynai = 1 — Y, xpay = 3),0 =

1,...,n. The weighted log likelihood which uses original and pseudo data is
given by

lw(B) = Z@'{yz‘ log(mi) + (1 — ;) log(1 —m) } +
+6:{(1 — ;) log(m;) + y; log(1 — )}

With h; = (0h(n;)/0n)/o? the corresponding score function has the form

sw(B) = Zxihz’{(sz’(yz’_ﬂ'i)"‘Si(l_yz’_ﬂ'i)} = Zxihi{yi(éi_gi)_7Ti(6i+gi)+gi}-

=1

In order to obtain a simpler form let the weights d;, 8; be transformed by
E; = 61 + SZ o; = Sz/a’:‘z

13



corresponding to

51‘ = &5, 5@ = (1 — Oéi)EZ'. (4)

This gives after some derivation the closed form
n
suw(B) = Z@zihi{yi + (-1)¥a; — )}
i=1
yielding the estimation equation
Zgzxzhz{yz — T+ (—1)%0(2'} = 0. (5)
i=1

The transformation of weights is chosen such that «; plays the same role as in
Section 2. But in addition now weights ¢; are included. Estimation equation
(5) represents a general form which is usually used in robust estimation. If
¢, = 1,a; = 0 equation (5) yields the usual maximum likelihood estimate. If
a; = 0 and ¢; = ¢(z;, m;) one is in the so-called Mallows class (Mallows (1975)),
for €; = €(x;, m;, y;) one obtains the Schweppe class (Hampel et al. (1986), see also
Carroll & Pederson (1993)). From considering the general form 0 = > €;2;h;{y; —
mi—c(x;, §)} (Carroll & Pederson (1993)) one sees that in the response smoothing
estimate the debiasing factor c(z;, 3) is replaced by (—1)¥ ;. Pregibon’s (1982)

estimate uses o; = 0 and the weight

Q(%Ji,yi) = w(yz- - 772‘)

where
() = 1, if Jul <1 — exp(—7/2)
=1 {47/ log(1 — [u)}'”2, otherwise

with the tuning parameter v which in Pregibon’s examples is taken to be (1.345)?
in order to obtain estimates with approximately 95% asymptotic relative effi-
ciency. By the incorporation of estimates (—1)¥; the overprediction of Pregi-

bon’s estimate should be corrected while being resistant to outliers.

It should be noted that (5) can be considered as a starting point for the estimation
procedure. The derivation from original and pseudo observation is chosen to show
that program packages which allow for weighting may be used by plugging in the

corresponding weights from equation (4).

14



If ¢; depends on 3 second derivatives of s,, are more difficult then in the usual case.
In order to keep computation simple we used an iterative procedure by solving
(5) with weighted Fisher scoring. For fixed «; and ¢; given by w(y; — x}08xr) one
obtains by weighted Fisher scoring 3. Replacing w(y; —28y1) by w(y; —z31)
one obtains the next iterate 5(2), etc. Convergence was fast, below four cycles for
B(i). The only modification is that weighted Fisher scoring now uses two weights,

«; for the response smoothing and ¢; for the incorporation of Pregibon’s weights.

Table 4 shows the results for p = 8 binary covariates with n = 30. For the esti-
mation of probabilities the squared error averaged across simulations are given.
The performance on individual data sets is measured by the log of the proportion
between squared error loss for the ML estimate and the considered estimate. For
the estimation of the parameter, the distance | 3 — 8 || is considered together
with the log proportion where the maximum likelihood estimate 3, is compared

to the considered estimate, in the form log(|| 3 — 8 || / || Bur — B ||)-

It is seen that, due to overprediction, Pregibon’s resistant estimate is worse than
the usual maximum likelihood estimate. Although the response smoothing im-
proves estimates strongly, the combination of response smoothing and resistant
estimation shows some additional improvement. In addition, the combined esti-
mate is considered where both tuning constants, o and Pregibon’s ~, are chosen
by cross-validation. However, the effect is weak, in particular since the compu-
tational effort is much higher. Fig 4 shows the results for Pregibon’s estimate
with v = 1.345? as compared to response smoothing combined with Pregibon’s
estimate. For clarity estimates where || 3 — 8 ||> 50 are denoted by a cross. It
is seen that in these cases Pregibon’s estimate is equivalent to the ml estimate,
for all other data sets the resistent fit is worse than the ml estimate. In contrast,

the combined estimate improves almost in every case.

Since resistant estimates are based on the concept of downweighting observations
with high residuals it might be argued that the improvement is due to the lack
of outliers in the data sets. However, ‘a certain number of outliers are bound to

occur even if the assumed model is correct’” Copas (1988). Thus, outliers should
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be present in the simulated data sets. In order to strengthen the effect, a small
simulation with contaminated data was performed (8 binary predictors, n = 30).
From the 30 observations 5 randomly drawn observations have been transposed
by replacing the observations y; by 1 —1y;. Table 5 shows the results for Kullback-
Leibler loss as cross—validation criterion. It is seen that contamination stabilizes
the ml estimate as well as the resistant estimate but response smoothing is an
efficient tool to improve the estimates. For example the squared distance between

the estimate and the true value is reduced from above 8.7 to 1.6.

7 Application

Data which have often been used in diagnostics of binary data are the vaso—
constriction data from Finney (1947). For n = 39 observations it has been
measured whether vaso-constriction of the skin of the digits occurs after the
inspiration of air. The data vary across volume of air (VOL) and inspiration rate
(RATE) which are used as explanatory variables in logarithmic form. Pregibon
(1982) shows that two values are poorly accounted for by the logistic model (see
also Atkinson & Riani (2000)). If these two data are left out the data may
be completely separated by the fitting of the logistic model, an effect which is

favourable in discriminant analysis.

Table 6 shows the estimates for various fitting methods, maximum likelihood,
weighted fitting with cross-validation based on «, Pregibon’s resistant estimate,
resistant estimate with response smoothing and cross-validated choice of o and
cross-validated choice of o and . Pregibon’s estimate has the largest values
due to the tendency to overprediction. While simple response smoothing yields
rather small values the combination of Pregibon’s resistant estimate and response
smoothing yields values in the middle which still are smaller than the maximum
likelihood estimates. Given that the existence of maximum likelihood estimates
depends on two observations and therefore the data contain not much information

about the slopes of volume and rate, this slightly damped estimates seem sensible.
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The effect of damping by « is illustrated in Figure 5, where the simple weighted

estimate and weighting with resistant fitting is shown.

8 Approximation results

Starting from the estimation equation s, (3) = 0 first order approximation yields

B— B~ <M> - su(B).

op
Based on this approximation one obtains the sandwich matrix
cov(B) = F(B)~ cov(su(8)) F(5) ™" (6)
where

is the usual Fisher matrix and

cov (S (0 Zx z;'e <az> (1—20q;),

(see Appendix). If is seen that for oy; = 0(¢; = 1) the covariance takes the usual
form cov(3) = F(B)~". For the extreme value a; = 0.5 the information is taken
out of the data and one has cov(3) = 0. Thus (6) should only be used for very
small values of ;. In particular for larger values of «; one has to take the bias

into account.

The bias b(5) = E(B) — (8 may be approximated by

= [~ erz < )az(l—Zm)

where 8 has to be replaced by § and ; by #; = h(x;BML).

For the bias corrected estimate (3, — b() one obtains the approximation

b
cov(f) = F~! {sz ? (o7 < )—kvar(ﬁi))}F—l

where



9 Concluding remarks

The considered estimates are based on smoothing across responses. Alternatively
one may see them as data transformation estimates where in the spirit of data
sharpening data are transformed. It is essential that pseudo observations are used
only as a tool of computing the estimates, thus no ‘fake data’ are involved. The
incorporation of (—1)¥q; in the score function is an analogue to the incorporation

of an debiasing factor in general estimation equations.

The essential advantages of the response smoothing estimates are: easy computa-
tion by use of pseudo observations, improvement of mean squared error (compared
to mle), improved existence of estimates, correction of overfitting in resistant fit-

ting procedures and robustness against contamination.

In order to obtain simple estimates only one or two tuning parameters have been
used. Thus the potential of smoothing parameters «; which could be adjusted
to the position of z; in the design space and the response is not fully exploited.

Future research might evaluate the potential of locally adapted smoothing.

Appendix

The weighted score function is given by

sw(B) = s(B) + sa(f)

where

o(0) = T o =)

- Oh(ni) _
sa(B) = inei%% Za;(1 — 2y;)
i1

For the first order approximation




derivatives are needed. They have the form

where F is the weighted Fisher matrix

n ah 2
F = .%'Z‘.%Z'IEZ‘U;Q <—> . (7)
2 ien\ay

and ,
- 0%h

= —Ra = ZL’Z'ZZ]Z"GZ'O'»iQ—Oéi 1-2 i)
;:1 iy il = 2u)

B 054
op

Tedious derivation yields

B 2
ww%w»:§jww$@4(%ﬂ (1 = 200",
Under usual assumptions including s(3) = 0,(n'/?), F~!' = 0(n™'), and a =

sup{c;} one obtains

_ e (ﬁ)
o0’

If a = o(n""/?) one obtains

<_85'5175(,5)>_1 —F U4 0,(n )

= F — Ry +0,(nY%) +0,(n"2,). (8)

yielding

33

The approximation of the covariance is given by

3 s\~ -1 -1
ﬂ—ﬂz( ) SulB) = F s+ 0,0

cov(f) = F L cov(sy)F~!

with F from (7) and cov(3) from (8).
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»p n ML CV(KL) CV(SE) CV(Ll) ImnCV(KL) InCV(SE) InCV(L1)
2 10 0.0624  0.0509  0.0511  0.0669 -0.242 -0.222 0.144
20 0.0341  0.0326  0.0332  0.0378 0.014 -0.026 0.112
4 10 0.1163  0.0662  0.0693  0.0940 -0.613 -0.581 -0.265
20 0.0563  0.0401  0.0409  0.0591 -0.342 -0.343 0.087
30 0.0366  0.0310  0.0315  0.0384 -0.144 -0.138 0.043
8 10 0.1496  0.1083  0.1079  0.1105 -0.341 -0.340 -0.336
20 0.1194  0.0618  0.0650  0.0956 -0.695 -0.660 -0.286
30 0.0793  0.0461  0.0486  0.0727 -0.530 -0.508 -0.104
16 20 0.1313  0.1002  0.0994  0.1018 -0.271 -0.277 -0.283
30 0.1362  0.0706  0.0735  0.0954 -0.676 -0.639 -0.430
40 01243 0.0550  0.0575  0.0918 -0.846 -0.813 -0.407

TABLE 1: Simulation results of squared error loss for logit model with binary

covariates with the tuning parameter chosen by cross validation
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p n ML CV(KL) CV(SE) CV(L1) WmCV(KL) InCV(SE) InCV(LI)
2 10 00772  0.0570  0.0591  0.0749 -0.260 -0.246 0.008
20 0.0315 00319  0.0329  0.0365 0.120 -0.131 0.168
4 10 0.1359 00746  0.0809  0.1307 -0.625 -0.565 -0.311
20 0.0616  0.0428  0.0441  0.0590 -0.323 -0.303 0.005
30 0.0339  0.0303  0.0305  0.0350 -0.117 -0.115 0.027
8 10 0.1447  0.1149 01134  0.1104 -0.221 -0.228 -0.281
20 0.1191  0.0675  0.0682  0.0914 -0.609 -0.590 -0.312
30 0.0741  0.0442  0.0453  0.0662 -0.471 -0.448 -0.109
16 20 0.1190  0.1050  0.1031  0.0957 -0.125 -0.140 -0.248
30 01180  0.0691  0.0729  0.0894 -0.577 -0.526 -0.338
40 0115  0.0501  0.0537  0.0803 -0.831 -0.773 -0.401

TABLE 2: Simulation results for logit model with continuous covariates with the
tuning parameter chosen by cross validation.

Kullback—Leibler squared error
n || Bur =Bl | 1B=81 log |l Bur =8I /I18=8I|Bur—08I1 log|lBur—81/18-8I
10 36.857 12.469 -1.958 12.545 -1.947
20 53.670 2.340 -2.975 4.793 -2.810
30 32.032 1.472 -1.941 3.972 -1.830

TABLE 3: Simulation results for logit model with eight binary covariates and
n = 30 with the tuning parameter chosen by cross validation.

Squared log proportion 1 8—28I log proportion
error  log(SE(8)/SE(Bur)) log(Il =811/ 1l Bz = 81

ml 0.079 32.023
resistant, v = 1.3452 0.088 0.152 32.128 0.246
response smoothing 0.046 -0.530 1.479 -1.941
estimate
response smoothing and 0.043 -0.607 1.431 -1.974
resistant, v = 1.3452
response smoothing and 0.043 -0.603 1.466 -1.959

resistant, - cross validated

TABLE 4: Squared error loss and distance to true parameter with mean improve-
ment on individual data sets
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Squared log proportion | 8—06I log proportion
error  log(SE(B)/SE(Bur)) log(| B =811 /|| Bur = B1)
ml 0.084 8.761
resistant, v = 1.345 0.098 0.165 9.782 0.283
response smoothing 0.069 -0.143 1.622 -0.683
estimate
response smoothing and 0.063 -0.237 1.566 -0.721

resistant, v = 1.3452

TABLE 5: Squared error loss and distance to true parameter with 5 contaminated

data

Bo  log(Vol) log(Rate)

Maximum likelihood -2.922  5.218 4.629
response smoothing

acy = 0.05 -1.657  3.405 2.763
resistant estimate -5.328  8.584 7.609
resistant with response smoothing

acy = 0.05, v = 1.3452 -1.947  3.768 3.074
resistant with response smoothing -2.303  4.198 3.463

TABLE 6: Estimates for vaso-constriction data based on logistic model
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MSE(betal)

0.0 0.1 0.2 0.3 0.4 0.5

alpha

FIGURE 1: Mean squared error of 1 for ny = ng = 10, m; = 0.1, mo = 0.8 plotted
against the tuning parameter «
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FI1GURE 2: Squared error loss of the maximum likelihood estimate against the
response smoothing estimate (200 simulations, logit model with eight predictors;
top: sample size n=20, bottom: sample size n=30)
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FIGURE 5: Response smoothing estimate (left) and Pregibon’s estimate with
response smoothing (right) plotted against « for vaso-constriction data
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