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Bayesian modelling of spae-timeinterations on the Lexis diagramVolker Shmid and Leonhard Held�Ludwig-Maximilians-Universit�at M�unhenGermanyFirst version: July 2003AbstratWe propose a full model-based framework for a statistial analysis ofinidene or mortality ount data strati�ed by age, period and spae, withspei� inlusion of additional ohort e�ets. The setup will be fullyBayesian based on a series of Gaussian Markov random �eld priors foreah of the omponents. Additional spae-time interations will be eithermodelled as spae-period or spae-ohort e�ets. Statistial inferene isbased on eÆient algorithms to blok update Gaussian Markov random�elds, whih have reently been proposed in the literature. We illustrateour approah in an analysis of stomah aner data in West Germany.Key words: Blok updating; disease mapping; hierarhial models; Markovhain Monte Carlo; Markov random �eld models; age-period-ohort model;spae-time interation
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1 IntrodutionModel-based statistial analyses of vital rates on the Lexis diagram has reeivedmuh interest over the last two deades. Muh of the early work has been donewithin a likelihood framework, see Holford (1983) and Clayton and Shi�ers(1987a, b). The most general of the approahes proposed in these papers isthe so-alled age-period-ohort model. Later Bayesian approahes have beensuggested within a hierarhial model, whih has the advantage that they aninorporate additional parameters for unstrutured variation, in order to a-ount for overdispersion. Also they an impose a temporal struture on theage, period and ohort parameters whih improves estimation properties andfailitates predition of future rates (Berzuini, Clayton and Bernardinelli, 1993,Besag et al., 1995, Knorr-Held and Rainer, 2001).For purely spatial data, vital rates are typially analysed within the Bayesianframework assuming so-alled Markov random �eld priors, see Besag et al. (1991)and Clayton and Bernardinelli (1992). Suh models overome problems withheterogeneity in the underlying population ounts and provide a spatially smoothedversion of the rude rates, if there is evidene for a spatial pattern. Alterna-tively or additionally, unstrutured (spatial) variation an be inorporated aswell.For a full model-based spae-time analysis of vital rates only preliminarysuggestions have been made so far. Bernardinelli et al. (1995) suggest a modelwhih already inorporates spae-time interation, assuming linear time trends.They work with age-standardized rates, whih allows to ignore age- and ohorte�ets in the analysis. However, the unertainty in the orresponding estimatesis negleted in suh a two-step analysis; a further pratial problem is thehoie of the referene rates for standardization. Assunao et al. (2001) reentlysuggested an extension of the Bernardinelli et al. formulation with quadratiinstead of linear time trends.Knorr-Held (2000) suggested four di�erent types of interation for spae-time data, whih allow for a nonparametri estimation of the temporal trends,not only of the spatial pattern. However, again, the model does not inorporateany age or ohort e�ets. A di�erent route has been taken by Knorr-Heldand Besag (1998) who inorporate (time-hanging) age e�ets, whih allows inpriniple for estimation of any age-period interation, inluding ohort e�ets.However, their model assumes that spae and time are separable, hene does2



not inlude any spae-time interation.Reently the proposal made in Knorr-Held (2000) has been used by Lagazioet al. (2001) in an analysis of lung aner rates in Tusany. They found theimportane of modelling interations of ohort parameters with spae, whihgave a better �t to the data onsidered than interations of period with spae.Again, not a full model was presented but the data analysed was standardizedby age in advane.The goal of this paper is to provide a framework for a full model-basedanalysis of data strati�ed by age, period and spae, with spei� inlusion ofohort e�ets. The setup will be fully Bayesian based on Gaussian Markovrandom �eld priors, whih has the random walk priors used for the temporalparameters as a speial ase (Knorr-Held, 2000, Fahrmeir and Lang, 2001). Themodels we are proposing involve a large number of parameters, so it is vital touse eÆient algorithms for inferene via MCMC.A full model-based analyis was also presented by Lagazio et al. (2003) againfor an analysis of lung aner rates in Tusany. However, they used a single-site MCMC algorithm, whih may be disadvantgeous. First, in the ase of slowmixing the parameter estimates may be misleading (Knorr-Held and Rue, 2002).Seond, sum-to-zero onstraints an only be inorporated through ad-ho re-entering approahes (i.e. sample eah parameter from the full onditionalwithout the onstraint and re-enter the parameters subsequently to have meanzero). In ontrast, we use algorithms proposed by Rue (2001) for blok updatingof eah Markov random �eld. This will lead in better mixing of the algorithms.Furthermore, these algorithms have the additional advantage that identi�abilityonstraints on the latent paramter an be expliitly inorporated in the prior.For omparison of several models we use the deviane information riteriaproposed by Spiegelhalter et al. (2002) to assess model �t and omplexity. Weillustrate our modelling framework in an analysis of stomah aner rates formales in West Germany.The data were given by the "Deutshes Krebsforshungsinstitut", see Bekerand Wahrendorf (1997). A desriptive analysis shows dereasing mortality ratesfrom 1976 to 1990. The rates are espeially high in Bavaria (south-eastern partof Germany), but with a strong downward trend. Boeing et al. (1991) foundseveral risk fators for this mortality pattern as the preservation of meats andsausages by smoking, a high onsumption of proessed meat produts and alarge number of private wells unonneted to the publi water supply in this3



area. Most of these fators were present in Bavaria in earlier days, but theybeame less important now. It is therefore of partiular interest to investigateif there is evidene for spae-time interations in these data. Furthermore wewill determine if a period-spae or a ohort-spae interation model is moreappropriate for these data. Finally we will show, how the models an be usedto predit future mortality rates.The paper is organized as follows. Setion 2 outlines the general modellingframework and also gives details about implementation issues, Setion 3 thendesribes an appliation to the dataset mentioned above. We end with some�nal omments.2 ModelLet yijl and nijl denote the number of disease ases and the number of personsunder risk respetively in age group i = 1; : : : ; I, period j = 1; : : : ; J andarea l = 1; : : : ; L. The ohort index k = 1; : : : ;K an be derived from i andj, depending on the resolution of the age and period e�ets (Knorr-Held andRainer, 2001). For example, for data strati�ed by the same grid, k = I � i+ j.In the appliation onsidered in Setion 3, I = 13, J = 15, K = 75 and L = 30.We assume a binomial observation model for yijl given nijl with an unknowndisease probability �ijl. We deompose the log-odds �ijl = log(�ijl=(1 � �ijl))of these probabilities additively into (a) main e�ets for age, period, ohortand spae, (b) interation between period and spae, or ohort and spae, and() parameters, desribing additional unstrutured heterogeneity in eah ell(i; j; l).More spei�ally we assume in the most omplex formulation that�ijl = �+ �i + 'j +  k + �l + " ÆjlÆkl #+ zijl (1)where � is an interept term, �i is the age, 'j the period,  k the ohort and�l the spatial e�et. Parameters for spae-time interation are denoted by Æjlor Ækl (either period or ohort with spae; the brakets in equation (1) indiatethat only one of the two options enter in the formulation) and zijl denotesparameters for additional unstrutured heterogeneity. These parameters willadjust for residual overdispersion after adjusting for the main and interatione�ets. 4



To ahieve identi�ability of the parameters, we have to inlude sum to zerorestritions on all main e�ets:Xi �i =Xj �j =Xk  k =Xl �l = 0:However, the age, the period and the ohort e�et are still not identi�able,beause any linear transformation of the type�i ! �i +  � i; �j ! �j �  � j;  k !  k +  � k; �! ��  � I (2)with arbitrary  2 R leaves the log-odds �ijl unhanged (e.g. Clayton andShi�ers, 1987b). We will omment later on this issue.2.1 Prior assumptionsFor the interept term � we use a at prior, that is:p(�) / onst.The age, period and ohort e�ets are modeled with Gaussian random walkpriors. For example a random walk of �rst order (RW1) for � is:p(�1) / onst.;�ij�i�1; � � N(�i�1; ��1) for 2 � i � Iwhere � is a preision parameter. This prior an also be written for the vetor� = (�1; : : : ; �I)T : p(�j�) / �rg(K�)=2 exp���2�TK���

5



where the struture matrix (Clayton, 1996) K� has the form
K� =

0BBBBBBBBBBBBB�
1 �1�1 2 �1�1 2 �1. . . . . . . . .�1 2 �1�1 2 �1�1 1

1CCCCCCCCCCCCCAfor a random walk of �rst order and
K� =

0BBBBBBBBBBBBBBB�
1 �2 1�2 5 �4 11 �4 6 �4 11 �4 6 �4 1. . . . . . . . . . . . . . .1 �4 6 �4 11 �4 5 �21 �2 1

1CCCCCCCCCCCCCCCAfor a random walk of seond order (RW2).Similarly, the priors for the period and ohort e�ets have the formp(�j�) / �rg(K�)=2 exp���2�TK��� andp( j�) / �rg(K )=2 exp���2 TK  � :In general, the preision matrixK has a rank-de�ieny of 1 (or 2) for the RW1(or RW2) model. Thus, for example, for the age e�ets �, the rank of K� isI � 1 and I � 2 respetively. Hene all these priors are improper.As pointed out by Knorr-Held and Rainer (2001, page 112), a RW1 modelorder imposes a further stohasti onstraint on the age, period and ohort pa-rameters; suh a model will prefer a priori, among all possible values for  2 Rin (2) the one where the quadrati �rst di�erenes (weighted with the orre-sponding preision parameters) are minimal. This allows us to visually examinethe (non-linear) trends present in age, period and ohort parameters.6



For the spatial e�et we use a Markov random �eld prior (e.g. Besaget al., 1991). Indeed this prior is similar to a random walk prior:p(�j!) / !rg(K�) exp��!2 �TK���whereK� is now determined through the neighbouring struture of the distrits.With K� = (klm)l;m2f1;:::;Lg the o�-diagonal elements klm are �1 for geographi-ally ontiguous distrits l � m and zero for all other non-diagonal entries. Thediagonal elements kll are equal to the number of distrits ontiguous to distritl. Usually the distrits annot be split up into two or even more ompletelyseparated piees, the matrix K� has then rank rg(K�) = L� 1.The priors for the interation term were spei�ed following a rationale orig-inally proposed in Clayton (1996). The idea is to use the diret produt of thepreision matries of the main e�ets as the preision matrix for the interatione�et. Here we will only onsider interation priors whih inlude some formof temporal dependene. Using the terminology used in Knorr-Held (2000),these are alled Type II and Type IV interation. We will further distinguishif the interation is between period and spae or between ohort and spaeparameters.The Type II model an be seen as independent distrit spei� randomwalks. Let Æl denote the vetor (Æ1l; : : : ; ÆJl)T for spae-period interation orÆl = (Æ1l; : : : ; ÆKl)T for spae-ohort interation. Then the prior an be writtenas: p(Æj�) / exp ��2 LXl=1 ÆTl " K�K # Æl! :As above the brakets indiate, that only one option enters in the formulation.The matries K� and K are the same as above and an be spei�ed for arandom walk of �rst or seond order.The Type II interation model intrinsially assumes that Æl, l = 1; : : : ; Lare independent aross distrits. In the Type IV interation model, temporaltrends are assumed to be similar in neighbouring distrits.In Knorr-Held (2000) the Type IV interation model for Æ is given for therandom walk of �rst order. The formulation an easily be modi�ed to a randomwalk of seond order by replaing �rst by seond di�erenes. This orrespondsto a modi�ed preision matrix for K�.For spae-period interation, with Æ = (Æ11; : : : ; Æ1L; Æ21; : : : ; ÆJL)T , the prior7



an be written asP (Æj�) / �(L�1)(T�2)=2 (3)� exp0���2Xl�m JXj=3((Æjl � 2Æj�1;l + Æj�2;l)� (Æjm � 2Æj�1;m + Æj�2;m))21A/ �(L�1)(T�2)=2 exp���2 �ÆT (K� 
K�)Æ�� : (4)This prior is a Gaussian Markov random �eld prior, where not only the spatialneighbours and the �rst and seond temporal neighbours, but also the temporalneighbours of the spatial neighbours enter in the onditional distribution of Æjl.The density (4) is invariant to the addition of any arbitrary onstants atany time j or at any distrit m. We therefore have to introdue J + L � 1additional restritions, to make Æ identi�able. For example, we may useLXl=1 Æjl = 0 for 1 � j � J and JXj=1 Æjl = 0 for 1 � l � L� 1:It an easily be seen that this impliesJXj=1 ÆjL = 0:Thus the row sums are all zero, that is the interation is entred at zero at eahperiod and the olumn sums are all zero, too, so the interation is entred at zeroin eah distrit. A similar model with restritions an be used for spae-ohortinteration.For the term zijl we use a white noise prior: zijl � N(0; ��1). For thehyperparameters �; �; �; !; � and � we assume proper gamma priors G(a; b),with a = 1 and b = 0:05.2.2 MCMC simulationFollowing Besag et al. (1995) we do not diretly update zijl but reparametrizethe model and use the linear preditor �ijl as an unknown parameter ratherthan zijl, see equation (1). This has the advantage that the full onditionalsof all e�ets mentioned above are Gaussian and hene Gibbs steps an be usedfor updating. The linear preditor an be sampled by independent Metropolis-Hastings steps. 8



The full onditional of the main e�ets have all a similar form, for examplefor the age e�et � we getp(�j::) / exp���2 ��TK���� � exp�� �2 ��T I��+ � ��T��� (5)/ exp��12(�TA��) + (�T�)� (6)where � = (�1; : : : �I)T is a I � 1 vetor with�i =Xj;l  �ijl � �� �j �  k � �l � " ÆjlÆjk #!and A� = �K�+�I. The full onditional p(�j::) is therefore multivariate normalwith mean A�1� � and preision matrix A�. One an easily see that A� is a bandmatrix of the same band-width as the prior preision K�. Similary, the fullonditionals for the period, ohort and spae parameters are also multivariatenormal with a band width of the preision matrix equal to the band width ofthe orresponding prior preision matrix.For the spatial e�et we use a lever trik desribed in Rue (2001) andreorder the indies of the distrits, so that K� and onsequently the preisionmatrix of the full onditional is a band matrix with minimal band-widthm (seeRue, 2001 for details). In our appliation m = 10.Using the band struture of the preision matrix, we an eÆently samplefrom (6) using the algorithms desribed Rue (2001). The idea of these algo-rithms is to use Cholesky deomposition of the preision matrix, whih is veryfast for band matries of small band-width. As mentioned above we need tosample onditional on the sum to zero restritions. This imposes no furtherompliation, as also in this ase we an use an algorithm based on an eÆientCholesky deomposition of the preision matrix, see Rue (2001) for furtherdetails.Turning to the interation models, the full onditional preision of the TypeII model is only 1 and 2 depending on the hosen model. In Type IV models,the band width is usually larger. Using the reordered distrits, the band-widthof K�
K� is L+m for a random walk of �rst order and 2 �L+m for a randomwalk of seond order. Typially the band-width of the preision matrix an notbe further redued by another reordering.The full onditionals of the hyper parameters are all independent Gamma9



distributed and an be sampled in Gibbs steps. Finally, the full onditional ofthe linear preditorsp(�ijlj::) / exp(�ijlyijl)(1 + exp(�ijl))nijl exp0�� �2  �ijl � �� �i � �j �  k � �l � " ÆjlÆkl #!21A ;is not a standard distribution. Using a Taylor approximation we approximatethis with a normal distribution, whih an be used as a proposal in a Metropolis-Hastings algorithm. With this approah we get aeptane rates of 90%-99%.2.3 PreditionsAn important aspet of our formulation is that it allows for the predition offuture mortality rates while allowing for spae-time interation. Indeed, usinga random walk prior, we an easily extend our model (1) to predit futureinidene rates. The predited log-odds of the mortality at period J + 1 is�i;J+1;l = �+ �i + 'J+1 +  k + �l + " ÆJ+1;lÆkl #+ zi;J+1;l: (7)The period e�et 'J+1 an be sampled by extending the random walk prior tothe future, that is 'J+1 � N('J ; ��1) for �rst order and 'J+1 � N(2 � 'J �'J�1; ��1) for seond order. The ohort e�et  K+1 an be generated similarly.In the model with Type II interations ÆJ+1;l an be sampled the same wayby ÆJ+1;l � N(ÆJl; !�1) in eah period l = 1; : : : ; L and analogous for the modelwith ohort interations ÆK+1;l.The Type IV interations an only be generated by inluding the restritionPLl=1 Æjl = 0 for eah period j = J +1; J +2; : : : to be predited. We propose asequential algorithm for this rather hallenging task whih is desribed in detailin Appendix A.3 Appliation3.1 Model seletionIn order to measure the goodness of �t of our models, we use the posteriordeviane D = �2 �Xijl (l(�ijl)� l(�̂ijl)) ;10



where l(yijl) is the log likelihood. A low deviane indiates a good �t of theestimated mortality rates to the data.As the deviane dereases with the number of parameters, we use the de-viane information riteria DIC introdued by Spiegelhalter et al. (2002) toompare the di�erent models. The DIC is de�ned asDIC = ( �D) + pDwith pD the e�etive number of parameters. This e�etive number of param-eters penalizes the model omplexity so that the models an be ompared bythe DIC. It is alulated by pD = ( �D)�D (�̂ijl) :with D (�̂ijl) = �2 �Xijl [l(�ijl)� l(�̂ijl)℄ :Table 1 shows deviane, e�etive number of parameters and DIC of allmentioned models. interation deviane pD DICRW 1 none 5623.1 39.9 5663.0Type II period 5374.0 196.4 5570.4Type II ohort 5235.5 1573.5 6809.0Type IV period 5424.9 269.5 5694.4Type IV ohort 5289.5 1483.0 6772.5RW 2 none 5656.8 19.4 5676.2Type II period 5406.2 180.0 5586.2Type II ohort 5309.7 1202.7 6512.4Type IV period 5461.8 266.5 5728.3Type IV ohort 5358.1 1312.4 6670.5Table 1: deviane, e�etive number of parameters and DIC of all modelsThe results are very similar for both the RW1 and RW2 prior. The devianeis the lowest for the Type II interations and the highest for the no interationmodel. As mentioned above, a higher number of nominal parameters leadsnaturally to a good �t. However, the �t of the Type IV interation models isnot so good, beause it imposes more dependene struture on the interation11



parameter than the Type II model.Interestingly the estimated e�etive number of parameters for the Type IVinteration models is higher than for the Type II interations. This is beausein the latter models in many regions the median of the interation parameteris zero for mostly all periods whereas for the former, due to the underlyingMarkov random �eld more parameters are estimated non-zero.The models with ohort interations have a muh higher number of e�etiveparameters without dereasing the deviane. This leads to the onlusion, thatthe model with period-distrit interations is more appropriate for these data.3.2 ResultsWe �rst show the estimated main e�ets of the best model in terms of theDIC riterion, the model with Type II period-distrit interations. As the age,period and ohort e�ets are not identi�able in the RW2 model (see Knorr-Heldand Rainer, 2001), we only show the result for the model based on the randomwalk of �rst order.Figures 1 to 3 displays median and 90% redible intervals of the age, pe-riod and ohort e�ets. One should keep in mind that the patterns an betransformed through linear transformations of type (2) without any hange inthe likelihood. Therefore only non-linear trends an be interpreted. While theperiod e�et appears to be roughly linear, the ohort e�et has an interestinghange-point around birth ohort 1940. After 1940 the e�et appear to be lin-ear. However, these estimates are based on few data and should therefore notbe overinterpreted.Figure 4 shows the spatial e�et. The highest values are, as expeted, in thesouth east of Germany in the ditrits Upper Palatinate and Lower Bavaria.Figures 5 displays the period-distrit interations for the distrit of LowerBavaria. In all the models, the interations show a dereasing trend. A similartrend an be seen in the other distrits in this area, whih indiated that - afteradjusting for the overall period trend - there is a dereasing mortality rate inthe south-east of Germany.The model based on ohort-distrit rather than period-distrit interation-sprodues very unstable estimates (Figure 6). It seems that the estimated globalvariane of this interation term is rather high. Consequently, the e�ets in thelast birth ohorts, whih are based on only few ases, show high variability. As12
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is based on the original grid, i.e. preditions have been ompared with the atualobserved data for eah of the 13�15�30 = 5; 850 age group times period timesdistrit ombinations.The �rst thing to note is that the model without interation terms has pooroverage perentages. The model with interation ome loser to the atualredibility levels, in partiular those based on the RW2 prior. But still theyare all smaller, with the only exeption of Type IV interations with the RW2prior, where 62% of the data are ontained in the 50% redible intervals. Thisindiates that this model might over�t the data. Therefore it seems that theType II RW2 model has the best predition qualities: It omes losest to theatual redible levels, while not overestimating them.Credibility level no interation Type II Type IVRW1 RW2 RW1 RW2 RW1 RW2(%) (%) (%) (%) (%) (%) (%)50 11 41 22 50 42 6280 20 55 39 62 56 6895 33 62 50 66 64 71Table 2: The perentage of observed ases that lie within preditive redibleintervals4 DisussionThe spei�ation of model for spae-time interation, while adjusting for age,period and ohort e�ets is a hallenging task. In this paper we have proposedvarious formulations whih take into aount interation e�ets between periodand spae or ohort and spae. In our appliation, one of these models providea better �t to the data, even after adjusting for the additional omplexityof the formulations. Further on�rmation of the superiority of this model wasobtained through a study of the empirial overage perentages of out-of-samplepreditions.The models have a very large nominal number of a priori dependent param-eters. It is therefore advantageous to use blok updating MCMC algorithms toavoid slow mixing of the Markov hain. Furthermore, bloking also allows fora proper inorporation of identi�ability onstraints, suh as sum-to-zero on-straints. However, further improvement is to be expeted by joint updates of16
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hyperparameters and parameters (Knorr-Held and Rue, 2002).The most omplex formulation allows for a dependene of interation pa-rameters aross spae and time, with additional sum-to-zero onstraints foreah area and time point. New methodologial developments, as desribed inthe Appendix, have been made in order to predit this formulation into thefuture.A Predition with Type IV interationsThe prior for the Type IV period-distrit interation in the RW1 model isp(Æj�) / exp0���2Xl�m jXj=2((Æjl � Æj�1;l)� (Æjm � Æj�1;m))21A :Thus a natural approah to predit future values of Æ is based on a algo-rithm sequentially in time: We start by sampling ÆJ+1jÆJ ; � where ÆJ+1 =(ÆJ+1;1; : : : ; ÆJ+1;L):p(ÆJ+1jÆJ ; �) / exp ��2Xl�m(ÆJ+1;l � ÆJ+1;m � ÆJl + ÆJm)2! : (8)/ exp��12Æ0J+1(�K�)ÆJ+1 + �Æ0J+1�� (9)with � = �1; : : : ; �J and �i =Pl�m(Æil � Æim). This is the density of a singularGaussian Markov random �eld. Thus we an not sample from the density with-out further restritions. As in Setion 2.1 we will use a sum to zero restritionPl ÆJ+1;l = 0. To obtain the restrited density, we use a Lemma by Box & Tiao(1973, p.419):Lemma. Let x;a and b be k�1 vetors and A and B be two k�k positivesemide�nite symetri matries. Suppose the rank of the matrixA+B is q(< k).Then, subjet to the onstraints Gx = 0,(x+ a)0A(x� a) + (x� b)0B(x� b) = (x� )0(A+B+M)(x� ) (10)+ (a� b)0A(A+B+M)�1B(a� b)
18



where G is any (k � q) � k matrix of rank k � q suh that the rows of G arelinearly independent of the rows of A+B;M = G0G and = (A+B+M)�1(Aa+Bb):With B = 0 and b = 0 we an rewrite (10) as(x� a)0A(x� a) = (x� )0(A+M)(x � ), x0Ax� 2x0Aa+ a0Aa = x0(A+M)x� 2(x0(A+M)) + 0(A+M)Applying this Lemma, we set A = �K�;a = K�� � and G = 10 and henethe density of the restrited Markov random �eld is proportional top(ÆJ+1j�; ÆJ) / exp��12Æ0J+1(�K� + 110)ÆJ+1 + �Æ0J+1�� : (11)This is the density of a (proper!) multivariate normal distribution with mean�(�K� + 110)�1� and ovariane matrix (�K� + 110)�1. We now use the algo-rithm desribed in Rue (2001) to get a sample from this distribution.For the interations with random walk of seond order, the density forthe distribution of ÆJ+1 an be extended from (4). An analogous alula-tion leads to the same formulation of the restrited density as (11) but with�i =Pl�m ((ÆJl � ÆJm)� 2(ÆJ�1;l � ÆJ�1;m) + (ÆJ�2;l � ÆJ�2;m)).After we have sampled ÆJ+1 we an use the same algorithms to sample ÆJ+2and so on. The predition for ohort-distrit interations has been implementedin a similar way.ReferenesAssunao, R. M., Reis, I. A. and O., C. D. L. (2001). Di�usion and preditionof Leishmaniasis in a large metropolitan area in Brazil with a Bayesianspae-time model. Statistis in Mediine, 20, 2319-2335.Bernardinelli, L., Clayton, D., Pasutto, C., Montomoli, C., Ghislandi, M. andSongini, M. (1995). Bayesian analysis of spae{time variation in diseaserisk. Statistis in Mediine, 14, 2433{2443.Beker, N. andWahrendorf, J. (1997). Atlas of Caner Mortality in the FederalRepubli of Germany 1981-1990. Berlin: Springer Verlag.19
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