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Additive Modelling with Penalized RegressionSplines and Geneti
 AlgorithmsR�udiger Krause1 and Gerhard TutzDepartment of Statisti
s,Ludwig-Maximilians University, Akademiestr.1, 80799 M�un
hen, GermanySummary. Additive models of the type y = f1(x1)+: : :+fp(xp)+� where fj ; j = 1; : : : ; p,have unspe
i�ed fun
tional form, are 
exible statisti
al regression models whi
h 
an beused to 
hara
terize nonlinear regression e�e
ts. The basi
 tools used for �tting the additivemodel are the expansion in B-splines and penalization whi
h prevents the problem ofover�tting. This penalized B-spline (
alled P-spline) approa
h strongly depends on the
hoi
e of the amount of smoothing used for 
omponents fj . In this paper we treat theproblem of 
hoosing the smoothing parameters by geneti
 algorithms. In several simulationstudies our approa
h of automati
ally 
al
ulation of the smoothing parameters is 
omparedto alternative methods given in literature. In parti
ular fun
tions with di�erent spatialvariability are 
onsidered and the e�e
t of 
onstant respe
tively lo
al adaptive smoothingparameters is evaluated.KeywordsAdditive model, Geneti
 algorithm, Penalized regression splines, B-splines, Im-proved AIC 
riterion.1 Introdu
tionTraditionally, there have been two basi
 approa
hes to address the problem of 
hoos-ing basis fun
tions. One te
hnique pla
es knots (and their 
orresponding basis fun
-tions) adaptively, i.e. the fun
tion is estimated by only a small set of basis fun
tionswhi
h are adaptively 
hosen by a sele
tion pro
edure. Some known examples forthis te
hnique are MARS (Friedman (1991)), forward sele
tion, ba
kward elemina-tion and stepwise regression (Rawlings, Pantula & Di
key (1998)). In a broad sensewe also 
an add the Support Ve
tor Ma
hines (Chapelle & Vapnik (1999), Vapnik(1995), Vapnik (1998)) and its extension to Relevan
e Ve
tor Ma
hines (Tipping(2000), Tipping (2001)) to this group.The alternative approa
h (whi
h we apply in this paper) avoids the problem ofknot sele
tion problems by using a large number of basis fun
tions in 
ombinationwith penalization of the 
oeÆ
ients. The danger of over�tting resulting in wigglyestimated 
urves is avoided by introdu
ing a penalty term. There exists a largenumber of proposals for spe
ifying an a

urate penalty term (see e.g. Eilers & Marx1 krause�stat.uni-muen
hen.de



2 Krause and Tutz(1996), Hastie, Tibshirani & Friedman (2001)). All proposals have in 
ommon thatea
h penalty term is 
hara
terized by a smoothing parameter �. This smoothingparameter 
ontrols the in
uen
e of the penalty term and hen
e the smoothness of theestimation fun
tion. A large parameter value tends to result in smooth estimators(e.g. �!1 leads to a linear estimator). In 
ontrast, a small parameter value yieldswiggly estimated 
urves (the extreme 
ase is an interpolation of data for � = 0). Toprevent over- respe
tively under�tting of data (Bishop (1995)) a

urate 
hoi
e ofthe smoothing parameter is essential. For simple problems a grid sear
h is suÆ
ientfor 
hoosing a suitable smoothing parameter (Eilers & Marx (1996)). However, formore 
omplex problems this approa
h is not any longer eÆ
ient.A solution of this problem we propose the appli
ation of geneti
 algorithms (Holland(1975), Goldberg (1989)). Based on randomly sto
hasti
al sear
h, geneti
 algorithmsalso yield a

urate results for 
omplex problems in many dimensions.In this paper we mainly apply the new approa
h to the 
hoi
e of smoothing parame-ters in simulated data, whi
h are modelled by additive models (Hastie & Tibshirani(1990)). The paper is stru
tured as follows: in the next se
tion we generally de-s
ribe the 
lass of additive models and the 
exible representation of fun
tions byexpansions in B-spline basis fun
tions. Se
tion 3 presents the penalization 
on
eptof Eilers & Marx (1996) and adapts it to our problem. In se
tion 4 we introdu
ethe geneti
 algorithm for the 
hoi
e of the smoothing parameters. Finally se
tion6 
ompares our approa
h with other methods proposed in literature (and shortlysket
hed in 5) by several simulation studies.2 Additive Model and B-splinesA very popular and 
exible approa
h whi
h assumes some stru
ture in the predi
torspa
e is the additive model dis
ussed in detail by Hastie & Tibshirani (1990). Sup-pose that we have observations (yi;xi); i = 1; : : : ; n, where ea
h xi is now a ve
torof p 
omponents xi = (xi1; : : : ; xip). Then it is assumed that the response variableyi depends on xi by yi = �0 + f1(xi1) + : : :+ fp(xip) + �i= �0 + pXj=1 fj(xij) + �i (1)where �i � N (0; �2). It is obvious that the additive model repla
es the problemof estimating a fun
tion f of a p-dimensional variable xi by one of estimating pseparate one-dimensional fun
tions fj(xij). The advantage of (1) is its potential asa data analyti
 tool: sin
e ea
h variable is represented separately one 
an plot the p
oordinate fun
tions separately and thus evaluate the roles of the single predi
tors.An approa
h whi
h allows 
exible representations of the fun
tions fj(xij) is theexpansion in basis fun
tions. Hen
e for example the fun
tion fj(xij) is representedas fj(xij) = KjX�=1�j� �j�(xij ) (2)
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 Figure 1. Here B-splines of degree 1, 2 and 3 are shown. In ea
h �gure the di�erentpolynomials of one B-spline are exemplarily plotted.where the �j� are unknown 
oeÆ
ents and f�j�(xij); � = 1; : : : ;Kjg is a set ofbasis fun
tions. Ea
h basis fun
tion �j� (xij) is 
hara
terized by a knot �j� whi
his from the range of the jth 
ovariate. There are several popular basis fun
tions,e.g. the trun
ated power series basis (Ruppert & Carroll (1997), Wand (2002)),the numeri
ally more stable B(asi
)-spline basis (Marx & Eilers (1998)), thin-platespline basis (Wood (2002)), Demmler-Reins
h basis or radial basis fun
tions.The fo
us in this paper is on B-splines whi
h are shortly sket
hed in the following.A more detailed presentation is given in de Boor (1978) or de Boor (1993) andDier
kx (1995). Figure 1(a) shows B-splines of degree 1, respe
tively order 2. Hereat ea
h knot �� ; � = 1; : : : ;Kj , a B-spline is generated by joining of two polynomi-als of degree 1 (pie
ewise linear fun
tions). Figure 1(b) shows B-splines of degree 2and order 3 (quadrati
 B-splines). At the inner knots (for example ��+1 and ��+2)we join together three polynomials of degree 2. For this kind of B-splines the �rstderivatives are equal at the joining points. This does not hold for the se
ond deriva-tives. In this paper we mainly use B-splines of degree 3 respe
tively order 4 (
ubi
B-splines) whi
h are generated by four polynomials of degree 3 (Figure 1(
)). Againthese polynomials are joint at the inner knots. In this 
ase the �rst and the se
ondderivatives are equal at the joining points.B-splines of degree d have the following general properties:� B-splines 
onsist of d+ 1 polynomial pie
es, ea
h of degree d;� they have d inner knots where the polynomial pie
es be
ome joined;� B-splines have an overlap by 2d neighboring B-splines. Of 
ourse the leftmostand the rightmost B-splines have less overlap;� at the joining points, derivatives up to order d� 1 are 
ontinuous;



4 Krause and Tutz� B-splines are positive on a domain spanned by d+2 knots; outside of this domainthe B-spline is zero.Note that ea
h interval between two adja
ent knots is 
overed by d + 1 B-splinesof degree d. The basis fun
tions �j� depend on one knot only. When using oneknot to identify a spe
i�
 B-spline we take the leftmost knot at whi
h the splinebe
omes non-zero. For 
omputation of B-splines the formulae of de Boor (1978),are very helpful. A B-spline Bd; � (for degree d � 1), whi
h starts at knot �� , maybe 
omputed byBd; �(x) = x� ����+d � �� Bd�1; �(x) + ��+d+1 � x��+d+1 � ��+1Bd�1; �+1(x) : (3)For equidistant knots whi
h are used here (3) simpli�es toBd; �(x) = 1d � d� [(x� ��)Bd�1; �(x) + (��+d+1 � x)Bd�1; �+1(x)℄be
ause ��+d � �� = ��+d+1 � ��+1 = d � d� where d� is the distan
e between twoadja
ent knots.3 Estimation with Penalized ShrinkageFor the additive model (1) parameters are estimated by minimizing the penalizedresidual sum of squares (pRSS)min� 8<: nXi=1(yi � �0 � pXj=1 KjX�=1�j��j�(xij))2 + �(f�j�g)9=; (4)where �(f�j�g) = pXj=1 KjX�=k+1 �j�(�k�j�)2 (5)denoting the penalty term and �j� � 0; j = 1; : : : ; p; � = k+1; : : : ;Kj ; k = 1; 2; : : : ;are lo
al smoothing parameters that 
ontrol the amount of shrinkage: the larger thevalues of �j� , the larger the amount of shrinkage (Hastie, Tibshirani & Friedman(2001)). If �j;k+1 = : : : = �j;Kj = �j we have a global smoothing parameter for thejth explanatory variable. Although global parameters are more easily to handle, ithas been demonstrated by Ruppert & Carroll (2000), that lo
al smoothing param-eters yield better performan
e. For global smoothing parameters the penalizationis the same as in Eilers & Marx (1996). They suggested to penalize the di�eren
eof adja
ent 
oeÆ
ients. Hen
e in (4) the expression �k�j� ; k = 1; 2; : : :, denotes thekth di�eren
e, e.g. the 2th di�eren
e has the form�2�j� = �1(�j� � �j��1)= (�j� � �j��1)� (�j��1 � �j��2)= (�j� � 2�j��1 + �j��2):It 
an be shown (Appendix(A)) that the estimator �̂(�) whi
h minimizes (4) hasthe form �̂(�) = (BTB+DT�D)�1BTy: (6)
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 Algorithms 5where B is a design matrix of dimension n� [(K1 � 1) + : : :+ (Kp � 1)℄ + 1, D isa [(K1 � k) + : : : + (Kp � k)℄ + 1 � [(K1 � 1) + : : : + (Kp � 1)℄ + 1- penalizationmatrix and � = diag(0; �1;k+1; : : : ; �1;K1 ; �2;k+1; : : : ; �p;Kp) is a smoothing matrixof dimension [(K1 � k) + : : :+ (Kp � k)℄ + 1� [(K1 � k) + : : :+ (Kp � k)℄ + 1. Thestru
ture of matri
es B and D are given in detail in Appendix(A).The performan
e of the penalized estimate strongly depends on the 
hoi
e of thesmoothing parameters �j� . A 
riterion with favourable properties has been proposedby Hurvi
h & Simono� (1998), whi
h is given byAICimp = log " 1n nXi=1(yi � ŷi)2#+ 1 + 2 � [tr(H) + 1℄n� tr(H) � 2 (7)where H = B(BTB+DT�D)�1BT is the hat matrix. The smoothing parametershave to be 
hosen su
h that the 
riterion be
omes minimal. In the simulation study(see se
tion (6)) also alternative sele
tion 
riteria have been used, e.g. generalized
ross validation (GCV) as used by Ruppert & Carroll (2000). However, the resultswith di�erent sele
tion 
riteria do not di�er very mu
h from ea
h other. Thus, inthe representation we restri
t ourselves to 
riterion (7).4 Choi
e of Smoothing Parameters by Real-
oded Geneti
AlgorithmsThe real limit in the 
hoi
e of smoothing parameters is the dimensionality of theproblem. Even if global smoothing parameters are used p smoothing parametershave to be 
hosen. For lo
al smoothing the number of parameters in
reases toK1 + : : : +Kp whi
h for 30 knots in ea
h dimension results in 30p smoothing pa-rameters. A grid sear
h whi
h has been used for simpler problems by Eilers & Marx(1996), 
annot be re
ommended. Ruppert & Carroll (2000) give an iterative methodbased on a linear interpolation algorithm. In the present paper the use of geneti
algorithms is proposed.Geneti
 Algorithms (Holland (1975), Goldberg (1989)) are originally based on Dar-win's evolution theory (Darwin (1859)) whi
h refers to the prin
iple that betteradapted (�tter) individuals win against their 
ompetitors under equal external
onditions. Like their biologi
al standard, geneti
 algorithms use biologi
al 
om-ponents (or operators) like sele
tion, 
rossover, or mutation to model the naturalphenomenon of geneti
 inheritan
e and Darwinin strife of survival. For some ba
k-ground on the biologi
al pro
esses of geneti
s and the origin of the terminology seeHaupt & Haupt (1998) and Mit
hell (1996). In this arti
le we only des
ribe somesele
ted 
on
epts whi
h are important for real-
oded geneti
 algorithms.The fun
tion to be optimized is denoted as �tness-fun
tion (short: �tness). Theoptimization problem 
an be treated as a minimization- or a maximization prob-lem. We 
onsider maximization problems only, be
ause minimizing a fun
tion f isequivalent to maximizing the fun
tion �f .The smallest units linked to relevant information of a geneti
 algorithm are 
alledgenes. The genes are either single units or short blo
ks of adja
ent units and theinformation is 
oded in form of numbers, 
hara
ters, or other symbols. In real-
oded geneti
 algorithms every gene is a single unit whi
h is 
oded by a real value.Usually several genes are arranged in a linear su

ession whi
h is 
alled string (also
hromosome, individual). In the 
ontext of smoothing parameter sele
tion a string is



6 Krause and Tutza ve
tor of the form (�1;k+1; : : : ; �1;K1 ; �2;k+1; : : : ; �p;Kp) and thus a lo
al smoothingparameter �j� 
orrespond to one gene. In the 
ase of global smoothing parametersa string redu
es to (�1; : : : ; �p). Without loss of generality in this se
tion we assumeone 
ovariate (j = 1), only.Before starting the iterative geneti
 algorithm the user needs to 
onstru
t an initialpopulation of several strings. This population usually 
onsists of genes 
hosen ran-domly from a uniform distribution on a given interval. The population size (notedas popsize) is usually 
hosen freely. A rating of the quality of the used smoothingparamater 
ombination is given by the improved AIC-
riterion (Hurvi
h & Simono�(1998)). Here, the smoothing parameters have to be 
hosen su
h that the 
riterionbe
omes minimal. For use of the geneti
 algorithm it is more suitable to work with a
riterion whi
h has to be maximized. This is easily a
hieved by simple mathemati
altransformations whi
h are 
onstant during a
ross iterations of the geneti
 algorithm.For that purpose we subtra
t a suÆ
iently large 
onstant from all AIC-values of apopulation su
h that all the AIC-values be
ome negative. The simulations (se
tion6) show that the largeness of the 
hosen 
onstant has no in
uen
e on the results.Following multipli
ation with (�1) yields a 
riterion whi
h has to be maximized.We denote the values whi
h 
hara
terize the quality of the strings as �tness values(short �tness).For the design of powerful geneti
 algorithms operators like 
rossover, mutationor sele
tion are important. The geneti
 algorithm always yields several strings as apotential solution of an optimization problem. This 
olle
tion of strings is 
alled pop-ulation. If we apply operators to strings we generate a population with new di�erentstrings. This new population of strings is 
alled o�spring. We denote the parti
ularpopulations as generations, or more pre
isely as parent- respe
tively o�spring gen-eration. Several authors (Herrera, Lozano & Verdegay (1998), Mi
halewi
z (1996))show that operators have to meet with various purposes during the appli
ation ofa geneti
 algorithm. In general there are two 
on
i
ting obje
tives (exploitation-exploration-dilemma):(i) The initial population very rarely in
ludes strings with solutions at (or at least
lose to) the global optimum. Thus it is helpful to generate o�spring whi
h ares
attered over the whole sear
h spa
e thereby hoping that at least one of thestrings is lo
ated near the global optimum. The obje
tive to explore the sear
hspa
e with strings and a
quire information about the nature of the spa
e isdes
ribed as exploration.(ii) After some iteration steps the geneti
 algorithm may have generated new stringswith solutions whi
h are lo
ated 
loser to the global optimum. In this 
ase weare primarily interested in obtaining information near the optimum by utilizingthe lo
al possibilities of upgrade 
lose to the parents and by generating �ttero�spring there. This stepwise improvement of the stings' �tness by use of lo
alinformation is 
alled exploitation.The relevan
e of these two 
on
i
ting obje
tives is di�ers for parti
ular steps ofthe algorithm. At the beginning (where we have no idea about the lo
ation of theglobal optimum) exploration is more relevant 
ompared to exploitation and vi
eversa. Hen
e a suitable balan
e between exploration and exploitation is neededduring the whole iteration pro
ess. To adequately solve these 
on
i
ting obje
tiveswe require operators whi
h 
hange during the geneti
 algorithm (adaptive or non-uniform operators). In the following se
tion the operators, whi
h will be used, aredes
ribed in brief.
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 Algorithms 7� ai � llo - � lup � bi -� Æ1(lup � bi) -llo lupai bivei v
i vdiFigure 2. With ai and bi representing the parents the IAC operator generates the ap-propriate genes 
i, di and ei of the 
hildren. The �rst o�spring 
i is lo
ated within theparents' interval [ai; bi℄. The other 
hildren are randomly positioned left and right outsidethe interval [ai; bi℄. Every string only takes values within the range between llo and lup.4.1 Improved arithmeti
al 
rossover (IAC)In the last de
ade numerous di�erent types of 
rossover operators have been sug-gested (see e.g. Eshelman & S
ha�er (1993), Mi
halewi
z (1996), Rad
li�e (1991),Wright (1991)). An overview with several simulations 
an be found in Herrera,Lozano & Verdegay (1998). Here we present a new 
rossover operator 
alled im-proved arithmeti
al 
rossover, short IAC.Suppose we have two real-
oded strings (ea
h hasm genes) for 
rossover with valuesin an intervall [llo; lup℄ with lower limit llo and upper limit lupString 1 (a1 : : : ai : : : am)String 2 (b1 : : : bi : : : bm):The IAC operator is de�ned by (
ompare also Figure 2)
i = �ai + (1� �)bi;di = bi + Æ1(lup � bi);ei = ai � Æ2(ai � llo); (8)with i = 1; : : :m, and thus the o�spring have the formOffspring 1 (�a1 + (1� �)b1 : : : �ai + (1� �)bi : : : �am + (1� �)bm)Offspring 2 (b1 + Æ1(lup � b1) : : : bi + Æ1(lup � bi) : : : bm + Æ1(lup � bm))Offspring 3 (a1 � Æ2(a1 � llo) : : : ai � Æ2(ai � llo) : : : am � Æ2(am � llo))where � 2 [0; 1℄ 
an be 
hosen 
onstant or variable over the number of iterations.The parameters Æi 2 [0; 1℄; i = 1; 2, are uniformly distributed random numbers.Every string takes values in the default interval [llo; lup℄.A freely 
hosen 
rossover probability p
 determines whi
h strings of the parent pop-ulation are sele
ted for 
rossover. Therefore we generate a random (
oat) numberri 2 [0; 1℄; i = 1; : : : ; popsize for every string of the population. A string is usedfor 
rossover operation if ri < p
 holds. In the 
rossover pro
ess we need 
ouple ofstrings and thus it is ne
essary to sele
t an even number of parent strings.The IAC operator generates three new o�spring and we sele
t the two best strings,whi
h will repla
e the parents. Interestingly, the IAC operator yields 
hildren whi
himprove exploration and exploitation simultaneously. Figure 2 shows that two o�-spring (di and ei) are lo
ated outside the parents' interval [ai; bi℄ and thus regionsfurther apart in the sear
h spa
e 
an be explored. In addition, one 
hild (here 
i) islo
ated within the parents' interval and is primarily responsible for an improvementof exploitation.



8 Krause and TutzIn se
tion 6 we 
ompare the quality of IAC operator with that of the arithmeti
al
rossover operator (Mi
halewi
z (1996)). Thereby the arithmeti
al 
rossover oper-ator is de�ned by a weighted linear 
ombination of two parents, i.e.
i = �ai + (1� �)bi; i = 1; : : : ;mdi = �bi + (1� �)ai; i = 1; : : : ;m (9)where � 2 [0; 1℄ 
an be 
hosen 
onstant (uniform arithmeti
al 
rossover) or variableover the number of iterations (non-uniform arithemi
al 
rossover). The arithmeti
al
rossover operator generates two 
hildren. Depending on the 
hoi
e of parameter �,they only take values in the parents' interval [ai; bi℄. Sin
e the 
hildrens' position isrelatively 
lose to their parents, it enhan
es exploitation. The 
onsequen
e is missingexploration and thus large parts of the sear
h spa
e remain un
onsidered.4.2 Non-uniform mutationThe purpose of the mutation operator is to introdu
e some extra variability intothe population. Several types of mutation operators have been developed (see e.g.Davis (1991), Mi
halewi
z (1996), M�uhlenbein & S
hlierkamp-Voosen (1993), Voigt& Anheyer (1994)). An overview with various examples of simulations 
an be foundin Herrera, Lozano & Verdegay (1998), and Mi
halewi
z (1996). In our geneti
 algo-rithm we use the non-uniform mutation operator presented by Mi
halewi
z (1996).For every gene of a string we generate a random number rgene 2 [0; 1℄ and 
omparergene with a default probability pm. If rgene < pm, the gene mutates, i.e. it 
hangesits value. Suppose we have a string (a1 : : : ai : : : am) of length m and randomly sele
tthe gene ai for the appli
ation of the non-uniform mutation operator. Then we geta ve
tor (a1 : : : a0i : : : am) wherea0i = (ai + (lup � ai)(1� r(1� tT )b) if � = 0ai � (ai � llo)(1� r(1� tT )b) if � = 1: (10)Here � is a random number whi
h may have a value of zero or one, r 2 [0; 1℄ isan uniform random number, T is the maximum number of generations and b is auser-dependent system parameter whi
h determines the degree of non-uniformity.The fun
tion g(t) = (1� r(1� tT )b) (11)yields values in the intervall [0; 1℄.We 
an distinguish between two extreme 
ases (
ompare also Figure (3)): If the gen-eration number t is small, the exponent in (11) yields a value 
lose to one and thusg(t) is primary in
uen
ed by a suitable 
hoi
e of the random number r. Be
ause therandom number r is uniformly distributed ea
h value g(t) 
an be (approximatively)a

epted with the same probability. Hen
e ea
h a0i in (10) has nearly the same prob-ability to be taken. On the other side, if the generation number t be
omes large,g(t) in (11) obtains values 
lose to zero for a wide range of random numbers. Thusthere is a tenden
y that the o�spring a0i in (10) is 
lose to its parent ai. In summarythe geneti
 algorithm initially explores the whole sear
h spa
e right of the parents'interval uniformly for an a

urate a0i. However at a later stage of the algorithm, weprimarily prefer those a0i whi
h are 
lose to their parent ai.
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t=95 Figure 3. Here is shown the fun
tion g(t) in subje
t to a uniform distributed randomnumber r for three sizes of the generation number t. For ea
h generation number t we haveplotted two 
urves with di�erent parameters b. The larger parameter b, the lower is thedegree of non-uniformity.4.3 Sampling methodsTwo important issues exist in geneti
 sear
h: on the one hand we need several dis-tinguishable strings (that means a large population diversity) to sear
h su

essfullyfor a global optimum in the sear
h spa
e (exploration). On the other hand a suitablesele
tion of promising strings (we denote this as in
rease of sele
tive pressure) yieldsa faster 
onvergen
e of the geneti
 sear
h (exploitation). These fa
tors are linked
losely be
ause an in
rease of sele
tive pressure de
reases the diversity of populationand vi
e versa. Hen
e strong sele
tive pressure supports premature 
onvergen
e ina lo
al optimum while a weak sele
tive pressure 
an make the sear
h ine�e
tive. Fora suitable balan
e we need sampling methods whi
h try to sele
t a

urate stringsof a population at ea
h iteration step of the algorithm.In the literature there are many suggestions of sampling methods. The most famousmethods are probably sto
hasti
 universal sampling (Baker, 1987), rank-based te
h-niques (Baker (1985), Whitley (1989)) and tournament sele
tion (Goldberg, Deb& Korb (1991)). Here we introdu
e a new modi�
ation of the sto
hasti
 universalsampling (Baker (1985)). Our modi�ed sele
tion pro
edure (modSP), whi
h in
ludes
rossover- and mutation operators, 
onsists of six steps and is illustrated in Figure4: Step 1: Suppose that a population P (t) is generated in iteration step t. Thendelete the worst u per
ent strings of P (t).Step 2: From the remaining strings of step 1 randomly sele
t r strings, whi
hdo not ne
essarily have to be distin
t.Step 3: From the remaining strings of step 1 randomly sele
t s parent strings.These have not to be distin
t from the r sele
ted strings in step 2.Step 4: If strings are equal the 
opies will be mutated. How many genes of astring are randomly sele
ted and mutated is 
ontrolled by the prob-ability pm > 0 (at least one gene is mutated). After mutation, thereare r di�erent strings. This operation will also be exe
uted for the sparent strings.



10 Krause and Tutz Population P(t)?Deletionof the worst u per
entstrings of P(t)����+ QQQQsSele
tion ofr Strings Sele
tion ofs Strings?Mutation ofidenti
al strings ?Mutation ofidenti
al strings?Crossover? ?Population P(t+ 1)has r o�spring and s parents

Step 1
Step 2 Step 3Step 4 Step 4Step 5Step 6 Step 6

Figure 4. Stru
ture of the modi�ed sele
tion pro
edure (modSP) given as a 
ow
hart.Details in the text.Step 5: Controlled by the 
rossover probability p
, apply a 
rossover operatorto the set of the r (distin
t) strings and generate 2 � i � r new strings.Step 6: Let r o�spring and s parent strings form the new population P (t+1).The sele
tion in step 2,3 and 5 is implemented with respe
t to a probability distri-bution based on the strings' �tness. The probability for every string to be sele
tedis 
al
ulated as follows:(i) Cal
ulate the �tness value fit(si) for every string si; i = 1; : : : ; popsize. The�tness values are 
al
ulated by the improved AIC-
riterion (se
tion 3). Fitnessand AIC-
riterion are 
onne
ted by the mathemati
al transformations des
ribedabove.(ii) Determine the total �tness of the populationF = pop sizeXi=1 fit(si) :(iii) Cal
ulate the probability pi and the 
umulative probability qi of a sele
tion forea
h string si; i = 1; : : : ; popsize bypi = fit(si)F ; qi = iXj=1 pj :To sele
t a single string for the new population, the user �rst needs to gener-ate popsize random (
oat) numbers ri 2 [0; 1℄ and then 
he
k for every ri; i =1; : : : ; popsize:
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t the �rst string s1.� If ri � qi then sele
t the j-th string si su
h that qj�1 < ri � qj where j =2; : : : ; popsize.Hen
e more �t strings have a larger probability to be 
hosen 
ompared to the less�t strings.Figure 4 presents the geneti
 algorithm, used in the simulation studies (se
tion6). Therefore our geneti
 algorithm has several build-in steps, whi
h in
rease thee�e
tiveness 
ompared with many other 
onventional geneti
 algorithms:� Deletion of a default number of worse strings in population P (t) limits theavailable group of strings for future iterations and thus the sele
tive preassureis high.� Strings of a population P (t) whi
h have high �tness will enter the new populationP (t+ 1) either as o�spring (step 2) or as parent (step 3) with high probability.With step 3 the best solutions of the old population are not forgotten.� Exa
t 
opies of strings are not allowed. Hen
e there is no danger that a fewstrings (we 
all them super-individuals) generate many equal 
opies and thus re-press other less �t strings. Mutation of some genes yields new strings of di�erentgenotype. The size of a string whi
h will be mutated (and hen
e the size of lostoriginal information) is 
ontrolled by the probability pm.Prevention of several equal strings improves the diversity of a population. Therewill be only a slight in
rease of sele
tive pressure if we 
hange the genotype ofa string by 
ontrolled mutation (be
ause most strings maintain their originalinformation).� The 
lassi
al mutation-step (Mi
halewi
z (1996)) is 
an
eled. Instead, only step4 will prevent equal strings.For termination 
ondition we 
al
ulate the average of the num 2 f2; : : : ; popsizeg�ttest strings of ea
h population. If the �tness does not 
hange during a defaultnumber, term 2 f2; : : : ; Tg of su

essive iterations (T = maximal iteration number)the geneti
 algorithm is terminated. All simulations in se
tion 6 have num = 10and term = 20.5 Alternative Approa
hesThis se
tion brie
y des
ribes alternative approa
hes to estimate fun
tions and tosele
t smoothing parameters whi
h are 
ompared to the present approa
h. The basisof all approa
hes is the expansion in basis fun
tions with the predi
tor term�(xi) = �0 + pXj=1 KjX�=1�j��j�(xij): (12)5.1 Mixed modelsAn approa
h based on the methodology of mixed models has been used by Parise,Wand, Ruppert & Ryan (2001). The basi
 
on
ept is to treat the parameters in(12) as random e�e
ts. With respe
t to that strategy and in the 
ontext of additive
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ated power series �j� (x) = (x� �j�)+ as basis fun
tions one 
anassume that �j� � N (0; �2j ); � = 1; : : : ;Kj ;with �j1; : : : ; �jKj are independent. The �2j express the variability of the param-eters: �2j = 1 
orresponds to the unrestri
ted 
ase whereas �2j ! 0 implies highrestri
tions on the parameters. The estimation of stru
tural and smoothing param-eters is based on solving the generalized mixed models equation. In the simulationstudy we assume that adja
ent weights of the used trun
ated power series basis are
orrelated with a �rst order autoregressive (AR(1)) stru
ture whose parameter areautomati
ally estimated by the used software pa
kage SAS.5.2 Bayesian P-splinesA fully Bayesian approa
h has been used by Lang & Brezger (2003). In a similarway as in the mixed model approa
h, the parameters are 
onsidered as random.In 
ontext of basis fun
tions as B-splines one assumes prior distribution on theparameters. This may be 
onsidered as the sto
hasti
 analogue to the use of apenalty term in the estimation pro
edure. For the �rst order di�eren
es one assumesdi�use priors for �j1 and a �rst order random walk �j� = �j;��1+uj� with Gaussianerrors uj� � N (0; �2j ). For full Bayesian inferen
e, hyperpriors are assigned to theparameters �2j , using highly dispersed inverse Gamma priors, p(�2j ) � IG(aj ; bj)with aj ; bj �xed. Lang & Brezger (2003) use aj = 1; bj = 0:005. Inferen
e is basedon Markov Chain Mote Carlo (MCMC) simulation te
hniques.If one uses B-splines whi
h may be 
onstru
ted from the trun
ated power series theassumption of independent random e�e
ts is repla
ed by assuming that di�eren
es ofparameters are normally distributed. In the simpler 
ase one assumes �j;�+1��j� �N (0; �2j ).5.3 Relevan
e Ve
tor Ma
hineThe relevan
e ve
tor ma
hine (Tipping (2000), Tipping (2001)) has been devel-oped in the ma
hine learning 
ommunity as an improvement of the support ve
torma
hine. Tipping also uses a Bayesian framework. Starting with one basis fun
-tion at ea
h observation the weights �j� are independent and normally distributed,�j;� � N (0; ��1i ) where the hyperpriors for �i and �2 are gamma distributionswhi
h are optimized by a marginal likelihood approa
h. The essential di�eren
ebetween Tipping's algorithm and Bayesian approa
hes is that the number of basisfun
tions initially is equal to the number of observations. Then it redu
es to onlyfew remaining basis fun
tions. For the rest the weights be
ome zero. In our simula-tion study (se
tion 6.1) we use 40 respe
tively 80 Gaussian kernels as basis fun
tionswith di�erent �g , in detail �g = 0:15=p2 (fun
tion with j = 3) and �g = 0:06=p2(fun
tion with j = 6). The hyperpriors are automati
ally estimated by the softwareprogram SAS.5.4 Adaptive RegressionFriedman (1991) proposed multivariate adaptive regression splines (MARS). MARSuses the expansion in basis fun
tions of the form
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 Algorithms 13�(xi) = �0 + pXj=1 �j�j(xij)in a stepwise way where basis fun
tions are 
onstru
ted su

essively from produ
tsof linear splines (xi � �i�)+ ; (�i� � xi)+ where xi is one 
omponent of the ve
torx and �i� are knots whi
h are 
hosen from the observation of the 
orresponding
omponent of x. By stepwise in
lusion of linear splines a large model (we use amaximum number of 150 basis fun
tions) is obtained for whi
h a ba
kward deletionpro
edure is often applied. For details see Friedman (1991).An alternative Bayesian pro
edure applying adaptive regression splines has beenproposed by Biller & Fahrmeir (2002). Like other Bayesian approa
hes this pro
e-dure is not a stepwise approa
h and is based on a large set of basis fun
tions likeB-splines, whi
h are 
hara
terized by 
andidate knots for ea
h variable. In additionto the parameters, the number of knots as well as the spe
i�
 
hoi
e of knots arespe
i�ed by prior distributions. For estimations, the number of knots are Poissondistributed with a mean number of knots = 20.5.5 Smoothing parameter sele
tion with S-Plus-softwareThe software pa
kage S-Plus o�ers a restri
ted possibility of smoothing parametersele
tion. First one 
al
ulates the AIC-
riterion for an initial model. Then one hasto spe
ify a list with other modelling alternatives. Ea
h 
ovariate 
an be droppedor integrated in a model as a linear term respe
tively as a B-spline with a defaultpenalty term. Therefor Eilers & Marx (1996) published a S-Plus-fun
tion whi
hallows the expansion of ea
h fun
tion fj ; j = 1; 2; : : : in B-splines with penaltyterm. Starting with the initial model the implemented fun
tion step su

essively
al
ulates the AIC-
riterion for all alternative models. If a 
urrent model yields abetter AIC-value we repla
e the previous model. Be
ause of its implementation S-Plus 
an only run a relatively small number of di�erent models. In the simulationstudy of se
tion 6.2 it has been shown, that for an additive model with 5 fun
tionsfj ; j = 1; : : : ; 5, where ea
h one is expanded in 20 B-splines, we 
an sele
t a listfrom about 17 models (i.e. ea
h 
ovariate 
an be modelled linearly or as a B-splinewith one of 16 di�erent smoothing parameters). However, to present results of thepopular statisti
al software tool we had to make assumptions 
on
erning the 
hoi
eof smoothing parameters. Hen
e a grid of 16 smoothing parameters was log-spa
edbetween 10�2 and 102, i.e. their base-10 logarithms were equally spa
ed between �2and 2. It is obvious that this dis
rete and restri
ted smoothing parameter sele
tionyields inex
a
t solutions and that the optimal 
hoi
e of smoothing parameters isvery rare. Furthermore, we usually do not know the fun
tion's true stru
ture andhen
e the above restri
tions are in 
ommon not supportable.5.6 Smoothing parameter sele
tion with R-softwareThe statisti
 software pa
kage mg
v (Wood (2001)) running in R yields an automati
smoothing parameter sele
tion, whi
h is based on a method �rst proposed by Gu& Wahba (1991). The idea is to re-write the multiple smoothing parameter model�tting problem with an extra \overall" smoothing parameter 
ontrolling the tradeo�between model �t and overall smoothness. The retained smoothing parameters now
ontrol only the relative weights given to the di�erent penalty terms. Then, theapproa
h is to alternate the following steps:
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Adaptive Regression  
         Splines     
 Bayesian    MARS    Figure 5. The panels at the top show the true fun
tions with di�erent spatial variability(solid line) for a randomly 
hosen data set with � = 0:2. The panels below show boxplotsof log10(pMSE) for various estimators for j = 3 (left) and j = 6 (right). The dotted linerepresents the median of the geneti
 algorithm with 40 knots.� Estimation of the overall smoothing parameters using one-dimensional dire
tsear
h methods.� Update the relative smoothing parameters simultanously by using the Newtonmethod.The approa
h bases on minimizing the Generalized Cross Validation (GCV) asmodel sele
tion 
riterion. In the simulation studies we use 
ubi
 B-splines wherebythe number of knots 
an be adjusted by hand. For further details see Wood (2000)and Wood (2001).6 SimulationsIn the following simulation study the performan
e of the approa
h for estimatingthe smoothing parameters with a geneti
 algorithm is 
ompared with other relatedmethods in literature. Program pa
kages for the methods in se
tion 5 often do notuse the additive stru
ture. Thus these pa
kages are 
ompared in se
tion 6.1 forthe single 
ovariate 
ase with fun
tions of rather di�erent spatial variability. Thesimulations used in this se
tion also show on
e more the quality of the imposedarithmeti
al 
rossover operator (IAC) as des
ribed in 
hapter 4. Se
tion 6.2 
om-pares our approa
h with other methods in literature by means of simulated additivemodel.
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          Bayesian P−Splines               
40 knots                          80 knots Figure 6. The �gures show boxplots of log10(pMSE) of the geneti
 algorithm andBayesian P-splines with lo
al smoothing parameters for j = 3 (left) and j = 6 (right).The dotted line represents the median of geneti
 algorithm with 40 knots.6.1 Estimation of di�erent os
illating fun
tionsIn our �rst simulation study we 
onsider the fun
tionf(x) =px(1� x) sin�2�(1 + 2(9�4j)=5)x+ 2(9�4j)=5 � :The spatial variability of f(x) 
an be 
hanged by the parameter j = 1; 2; : : : (seeRuppert & Carroll (2000)). We simulate 250 data sets for low spatial variability(j = 3) or for high spatial variability (j = 6), respe
tively. Ea
h data set 
onsists of400 independent and uniformly distributed data with � = 0:2 (see Figure 5).For estimating the fun
tion, f(x) is expanded in 40 (respe
tively 80) 
ubi
 B-splinebasis fun
tions. As penalty we use the third order di�eren
es of adja
ent 
oeÆ
ientsand the smoothing parameter 
hosen from the interval [10�4; 104℄. The default pa-rameters of the used geneti
 algorithm are: population size (popsize) = 48 strings,
rossover probability p
 = 0:5, mutation probability pm = 0:25, deletion of u = 60per
ent of the worst strings, sele
tion of r = 30 and s = 18 strings, � = 0:5; T = 1000and b = 1.To 
ompare our approa
h with other methods we 
omputed log10(pMSE) withempiri
al mean squared error given by MSE(f̂) = 1n Pni=1(f(xi) � f̂(xi))2. Forboth spe
i�
ations of spatial variability (j = 3; 6) Figure 5 shows boxplots oflog10(pMSE) for various estimators. Here only one global smoothing parameteris used. From left to right the boxplots refer to geneti
 algorithm (40 and 80 knots),Relevan
e Ve
tor Ma
hine (RVM, 40 and 80 knots), mixed model (40 and 80 knots),Bayesian adaptive regression splines and MARS. For better 
omparison the dottedline represents the median of geneti
 algorithm with 40 knots.From Figure 5 we 
an draw the following 
on
lusions:� For j = 3 most approa
hes yield similar results. The MARS approa
h leads tosubstantial poorer results than all the other methods. For j = 6 the performan
estrongly depends on the method. While mixed models approximately yield thesame results as the geneti
 algorithm, RVM, Bayesian P-splines and MARS showpoorer results. Only Bayesian adaptive regression splines lead to better results
ompared to the geneti
 algorithm.� For j = 3 doubling the number of basis fun
tions from 40 to 80 knots thereare s
ar
ely improves the performan
e of the estimators if we double. In 
ase
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Degree (B−spline) = 2 Degree (B−spline) = 3 Figure 7. Results for the geneti
 algorithm with global smoothing parameters but di�erentdegrees of B-spline and penalty order for the fun
tions j = 3 (left) and j = 6 (right).of Bayesian P-splines even show a slight deterioration. For j = 6 an in
reasingnumber of basis fun
tions yields better estimators on average. But the magnitudeof the improvements depends on the type of the approa
he.For both spe
i�
ations (j = 3; 6) Figure 6 shows the boxplots log10(pMSE) of thesimulation used above (i.e. equal data sets and default parameters of the geneti
algorithm). But now we use lo
al smoothing parameters in the interval [10�4; 104℄.For dire
t 
omparison we present the results of our approa
h and Bayesian P-splines:� Both spe
i�
ations (j = 3; 6) yield 
omparably good estimators.� The use of geneti
 algorithms with lo
al smoothing parameters shows no im-provements 
ompared to geneti
 algorithms with global smoothing parameters.To gain better insight into the estimation by means of geneti
 algorithms with globaland lo
al smoothing parameters, we have a look at Figure 7. For both spe
i�
ationsof spatial variability, the simulation was run with 40 B-splines for quadrati
 (degree= 2) and 
ubi
 (degree = 3) B-splines and di�erent penalty (order = 1; 2; 3). Thedotted line represents the median of 
ubi
 B-splines with penalty order 3 whi
h weused in simulations above.� For j = 3 an in
reasing penalty order improves the quality of the estimator.Apart from penalty order 1, the degree of B-splines has little in
uen
e.� For j = 6 the 
ubi
 boxplots show more a

urate estimators 
ompared withthe quadrati
 boxplots. In 
ontrast to j = 3 the estimators be
ome worse within
reasing penalty order.These results 
on�rm, that B-spline degree and penalty order a�e
t the quality ofan estimator. For di�erent os
illating fun
tions, however, 
hoosing a suitable degreeof B-splines and penalty order be
omes more diÆ
ult. For example, our 
hoi
e of
ubi
 B-splines with penalty order 3 is suitable for low spatial fun
tions. But a lowerpenalty order seems to be more a

urate for highly os
illating fun
tions. Comparablesimulations with lo
al smoothing parameters yield similar results as des
ribed inFigure 7.In general, the underlying fun
tions (e.g. in an additive model) are 
ompletelyunknown and thus we have no idea about the degree of spatial variability. The
hoi
e of 
ubi
 B-splines with penalty order 2 or 3 should be an adequate solutionfor all kinds of fun
tions.
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Improved Arithmetical Crossover (IAC) Figure 8. The left �gure shows boxplots of log10(pMSE) of the geneti
 algorithm with im-proved arithmeti
al 
rossover and arithmeti
al 
rossover. We used 100 data sets of the highos
illating fun
tion (j = 6) and a global smoothing parameter. The right �gure presentsthe mean log10(pMSE) of the data sets for both 
rossover operators.Again we brie
y refer to the improved arithmeti
al 
rossover (IAC)-operator pre-sented in se
tion 4.1. For the simulations above we 
ompare our new operator withthe arithmeti
al 
rossover operator (se
tion 4.1).Figure 8 (left) shows boxplots of log10(pMSE) with high spatial variability andglobal smoothing parameters for the simulation des
ribed above. The IAC-operatoryields estimators whi
h are signi�
antly better than the arithmeti
al 
rossover.Moreover, the IAC-operator has faster speed of 
onvergen
e (see Figure 8 (right)).Here, the mean log10(pMSE) of all data sets for both 
rossover operators is shown.They were 
hosen by the geneti
 algorithm up to iteration t = 200. In ea
h dataset, the 
urrent population P (s = t) of iteration t yields the log10(pMSE)-valueonly in the 
ase where all former populations P (s < t) have worse �tness. Other-wise, the log10(pMSE)-value of the former population P (s = t�1) is retained. Forthe 
urves in Figure 8 we average a
ross the log10(pMSE)-values of the 100 datasets and realize a 
onvergen
e to a minimal value after a few iterations, if usingthe IAC-operator. However, in general the arithmeti
al 
rossover operator does notobtain this minimal value even if we have a larger iteration number.6.2 Estimation for additive modelsIn this simulation study we 
hoose an additive model, 
onsisting of 5 fun
tionsfj(xij); j = 1; : : : ; 5 (Figure 9). We simulate 250 data sets, where ea
h data set
onsists of 500 independently and uniformly distributed data with �1 = 0:3 and�2 = 0:6. To estimate the single fun
tions fj(xij) we expand ea
h fun
tion in 20
ubi
 B-spline basis fun
tions. For penalty we use the third di�eren
e of adja
ent
oeÆ
ients. The �ve global smoothing parameters 
an be 
hosen in the interval[10�4; 104℄. The default parameters of the geneti
 algorithm are the same as inse
tion 6.1.To 
ompare the results of our approa
h with other methods we 
omputed log(MSE).Figures 10 and 11 show boxplots for both 
ases, �1 = 0:3 and �2 = 0:6. The
omparison of the estimation performan
e between the approa
hes is presentedfor ea
h single fun
tion fj in an own subplot. The last subplot shows the esti-mation performan
e for the total fun
tion ftotal 
onsisting of the 5 
omponentsfj ; j = 1; : : : ; 5. Ea
h subplot 
omprises boxplots of the following methods (fromleft to right): geneti
 algorithm, R (respe
tively the R-pa
kage \mg
v"), S-Plus,
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Figure 9. Here the �ve original fun
tions of the used additive model are shown.BayesX and Bayesian adaptive regression splines. For better 
omparison, the dot-ted line represents the median of the geneti
 algorithm.Figure 10 and 11 show:� In both 
ases the linear fun
tion f1 is estimated best by S-Plus.� Fun
tion f2 is signi�
antly better estimated for �1 = 0:3 and �2 = 0:6 by thegeneti
 algorithm than all other approa
hes.� Apart from S-Plus, in 
ase of �1 = 0:3 fun
tion f3 is similarly estimated by allapproa
hes. But in the 
ase �2 = 0:6, the geneti
 algorithm yields better results
ompared with the other approa
hes.� Bayesian adaptive regression splines signi�
antly yields the best results in esti-mation of fun
tion f4. For �1 = 0:3 the �t of fun
tion f4 by the geneti
 algorithmis worse than that of all other approa
hes. But for �2 = 0:6 the approa
hes (ex-
ept Bayesian adaptive regression splines) yield 
ompareable results.� Together with S-Plus, the geneti
 algorithm has the best estimators of fun
tionf5 for both spe
i�
ations (�1 = 0:3 and �2 = 0:6).� For �1 = 0:3 only S-Plus and Bayesian adaptive regression splines outperformthe geneti
 algorithm in estimation of the total fun
tion ftotal. But if we 
hoose�2 = 0:6, the geneti
 algorithm better estimates ftotal 
ompared with all otherapproa
hes.The simulation study shows that the results for the estimation of fun
tion ftotal byBayesian adaptive regression splines are 
losely 
onne
ted to the �t of fun
tion f4.Although this approa
h yields average results for all other fun
tions, the ex
ellentestimation of f4 strongly in
uen
es the quality of the total fun
tion ftotal. Thereason is that variable knot sele
tion of Bayesian adaptive regression splines adaptto the di�erent spatial variability of fun
tion f4. We noti
e again that only stri
t
onstraints of the smoothing parameter 
hoi
e (se
tion 5.5) lead to the results ofthe S-Plus approa
h. Furthermore, the results of fun
tion f1 show the advantage ofS-Plus to estimate the fun
tion f1 by linear terms.
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Adaptive
  Bayes

Adaptive
  BayesFigure 10. Here boxplots of log(MSE) for the fun
tions fj ; j = 1; : : : ; 5 and the totalfun
tion ftotal of several estimation approa
hes with �1 = 0:3 are shown. Details in thetext.Table 1 shows the average running times per data set of the used programs in theProgram Running time in se
ondsGeneti
 algorithm 337R-pa
kage mg
v 3S-Plus 468BayesX 49Adaptive Bayes 394Table 1. Here average running times for estimation of one data set in the simulationstudy of an additive model with �1 = 0:3 are shown.simulation study (additive model with �1=0.3). S-Plus, BayesX and the R-pa
kagemg
v are 
ommer
ial software and hen
e optimized with respe
t to running time.The geneti
 algorithm and the adaptive Bayesian algorithm are primarily resear
htools, programmed for 
omparison of results and thus not optimized for runningtime. Hen
e a dire
t 
omparison is diÆ
ult. But Table 1 shows one obvious fa
t:the 
ommer
ial software S-Plus uses mu
h more running time to yield a

urateresults than all other programs.7 Con
lusionsWe have presented a new automati
 pro
edure for smoothing parameter 
hoi
ebased on geneti
 algorithms. In various simulation studies we 
ompared the perfor-man
e of our approa
h to other parametri
 and nonparametri
 methods given inthe literature. The main fo
us was on estimation of fun
tions with additive mod-els. The simulation studies show that the results between our approa
h and the
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  BayesFigure 11. Here boxplots of log(MSE) for the fun
tions fj ; j = 1; : : : ; 5 and the totalfun
tion ftotal of several estimation approa
hes with �2 = 0:6 are shown. Details in thetext.other methods are 
omparable in most 
ases. Furthermore the geneti
 algorithmoutperforms the other methods in some simulations of se
tion 6.This paper only refers to models with one-dimensional- or additive stru
ture anduniformly distributed data. Thus it was possible to use several software programsfrom literature to rank the quality of the new approa
h. In future we will analyzethe geneti
 algorithm for smoothing parameter 
hoi
e in models with intera
tionsand other distributions of the reponse.Finally the question arises whether a geneti
 algorithm with adaptive 
hoi
e of knotsmay further improve Bayesian adaptive regression splines whi
h already yieldedpromising results in several simulation studies.A
knowledgementWe thank Stefan Lang, Thomas Kneib and David Rummel for assistan
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1Appendix
A Penalized regression splines with 
onstraintsFor a detailed derivation of (6) we again start with the penalized residual sum ofsquares 
riterion (pRSS)min~� 8<: nXi=1(yi � ~�0 � pXj=1 KjX�=1 ~�j� ~�j� (xij))2 + pXj=1 KjX�=k+1 �j� (�k ~�j�)29=; (13)where �j� � 0; j = 1; : : : ; p; � = k+1; : : : ;Kj ; k = 1; 2; : : : ; are lo
al smoothing pa-rameters, ~�j� are unknown 
oeÆ
ients and �k ~�j� ; k = 1; 2; : : : is the kth di�eren
eof adja
ent 
oeÆ
ients. Writing (13) in matrix form we obtainpRSS(�) = (y � ~B~�)T (y � ~B~�) + ~�T ~DT�~D~�: (14)Cal
ulation of the �rst derivative and set the expression to zero yields an estimatorfor ~� ~̂�(�) = (~BT ~B+ ~DT�~D)�1~BTy: (15)and thus an estimator for y is given byŷ = ~B~̂�(�) (16)Here ~B is a n� (K1 + : : :+Kp + 1)-design matrix~B = [1; ~�1; ~�2; : : : ; ~�p℄ = 264 1 ~�11(x11) � � � ~�1K1(x11) ~�21(x12) � � � ~�pKp(x1p)... ... ... ... ...1 ~�11(xn1) � � � ~�1K1(xn1) ~�21(xn2) � � � ~�pKp(xnp)375and ~D = diag(0; ~D1; : : : ; ~Dp) is a [(K1�k)+ : : :+(Kp�k)℄+1� [K1+ : : : ;Kp℄+1-penalization matrix of di�eren
e order k, where ea
h matrix ~Dj is of dimension(Kj�k)�Kj . The 
omponents in an additive model (1) are not identi�able withoutfurther restri
tions. A restri
tion whi
h makes the 
omponents unique yields theexpression KjX�=1 ~�j� = 0; j = 1; : : : ; p (17)



22 Krause and Tutzand thus without loss of generality the last 
oeÆ
ient ~̂�jKj 
an be represented bya linear 
ombination of the other 
oeÆ
ients, i.e.~�jKj = �~�j1 � ~�j2 � : : :� ~�j;Kj�1; j = 1; : : : ; p:With regard to this 
ondition we re
eive from (16) for yi; i = 1; : : : ; n,ŷi = ~̂�0 + K1�1X�=1 ~̂�1� ~�1�(xi1) + ~̂�1K1 ~�1K1(xi1) + : : :++Kp�1X�=1 ~̂�p� ~�p�(xip) + ~̂�pKp ~�pKp(xip)= ~̂�0 + K1�1X�=1 ~̂�1� ~�1�(xi1)� K1�1X�=1 ~̂�1� ~�1K1(xi1) + : : :++Kp�1X�=1 ~̂�p� ~�p�(xip)� Kp�1X�=1 ~̂�p� ~�pKp(xip)= ~̂�0 + K1�1X�=1 ~̂�1� �~�1�(xi1)� ~�1K1(xi1)�| {z }� �1�(xi1) + : : :++Kp�1X�=1 ~̂�p� �~�p�(xip)� ~�pKp(xip)�| {z }� �p�(xip) :Writing the last expression in matrix notation we obtainŷ = B�̂(�)where B is a n � [(K1 � 1) + : : : + (Kp � 1)℄ + 1-design matrix and �̂(�) is a[(K1�1)+: : :+(Kp�1)℄+1�1-
oeÆ
ient matrix. Be
ause of the di�erent 
oeÆ
ientve
tor �̂j = ( ~̂�j1; : : : ; ~̂�j;Kj�1;�PKj�1�=1 ~̂�j�)T , j = 1; : : : ; p; it is ne
essary to adaptthe penalization matrix ~D. The new blo
kmatrix D = diag(0;D1; : : : ;Dp) hasdimension [(K1 � k) + : : : + (Kp � k)℄ + 1 � [(K1 � 1) + : : : + (Kp � 1)℄ + 1. Theelements Dj ; j = 1; : : : ; p, are 
omputed in the following way:~Dj ~̂�j = 2664 ~Dj; [(Kj�k)�1�(Kj�1)℄ ... 0[(Kj�k)�1�1℄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0[1�(Kj�k)�1℄ � 1 ... 1 3775 � 2666664 ~̂�j1...~̂�j;Kj�1�PKj�1�=1 ~̂�j�
3777775= " ~Dj; [(Kj�k)�1�(Kj�1)℄ � �̂j� ~̂�j;Kj�1 �PKj�1�=1 ~̂�j� # = � ~Dj; [(Kj�k)�1�(Kj�1)℄�1[1�(Kj�2)℄ � 2 � � �̂j = Dj � �̂jIn the 
ases we have di�eren
es of �rst (k = 1, left matrix below ) or se
ond (k = 2,right matrix below) order the matri
es Dj have the stru
tureDj = 2666664�1 1 0 � � � 00 �1 1 � � � 0... . . . . . . ...0 . . . . . . �1 1�1 . . . . . . �1 �2

3777775 Dj = 2666664 1 �2 1 0 � � � 00 1 �2 1 � � � 0... . . . . . . . . . ...0 . . . . . . 1 �2 1�1 . . . . . . �1 �1 �2
3777775 (18)
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