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Additive Modelling with Penalized RegressionSplines and Geneti AlgorithmsR�udiger Krause1 and Gerhard TutzDepartment of Statistis,Ludwig-Maximilians University, Akademiestr.1, 80799 M�unhen, GermanySummary. Additive models of the type y = f1(x1)+: : :+fp(xp)+� where fj ; j = 1; : : : ; p,have unspei�ed funtional form, are exible statistial regression models whih an beused to haraterize nonlinear regression e�ets. The basi tools used for �tting the additivemodel are the expansion in B-splines and penalization whih prevents the problem ofover�tting. This penalized B-spline (alled P-spline) approah strongly depends on thehoie of the amount of smoothing used for omponents fj . In this paper we treat theproblem of hoosing the smoothing parameters by geneti algorithms. In several simulationstudies our approah of automatially alulation of the smoothing parameters is omparedto alternative methods given in literature. In partiular funtions with di�erent spatialvariability are onsidered and the e�et of onstant respetively loal adaptive smoothingparameters is evaluated.KeywordsAdditive model, Geneti algorithm, Penalized regression splines, B-splines, Im-proved AIC riterion.1 IntrodutionTraditionally, there have been two basi approahes to address the problem of hoos-ing basis funtions. One tehnique plaes knots (and their orresponding basis fun-tions) adaptively, i.e. the funtion is estimated by only a small set of basis funtionswhih are adaptively hosen by a seletion proedure. Some known examples forthis tehnique are MARS (Friedman (1991)), forward seletion, bakward elemina-tion and stepwise regression (Rawlings, Pantula & Dikey (1998)). In a broad sensewe also an add the Support Vetor Mahines (Chapelle & Vapnik (1999), Vapnik(1995), Vapnik (1998)) and its extension to Relevane Vetor Mahines (Tipping(2000), Tipping (2001)) to this group.The alternative approah (whih we apply in this paper) avoids the problem ofknot seletion problems by using a large number of basis funtions in ombinationwith penalization of the oeÆients. The danger of over�tting resulting in wigglyestimated urves is avoided by introduing a penalty term. There exists a largenumber of proposals for speifying an aurate penalty term (see e.g. Eilers & Marx1 krause�stat.uni-muenhen.de



2 Krause and Tutz(1996), Hastie, Tibshirani & Friedman (2001)). All proposals have in ommon thateah penalty term is haraterized by a smoothing parameter �. This smoothingparameter ontrols the inuene of the penalty term and hene the smoothness of theestimation funtion. A large parameter value tends to result in smooth estimators(e.g. �!1 leads to a linear estimator). In ontrast, a small parameter value yieldswiggly estimated urves (the extreme ase is an interpolation of data for � = 0). Toprevent over- respetively under�tting of data (Bishop (1995)) aurate hoie ofthe smoothing parameter is essential. For simple problems a grid searh is suÆientfor hoosing a suitable smoothing parameter (Eilers & Marx (1996)). However, formore omplex problems this approah is not any longer eÆient.A solution of this problem we propose the appliation of geneti algorithms (Holland(1975), Goldberg (1989)). Based on randomly stohastial searh, geneti algorithmsalso yield aurate results for omplex problems in many dimensions.In this paper we mainly apply the new approah to the hoie of smoothing parame-ters in simulated data, whih are modelled by additive models (Hastie & Tibshirani(1990)). The paper is strutured as follows: in the next setion we generally de-sribe the lass of additive models and the exible representation of funtions byexpansions in B-spline basis funtions. Setion 3 presents the penalization oneptof Eilers & Marx (1996) and adapts it to our problem. In setion 4 we introduethe geneti algorithm for the hoie of the smoothing parameters. Finally setion6 ompares our approah with other methods proposed in literature (and shortlyskethed in 5) by several simulation studies.2 Additive Model and B-splinesA very popular and exible approah whih assumes some struture in the preditorspae is the additive model disussed in detail by Hastie & Tibshirani (1990). Sup-pose that we have observations (yi;xi); i = 1; : : : ; n, where eah xi is now a vetorof p omponents xi = (xi1; : : : ; xip). Then it is assumed that the response variableyi depends on xi by yi = �0 + f1(xi1) + : : :+ fp(xip) + �i= �0 + pXj=1 fj(xij) + �i (1)where �i � N (0; �2). It is obvious that the additive model replaes the problemof estimating a funtion f of a p-dimensional variable xi by one of estimating pseparate one-dimensional funtions fj(xij). The advantage of (1) is its potential asa data analyti tool: sine eah variable is represented separately one an plot the poordinate funtions separately and thus evaluate the roles of the single preditors.An approah whih allows exible representations of the funtions fj(xij) is theexpansion in basis funtions. Hene for example the funtion fj(xij) is representedas fj(xij) = KjX�=1�j� �j�(xij ) (2)
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 Figure 1. Here B-splines of degree 1, 2 and 3 are shown. In eah �gure the di�erentpolynomials of one B-spline are exemplarily plotted.where the �j� are unknown oeÆents and f�j�(xij); � = 1; : : : ;Kjg is a set ofbasis funtions. Eah basis funtion �j� (xij) is haraterized by a knot �j� whihis from the range of the jth ovariate. There are several popular basis funtions,e.g. the trunated power series basis (Ruppert & Carroll (1997), Wand (2002)),the numerially more stable B(asi)-spline basis (Marx & Eilers (1998)), thin-platespline basis (Wood (2002)), Demmler-Reinsh basis or radial basis funtions.The fous in this paper is on B-splines whih are shortly skethed in the following.A more detailed presentation is given in de Boor (1978) or de Boor (1993) andDierkx (1995). Figure 1(a) shows B-splines of degree 1, respetively order 2. Hereat eah knot �� ; � = 1; : : : ;Kj , a B-spline is generated by joining of two polynomi-als of degree 1 (pieewise linear funtions). Figure 1(b) shows B-splines of degree 2and order 3 (quadrati B-splines). At the inner knots (for example ��+1 and ��+2)we join together three polynomials of degree 2. For this kind of B-splines the �rstderivatives are equal at the joining points. This does not hold for the seond deriva-tives. In this paper we mainly use B-splines of degree 3 respetively order 4 (ubiB-splines) whih are generated by four polynomials of degree 3 (Figure 1()). Againthese polynomials are joint at the inner knots. In this ase the �rst and the seondderivatives are equal at the joining points.B-splines of degree d have the following general properties:� B-splines onsist of d+ 1 polynomial piees, eah of degree d;� they have d inner knots where the polynomial piees beome joined;� B-splines have an overlap by 2d neighboring B-splines. Of ourse the leftmostand the rightmost B-splines have less overlap;� at the joining points, derivatives up to order d� 1 are ontinuous;



4 Krause and Tutz� B-splines are positive on a domain spanned by d+2 knots; outside of this domainthe B-spline is zero.Note that eah interval between two adjaent knots is overed by d + 1 B-splinesof degree d. The basis funtions �j� depend on one knot only. When using oneknot to identify a spei� B-spline we take the leftmost knot at whih the splinebeomes non-zero. For omputation of B-splines the formulae of de Boor (1978),are very helpful. A B-spline Bd; � (for degree d � 1), whih starts at knot �� , maybe omputed byBd; �(x) = x� ����+d � �� Bd�1; �(x) + ��+d+1 � x��+d+1 � ��+1Bd�1; �+1(x) : (3)For equidistant knots whih are used here (3) simpli�es toBd; �(x) = 1d � d� [(x� ��)Bd�1; �(x) + (��+d+1 � x)Bd�1; �+1(x)℄beause ��+d � �� = ��+d+1 � ��+1 = d � d� where d� is the distane between twoadjaent knots.3 Estimation with Penalized ShrinkageFor the additive model (1) parameters are estimated by minimizing the penalizedresidual sum of squares (pRSS)min� 8<: nXi=1(yi � �0 � pXj=1 KjX�=1�j��j�(xij))2 + �(f�j�g)9=; (4)where �(f�j�g) = pXj=1 KjX�=k+1 �j�(�k�j�)2 (5)denoting the penalty term and �j� � 0; j = 1; : : : ; p; � = k+1; : : : ;Kj ; k = 1; 2; : : : ;are loal smoothing parameters that ontrol the amount of shrinkage: the larger thevalues of �j� , the larger the amount of shrinkage (Hastie, Tibshirani & Friedman(2001)). If �j;k+1 = : : : = �j;Kj = �j we have a global smoothing parameter for thejth explanatory variable. Although global parameters are more easily to handle, ithas been demonstrated by Ruppert & Carroll (2000), that loal smoothing param-eters yield better performane. For global smoothing parameters the penalizationis the same as in Eilers & Marx (1996). They suggested to penalize the di�ereneof adjaent oeÆients. Hene in (4) the expression �k�j� ; k = 1; 2; : : :, denotes thekth di�erene, e.g. the 2th di�erene has the form�2�j� = �1(�j� � �j��1)= (�j� � �j��1)� (�j��1 � �j��2)= (�j� � 2�j��1 + �j��2):It an be shown (Appendix(A)) that the estimator �̂(�) whih minimizes (4) hasthe form �̂(�) = (BTB+DT�D)�1BTy: (6)



Additive Modelling with Penalized Regression Splines and Geneti Algorithms 5where B is a design matrix of dimension n� [(K1 � 1) + : : :+ (Kp � 1)℄ + 1, D isa [(K1 � k) + : : : + (Kp � k)℄ + 1 � [(K1 � 1) + : : : + (Kp � 1)℄ + 1- penalizationmatrix and � = diag(0; �1;k+1; : : : ; �1;K1 ; �2;k+1; : : : ; �p;Kp) is a smoothing matrixof dimension [(K1 � k) + : : :+ (Kp � k)℄ + 1� [(K1 � k) + : : :+ (Kp � k)℄ + 1. Thestruture of matries B and D are given in detail in Appendix(A).The performane of the penalized estimate strongly depends on the hoie of thesmoothing parameters �j� . A riterion with favourable properties has been proposedby Hurvih & Simono� (1998), whih is given byAICimp = log " 1n nXi=1(yi � ŷi)2#+ 1 + 2 � [tr(H) + 1℄n� tr(H) � 2 (7)where H = B(BTB+DT�D)�1BT is the hat matrix. The smoothing parametershave to be hosen suh that the riterion beomes minimal. In the simulation study(see setion (6)) also alternative seletion riteria have been used, e.g. generalizedross validation (GCV) as used by Ruppert & Carroll (2000). However, the resultswith di�erent seletion riteria do not di�er very muh from eah other. Thus, inthe representation we restrit ourselves to riterion (7).4 Choie of Smoothing Parameters by Real-oded GenetiAlgorithmsThe real limit in the hoie of smoothing parameters is the dimensionality of theproblem. Even if global smoothing parameters are used p smoothing parametershave to be hosen. For loal smoothing the number of parameters inreases toK1 + : : : +Kp whih for 30 knots in eah dimension results in 30p smoothing pa-rameters. A grid searh whih has been used for simpler problems by Eilers & Marx(1996), annot be reommended. Ruppert & Carroll (2000) give an iterative methodbased on a linear interpolation algorithm. In the present paper the use of genetialgorithms is proposed.Geneti Algorithms (Holland (1975), Goldberg (1989)) are originally based on Dar-win's evolution theory (Darwin (1859)) whih refers to the priniple that betteradapted (�tter) individuals win against their ompetitors under equal externalonditions. Like their biologial standard, geneti algorithms use biologial om-ponents (or operators) like seletion, rossover, or mutation to model the naturalphenomenon of geneti inheritane and Darwinin strife of survival. For some bak-ground on the biologial proesses of genetis and the origin of the terminology seeHaupt & Haupt (1998) and Mithell (1996). In this artile we only desribe someseleted onepts whih are important for real-oded geneti algorithms.The funtion to be optimized is denoted as �tness-funtion (short: �tness). Theoptimization problem an be treated as a minimization- or a maximization prob-lem. We onsider maximization problems only, beause minimizing a funtion f isequivalent to maximizing the funtion �f .The smallest units linked to relevant information of a geneti algorithm are alledgenes. The genes are either single units or short bloks of adjaent units and theinformation is oded in form of numbers, haraters, or other symbols. In real-oded geneti algorithms every gene is a single unit whih is oded by a real value.Usually several genes are arranged in a linear suession whih is alled string (alsohromosome, individual). In the ontext of smoothing parameter seletion a string is



6 Krause and Tutza vetor of the form (�1;k+1; : : : ; �1;K1 ; �2;k+1; : : : ; �p;Kp) and thus a loal smoothingparameter �j� orrespond to one gene. In the ase of global smoothing parametersa string redues to (�1; : : : ; �p). Without loss of generality in this setion we assumeone ovariate (j = 1), only.Before starting the iterative geneti algorithm the user needs to onstrut an initialpopulation of several strings. This population usually onsists of genes hosen ran-domly from a uniform distribution on a given interval. The population size (notedas popsize) is usually hosen freely. A rating of the quality of the used smoothingparamater ombination is given by the improved AIC-riterion (Hurvih & Simono�(1998)). Here, the smoothing parameters have to be hosen suh that the riterionbeomes minimal. For use of the geneti algorithm it is more suitable to work with ariterion whih has to be maximized. This is easily ahieved by simple mathematialtransformations whih are onstant during aross iterations of the geneti algorithm.For that purpose we subtrat a suÆiently large onstant from all AIC-values of apopulation suh that all the AIC-values beome negative. The simulations (setion6) show that the largeness of the hosen onstant has no inuene on the results.Following multipliation with (�1) yields a riterion whih has to be maximized.We denote the values whih haraterize the quality of the strings as �tness values(short �tness).For the design of powerful geneti algorithms operators like rossover, mutationor seletion are important. The geneti algorithm always yields several strings as apotential solution of an optimization problem. This olletion of strings is alled pop-ulation. If we apply operators to strings we generate a population with new di�erentstrings. This new population of strings is alled o�spring. We denote the partiularpopulations as generations, or more preisely as parent- respetively o�spring gen-eration. Several authors (Herrera, Lozano & Verdegay (1998), Mihalewiz (1996))show that operators have to meet with various purposes during the appliation ofa geneti algorithm. In general there are two oniting objetives (exploitation-exploration-dilemma):(i) The initial population very rarely inludes strings with solutions at (or at leastlose to) the global optimum. Thus it is helpful to generate o�spring whih aresattered over the whole searh spae thereby hoping that at least one of thestrings is loated near the global optimum. The objetive to explore the searhspae with strings and aquire information about the nature of the spae isdesribed as exploration.(ii) After some iteration steps the geneti algorithm may have generated new stringswith solutions whih are loated loser to the global optimum. In this ase weare primarily interested in obtaining information near the optimum by utilizingthe loal possibilities of upgrade lose to the parents and by generating �ttero�spring there. This stepwise improvement of the stings' �tness by use of loalinformation is alled exploitation.The relevane of these two oniting objetives is di�ers for partiular steps ofthe algorithm. At the beginning (where we have no idea about the loation of theglobal optimum) exploration is more relevant ompared to exploitation and vieversa. Hene a suitable balane between exploration and exploitation is neededduring the whole iteration proess. To adequately solve these oniting objetiveswe require operators whih hange during the geneti algorithm (adaptive or non-uniform operators). In the following setion the operators, whih will be used, aredesribed in brief.



Additive Modelling with Penalized Regression Splines and Geneti Algorithms 7� ai � llo - � lup � bi -� Æ1(lup � bi) -llo lupai bivei vi vdiFigure 2. With ai and bi representing the parents the IAC operator generates the ap-propriate genes i, di and ei of the hildren. The �rst o�spring i is loated within theparents' interval [ai; bi℄. The other hildren are randomly positioned left and right outsidethe interval [ai; bi℄. Every string only takes values within the range between llo and lup.4.1 Improved arithmetial rossover (IAC)In the last deade numerous di�erent types of rossover operators have been sug-gested (see e.g. Eshelman & Sha�er (1993), Mihalewiz (1996), Radli�e (1991),Wright (1991)). An overview with several simulations an be found in Herrera,Lozano & Verdegay (1998). Here we present a new rossover operator alled im-proved arithmetial rossover, short IAC.Suppose we have two real-oded strings (eah hasm genes) for rossover with valuesin an intervall [llo; lup℄ with lower limit llo and upper limit lupString 1 (a1 : : : ai : : : am)String 2 (b1 : : : bi : : : bm):The IAC operator is de�ned by (ompare also Figure 2)i = �ai + (1� �)bi;di = bi + Æ1(lup � bi);ei = ai � Æ2(ai � llo); (8)with i = 1; : : :m, and thus the o�spring have the formOffspring 1 (�a1 + (1� �)b1 : : : �ai + (1� �)bi : : : �am + (1� �)bm)Offspring 2 (b1 + Æ1(lup � b1) : : : bi + Æ1(lup � bi) : : : bm + Æ1(lup � bm))Offspring 3 (a1 � Æ2(a1 � llo) : : : ai � Æ2(ai � llo) : : : am � Æ2(am � llo))where � 2 [0; 1℄ an be hosen onstant or variable over the number of iterations.The parameters Æi 2 [0; 1℄; i = 1; 2, are uniformly distributed random numbers.Every string takes values in the default interval [llo; lup℄.A freely hosen rossover probability p determines whih strings of the parent pop-ulation are seleted for rossover. Therefore we generate a random (oat) numberri 2 [0; 1℄; i = 1; : : : ; popsize for every string of the population. A string is usedfor rossover operation if ri < p holds. In the rossover proess we need ouple ofstrings and thus it is neessary to selet an even number of parent strings.The IAC operator generates three new o�spring and we selet the two best strings,whih will replae the parents. Interestingly, the IAC operator yields hildren whihimprove exploration and exploitation simultaneously. Figure 2 shows that two o�-spring (di and ei) are loated outside the parents' interval [ai; bi℄ and thus regionsfurther apart in the searh spae an be explored. In addition, one hild (here i) isloated within the parents' interval and is primarily responsible for an improvementof exploitation.



8 Krause and TutzIn setion 6 we ompare the quality of IAC operator with that of the arithmetialrossover operator (Mihalewiz (1996)). Thereby the arithmetial rossover oper-ator is de�ned by a weighted linear ombination of two parents, i.e.i = �ai + (1� �)bi; i = 1; : : : ;mdi = �bi + (1� �)ai; i = 1; : : : ;m (9)where � 2 [0; 1℄ an be hosen onstant (uniform arithmetial rossover) or variableover the number of iterations (non-uniform arithemial rossover). The arithmetialrossover operator generates two hildren. Depending on the hoie of parameter �,they only take values in the parents' interval [ai; bi℄. Sine the hildrens' position isrelatively lose to their parents, it enhanes exploitation. The onsequene is missingexploration and thus large parts of the searh spae remain unonsidered.4.2 Non-uniform mutationThe purpose of the mutation operator is to introdue some extra variability intothe population. Several types of mutation operators have been developed (see e.g.Davis (1991), Mihalewiz (1996), M�uhlenbein & Shlierkamp-Voosen (1993), Voigt& Anheyer (1994)). An overview with various examples of simulations an be foundin Herrera, Lozano & Verdegay (1998), and Mihalewiz (1996). In our geneti algo-rithm we use the non-uniform mutation operator presented by Mihalewiz (1996).For every gene of a string we generate a random number rgene 2 [0; 1℄ and omparergene with a default probability pm. If rgene < pm, the gene mutates, i.e. it hangesits value. Suppose we have a string (a1 : : : ai : : : am) of length m and randomly seletthe gene ai for the appliation of the non-uniform mutation operator. Then we geta vetor (a1 : : : a0i : : : am) wherea0i = (ai + (lup � ai)(1� r(1� tT )b) if � = 0ai � (ai � llo)(1� r(1� tT )b) if � = 1: (10)Here � is a random number whih may have a value of zero or one, r 2 [0; 1℄ isan uniform random number, T is the maximum number of generations and b is auser-dependent system parameter whih determines the degree of non-uniformity.The funtion g(t) = (1� r(1� tT )b) (11)yields values in the intervall [0; 1℄.We an distinguish between two extreme ases (ompare also Figure (3)): If the gen-eration number t is small, the exponent in (11) yields a value lose to one and thusg(t) is primary inuened by a suitable hoie of the random number r. Beause therandom number r is uniformly distributed eah value g(t) an be (approximatively)aepted with the same probability. Hene eah a0i in (10) has nearly the same prob-ability to be taken. On the other side, if the generation number t beomes large,g(t) in (11) obtains values lose to zero for a wide range of random numbers. Thusthere is a tendeny that the o�spring a0i in (10) is lose to its parent ai. In summarythe geneti algorithm initially explores the whole searh spae right of the parents'interval uniformly for an aurate a0i. However at a later stage of the algorithm, weprimarily prefer those a0i whih are lose to their parent ai.
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Figure 4. Struture of the modi�ed seletion proedure (modSP) given as a owhart.Details in the text.Step 5: Controlled by the rossover probability p, apply a rossover operatorto the set of the r (distint) strings and generate 2 � i � r new strings.Step 6: Let r o�spring and s parent strings form the new population P (t+1).The seletion in step 2,3 and 5 is implemented with respet to a probability distri-bution based on the strings' �tness. The probability for every string to be seletedis alulated as follows:(i) Calulate the �tness value fit(si) for every string si; i = 1; : : : ; popsize. The�tness values are alulated by the improved AIC-riterion (setion 3). Fitnessand AIC-riterion are onneted by the mathematial transformations desribedabove.(ii) Determine the total �tness of the populationF = pop sizeXi=1 fit(si) :(iii) Calulate the probability pi and the umulative probability qi of a seletion foreah string si; i = 1; : : : ; popsize bypi = fit(si)F ; qi = iXj=1 pj :To selet a single string for the new population, the user �rst needs to gener-ate popsize random (oat) numbers ri 2 [0; 1℄ and then hek for every ri; i =1; : : : ; popsize:



Additive Modelling with Penalized Regression Splines and Geneti Algorithms 11� If ri � q1 then selet the �rst string s1.� If ri � qi then selet the j-th string si suh that qj�1 < ri � qj where j =2; : : : ; popsize.Hene more �t strings have a larger probability to be hosen ompared to the less�t strings.Figure 4 presents the geneti algorithm, used in the simulation studies (setion6). Therefore our geneti algorithm has several build-in steps, whih inrease thee�etiveness ompared with many other onventional geneti algorithms:� Deletion of a default number of worse strings in population P (t) limits theavailable group of strings for future iterations and thus the seletive preassureis high.� Strings of a population P (t) whih have high �tness will enter the new populationP (t+ 1) either as o�spring (step 2) or as parent (step 3) with high probability.With step 3 the best solutions of the old population are not forgotten.� Exat opies of strings are not allowed. Hene there is no danger that a fewstrings (we all them super-individuals) generate many equal opies and thus re-press other less �t strings. Mutation of some genes yields new strings of di�erentgenotype. The size of a string whih will be mutated (and hene the size of lostoriginal information) is ontrolled by the probability pm.Prevention of several equal strings improves the diversity of a population. Therewill be only a slight inrease of seletive pressure if we hange the genotype ofa string by ontrolled mutation (beause most strings maintain their originalinformation).� The lassial mutation-step (Mihalewiz (1996)) is aneled. Instead, only step4 will prevent equal strings.For termination ondition we alulate the average of the num 2 f2; : : : ; popsizeg�ttest strings of eah population. If the �tness does not hange during a defaultnumber, term 2 f2; : : : ; Tg of suessive iterations (T = maximal iteration number)the geneti algorithm is terminated. All simulations in setion 6 have num = 10and term = 20.5 Alternative ApproahesThis setion briey desribes alternative approahes to estimate funtions and toselet smoothing parameters whih are ompared to the present approah. The basisof all approahes is the expansion in basis funtions with the preditor term�(xi) = �0 + pXj=1 KjX�=1�j��j�(xij): (12)5.1 Mixed modelsAn approah based on the methodology of mixed models has been used by Parise,Wand, Ruppert & Ryan (2001). The basi onept is to treat the parameters in(12) as random e�ets. With respet to that strategy and in the ontext of additive



12 Krause and Tutzmodels with trunated power series �j� (x) = (x� �j�)+ as basis funtions one anassume that �j� � N (0; �2j ); � = 1; : : : ;Kj ;with �j1; : : : ; �jKj are independent. The �2j express the variability of the param-eters: �2j = 1 orresponds to the unrestrited ase whereas �2j ! 0 implies highrestritions on the parameters. The estimation of strutural and smoothing param-eters is based on solving the generalized mixed models equation. In the simulationstudy we assume that adjaent weights of the used trunated power series basis areorrelated with a �rst order autoregressive (AR(1)) struture whose parameter areautomatially estimated by the used software pakage SAS.5.2 Bayesian P-splinesA fully Bayesian approah has been used by Lang & Brezger (2003). In a similarway as in the mixed model approah, the parameters are onsidered as random.In ontext of basis funtions as B-splines one assumes prior distribution on theparameters. This may be onsidered as the stohasti analogue to the use of apenalty term in the estimation proedure. For the �rst order di�erenes one assumesdi�use priors for �j1 and a �rst order random walk �j� = �j;��1+uj� with Gaussianerrors uj� � N (0; �2j ). For full Bayesian inferene, hyperpriors are assigned to theparameters �2j , using highly dispersed inverse Gamma priors, p(�2j ) � IG(aj ; bj)with aj ; bj �xed. Lang & Brezger (2003) use aj = 1; bj = 0:005. Inferene is basedon Markov Chain Mote Carlo (MCMC) simulation tehniques.If one uses B-splines whih may be onstruted from the trunated power series theassumption of independent random e�ets is replaed by assuming that di�erenes ofparameters are normally distributed. In the simpler ase one assumes �j;�+1��j� �N (0; �2j ).5.3 Relevane Vetor MahineThe relevane vetor mahine (Tipping (2000), Tipping (2001)) has been devel-oped in the mahine learning ommunity as an improvement of the support vetormahine. Tipping also uses a Bayesian framework. Starting with one basis fun-tion at eah observation the weights �j� are independent and normally distributed,�j;� � N (0; ��1i ) where the hyperpriors for �i and �2 are gamma distributionswhih are optimized by a marginal likelihood approah. The essential di�erenebetween Tipping's algorithm and Bayesian approahes is that the number of basisfuntions initially is equal to the number of observations. Then it redues to onlyfew remaining basis funtions. For the rest the weights beome zero. In our simula-tion study (setion 6.1) we use 40 respetively 80 Gaussian kernels as basis funtionswith di�erent �g , in detail �g = 0:15=p2 (funtion with j = 3) and �g = 0:06=p2(funtion with j = 6). The hyperpriors are automatially estimated by the softwareprogram SAS.5.4 Adaptive RegressionFriedman (1991) proposed multivariate adaptive regression splines (MARS). MARSuses the expansion in basis funtions of the form



Additive Modelling with Penalized Regression Splines and Geneti Algorithms 13�(xi) = �0 + pXj=1 �j�j(xij)in a stepwise way where basis funtions are onstruted suessively from produtsof linear splines (xi � �i�)+ ; (�i� � xi)+ where xi is one omponent of the vetorx and �i� are knots whih are hosen from the observation of the orrespondingomponent of x. By stepwise inlusion of linear splines a large model (we use amaximum number of 150 basis funtions) is obtained for whih a bakward deletionproedure is often applied. For details see Friedman (1991).An alternative Bayesian proedure applying adaptive regression splines has beenproposed by Biller & Fahrmeir (2002). Like other Bayesian approahes this proe-dure is not a stepwise approah and is based on a large set of basis funtions likeB-splines, whih are haraterized by andidate knots for eah variable. In additionto the parameters, the number of knots as well as the spei� hoie of knots arespei�ed by prior distributions. For estimations, the number of knots are Poissondistributed with a mean number of knots = 20.5.5 Smoothing parameter seletion with S-Plus-softwareThe software pakage S-Plus o�ers a restrited possibility of smoothing parameterseletion. First one alulates the AIC-riterion for an initial model. Then one hasto speify a list with other modelling alternatives. Eah ovariate an be droppedor integrated in a model as a linear term respetively as a B-spline with a defaultpenalty term. Therefor Eilers & Marx (1996) published a S-Plus-funtion whihallows the expansion of eah funtion fj ; j = 1; 2; : : : in B-splines with penaltyterm. Starting with the initial model the implemented funtion step suessivelyalulates the AIC-riterion for all alternative models. If a urrent model yields abetter AIC-value we replae the previous model. Beause of its implementation S-Plus an only run a relatively small number of di�erent models. In the simulationstudy of setion 6.2 it has been shown, that for an additive model with 5 funtionsfj ; j = 1; : : : ; 5, where eah one is expanded in 20 B-splines, we an selet a listfrom about 17 models (i.e. eah ovariate an be modelled linearly or as a B-splinewith one of 16 di�erent smoothing parameters). However, to present results of thepopular statistial software tool we had to make assumptions onerning the hoieof smoothing parameters. Hene a grid of 16 smoothing parameters was log-spaedbetween 10�2 and 102, i.e. their base-10 logarithms were equally spaed between �2and 2. It is obvious that this disrete and restrited smoothing parameter seletionyields inexat solutions and that the optimal hoie of smoothing parameters isvery rare. Furthermore, we usually do not know the funtion's true struture andhene the above restritions are in ommon not supportable.5.6 Smoothing parameter seletion with R-softwareThe statisti software pakage mgv (Wood (2001)) running in R yields an automatismoothing parameter seletion, whih is based on a method �rst proposed by Gu& Wahba (1991). The idea is to re-write the multiple smoothing parameter model�tting problem with an extra \overall" smoothing parameter ontrolling the tradeo�between model �t and overall smoothness. The retained smoothing parameters nowontrol only the relative weights given to the di�erent penalty terms. Then, theapproah is to alternate the following steps:
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 Bayesian    MARS    Figure 5. The panels at the top show the true funtions with di�erent spatial variability(solid line) for a randomly hosen data set with � = 0:2. The panels below show boxplotsof log10(pMSE) for various estimators for j = 3 (left) and j = 6 (right). The dotted linerepresents the median of the geneti algorithm with 40 knots.� Estimation of the overall smoothing parameters using one-dimensional diretsearh methods.� Update the relative smoothing parameters simultanously by using the Newtonmethod.The approah bases on minimizing the Generalized Cross Validation (GCV) asmodel seletion riterion. In the simulation studies we use ubi B-splines wherebythe number of knots an be adjusted by hand. For further details see Wood (2000)and Wood (2001).6 SimulationsIn the following simulation study the performane of the approah for estimatingthe smoothing parameters with a geneti algorithm is ompared with other relatedmethods in literature. Program pakages for the methods in setion 5 often do notuse the additive struture. Thus these pakages are ompared in setion 6.1 forthe single ovariate ase with funtions of rather di�erent spatial variability. Thesimulations used in this setion also show one more the quality of the imposedarithmetial rossover operator (IAC) as desribed in hapter 4. Setion 6.2 om-pares our approah with other methods in literature by means of simulated additivemodel.
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40 knots                          80 knots Figure 6. The �gures show boxplots of log10(pMSE) of the geneti algorithm andBayesian P-splines with loal smoothing parameters for j = 3 (left) and j = 6 (right).The dotted line represents the median of geneti algorithm with 40 knots.6.1 Estimation of di�erent osillating funtionsIn our �rst simulation study we onsider the funtionf(x) =px(1� x) sin�2�(1 + 2(9�4j)=5)x+ 2(9�4j)=5 � :The spatial variability of f(x) an be hanged by the parameter j = 1; 2; : : : (seeRuppert & Carroll (2000)). We simulate 250 data sets for low spatial variability(j = 3) or for high spatial variability (j = 6), respetively. Eah data set onsists of400 independent and uniformly distributed data with � = 0:2 (see Figure 5).For estimating the funtion, f(x) is expanded in 40 (respetively 80) ubi B-splinebasis funtions. As penalty we use the third order di�erenes of adjaent oeÆientsand the smoothing parameter hosen from the interval [10�4; 104℄. The default pa-rameters of the used geneti algorithm are: population size (popsize) = 48 strings,rossover probability p = 0:5, mutation probability pm = 0:25, deletion of u = 60perent of the worst strings, seletion of r = 30 and s = 18 strings, � = 0:5; T = 1000and b = 1.To ompare our approah with other methods we omputed log10(pMSE) withempirial mean squared error given by MSE(f̂) = 1n Pni=1(f(xi) � f̂(xi))2. Forboth spei�ations of spatial variability (j = 3; 6) Figure 5 shows boxplots oflog10(pMSE) for various estimators. Here only one global smoothing parameteris used. From left to right the boxplots refer to geneti algorithm (40 and 80 knots),Relevane Vetor Mahine (RVM, 40 and 80 knots), mixed model (40 and 80 knots),Bayesian adaptive regression splines and MARS. For better omparison the dottedline represents the median of geneti algorithm with 40 knots.From Figure 5 we an draw the following onlusions:� For j = 3 most approahes yield similar results. The MARS approah leads tosubstantial poorer results than all the other methods. For j = 6 the performanestrongly depends on the method. While mixed models approximately yield thesame results as the geneti algorithm, RVM, Bayesian P-splines and MARS showpoorer results. Only Bayesian adaptive regression splines lead to better resultsompared to the geneti algorithm.� For j = 3 doubling the number of basis funtions from 40 to 80 knots thereare sarely improves the performane of the estimators if we double. In ase
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Figure 9. Here the �ve original funtions of the used additive model are shown.BayesX and Bayesian adaptive regression splines. For better omparison, the dot-ted line represents the median of the geneti algorithm.Figure 10 and 11 show:� In both ases the linear funtion f1 is estimated best by S-Plus.� Funtion f2 is signi�antly better estimated for �1 = 0:3 and �2 = 0:6 by thegeneti algorithm than all other approahes.� Apart from S-Plus, in ase of �1 = 0:3 funtion f3 is similarly estimated by allapproahes. But in the ase �2 = 0:6, the geneti algorithm yields better resultsompared with the other approahes.� Bayesian adaptive regression splines signi�antly yields the best results in esti-mation of funtion f4. For �1 = 0:3 the �t of funtion f4 by the geneti algorithmis worse than that of all other approahes. But for �2 = 0:6 the approahes (ex-ept Bayesian adaptive regression splines) yield ompareable results.� Together with S-Plus, the geneti algorithm has the best estimators of funtionf5 for both spei�ations (�1 = 0:3 and �2 = 0:6).� For �1 = 0:3 only S-Plus and Bayesian adaptive regression splines outperformthe geneti algorithm in estimation of the total funtion ftotal. But if we hoose�2 = 0:6, the geneti algorithm better estimates ftotal ompared with all otherapproahes.The simulation study shows that the results for the estimation of funtion ftotal byBayesian adaptive regression splines are losely onneted to the �t of funtion f4.Although this approah yields average results for all other funtions, the exellentestimation of f4 strongly inuenes the quality of the total funtion ftotal. Thereason is that variable knot seletion of Bayesian adaptive regression splines adaptto the di�erent spatial variability of funtion f4. We notie again that only stritonstraints of the smoothing parameter hoie (setion 5.5) lead to the results ofthe S-Plus approah. Furthermore, the results of funtion f1 show the advantage ofS-Plus to estimate the funtion f1 by linear terms.
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  BayesFigure 10. Here boxplots of log(MSE) for the funtions fj ; j = 1; : : : ; 5 and the totalfuntion ftotal of several estimation approahes with �1 = 0:3 are shown. Details in thetext.Table 1 shows the average running times per data set of the used programs in theProgram Running time in seondsGeneti algorithm 337R-pakage mgv 3S-Plus 468BayesX 49Adaptive Bayes 394Table 1. Here average running times for estimation of one data set in the simulationstudy of an additive model with �1 = 0:3 are shown.simulation study (additive model with �1=0.3). S-Plus, BayesX and the R-pakagemgv are ommerial software and hene optimized with respet to running time.The geneti algorithm and the adaptive Bayesian algorithm are primarily researhtools, programmed for omparison of results and thus not optimized for runningtime. Hene a diret omparison is diÆult. But Table 1 shows one obvious fat:the ommerial software S-Plus uses muh more running time to yield aurateresults than all other programs.7 ConlusionsWe have presented a new automati proedure for smoothing parameter hoiebased on geneti algorithms. In various simulation studies we ompared the perfor-mane of our approah to other parametri and nonparametri methods given inthe literature. The main fous was on estimation of funtions with additive mod-els. The simulation studies show that the results between our approah and the
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1Appendix
A Penalized regression splines with onstraintsFor a detailed derivation of (6) we again start with the penalized residual sum ofsquares riterion (pRSS)min~� 8<: nXi=1(yi � ~�0 � pXj=1 KjX�=1 ~�j� ~�j� (xij))2 + pXj=1 KjX�=k+1 �j� (�k ~�j�)29=; (13)where �j� � 0; j = 1; : : : ; p; � = k+1; : : : ;Kj ; k = 1; 2; : : : ; are loal smoothing pa-rameters, ~�j� are unknown oeÆients and �k ~�j� ; k = 1; 2; : : : is the kth di�ereneof adjaent oeÆients. Writing (13) in matrix form we obtainpRSS(�) = (y � ~B~�)T (y � ~B~�) + ~�T ~DT�~D~�: (14)Calulation of the �rst derivative and set the expression to zero yields an estimatorfor ~� ~̂�(�) = (~BT ~B+ ~DT�~D)�1~BTy: (15)and thus an estimator for y is given byŷ = ~B~̂�(�) (16)Here ~B is a n� (K1 + : : :+Kp + 1)-design matrix~B = [1; ~�1; ~�2; : : : ; ~�p℄ = 264 1 ~�11(x11) � � � ~�1K1(x11) ~�21(x12) � � � ~�pKp(x1p)... ... ... ... ...1 ~�11(xn1) � � � ~�1K1(xn1) ~�21(xn2) � � � ~�pKp(xnp)375and ~D = diag(0; ~D1; : : : ; ~Dp) is a [(K1�k)+ : : :+(Kp�k)℄+1� [K1+ : : : ;Kp℄+1-penalization matrix of di�erene order k, where eah matrix ~Dj is of dimension(Kj�k)�Kj . The omponents in an additive model (1) are not identi�able withoutfurther restritions. A restrition whih makes the omponents unique yields theexpression KjX�=1 ~�j� = 0; j = 1; : : : ; p (17)



22 Krause and Tutzand thus without loss of generality the last oeÆient ~̂�jKj an be represented bya linear ombination of the other oeÆients, i.e.~�jKj = �~�j1 � ~�j2 � : : :� ~�j;Kj�1; j = 1; : : : ; p:With regard to this ondition we reeive from (16) for yi; i = 1; : : : ; n,ŷi = ~̂�0 + K1�1X�=1 ~̂�1� ~�1�(xi1) + ~̂�1K1 ~�1K1(xi1) + : : :++Kp�1X�=1 ~̂�p� ~�p�(xip) + ~̂�pKp ~�pKp(xip)= ~̂�0 + K1�1X�=1 ~̂�1� ~�1�(xi1)� K1�1X�=1 ~̂�1� ~�1K1(xi1) + : : :++Kp�1X�=1 ~̂�p� ~�p�(xip)� Kp�1X�=1 ~̂�p� ~�pKp(xip)= ~̂�0 + K1�1X�=1 ~̂�1� �~�1�(xi1)� ~�1K1(xi1)�| {z }� �1�(xi1) + : : :++Kp�1X�=1 ~̂�p� �~�p�(xip)� ~�pKp(xip)�| {z }� �p�(xip) :Writing the last expression in matrix notation we obtainŷ = B�̂(�)where B is a n � [(K1 � 1) + : : : + (Kp � 1)℄ + 1-design matrix and �̂(�) is a[(K1�1)+: : :+(Kp�1)℄+1�1-oeÆient matrix. Beause of the di�erent oeÆientvetor �̂j = ( ~̂�j1; : : : ; ~̂�j;Kj�1;�PKj�1�=1 ~̂�j�)T , j = 1; : : : ; p; it is neessary to adaptthe penalization matrix ~D. The new blokmatrix D = diag(0;D1; : : : ;Dp) hasdimension [(K1 � k) + : : : + (Kp � k)℄ + 1 � [(K1 � 1) + : : : + (Kp � 1)℄ + 1. Theelements Dj ; j = 1; : : : ; p, are omputed in the following way:~Dj ~̂�j = 2664 ~Dj; [(Kj�k)�1�(Kj�1)℄ ... 0[(Kj�k)�1�1℄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0[1�(Kj�k)�1℄ � 1 ... 1 3775 � 2666664 ~̂�j1...~̂�j;Kj�1�PKj�1�=1 ~̂�j�
3777775= " ~Dj; [(Kj�k)�1�(Kj�1)℄ � �̂j� ~̂�j;Kj�1 �PKj�1�=1 ~̂�j� # = � ~Dj; [(Kj�k)�1�(Kj�1)℄�1[1�(Kj�2)℄ � 2 � � �̂j = Dj � �̂jIn the ases we have di�erenes of �rst (k = 1, left matrix below ) or seond (k = 2,right matrix below) order the matries Dj have the strutureDj = 2666664�1 1 0 � � � 00 �1 1 � � � 0... . . . . . . ...0 . . . . . . �1 1�1 . . . . . . �1 �2

3777775 Dj = 2666664 1 �2 1 0 � � � 00 1 �2 1 � � � 0... . . . . . . . . . ...0 . . . . . . 1 �2 1�1 . . . . . . �1 �1 �2
3777775 (18)
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