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Abstract

Various supervised learning and gene selection methodseen used for
cancer diagnosis. Most of these methods do not considenatiens between
genes, although this might be interesting biologically angrove classification
accuracy. Here we introduce a new CART-based method to\dis@merging
patterns. Emerging patterns are structures of the {d¥m> a;) N (X2 < as)
that have differing frequencies in the considered clasateraction structures of
this kind are of great interest in cancer research. Moredhrey can be used to
define new variables for classification. Using simulatec da&ts, we show that
our method allows the identification of emerging patternthwigh efficiency.
We also perform classification using two publicly availab&ga sets (leukemia
and colon cancer). For each data set, the method allowseetficiassification as
well as the identification of interesting patterns.



1 Introduction

In recent years, microarrays have become a very populanitped to measure the
expression levels of thousands of genes simultaneousbariner medicine, microar-
rays are a potentially efficient tool to perform reliable gtiasis, since many genes
are differentially expressed according to the tumor tydds Tnvolves sophisticated
supervised learning methods in the 'smallargep’ framework, wheren is the num-
ber of patients (observations) apdhe number of genes (variables). Microarrays are
believed to allow finer and more reliable identification ofntor types than the usual
clinical methods. This is of crucial importance, becauserg fine diagnosis is neces-
sary for the efficient treatment of patients. Thus, a largewarhof literature deals with

supervised learning methods with application to microagene expression data.

Emerging patterns (denoted as EPs in the whole paper) aieybar interaction
structures. They were first introduced in the computer seiemd data mining frame-
work by (Dong and Li, 1999) and then applied to microarrayadat (Li and Wong,
2001, 2002). Here, we are interested in the statistical drackd of emerging pat-
terns and redefine emerging patterns for this purpose. §ubsty, we propose a new
simple CART-based method to discover relevant emergingmpetas well as a classifi-
cation scheme to use these emerging patterns for supeteaihg. In the following,

we will consider only data sets with two classes denotedassd and class 2.

For the illustration of the concept of EPs, let us imaginé thast patients with low
(or high) expression levels of gerkand geneB belong to clasg (k = 1,2) and that
this is the case for most patients from clasas is depicted in Figure 1. This would be
a valuable piece of information, both for statisticians w¥ant to classify the samples
and for biologists who try to determine the function of geaesl the mechanisms
of cancer. But this kind of pattern is quite difficult to ddtelm particular, standard
methods for gene selection (suchta®st) and classification miss genes involved in

such interactions. Emerging patterns are patterns ofythis t

EPs were introduced by (Dong and Li, 1999) who define themt@ssets whose
supports increase signinficantly from one data Betto another,D;. Examples of
emerging patterns are

(genes > 1.023) N (genep > 0.789),



(genec > 1.156) N (genep > 0.913).

with the relative frequencies if; and.Ds

EPs D, D,

(genes > 1.023) N (genep > 0.789) | 0%  100%
(genec > 1.156) N (genep > 0.913) | 85.7% 6.25%

EPs of the kind(genec > 1.156) N (genep > 0.913), for which the frequency
in class 1 is larger than in class 2, will be denoted as EPsp# ty. EPs of type
(genes > 1.023)N(genep > 0.789), for which the frequency is larger in class 2 than
in class 1, will be denoted as EPs of type 2. In general et | D, |, no = |D2| denote
the sample sizes of data sdbs and D,. For a specific patter#® the counts:p; and
np, Within data setd); and D yield the simple structure

Dy Dy

Plnp1 npo

The growth rate fronD, to D5 is defined as

npa/no

GRDlDZ(P) B np 1/”1.

by using the conventio®/0 = 1 andc¢/0 = oo for ¢ # 0. A large value of
GRp, p,(P) indicates an EP of type 2. The growth rate frém to D,

npi/ni
npa/ng

GRDle (P) =

is simply the inverse o6& Rp, p,. A large value ofGRp,p, (P) indicates an EP of

type 1.

Forp > 1, Dong and Li (1999) calP a p-emerging pattern fron; to Dy if
GRp,p,(P) > p.
and ap-emerging pattern fronb, to D; if
GRp,p,(P) > p

In the original paper (Dong and Li, 1999), EPs are defined eansets (containing
possibly more than 2 items) with high growth rate frdq to Dy or from Dy and
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Dy. In (Li and Wong, 2001, 2002), the same authors only look fBs Evith infinite
growthrate. Thus, an EP contains patients from only one @fttfo classes. Subse-
guently, the EPs are ordered according to the number ofntattbey contain. The
discovering method of (Li and Wong, 2002) includes two stepgre-screening step
leaving only 35 genes and a discovering step using a enuoretzsed algorithm
described in (Dong and Li, 1999).

The rest of the paper is organized as follows. In Section Zjiweour own defini-
tion of emerging patterns and present our discovering ndegisavell as the associated
classification method. In Section 3, we validate our methdt simulated data sets
and test it on two publicly available 'benchmark’ microardata sets. In Section 4, we
compare our classification results to the results of othpesised learning methods

and our emerging patterns to those of Li and Wong (2002).

2 Methods

2.1 An alternative definition of emerging patterns

In our view, the definition adopted by (Li and Wong, 2002) isdnvenient for two
major reasons. First, it is very restrictive to require iitérgrowth rate, because mi-
croarray data are noisy. Second, it would be advantageaesltce the two-step eval-
uating method (considering successively the growth raddfamsize of the pattern) by
a single statistical criterion. We suggest an alternatefndion of an EP as a pattern
of the form

P = (gene;, ¢ ai) N...N(gene;, ©a)

(whereo stands for< or >), for which the hypothesig(P|D,) = p(P|D2) can be
rejected to a certain confidence level. This definition imeisded to a test statistic that
has to be chosen. Note that for a pattern containing few ssanfslis hypothesis can
not be rejected even if the pattern contains only patiente@tame class. Thus, this
criterion effectively replaces the two-steps evaluatirgghod of (Li and Wong, 2002).
The number of genefsis denoted as the order of the BPX 1).



2.2 Pre-Screening with empirical distribution function

Our method for discovering EPs with trees is computatignialiensive if applied to
all genes simultaneously. Thus, a pre-screening or genetiel step is necessary. As
is seen from Figure 1, an emerging pattern involves geneshadid not necessarily
discriminate well when used alone. Thus, usual selectiothagis which score the
genes separately may be too restrictive. These usual netihmehot select all the
interesting genes. On the other hand, in order to be part dnaerging pattern a
variable must have some discriminatory power. Therefoesprmepose a new univariate
gene selection method which is as non-restrictive as pesaiid particularly well
suited to the framework of emerging patterns. Our seleatiiterion for a gene is
whether there exists a point where the empirical distridsufuinction is less thaa for
one class and more tha@hfor the other class or more thdn- « for one class and less
thanl — g for the other class, whekgis a 'small parameter’ (typically between 0 and
0.1) andg is a 'large parameter’ (typically between 0.5 and 0.7). Tggae selection
procedure is very fast and selects most interesting genegdpd « is large enough
andg is small enough. However, to be sure to get most interestamgesg; one has to
select uninteresting genes as well, which makes the disogvphase considerably

slower. In order to reduce the number of parameters, we illgs setw to 0.1.

Algorithm 1 : Pre-screening algorithm

For each gene:

1. DetermineF; resp. Fy, the empirical distribution function of the observations

from D resp. Ds.

2. If either {z € RFi(z) < a,F3_;(x) > p}or{z € RlF(z) > 1 —

a, F5_i(z) < 1— g} isnon-empty foi = 1 or i = 2, then select the gene.

As an example, let us choogse= 0.1 and = 0.7. As is seen from Figure 4
the gene 456 from the leukemia data set would be selectedidrdhere exists an
interval where the empirical distribution function for stal is smaller than and the
empirical distribution function for class 2 is larger thanOne of the points contained

in this interval is marked in the panel.



2.3 Discovering emerging patterns with trees
2.3.1 Tree methodology

Classification trees are an efficient exploratory tool toedetstructures in data
(Breiman, 1984). These are based on recursive partitiommgreby the measurement
spaceR? is successively split into subsets. L€t = (z1,...,z,) € RP denote the
gene expression levels of genkes. ., p. If A is a subset oR? (corresponding to the
partitioning of R? into A and A = R” \ A), the split of A based on the variable;

divides A into
A1) = {o € Alz; <},

As(j. 1) = {@ € Alzj > ).

Thus the subset is split by use of one variable:;, with the split simply depending on
athreshold: from the range of ;. By starting withA = RP and performing successive

splittings one obtains a tree. The resulddplittings are subsets @& of the form

{alzi, <} O {elz, > po} 0.0 ez, < pa).

Thus a succession of splits yields a pattern. In general petttern P of orderd be
defined as a subset & which is identified by the sequengéj,,Z;),s = 1...,d}
wherej; € {1,...,p} identifies the variable and, specifies the interval which in

the simple case of binary splits has the fdfgn= (—oo, 5] or Zs = (us, +oc). The

relationship between decision trees and EP is simple: arpatt equivalent to a leaf.

For recursive partitioning, a splitting criterion has todimsen. Possible criterions
are for instance the deviance, the Gini-index, the entrefay(Tutz,2000). Since our
goal is to find patterns for which the null-hypothegis”?| D) = p(P|D3) can be
rejected, we choose the deviance. The deviance, which isfathe most widely used
splitting criterions for trees is very well suited becauseoirresponds to the fit of the
modelp(P|D;) = p(P|D3). The deviance of a patteri is defined as

2

N
D(P) = -2 Z(nm log nL: + np,; log
i=1

np

Given a patterrP of orderd, an additional split in variablg at . yields a(d + 1)-

dimensional pattern. This new split is chosen to minimize ¢bnditional deviance
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which is given by

D(PN{ele; < u}, PAala; > u} = D(PN{ale; < pu})+D(PN{ale; > pu})-D(P).

2.3.2 The discovering method

A tree is grown using a standard algorithm for classificati@es (for instance the
algorithm implemented in the package ee in R). If there are one or two 'good’
leaf(ves) ('good’ means that the within leaf deviance is)lothe genes and the cut
points defining this leaf are stored. Another tree is growthwall genes except the
gene involved in the first splitting. An alternative is tongiihate all the genes involved
in the definition of the leaf. The same is done for the secaew, ®nd so on, until only
one variable remains. Here, we limit the order of the pasteéon2, because we found
out that almost all the patterns of greater order were naiifsignt statistically due to
the small number of observations. However, our method csilydze generalized for
patterns of greater order, provided the number of obsemnsis large enough to allow
those patterns to be statistically significant. In this cdlse gain of time produced
by our method compared to the (computationally very inteiyiconsideration of all

possible patterns is even greater.
Algorithm 2 : Discovering algorithm

1. Initialize S as the set of all pre-screened genes.

While S is not empty:
2. Grow a classification tree with the variables frgfrwith maximal depth 2.

3. Select the biggest leaf with predicted class 1 (i.e. tabvéth the most observa-
tions in class 1) and the biggest leaf with predicted clasise2 the leaf with the

most observations in class 2). These leaves are now callierps.
4. For each selected patterR of order 2:

(@) LetP' denote the node which was splitted iffoand P. Thus we have
P=PnNP4I).



(b) Test the two-sided null-hypothesis that the secontiggliis unrelevant to

the confidence levels by using Fisher’'s exact test.

(c) If the hypothesis can be rejected, then kéem the set of the selected

patterns. Else, replac® by the nodeP’ in the set of the selected patterns.

5. For each selected pattern, test from the global contingdable if it is signifi-

cant, by using Fisher’s exact test to the confidence lgyel
6. Store the significant pattern(s) (and their dominant gJas

7. Eliminate the gene involved in the first splitting of theetfrom the set of vari-
ablessS.

8. With the reduced go to step 2.

Alternatively, in step 7 one can eliminate all the genes lwve® in the discovered
emerging patterns. It makes the algorithm faster, but ésterg emerging patterns
are potentially missed. The idea behind step 4 is that an BBwar order is bet-
ter than an EP of larger order for which consecutive spijtimre unrelevant. For
example, the patter®®4p = (genes > a) N (genep > b) depicted in Figure
3 has two relevant splittings, where as the splittiggnec > ¢) in the pattern

Pop = (genec > ¢) N (genep > d) is unrelevant.

Note that we use the deviance as splitting criterion for tiee talgorithm and
Fisher's exact test as evaluating criterion after the tsegrown. Although these two
statistics correspond to the same null-hypothesis, theydiéfierent. We used the de-
viance criterion as splitting criterion when growing thedy because this is the 'stan-
dard’ criterion used by most tree users and it is known thabitks well. However, it
is better to evaluate the resulting pattern by carrying astét’s exact test, because
the deviance test is an asymptotic test which might giveebiassults when applied
to small leaves. In further work, one could try to implemertteee algorithm using

Fisher's exact test as splitting criterion.

Finally, one obtains a list of emerging patterns of différgpes (1 and 2) and dif-

ferent orders. These can be used for classification, asibeddn the next paragraph.



2.4 Classification method

The idea is to define binary covariates based on EPs and agtdgsical supervised
learning method namely linear discriminant analysis os¢h®ew covariates. Suppose
that we have a learning sétand a test sef. Letn;, denote the number of observations

in £ andny denote the number of observationsyin
Algorithm 3 : Classification algorithm

1. Apply the pre-screening algorithm tbwith parametersy and 5.

2. Detect the emerging patterns ihfollowing the discovering algorithm. Let

denote the number of found emerging patterns.

3. Define new data matrice8’ of dimensiongn; x m) and 7' of dimensions

(np x m) as follows:

1, if thei-th training observation is in thg-th EP
L'(i,j) =
0, otherwise

1, ifthei-th test observation is in thgth EP
T'(i,5) =
0, otherwise
4. Perform linear discriminant analysis (details are givienthe next paragraph)
to predict the class of observations frgfmusing the matrixC’ as training data

set and7”’ as test data set.

For discriminant analysis, we make the following distriboal assumptions for

XT = (Xy,...,Xm), Where theX;, j = 1,...,m stand for the new variables:

’

X|Y =1~ Ny(u1,\I) whereu;is the mean oKX in class 1

X|Y =2~ Ny(ug, AI)  wherepusyis the mean oKX in class 2

wherel is the identity matrix of dimensioirm. x m) and ) is a constant. It means
that the variables are considered to be independent and/éotha same varianck

This simplified discriminant analysis method is also refdras nearest centroid. The
assumptions are very strong, but the performance is béitber by estimating many

parameters on the basis of few observations.
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3 Results

3.1 Simulated data
Generation of the data matrix

We generate a simulated data matrix containing, observations and a total af,
genes. Letr; = ny = ngys/2 denote the numbers of observations in each class. Let
ngp1 resp.ngps denote the numbers of EPs of type 1 resp. 2. Thug,4 genes are
involved in a EP of type 1,12z p- are involved in a EP of type 2, and the remaining
ng —2- (ngp1 + nep2) are not involved in any EP. To simplify, the expression Isvel
are all in[0, 1]. Genes which are not involved in EPs are randomly generatsatding

to the uniform distribution between 0 and 1. Only EPs of olare generated.

To generate a pair of genes forming an EP of type 1, the fofigvéilgorithm is
run. EPs of type 2 are generated in the same way: one just lexstiange 1 and 2 in

the algorithm.

Algorithm 4 : Algorithm for EP generation

1. The threshold values for both involved genes are randgemgrated according
to the uniform distribution between 0.25 and 0.75. The se(is€ or ' <’) are

also randomly chosen.

2. The two-dimensional expression level is generated datgto the uniform dis-

tribution for each observation:

¢ in the EP with probabilityg for observations from class 1 arid— ¢ for

observations from class 2.

e outside the EP with probability — ¢ for observations from class 1 and

for observations from class 2.

whereq is parameter reflecting the theoretical goodness of the EP.

The method for prescreening genes and discovering EPs stasd t@ith several com-

binations of parameters(3,p,ps). We decided to fixx to 0.1.
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Results of the discovering method on simulated data

The total number of possible gene pairg(s — 1) /2, wherep is the number of genes.
For each gene pair, let us define two binary variakdegthich equals 0 if the pair does
not form an EP and 1 if the pair forms an EP, ahdvhich equals O if the pair is not
detected as an EP by our method and 1 if it is detected as aroEPaEh parameter
combination, we simulate 100 data matrices and apply owod&ing method (in-

cluding the pre-screening step) to these 100 matrices ssigety. For each simulated

data matrix, we define
neq. Number of detected EPs
ngq: Number of non-EP gene pairs which were detected as EPs
n,z- number of EPs which have not been detected
nz- humber of non-EP gene pairs which were not detected as EPs

If an EP of type 1 resp. 2 is diagnosed as EP of type 2 resp. 1Ekhés not
considered as detected: it will be countechipy. For each parameter combination, we

are interested in the contingency table

d d »

e || med(neq) | med(n, ;) ngp

@]

med(ne,q) | med(ngg) | p(p—1)/2 —ngp

wheremed is the median over the 100 random data matrices. We definétttadnas
the median proportion of detected EPs amongithe real EPs
med(ne,q)
ngp
Similarly, the false alarm rate is defined as the median ptmpoof pairs which were
discovered as EPs among the non-EP pairs

med(neg,q)
plp—1)/2 —ngp

The hit rate and the false alarm rate are given in Table 4 fiferdnt 3, ps and

pe- The boxplots ofu.s/nrp andngy/ngp are represented in Figure 4 and 5. They
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reveal some interesting features. Fifstjoes not seem to have much influence on both
rates, which indicated that a highcan select most important genes. Second, both the
false alarm rate and the hit rate seem to decrease ywhénincreases. Third, a high
pe parameter seems to decrease the false alarm rate sendihlyt e hit rate. Thus,
the main conclusion of these simulations is thatshould be quite high, but that the
other parameters do not have any great influence on the agcofdhe discovering
method. However, the influence gfis expected to be greater in real data sets, where

the distinction between 'good’ and 'bad’ genes is not thaacl

3.2 Results of the classification method on real data sets

Study design

We tested our classification method by dividing randomlydhta set into a learning
setL and a test sef, following the procedure described in (Dudeital., 2002). Since
our method is very sensitive to the size of the training setchose to use test sets con-
taining only 10 observations. The entire procedure inclggire-screening is repeated
50 times. For each parameter combination, we used the satiteopsa, so as to elim-
inate possible causes of variations. For each data set,wedlg mean classification
error rate over the 50 runs in a table. If the value is markeH sstar, it indicates that
for at least one partition, no EP was found, thus making therifhination impossible.
In this case, the mean is calculated using only the parsitibat yielded at least one
EP.

In our study, we set = 0.1 (first pre-screening parameter) amg= 10~* (confi-
dence level for the testing of the second splittingjsecond pre-screening parameter)

andp (confidence level for the global testing of the leaves) cay.va

Colon data set

The colon data set (Alon, 1999) is an Affymetrix data set anihg 2000 genes for
22 normal and 40 cancer samples. The 2000 genes are alrdadtedegenes (the
authors do not explain how). We carried out a base 10 logmaidgttransformation and

normalized the samples to mean 0 and variance 1. FurtherrBagenes appear 4
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times in the data set, with exactly the same expressionddgelall 62 samples. We

eliminated these lines in the data matrix.

Table 2 contains the mean error rate over the 50 partitiondifferent values of
pe andg. As expected, the number of found EPs depends highly on lzotneters
andp¢. It seems that the classification accuracy increases whthrpbdecreases and
pe increases. The fact that a IgivMncreases the accuracy is not surprising, since more
potential good genes are then selected. The fact thapdpdecreases the accuracy is
more difficult to explain, since a stronger selection criterfor the EPs should prevent
the selection of unrelevant EPs. A possible explanatiohdgdbustness of classifiers
based on more EPs. Indeed, the boxplots representing theemwifound EPs (Figure

6) shows that for high this number is very low and very variable.

Leukemia data set

The leukemia data set (Golub, 1999) is an Affymetrix dateceetaining the expres-
sion levels of 7129 genes for 72 leukemia patients. We put#iging set (38 samples:
27 ALL and 11 AML) together with the test set (34 samples: 2QA&hd 14 AML). We
applied the usual pre-processing method as described itofDet al.,2002): thresh-
olding at 100 and 16000, filtering (thus obtaining 3571 gdekls base 10 logarithmic

transformation, standardization of each sample to meanl @amance 1.

Table 4 contains the mean error rate over the 50 partitiondifferent values of
pe andg. As for the colon data set, the classification accuracy as@e withp. But

low values for do not seem to yield much better accuracy. The number of f&Rr®l

is less dependent on the parametethan for the colon data set, as can be seen in

Figure 7.

Comparison with other supervised learning methods

Using the same study design, we tested 3 of the most usuaifidaton methods:
diagonal linear discriminant analysis as described in (udt al.,2002), nearest-
neighbors witht = 3 and Support Vector Machine (SVM). We chose these 3 methods

because DLDA and&NN gave very good when applied to several microarray data
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sets (Dudoitet al.,2002), and SVM is also believed to give very good resultgdiz
et al.,2000). For the-nearest-neighbor method, we used Bherogrammknn from
the librarycl ass and chose the euclidian distance as distance metric. F@oguUp
vector machines, we used tRgprogrammsvmfrom the librarye1071. Since these
methods work much better with few genes, we performed arpiradiry gene selection
using the robust Wilcoxon-statistic, because it gave betwults that the other simple
selection methods we tried-§tatistic, Pearson’s correlation and Ben-DAFs/ oM
score). The results are in Table 3 for the colon data and iteTalfor the leukemia
data. (leukemia). For the colon data set, the results arebetver than the results with
our method. For the leukemia data set, our results are bé&tias, our classification
results are similar to those of the best usual methods. liiaeldour method allows
to discover interesting structures at the same time, wisiettiually a great advantage
over the usual approaches which do nothing more than fitfdrighly differentially

expressed genes and classifying the samples.

3.3 Analysis of the EPs found in the colon data set

Here the discovering algorithm is run on the whole data setsé{s to 0.3 and give

in table 6 only the EPs with p-value lower tharl0~'!, which are the most signifi-
cant. The numbers of EPs of type 1 and 2 are approximatelyl,egbich is quite a

good thing for classification purpose. Another interespot is that not all the genes
involved in these EPs are good individually (data not showspecially the genes in-
volved in the second splitting. Thus, we conclude that iefstrictive to select genes
on the basis of some individual score like thstatistic or the Wilcoxon-statistic and

consider all the other genes as uninteresting.

Our EPs for the colon data set are very different from Li andhgf& Several rea-
sons can be put forward. First, Li and Wong looked only for tdwuld be referred
as 'perfect EPs’, i.e. EPs with infinite growth rate. From shetistical point of view,
it makes sense to consider non-perfect EPs as well, edyesgfan having to do with
noisy data like microarray data. Second, the EPs they fotmduite long and possibly
containing highly correlated genes. For instance, in andtfaining 7 genes, some of
the genes probably do not bring much, just eliminating ortgvorobservations. There

is no reason why this should also be the case with an indepemida set. Thus,
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our EPs are shorter, because we prefer to focus on theistdtiglevance and repro-
ducibility. Last, Li and Wong performed a pre-screening/ieg only 35 genes, which
is quite restrictive. In particular, the pre-screeningnitiates genes which do not per-
form well individually. Since EPs are made of several genésracting together, it is
guestionable whether such a dramatic pre-screening edsuiitdeed, in our emerging
patterns, we noticed that the gene involved in the secorittirsplis not always a gene

which performs good individually.

4 Concluding remarks

In summary, emerging patterns are a valuable tool for sigehlearning as well as for
exploring interactions between genes. Our quite intudéind fast CART-based method
allows to discover a large proportion of them, with focus tatistical aspects which
had been overseen so far. Additionally, we demonstratedittlig not necessary to
perform a strong pre-screening before classification aadgbme genes performing
poorly individually may be useful in association with otlgenes. It would be of great
interest to run our discovering algorithm on data sets witlrarobservations, thus
allowing EPs of greater order. A related issue is the studphefstatistical relevance
in the multiple testing framework. Another important todhe generalization to the

multi-class case which often occurs in practice.
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B PG ps hitrate false alarm rate

0.3 1076 10=* 0.55 4.1-107°
0.4 107'¢ 10=* 0.55 4.2-107°
0.3 107 107* 0.55 2.8-107°
04 107 107 0.50 2.8-107°
0.3 10720 107* 045 2.107°
04 10720 107 045 2.107°

0.3 1016 107 0.45 2.9-107°
0.4 10716 107 0.50 2.9-107°
0.3 107 107® 045 1.8-107°
04 107 107® 045 2.107°
0.3 10720 10=% 0.425 1.2-107°
0.4 10720 107% 0.40 1.2-107°

Table 1: Hit rate and false alarm rate for various parameigerignations

pa=10"% pg=10"" pg=10"10

=03 0.134 0.128 0.158

B8=04 0.138 0.146 0.165%
B8 =05 0.146 0.158 0.206+
=06 0.192 0.206 0.234x

Table 2: Mean error rate over the 50 runs for the colon dath et method
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LDA 3—-NN SVM
10 genes 0.120 0.124 0.118
20 genes 0.122 0.152 0.122
50 genes 0.122 0.164 0.114
100 genes 0.126 0.150 0.122
200 genes 0.128 0.160 0.122

Table 3: Mean error rate over the 50 runs for the colon dath ustal classification

methods

pe =107 pg=10"" pg=10"1

=04 0.028 0.028 0.044
B =0.5 0.026 0.030 0.046
B =0.6 0.024 0.030 0.038
B =0.7 0.026 0.032 0.049%

Table 4: Mean error rate over the 50 random partitions folebkemia data with our

method

LDA 3 —-NN SVM
10 genes 0.040 0.044 0.048
20 genes 0.030 0.036 0.040
50 genes 0.028 0.040 0.052
100 genes 0.034 0.044 0.042
200 genes 0.032 0.044 0.036

Table 5: Mean error rate over the 50 random partitions fotahkemia data with usual

classification methods
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Genel Gene 2 Freq. i, Freq.inD,
H06524 € [-0.54, +00) Z50753 € [0.16, +00) 1 0.075
H11084 € [—00,0.33) Z50753 € [-0.55,+00) 0.91 0.025
U04953 € [—o0,0.07) M63391 € [1.17,+00)  0.86 0
R81330 € [-0.45,+00)  R36977 € [—o0,—0.08) 0.91 0.05
MB82919 € [-1.05,+00) X12369 € [0.49,+00)  0.82 0
T51493 € (—o0,—0.77]  R64115 € (—oc, 0.58] 0.91 0.05
T64467 € [0.67, +00) H72234 € (—00,—0.10] 0.82 0
U04953 € (—00,0.07] R60883 € [—0.38,+00) 0.91 0.025
T64467 € [0.67, +00) 751493 € (—o0,—0.72] 0.82 0
R55310 € [0.32, 400) U09564 € (—o0,—0.15] 0.82 0
R55310 € [0.32, 400) H72965 € (—o00,—0.51] 0.86 0
L38810 € (—oc, 1.48] M76378 € (00, 1.19] 0 0.9
X87159 € (—o0,0.68] X63629 € [-0.90,+c0) 0 0.875
D14812 € [0.20, +00) U25138 € (—o0,—0.44] 0.14 0.975
T62947 € [-1.06, +00) M76378 € (—o0,1.18] 0 0.875
T62947 € [-1.12,+00) H20709 € (—0,2.80]  0.05 0.925
T41207 € (—o0,—0.11] T92451 € (—o0,1.94] 0.05 0.925
T71025 € (—o00,2.19] H08393 € [-1.19,+) 0 0.875
M91463 € (—o0, —0.59] R44418 € (—00,0.54] 0.14 0.975

Table 6: Emerging Patterns for the colon data set
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Gene B

Gene D
1 2 2 2 2 1 1 2
102 2 2 1 1
I 2 2 , |1 1 1
2 2 2 11 1
1o 2 ad 2 2|1 1 1
07890 1! 2 2 ' 2
1 2 1
1 2
1 1 1 2 2 2
1 L 2
! | ! Gene A 2
1.023

| Gene C
1.156
Figure 1: Examples for possible configurations for two gemitls ‘2’ denoting cancer
tissue and '1’ normal
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Figure 2: Empirical distribution of gene 456 (from the leoka data set) in class 1 and
class 2
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Gene B

Gene D
2 2 2 1 2 2
2 2 2
2 2 2 2 2
2 2 2 2 2 2
2 2 ! 2
2 2 dql : 2 2
1 1 1 111
1 1
1 1 1
! Gene A 1 | 1 1

Figure 3: Examples of a relevant EP and an unrelevant EP
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pg=1e-20, beta=0.3

pg=1e-20, beta=0.4
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Figure 4: Boxplots of the discovery rate over the 100 randata chatrices for different

parameter combinations
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Figure 5: Boxplots of the false alarm rate over the 100 randata matrices for dif-

ferent parameter combinations
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Figure 6: Boxplots of the number of found EPs over the 50 ronshfe colon data set

25



pg=1le-13

— ] o
o] S BB 4 _—
© | | ——
o N PR E— 1
N T T T T

beta=0.4 beta=0.5 beta=0.6 beta=0.7
pg=le-14
o [e] )
N~ o
. , —e -

) bV B/ ———

= —— —— 8 .
T T T T
beta=0.4 beta=0.5 beta=0.6 beta=0.7
pg=1e-15
[e) (o)
(o)
i - -

40
I
@

— — 8 —
o - —_—
T T T T
beta=0.4 beta=0.5 beta=0.6 beta=0.7

Figure 7: Boxplots of the number of found EPs over the 50 ronshtfe leukemia data

set

26



