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1 Introdu
tionModel-based statisti
al analyses of vital rates on the Lexis diagram has re
eivedmu
h interest over the last two de
ades. Mu
h of the early work has been donewithin a likelihood framework, see Holford (1983) and Clayton and S
hi�ers(1987a, b). The most general of the approa
hes proposed in these papers isthe so-
alled age-period-
ohort model. Later Bayesian approa
hes have beensuggested within a hierar
hi
al model, whi
h has the advantage that they 
anin
orporate additional parameters for unstru
tured variation, in order to a
-
ount for overdispersion. Also they 
an impose a temporal stru
ture on theage, period and 
ohort parameters whi
h improves estimation properties andfa
ilitates predi
tion of future rates (Berzuini, Clayton and Bernardinelli, 1993,Besag et al., 1995, Knorr-Held and Rainer, 2001).For purely spatial data, vital rates are typi
ally analysed within the Bayesianframework assuming so-
alled Markov random �eld priors, see Besag et al. (1991)and Clayton and Bernardinelli (1992). Su
h models over
ome problems withheterogeneity in the underlying population 
ounts and provide a spatially smoothedversion of the 
rude rates, if there is eviden
e for a spatial pattern. Alterna-tively or additionally, unstru
tured (spatial) variation 
an be in
orporated aswell.For a full model-based spa
e-time analysis of vital rates only preliminarysuggestions have been made so far. Bernardinelli et al. (1995) suggest a modelwhi
h already in
orporates spa
e-time intera
tion, assuming linear time trends.They work with age-standardized rates, whi
h allows to ignore age- and 
ohorte�e
ts in the analysis. However, the un
ertainty in the 
orresponding estimatesis negle
ted in su
h a two-step analysis; a further pra
ti
al problem is the
hoi
e of the referen
e rates for standardization. Assun
ao et al. (2001) re
entlysuggested an extension of the Bernardinelli et al. formulation with quadrati
instead of linear time trends.Knorr-Held (2000) suggested four di�erent types of intera
tion for spa
e-time data, whi
h allow for a nonparametri
 estimation of the temporal trends,not only of the spatial pattern. However, again, the model does not in
orporateany age or 
ohort e�e
ts. A di�erent route has been taken by Knorr-Heldand Besag (1998) who in
orporate (time-
hanging) age e�e
ts, whi
h allows inprin
iple for estimation of any age-period intera
tion, in
luding 
ohort e�e
ts.However, their model assumes that spa
e and time are separable, hen
e does2



not in
lude any spa
e-time intera
tion.Re
ently the proposal made in Knorr-Held (2000) has been used by Lagazioet al. (2001) in an analysis of lung 
an
er rates in Tus
any. They found theimportan
e of modelling intera
tions of 
ohort parameters with spa
e, whi
hgave a better �t to the data 
onsidered than intera
tions of period with spa
e.Again, not a full model was presented but the data analysed was standardizedby age in advan
e.The goal of this paper is to provide a framework for a full model-basedanalysis of data strati�ed by age, period and spa
e, with spe
i�
 in
lusion of
ohort e�e
ts. The setup will be fully Bayesian based on Gaussian Markovrandom �eld priors, whi
h has the random walk priors used for the temporalparameters as a spe
ial 
ase (Knorr-Held, 2000, Fahrmeir and Lang, 2001). Themodels we are proposing involve a large number of parameters, so it is vital touse eÆ
ient algorithms for inferen
e via MCMC.A full model-based analyis was also presented by Lagazio et al. (2003) againfor an analysis of lung 
an
er rates in Tus
any. However, they used a single-site MCMC algorithm, whi
h may be disadvantgeous. First, in the 
ase of slowmixing the parameter estimates may be misleading (Knorr-Held and Rue, 2002).Se
ond, sum-to-zero 
onstraints 
an only be in
orporated through ad-ho
 re-
entering approa
hes (i.e. sample ea
h parameter from the full 
onditionalwithout the 
onstraint and re-
enter the parameters subsequently to have meanzero). In 
ontrast, we use algorithms proposed by Rue (2001) for blo
k updatingof ea
h Markov random �eld. This will lead in better mixing of the algorithms.Furthermore, these algorithms have the additional advantage that identi�ability
onstraints on the latent paramter 
an be expli
itly in
orporated in the prior.For 
omparison of several models we use the devian
e information 
riteriaproposed by Spiegelhalter et al. (2002) to assess model �t and 
omplexity. Weillustrate our modelling framework in an analysis of stoma
h 
an
er rates formales in West Germany.The data were given by the "Deuts
hes Krebsfors
hungsinstitut", see Be
kerand Wahrendorf (1997). A des
riptive analysis shows de
reasing mortality ratesfrom 1976 to 1990. The rates are espe
ially high in Bavaria (south-eastern partof Germany), but with a strong downward trend. Boeing et al. (1991) foundseveral risk fa
tors for this mortality pattern as the preservation of meats andsausages by smoking, a high 
onsumption of pro
essed meat produ
ts and alarge number of private wells un
onne
ted to the publi
 water supply in this3



area. Most of these fa
tors were present in Bavaria in earlier days, but theybe
ame less important now. It is therefore of parti
ular interest to investigateif there is eviden
e for spa
e-time intera
tions in these data. Furthermore wewill determine if a period-spa
e or a 
ohort-spa
e intera
tion model is moreappropriate for these data. Finally we will show, how the models 
an be usedto predi
t future mortality rates.The paper is organized as follows. Se
tion 2 outlines the general modellingframework and also gives details about implementation issues, Se
tion 3 thendes
ribes an appli
ation to the dataset mentioned above. We end with some�nal 
omments.2 ModelLet yijl and nijl denote the number of disease 
ases and the number of personsunder risk respe
tively in age group i = 1; : : : ; I, period j = 1; : : : ; J andarea l = 1; : : : ; L. The 
ohort index k = 1; : : : ;K 
an be derived from i andj, depending on the resolution of the age and period e�e
ts (Knorr-Held andRainer, 2001). For example, for data strati�ed by the same grid, k = I � i+ j.In the appli
ation 
onsidered in Se
tion 3, I = 13, J = 15, K = 75 and L = 30.We assume a binomial observation model for yijl given nijl with an unknowndisease probability �ijl. We de
ompose the log-odds �ijl = log(�ijl=(1 � �ijl))of these probabilities additively into (a) main e�e
ts for age, period, 
ohortand spa
e, (b) intera
tion between period and spa
e, or 
ohort and spa
e, and(
) parameters, des
ribing additional unstru
tured heterogeneity in ea
h 
ell(i; j; l).More spe
i�
ally we assume in the most 
omplex formulation that�ijl = �+ �i + 'j +  k + �l + " ÆjlÆkl #+ zijl (1)where � is an inter
ept term, �i is the age, 'j the period,  k the 
ohort and�l the spatial e�e
t. Parameters for spa
e-time intera
tion are denoted by Æjlor Ækl (either period or 
ohort with spa
e; the bra
kets in equation (1) indi
atethat only one of the two options enter in the formulation) and zijl denotesparameters for additional unstru
tured heterogeneity. These parameters willadjust for residual overdispersion after adjusting for the main and intera
tione�e
ts. 4



To a
hieve identi�ability of the parameters, we have to in
lude sum to zerorestri
tions on all main e�e
ts:Xi �i =Xj �j =Xk  k =Xl �l = 0:However, the age, the period and the 
ohort e�e
t are still not identi�able,be
ause any linear transformation of the type�i ! �i + 
 � i; �j ! �j � 
 � j;  k !  k + 
 � k; �! �� 
 � I (2)with arbitrary 
 2 R leaves the log-odds �ijl un
hanged (e.g. Clayton andS
hi�ers, 1987b). We will 
omment later on this issue.2.1 Prior assumptionsFor the inter
ept term � we use a 
at prior, that is:p(�) / 
onst.The age, period and 
ohort e�e
ts are modeled with Gaussian random walkpriors. For example a random walk of �rst order (RW1) for � is:p(�1) / 
onst.;�ij�i�1; � � N(�i�1; ��1) for 2 � i � Iwhere � is a pre
ision parameter. This prior 
an also be written for the ve
tor� = (�1; : : : ; �I)T : p(�j�) / �rg(K�)=2 exp���2�TK���
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where the stru
ture matrix (Clayton, 1996) K� has the form
K� =

0BBBBBBBBBBBBB�
1 �1�1 2 �1�1 2 �1. . . . . . . . .�1 2 �1�1 2 �1�1 1

1CCCCCCCCCCCCCAfor a random walk of �rst order and
K� =

0BBBBBBBBBBBBBBB�
1 �2 1�2 5 �4 11 �4 6 �4 11 �4 6 �4 1. . . . . . . . . . . . . . .1 �4 6 �4 11 �4 5 �21 �2 1

1CCCCCCCCCCCCCCCAfor a random walk of se
ond order (RW2).Similarly, the priors for the period and 
ohort e�e
ts have the formp(�j�) / �rg(K�)=2 exp���2�TK��� andp( j�) / �rg(K )=2 exp���2 TK  � :In general, the pre
ision matrixK has a rank-de�
ien
y of 1 (or 2) for the RW1(or RW2) model. Thus, for example, for the age e�e
ts �, the rank of K� isI � 1 and I � 2 respe
tively. Hen
e all these priors are improper.As pointed out by Knorr-Held and Rainer (2001, page 112), a RW1 modelorder imposes a further sto
hasti
 
onstraint on the age, period and 
ohort pa-rameters; su
h a model will prefer a priori, among all possible values for 
 2 Rin (2) the one where the quadrati
 �rst di�eren
es (weighted with the 
orre-sponding pre
ision parameters) are minimal. This allows us to visually examinethe (non-linear) trends present in age, period and 
ohort parameters.6



For the spatial e�e
t we use a Markov random �eld prior (e.g. Besaget al., 1991). Indeed this prior is similar to a random walk prior:p(�j!) / !rg(K�) exp��!2 �TK���whereK� is now determined through the neighbouring stru
ture of the distri
ts.With K� = (klm)l;m2f1;:::;Lg the o�-diagonal elements klm are �1 for geographi-
ally 
ontiguous distri
ts l � m and zero for all other non-diagonal entries. Thediagonal elements kll are equal to the number of distri
ts 
ontiguous to distri
tl. Usually the distri
ts 
annot be split up into two or even more 
ompletelyseparated pie
es, the matrix K� has then rank rg(K�) = L� 1.The priors for the intera
tion term were spe
i�ed following a rationale orig-inally proposed in Clayton (1996). The idea is to use the dire
t produ
t of thepre
ision matri
es of the main e�e
ts as the pre
ision matrix for the intera
tione�e
t. Here we will only 
onsider intera
tion priors whi
h in
lude some formof temporal dependen
e. Using the terminology used in Knorr-Held (2000),these are 
alled Type II and Type IV intera
tion. We will further distinguishif the intera
tion is between period and spa
e or between 
ohort and spa
eparameters.The Type II model 
an be seen as independent distri
t spe
i�
 randomwalks. Let Æl denote the ve
tor (Æ1l; : : : ; ÆJl)T for spa
e-period intera
tion orÆl = (Æ1l; : : : ; ÆKl)T for spa
e-
ohort intera
tion. Then the prior 
an be writtenas: p(Æj�) / exp ��2 LXl=1 ÆTl " K�K # Æl! :As above the bra
kets indi
ate, that only one option enters in the formulation.The matri
es K� and K are the same as above and 
an be spe
i�ed for arandom walk of �rst or se
ond order.The Type II intera
tion model intrinsi
ally assumes that Æl, l = 1; : : : ; Lare independent a
ross distri
ts. In the Type IV intera
tion model, temporaltrends are assumed to be similar in neighbouring distri
ts.In Knorr-Held (2000) the Type IV intera
tion model for Æ is given for therandom walk of �rst order. The formulation 
an easily be modi�ed to a randomwalk of se
ond order by repla
ing �rst by se
ond di�eren
es. This 
orrespondsto a modi�ed pre
ision matrix for K�.For spa
e-period intera
tion, with Æ = (Æ11; : : : ; Æ1L; Æ21; : : : ; ÆJL)T , the prior7




an be written asP (Æj�) / �(L�1)(T�2)=2 (3)� exp0���2Xl�m JXj=3((Æjl � 2Æj�1;l + Æj�2;l)� (Æjm � 2Æj�1;m + Æj�2;m))21A/ �(L�1)(T�2)=2 exp���2 �ÆT (K� 
K�)Æ�� : (4)This prior is a Gaussian Markov random �eld prior, where not only the spatialneighbours and the �rst and se
ond temporal neighbours, but also the temporalneighbours of the spatial neighbours enter in the 
onditional distribution of Æjl.The density (4) is invariant to the addition of any arbitrary 
onstants atany time j or at any distri
t m. We therefore have to introdu
e J + L � 1additional restri
tions, to make Æ identi�able. For example, we may useLXl=1 Æjl = 0 for 1 � j � J and JXj=1 Æjl = 0 for 1 � l � L� 1:It 
an easily be seen that this impliesJXj=1 ÆjL = 0:Thus the row sums are all zero, that is the intera
tion is 
entred at zero at ea
hperiod and the 
olumn sums are all zero, too, so the intera
tion is 
entred at zeroin ea
h distri
t. A similar model with restri
tions 
an be used for spa
e-
ohortintera
tion.For the term zijl we use a white noise prior: zijl � N(0; ��1). For thehyperparameters �; �; �; !; � and � we assume proper gamma priors G(a; b),with a = 1 and b = 0:05.2.2 MCMC simulationFollowing Besag et al. (1995) we do not dire
tly update zijl but reparametrizethe model and use the linear predi
tor �ijl as an unknown parameter ratherthan zijl, see equation (1). This has the advantage that the full 
onditionalsof all e�e
ts mentioned above are Gaussian and hen
e Gibbs steps 
an be usedfor updating. The linear predi
tor 
an be sampled by independent Metropolis-Hastings steps. 8



The full 
onditional of the main e�e
ts have all a similar form, for examplefor the age e�e
t � we getp(�j::) / exp���2 ��TK���� � exp�� �2 ��T I��+ � ��T��� (5)/ exp��12(�TA��) + (�T�)� (6)where � = (�1; : : : �I)T is a I � 1 ve
tor with�i =Xj;l  �ijl � �� �j �  k � �l � " ÆjlÆjk #!and A� = �K�+�I. The full 
onditional p(�j::) is therefore multivariate normalwith mean A�1� � and pre
ision matrix A�. One 
an easily see that A� is a bandmatrix of the same band-width as the prior pre
ision K�. Similary, the full
onditionals for the period, 
ohort and spa
e parameters are also multivariatenormal with a band width of the pre
ision matrix equal to the band width ofthe 
orresponding prior pre
ision matrix.For the spatial e�e
t we use a 
lever tri
k des
ribed in Rue (2001) andreorder the indi
es of the distri
ts, so that K� and 
onsequently the pre
isionmatrix of the full 
onditional is a band matrix with minimal band-widthm (seeRue, 2001 for details). In our appli
ation m = 10.Using the band stru
ture of the pre
ision matrix, we 
an eÆ
ently samplefrom (6) using the algorithms des
ribed Rue (2001). The idea of these algo-rithms is to use Cholesky de
omposition of the pre
ision matrix, whi
h is veryfast for band matri
es of small band-width. As mentioned above we need tosample 
onditional on the sum to zero restri
tions. This imposes no further
ompli
ation, as also in this 
ase we 
an use an algorithm based on an eÆ
ientCholesky de
omposition of the pre
ision matrix, see Rue (2001) for furtherdetails.Turning to the intera
tion models, the full 
onditional pre
ision of the TypeII model is only 1 and 2 depending on the 
hosen model. In Type IV models,the band width is usually larger. Using the reordered distri
ts, the band-widthof K�
K� is L+m for a random walk of �rst order and 2 �L+m for a randomwalk of se
ond order. Typi
ally the band-width of the pre
ision matrix 
an notbe further redu
ed by another reordering.The full 
onditionals of the hyper parameters are all independent Gamma9



distributed and 
an be sampled in Gibbs steps. Finally, the full 
onditional ofthe linear predi
torsp(�ijlj::) / exp(�ijlyijl)(1 + exp(�ijl))nijl exp0�� �2  �ijl � �� �i � �j �  k � �l � " ÆjlÆkl #!21A ;is not a standard distribution. Using a Taylor approximation we approximatethis with a normal distribution, whi
h 
an be used as a proposal in a Metropolis-Hastings algorithm. With this approa
h we get a

eptan
e rates of 90%-99%.2.3 Predi
tionsAn important aspe
t of our formulation is that it allows for the predi
tion offuture mortality rates while allowing for spa
e-time intera
tion. Indeed, usinga random walk prior, we 
an easily extend our model (1) to predi
t futurein
iden
e rates. The predi
ted log-odds of the mortality at period J + 1 is�i;J+1;l = �+ �i + 'J+1 +  k + �l + " ÆJ+1;lÆkl #+ zi;J+1;l: (7)The period e�e
t 'J+1 
an be sampled by extending the random walk prior tothe future, that is 'J+1 � N('J ; ��1) for �rst order and 'J+1 � N(2 � 'J �'J�1; ��1) for se
ond order. The 
ohort e�e
t  K+1 
an be generated similarly.In the model with Type II intera
tions ÆJ+1;l 
an be sampled the same wayby ÆJ+1;l � N(ÆJl; !�1) in ea
h period l = 1; : : : ; L and analogous for the modelwith 
ohort intera
tions ÆK+1;l.The Type IV intera
tions 
an only be generated by in
luding the restri
tionPLl=1 Æjl = 0 for ea
h period j = J +1; J +2; : : : to be predi
ted. We propose asequential algorithm for this rather 
hallenging task whi
h is des
ribed in detailin Appendix A.3 Appli
ation3.1 Model sele
tionIn order to measure the goodness of �t of our models, we use the posteriordevian
e D = �2 �Xijl (l(�ijl)� l(�̂ijl)) ;10



where l(yijl) is the log likelihood. A low devian
e indi
ates a good �t of theestimated mortality rates to the data.As the devian
e de
reases with the number of parameters, we use the de-vian
e information 
riteria DIC introdu
ed by Spiegelhalter et al. (2002) to
ompare the di�erent models. The DIC is de�ned asDIC = ( �D) + pDwith pD the e�e
tive number of parameters. This e�e
tive number of param-eters penalizes the model 
omplexity so that the models 
an be 
ompared bythe DIC. It is 
al
ulated by pD = ( �D)�D (�̂ijl) :with D (�̂ijl) = �2 �Xijl [l(�ijl)� l(�̂ijl)℄ :Table 1 shows devian
e, e�e
tive number of parameters and DIC of allmentioned models. intera
tion devian
e pD DICRW 1 none 5623.1 39.9 5663.0Type II period 5374.0 196.4 5570.4Type II 
ohort 5235.5 1573.5 6809.0Type IV period 5424.9 269.5 5694.4Type IV 
ohort 5289.5 1483.0 6772.5RW 2 none 5656.8 19.4 5676.2Type II period 5406.2 180.0 5586.2Type II 
ohort 5309.7 1202.7 6512.4Type IV period 5461.8 266.5 5728.3Type IV 
ohort 5358.1 1312.4 6670.5Table 1: devian
e, e�e
tive number of parameters and DIC of all modelsThe results are very similar for both the RW1 and RW2 prior. The devian
eis the lowest for the Type II intera
tions and the highest for the no intera
tionmodel. As mentioned above, a higher number of nominal parameters leadsnaturally to a good �t. However, the �t of the Type IV intera
tion models isnot so good, be
ause it imposes more dependen
e stru
ture on the intera
tion11



parameter than the Type II model.Interestingly the estimated e�e
tive number of parameters for the Type IVintera
tion models is higher than for the Type II intera
tions. This is be
ausein the latter models in many regions the median of the intera
tion parameteris zero for mostly all periods whereas for the former, due to the underlyingMarkov random �eld more parameters are estimated non-zero.The models with 
ohort intera
tions have a mu
h higher number of e�e
tiveparameters without de
reasing the devian
e. This leads to the 
on
lusion, thatthe model with period-distri
t intera
tions is more appropriate for these data.3.2 ResultsWe �rst show the estimated main e�e
ts of the best model in terms of theDIC 
riterion, the model with Type II period-distri
t intera
tions. As the age,period and 
ohort e�e
ts are not identi�able in the RW2 model (see Knorr-Heldand Rainer, 2001), we only show the result for the model based on the randomwalk of �rst order.Figures 1 to 3 displays median and 90% 
redible intervals of the age, pe-riod and 
ohort e�e
ts. One should keep in mind that the patterns 
an betransformed through linear transformations of type (2) without any 
hange inthe likelihood. Therefore only non-linear trends 
an be interpreted. While theperiod e�e
t appears to be roughly linear, the 
ohort e�e
t has an interesting
hange-point around birth 
ohort 1940. After 1940 the e�e
t appear to be lin-ear. However, these estimates are based on few data and should therefore notbe overinterpreted.Figure 4 shows the spatial e�e
t. The highest values are, as expe
ted, in thesouth east of Germany in the di
tri
ts Upper Palatinate and Lower Bavaria.Figures 5 displays the period-distri
t intera
tions for the distri
t of LowerBavaria. In all the models, the intera
tions show a de
reasing trend. A similartrend 
an be seen in the other distri
ts in this area, whi
h indi
ated that - afteradjusting for the overall period trend - there is a de
reasing mortality rate inthe south-east of Germany.The model based on 
ohort-distri
t rather than period-distri
t intera
tion-sprodu
es very unstable estimates (Figure 6). It seems that the estimated globalvarian
e of this intera
tion term is rather high. Consequently, the e�e
ts in thelast birth 
ohorts, whi
h are based on only few 
ases, show high variability. As12
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redible intervals of Cohort-distri
tintera
tions in Lower Bavaria.one 
an expe
t, the e�e
ts in the RW2 model are smoother then in the RW1model.For a further analysis to investigate the predi
tive quality of the di�erentmodels, we �tted the models to the �rst ten observation years, obmitting thelast �ve years, and then made predi
tions for those last �ve years. As the
ohort-distri
t intera
tions appear to be not appropriate for the data, we onlyuse the models with period-distri
t intera
tions here. Figure 7 shows the pre-di
ted median number of 
ases within 90%-
redible intervals (lines) and thea
tually observed data (x) for Lower Bavaria. Note that we have aggregatedthe 
ounts in this distri
t over all age groups.The models without intera
tions produ
e very narrow 
redible intervals andtherefore do not make good predi
tions. The models with intera
tions seem toprodu
e more sensible predi
tion intervals. The median of the predi
ted 
asesis 
loser to the a
tually data and the 90% 
redible intervals 
ontain most of thedata points.For are more detailed analysis, Table 2 gives the per
entage of observedvalues that lie within 
redibility intervals of a given level. Note that this table15



is based on the original grid, i.e. predi
tions have been 
ompared with the a
tualobserved data for ea
h of the 13�15�30 = 5; 850 age group times period timesdistri
t 
ombinations.The �rst thing to note is that the model without intera
tion terms has poor
overage per
entages. The model with intera
tion 
ome 
loser to the a
tual
redibility levels, in parti
ular those based on the RW2 prior. But still theyare all smaller, with the only ex
eption of Type IV intera
tions with the RW2prior, where 62% of the data are 
ontained in the 50% 
redible intervals. Thisindi
ates that this model might over�t the data. Therefore it seems that theType II RW2 model has the best predi
tion qualities: It 
omes 
losest to thea
tual 
redible levels, while not overestimating them.Credibility level no intera
tion Type II Type IVRW1 RW2 RW1 RW2 RW1 RW2(%) (%) (%) (%) (%) (%) (%)50 11 41 22 50 42 6280 20 55 39 62 56 6895 33 62 50 66 64 71Table 2: The per
entage of observed 
ases that lie within predi
tive 
redibleintervals4 Dis
ussionThe spe
i�
ation of model for spa
e-time intera
tion, while adjusting for age,period and 
ohort e�e
ts is a 
hallenging task. In this paper we have proposedvarious formulations whi
h take into a

ount intera
tion e�e
ts between periodand spa
e or 
ohort and spa
e. In our appli
ation, one of these models providea better �t to the data, even after adjusting for the additional 
omplexityof the formulations. Further 
on�rmation of the superiority of this model wasobtained through a study of the empiri
al 
overage per
entages of out-of-samplepredi
tions.The models have a very large nominal number of a priori dependent param-eters. It is therefore advantageous to use blo
k updating MCMC algorithms toavoid slow mixing of the Markov 
hain. Furthermore, blo
king also allows fora proper in
orporation of identi�ability 
onstraints, su
h as sum-to-zero 
on-straints. However, further improvement is to be expe
ted by joint updates of16
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hyperparameters and parameters (Knorr-Held and Rue, 2002).The most 
omplex formulation allows for a dependen
e of intera
tion pa-rameters a
ross spa
e and time, with additional sum-to-zero 
onstraints forea
h area and time point. New methodologi
al developments, as des
ribed inthe Appendix, have been made in order to predi
t this formulation into thefuture.A Predi
tion with Type IV intera
tionsThe prior for the Type IV period-distri
t intera
tion in the RW1 model isp(Æj�) / exp0���2Xl�m jXj=2((Æjl � Æj�1;l)� (Æjm � Æj�1;m))21A :Thus a natural approa
h to predi
t future values of Æ is based on a algo-rithm sequentially in time: We start by sampling ÆJ+1jÆJ ; � where ÆJ+1 =(ÆJ+1;1; : : : ; ÆJ+1;L):p(ÆJ+1jÆJ ; �) / exp ��2Xl�m(ÆJ+1;l � ÆJ+1;m � ÆJl + ÆJm)2! : (8)/ exp��12Æ0J+1(�K�)ÆJ+1 + �Æ0J+1�� (9)with � = �1; : : : ; �J and �i =Pl�m(Æil � Æim). This is the density of a singularGaussian Markov random �eld. Thus we 
an not sample from the density with-out further restri
tions. As in Se
tion 2.1 we will use a sum to zero restri
tionPl ÆJ+1;l = 0. To obtain the restri
ted density, we use a Lemma by Box & Tiao(1973, p.419):Lemma. Let x;a and b be k�1 ve
tors and A and B be two k�k positivesemide�nite symetri
 matri
es. Suppose the rank of the matrixA+B is q(< k).Then, subje
t to the 
onstraints Gx = 0,(x+ a)0A(x� a) + (x� b)0B(x� b) = (x� 
)0(A+B+M)(x� 
) (10)+ (a� b)0A(A+B+M)�1B(a� b)
18



where G is any (k � q) � k matrix of rank k � q su
h that the rows of G arelinearly independent of the rows of A+B;M = G0G and
 = (A+B+M)�1(Aa+Bb):With B = 0 and b = 0 we 
an rewrite (10) as(x� a)0A(x� a) = (x� 
)0(A+M)(x � 
), x0Ax� 2x0Aa+ a0Aa = x0(A+M)x� 2(x0(A+M)
) + 
0(A+M)
Applying this Lemma, we set A = �K�;a = K�� � and G = 10 and hen
ethe density of the restri
ted Markov random �eld is proportional top(ÆJ+1j�; ÆJ) / exp��12Æ0J+1(�K� + 110)ÆJ+1 + �Æ0J+1�� : (11)This is the density of a (proper!) multivariate normal distribution with mean�(�K� + 110)�1� and 
ovarian
e matrix (�K� + 110)�1. We now use the algo-rithm des
ribed in Rue (2001) to get a sample from this distribution.For the intera
tions with random walk of se
ond order, the density forthe distribution of ÆJ+1 
an be extended from (4). An analogous 
al
ula-tion leads to the same formulation of the restri
ted density as (11) but with�i =Pl�m ((ÆJl � ÆJm)� 2(ÆJ�1;l � ÆJ�1;m) + (ÆJ�2;l � ÆJ�2;m)).After we have sampled ÆJ+1 we 
an use the same algorithms to sample ÆJ+2and so on. The predi
tion for 
ohort-distri
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tions has been implementedin a similar way.Referen
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