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Summary

We present a newly developed technique for identification of positive and negative

responders to a new treatment which was compared to a classical treatment (or placebo)

in a randomized clinical trial. This bump-hunting-based method was developed for trials

in which the two treatment arms do not differ in survival overall. It checks in a

systematic manner if certain subgroups, described by predictive factors do show

difference in survival due to the new treatment. Several versions of the method were

discussed and compared in a simulation study. The best version of the responder

identification method employs martingale residuals to a prognostic model as response in

a stabilized through bootstrapping bump hunting procedure. On average it recognizes

90% of the time the correct positive responder group and 99% of the time the correct

negative responder group.

Keywords: responder identification, bump hunting, predictive factors
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1. Introduction

The term response up to now appears only in clinical trials, in which surrogate markers

are used to describe the effect of a treatment when that effect is other than to prevent an

event. For example in oncology, the desired effect of a treatment may be reduction of

tumor size, whereas the outcome of interest (called event) may be death. Then a

responder is a patient who experienced tumor reduction or complete remission and a

non-responder is a patient who's tumor did not change or grew. Notice, that does not

necessarily mean that responders lived longer. No definition of responder is currently

available for trials in which the effect of treatment is to prevent an event (e.g. mortality).

The classical definition of responder is altered in this research in order to fit the more

general clinical trial situation, in which the wished effect of a treatment is increasing the

event-free period of the treated patient. We define positive responders to be patients

under the new treatment, who benefit from it. Their benefit is manifested in the fact that

their survival time is longer than that of patients with the same characteristics

(predictive factors), randomized in the classical treatment group. We define negative

responders to be patients under the new treatment who are harmed by it. Their survival

time is shorter than that of a similar, described by predictive factors, group of patients

under the classical treatment. Consequently, non-responders would be patients who are

neither positive nor negative responders. Their survival time does not differ from

similar patients under the classical treatment. We are interested in identifying

responders – both positive and negative.

Let us concentrate on the following common clinical trial situation in which the ability

of a new treatment to prevent an event is tested. Patients are randomized into two

groups: one receiving the classical treatment (or placebo) and the other receiving the

new treatment. Not rarely, the outcome of such trials shows no difference in the survival

probabilities of the two treatment groups. But still, it could happen that certain

subgroups of patients show improved survival under the new treatment, while others

appear to suffer from it. Exactly this situation appeared in the European Myocardial

Infarction Amiodarone Trial (EMIAT) [1], which inspired this research. For an
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application of the proposed responder identification method on the EMIAT data set,

please refer to [2].

Suppose the survival time of a patient in the new treatment group of a clinical trial is

greater than the overall survival time. There can be three reasons for this phenomena: (i)

chance – we cannot predict or account for occurrence by chance in a model, (ii) the

patient has a prognosis better than the average, due to the specific prognostic factors

that he enjoys, (iii) the new therapy is really working. Note that prognostic factors

influence the survival time independently of treatment. One can account for prognostic

factors, provided that they have been measured, by developing a prognostic model on

the classical treatment (or placebo) group. We have chosen to use the well known Cox-

PH model for that purpose. Notice, that the factors in this model would be prognostic in

the real sense of the term only if they are found on a placebo arm. If the new treatment

is tested against a classical treatment, the factors would be "prognostic" only with

respect to the classical treatment and not in general. To avoid confusion, for the rest of

this paper we will call both factor types prognostic. 

Our goal in this research was to find a method for identifying patients with special

reactions to the new treatment (those could be positive as well as negative), which are

different from the whole patient population and cannot be explained by prognostic

factors (iii). In such cases predictive factors are responsible for the difference in

survival. Note, that a factor can have both prognostic and predictive power, if its

prognostic value is different in the two treatment groups. 

2. The Classical Approach 

Up to now, the classical and the only structured approach for responder identification in

clinical trials has been the Cox-PH model including interaction terms between the

treatment and some or all of the covariates [3]. In our setting the following version of

the Cox-PH model would be fitted on the entire data set:

����� ������ �����
predictive

TiziI

prognostic

ix treatztreatzx
ii etzxt �����������

��

����
�� )(),,( 0
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where i is a patient identifier, i = 1, ..., n, x  is a vector of prognostic factors, �x is a

vector of coefficients of the prognostic factors, z is a vector of predictive factors (z � x

is possible), �z is a vector of coefficients of the predictive factors (to avoid double

appearance, �z[i] = 0 for zi � x), treat is the factor indicating treatment group (0 =

classical, 1 = new), �T is the coefficient of the treatment indicator, �I is a vector of

coefficients of the interaction terms.

If a certain predictive factor interaction term shows to be adding information to the

model, this should be interpreted as follows. If the coefficients in the predictive part of

the model are such, that the presence of factor zi in the model increases the hazard of

patients having that factor and taking the new treatment, we can say that zi is a

predictive factor and patients having this characteristic are negative responders of the

new treatment. Naturally, if the coefficients in the predictive part of the model lead to

reduction of the hazard in the presence of factor zi, then zi would be a predictive factor

which defines the positive responder group.

The problem with this method is, that in order for it to recognize a combination of

factors as predictive, this particular combination has to be present in the model as

interaction. Even assuming that the interaction between the factors is linear, the order of

the interaction term is unknown. If two predictive factors and factor treatment should

show interaction, one needs to consider all possible interaction terms of up to third

order, in order to give a chance of a covariate selection procedure to choose the right

combination. The number of possible interaction terms to be considered grows rapidly

as the number of factors grows. It is also known, that the power of stepwise variable

selection procedures decreases as the number of variables (variable combinations)

increases. For that reason, up to now in practice researchers have always used previous

knowledge about the factors in the study in order to do such subgroup analysis (see [4]

& [5] for examples).   

Considering the limitations of this approach, it is clear, that a new more involved

exhaustive method is needed. 
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3. The Responder Identification Method for Censored Data

We suggest the following strategy for positive and negative responder identification:

Algorithm 1
Responder Identification for Censored Data:

1. Develop a good prognostic model (e.g. Cox-PH model) on the classical

treatment arm of the data.

2. Apply the prognostic model together with its estimated coefficients and

baseline hazard to the new treatment group. 

3. Calculate residuals of the prognostic model for outlier identification in the

new treatment group. Patients who are not well predicted (outliers in the

residuals) would be candidates for responders.

4. Using the residuals as a response, develop a model on the new treatment

group which describes extreme regions of the residuals.

5. Identify the groups of patients in the classical treatment group, who

correspond to the groups with extreme residuals in the new treatment arm,

i.e. divide the classical treatment space in the same way as the new

treatment space and consider the regions which were identified as extreme

in the new treatment space. 

6. Compare the survival curves of each classical-new treatment pair of extreme

regions (log rank test). If there is a significant difference in survival, the
group with extreme positive residuals would identify negative
responders and the extreme negative residuals – positive responders.
Also, the factors involved in the description of the regions will be predictive. 

The best version of the responder identification method (as of our simulation study) is

shown schematically in the flow-chart of figure 1. 
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Figure 1. Flow diagram of the responder identification algorithm.
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4. Options in the Responder Identification Method

4.1 The Residuals

In step 3 of the responder identification method we need residuals to the Cox-PH model

which correspond to data points and are not explicitly connected to single prognostic

factors contained in the model. Such residuals would be able to identify outlying points

with poorly predicted individual outcomes by the prognostic model. Those points can be

used for predictive factor identification and, ultimately, responder identification

purposes. We suggest the use of martingale or deviance residuals despite their bad

distributional properties because of their interpretability and since no special

distributional properties are required in the responder identification method. The log-

odds and normal deviate residuals suggested by Nardi & Schemper [6] can be used as

well if interpretability in the form "expected – predicted" is of no interest.

Specifically for the Cox-PH model, the definition of martingale residuals reduces to:

),(ˆ)(ˆˆ ˆ
0 iiii

Z
iii ZtetM i �������

��

��
� ,

where ti is the observation time and δi is the final status for subject i [7]. Notice that

since the status can take only values of 0 or 1 and the hazard is always non-negative, the

martingale residual for the Cox-PH model takes values only in the interval (-�, 1]. 

The deviance residual [8], is the signed square root of the deviance. The ln(·) function

inflates martingale residuals close to 1 and the square root contracts the large negative

values. It is zero if and only if 0ˆ
�iM . For the Cox-PH model, the deviance residual

simplifies to:

)]ˆln(ˆ[2)ˆsgn( iiiiii MMMd ������� �� .

For residual interpretation purposes the censoring indicator can be thought of as a

classification rule, which places patients into either the low or the high hazard group.

This results in only a few possible scenarios for the residuals:
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1. As by most other residuals, values of the martingale and deviance residuals

around zero reflect good fit of the model. In our situation this can be achieved if

δi = 1 and i�̂ ≈ 1, which means that the ith patient with an event was predicted to

be at high risk, or if δi = 0 and i�̂ ≈ 0, which means that the ith patient was

censored and predicted to be at low risk. Those are candidates for non-

responders. 

2. Large values of any residuals are a sign of bad fit of the prognostic model and

here – a possible sign of existing predictive factors. Values of the martingale

residuals close to 1 can be achieved only if δi = 1 and i�̂  ≈  0, i.e. the ith patient

was predicted to be at low risk but he/she had an event. Such patients are

candidates for negative responders. Their deviance residuals will have values

even larger than those of their martingale residuals (see figure 2). 

3. Large negative values are also sign of a bad fit. Large negative values of the

residuals are achieved if δi = 0 and i�̂  > 0, i.e. the ith patient was predicted to be

at high risk but he/she was censored (i.e. did better than expected from the

prognostic model). Such patients are candidates for positive responders. A large

negative residual is also possible for patients who had an event and extremely

large predicted hazard rate. Notice, that even though the patient experiences an

event, he/she would still be candidate for a positive responder, since in order to

have such a large hazard rate, he/she must have had a much longer event-free

period than expected. 

The general relationship between size of the predicted hazard and resulting residual

(martingale and deviance) is plotted in figure 2 for censored and uncensored cases,

which is helpful in illustrating the above cases.
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Figure 2: Relationship between the predicted hazard and the martingale and
deviance residuals for the event and censored (always non-positive)
cases. The relationship between predicted hazard and martingale
residual is linear, whereas deviance residuals transform that
relationship.

4.2 The Predictive Model

We suggest the use of a bump hunting model in step 4 of the responder identification

method. Regression trees can be used alternatively as a predictive model.

4.2.1 Regression Trees

We start with the better known regression tree model [9]. As mentioned earlier, the

responder identification idea is based on finding patients in the new treatment group,

who are badly predicted by the prognostic model. We have already shown that

martingale and deviance residuals are suitable for this purpose. Since regression tree

models split the input space into regions, which are described by a part of the input
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variables (the predictive factors), and the size of the output variable in each region is

predicted, we can use regression trees for responder identification. The tree would be

built on the new treatment arm of the data and the residuals to the prognostic model

would be used as an output variable. The hope is that one or more of the final regions of

the tree model would have much larger or much smaller mean of the residuals in them,

than the average for the input space ( � 0).

We have used the regression tree model as introduced by Breiman et al [9] and as

implemented in S-plus 4.5 for Windows, where the optimal cutpoints are chosen by

minimizing the sum of the averages of the response variable in the resulting regions

over all available splitting variables xj and splitting points ts. 

When using a regression tree instead of a bump model, one should change the responder

identification algorithm as follows: 
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Algorithm 2
Responder Identification with Regression Trees:

Steps 1 through 3 as in algorithm 1 above.

4. Develop a regression tree model on the new treatment group, using the

martingale residuals of the prognostic model as response.

          Note: A tree model describes the whole input space. We are interested only

in extreme regions, i.e. end nodes with patients who have large positive or

large negative residuals. 

5. Order all end nodes by size of the mean response in them.

6. Split the classical treatment group into subgroups as defined by the end

nodes of the regression tree model.

7. Start with the largest in absolute value (by mean of response) negative end

node in the new treatment arm. Compare the survival curves of the new and

classical treatment patients identified with that node. Calculate the p-value of

the log-rank statistic (p(LR)).

8. Add all patients contained in the next largest negative end node (from the list

in 5.) to the previously considered group of new treatment patients. Calculate

p(LR) for the identified groups in the new and classical treatment arms.

9. Repeat step 8 while p(LR) decreases or until there are no more negative end

nodes1.

10. The last combination of end nodes defines the set of positive responders.

The factors involved in defining it are predictive.

11. Repeat steps 7 through 9 for the non-negative end nodes from the list in 5.,

starting with the largest by mean of response.

12. The last combination of non-negative end nodes defines negative

responders. The factors involved in defining it are predictive.

                                                          
1 For data which shows no initial survival difference between the two treatment arms.
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4.2.2 The Bump Hunting Model

Although not originally created for responder identification, bump hunting as proposed

by Friedman & Fisher [10] seems to be tailor made for that purpose. Since this method

is not as well known as regression trees, we will briefly summarize its algorithm. Bump

hunting is a type of greedy optimization algorithm equipped with patience, which

stresses interpretability of the resulting model. It optimizes the average of the output

variable while choosing a series of input variables and corresponding cutpoints in the

following way.

During the model construction process, just as in regression trees, bump hunting looks

for rectangular regions called boxes, but not by minimizing the sum of the averages of

the (two) new regions into which the current space is split. Bump hunting "peels off" a

certain percentage of the data while optimizing the response average of the elements left

in the box. At each peeling step, a variable and a peel-off value is chosen, which

together define a border so that the data points left in the region have the largest mean

of the output variable: Btx
y

jj ,
max , where B is the box resulting from a peeling at variable

xj and peeling point tj (if a minimal region is sought, one can maximize the negative

average). The top-down-peeling process stops when a minimum number of elements in

the box is reached. Since peeling is a greedy process, the average of the response

variable in the box can often be improved by "pasting" back some of the data to the box.

The bottom-up-pasting process stops when the average in the box can no longer be

improved. In general, when pasting is possible, the new box does have a larger mean of

the response variable, but that rarely has a dramatic effect [10]. Two parameters need to

be specified in the box construction algorithm: peeling quantile α and minimal support

β0. The peeling quantile determines the percentage of data points excluded (peeled

away) from the current box at each peeling step. Friedman and Fisher [10] suggest

values of α between 0.05 and 0.1, which results in the removal of 5% to 10% of the data

at each step. The minimal support is a threshold parameter, which determines the

minimal size of the final box. The choice of the minimal box support involves statistical

and domain of application dependent considerations. The development of a box mean

(i.e. mean of the target variable for data points in the box) with respect to support β can

be observed with the help of the box construction trajectory. The trajectory allows one
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to visually choose an optimal β0. Figure 3 shows an example of a trajectory, constructed

with α = 0.1 where the mean of the response variable is maximized. One can observe

how the mean grows from the mean of the whole data set (0) to about 0.75. The points

on the trajectory represent the consecutively chosen borders. The trade off between

support and mean in the growing box is clearly visible. Notice, maximization is done

only in the direction of mean response. Multivariate optimization which includes both

mean of response and support is not performed in the original bump hunting algorithm.

Figure 3: Trajectory – visualization of the box-building process (α = 0.1).

If the input factors are categorical, that changes the peeling procedure in the following

manner: (i) binary variables allow only one peeling point, which splits the data into two

parts, (ii) variables with more than two categories are treated the same way as in CART:

peeling points are defined in such manner, that any category can be peeled off

regardless of order, (iii) continuous variables are often categorized. In this case, to

preserve the order among categories, we suggest artificially entering the categorized

input variable as "continuous" in the bump hunting algorithm.

  ...           Border 3
Border 2 Border 1

Global Mean
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4.2.3 Stabilized Bump Hunting

Bump models are rather unstable, due to their hierarchical nature. There are two general

ways of assuring that a model is "good": validation and stabilization. Harrell, Lee, &

Mark [11] summarize the procedures for performing external validation and three types

of internal validation: data splitting, cross-validation, and bootstrapping. The external

and the first two internal validation methods require abundance of appropriate data,

which one rarely has. Bootstrapping uses the entire data set in the model building

process and then calculates some goodness-of-fit statistic on a large number of bootstrap

samples taken from the original data.  There is no known goodness-of-fit statistic for the

bump model, therefore, bootstrapping as a validation procedure is not directly

applicable for bump models. The validation choices left are external validation or

internal validation involving data splitting. Both are not always possible.

If there is no direct way to validate a bump model, one should at least reduce the

variability of the bump hunting model resulting from small changes in the data – the so

called stabilizing.  

Bootstrapping can be used as a stabilization procedure during the model building

process (see [12] & [13]). One can use bootstrap samples of the original data in order to

estimate the model coefficients or to choose stronger predictors. Bootstrapping, in all of

its shapes and forms improves or qualifies the predictive capacity of the model.

We stabilize the bump hunting model  in two ways: (i) by categorization of all

continuous predictors and (ii) by bootstrapping at each border selection step.

Categorization of all continuous predictors needs to be done in order to reduce peel-off

point variation. This limits somewhat the power of bump hunting, since it restricts the

peeling process, but it is a necessary preliminary step for the bootstrapped bump

hunting. In order to stabilize the border selection method, we choose each border (i.e.

predictor-restriction combination) after considering all borders chosen from n bootstrap

samples. We fix a border and proceed to the next one only if it was chosen in the

majority of the bootstrap samples.
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Bootstrapping in (ii) is performed according to algorithm 3. Note, that predictor and

border are not equivalent terms. One predictor may appear with different restrictions in

different bootstrap samples. We are only interested in the border frequency as a

combination of predictor and constraint.

Naturally, any stopping criteria which considers only one step at a time is easily

implemented, but in general nearsighted. An alternative is to look several steps ahead

before a stopping decision is made, since a seemingly "bad" border can lead to a "good"

one and result in a better model. We choose not to do this in the following simulation

study in order to fully automate the software implementation and reduce computation

time. 
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Algorithm 3
Stabilized Bump Hunting Algorithm

1. Set the p-value of the log-rank statistic to 1 ( p(LR) = 1) and let T be the set

of all patients in the new treatment arm.

2. Take n bootstrap samples of T and, using the original bump hunting

algorithm, create a trajectory for each one of them, including the original

sample.

3. Consider all n + 1 first borders and the associated predictors and choose the

one which appears most often. If there is a tie, choose the less restrictive

border, i.e. one which results in a box with bigger support when applied to

the original data set.

4. Restrict T using the border from step 3. Calculate the mean response and

the support of the resulting box.

5. Apply the rules restricting T to the classical treatment (or placebo) group and

create a set P of patients under the same restrictions as in T.

6. Calculate the p-value of the log-rank statistic (p(LR)) for the difference in

survival between patients in P and in T. If p(LR) improves2 from its previous

value, return to step 2. If not, stop.

5. Simulation Study

If there were a data set, in which the positive and negative responder groups were

known, one could apply the different versions of the algorithm discussed up to now and

compare their ability to recognize those groups. Unfortunately, this is not possible in a

real life data set, since the actual groups to be identified are not known. 

                                                          
2 The definition of "improves" can be different for different types of data. If initially there is no difference
in survival between the new and the classical treatment groups, the p-value improves when it decreases.
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We simulated a survival type data set to resemble a two arm randomized clinical trial

with a total of 1000 patients, with no difference in survival between the two treatment

groups. A total of seven factors were created: five binomial, one categorical with three

levels, and one continuous in order to test the power of the different procedures in

dealing with different types of variables. The factors (each was a vector of length 1000)

were simulated in the following way. Each value of the binary factors X1, X4, X5, X6,

and TREAT was chosen at random from a binomial distribution with probability p = .5.

TREAT = 0 denotes placebo patients, TREAT = 1 denotes new treatment patients. The

categorical factor X2 values were chosen at random from the set {0, 1, 2} with

corresponding probabilities {.33, .33, .34}. The continuous factor X3 had valued

chosen at random from a normal distribution with mean five and variance two. Follow-

up time for this model was simulated to be Weibull distributed with shape parameter

equal to two and scale parameter equal to the relative hazard, i.e. TIME was created to

be a vector of length 1000, each component of which was chosen at random from the

unique to each patient Weibull distribution, depending on his/her relative hazard. We

used the following Cox-PH model with prognostic and predictive parts for defining the

hazard:

predictiveprognosticetXt �

�� )()|( 0��

,522654
3311

maxmin

321

TREATXXcTREATXXXcpredictive
XXXXprognostic

���������

������� ���

where cmin and cmax are coefficients in the predictive part, �1, �2, and �3 are coefficients

in the prognostic part, and X22 indicates X2 = 2.

The prognostic coefficient values �1 = ln3, �2 = -(ln3)/5, and �3 = (ln3)/10 (� 1.0986,

-.2197, and .1099 respectively) simulate an interaction between categorical factor X1

and continuous factor X3. The interaction is to be interpreted as follows: in absence of

factor X1 (X1 = 0), increase of factor X3 from 0 to 10 increases the relative hazard from

1 to 3; in presence of factor X1 (X1 = 1), increase of factor X3 from 0 to 10 decreases

the relative hazard from 3 to 1.
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The following pairs of values for cmin and cmax were chosen for further investigation: (-2,

2), (-1, 1), and (-.5, .25). Note, that larger absolute values of the coefficients simulate

stronger influence of the predictive part of the model on hazard. In addition, since cmin is

always negative, it decreases hazard, i.e. patients with X4 = 1 & X5 = 1 & X6 = 1

would have lower hazard under treatment than under placebo – this is the simulated

positive responder group. Conversely, since cmax is always positive, it increases

hazard, i.e., patients with X2 = 2 & X5 = 1 would have higher hazard under treatment

than under placebo – this is the simulated negative responder group.

Censoring was assigned at random and is independent of time.  Three different

percentages of censoring were considered: 10%, 30%, and 70%.

The above described survival data was simulated in 9 groups with different model

coefficients and censoring rates as shown in table 1. The survival curves of the placebo

(TREAT = 0) and treatment (TREAT = 1) groups were compared in each simulation

group. The overall survival difference between the two treatment arms was not

significant at the .05 level in each of the 9 groups, as it was expected by the simulation

study design. The simulated responder groups, however, differ in survival between the

treatment and placebo groups (as expected).

Table 1: Simulation groups

Simulation 

group #

cmin cmax % censored

1 -2 2 10

2 -1 1 10

3 -.5 .25 10

4 -2 2 30

5 -1 1 30

6 -.5 .25 30

7 -2 2 70

8 -1 1 70

9 -.5 .25 70



Kehl & Ulm
Responder Identification in Clinical Trials with Censored Data 20

5.1 The Cox-PH model with treatment interaction term

Simulation groups 1, 5, & 9 were chosen as representative in an attempt to evaluate the

power of the most frequently used variable selection process, forward stepwise

selection, to identify the simulated Cox-PH model with interactions as "best." Forward

selection with likelihood ratio test as model improvement criteria was used with

inclusion p(Wald) = .01 and exclusion p(Wald) = .05. Table 2 gives a summary of this

investigation. Simulation group 1 has strong simulated treatment effect (easy to detect)

and only 10% censoring. Simulation group 5 has medium strength simulated treatment

effect and 30% censoring. Simulation group 9 has 70% censoring and slight treatment

effect (difficult to detect). A total of 10 data sets were simulated in each group. The null

model (no factors) and the correct model likelihood ratios were computed on each data

set. Forward stepwise selection was applied on each data set four times: once including

all factors X1 through X6 and TREAT and all their possible two-way interactions (a

total of 28 terms to choose from), once including all single factors and all their up to

third order interactions (63 terms), all single factors and all their up to fourth order

interactions (98 terms), and finally, all single factors and their up to fifth order

interactions (119 terms). The largest interaction term in the correct model is of fourth

order. Interactions of up to fifth order were considered in order to check if forward

selection including interaction terms of higher than needed order would choose more

complicated terms than necessary. This should give a hint on the behavior of the

automated selection procedure in a "real life" data set, for which the correct model is

unknown.
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Table 2: Table of likelihood ratios for the null model, the models found with forward
selection when different highest order interactions were present, and the
correct model.

Simulation
group

Run Null (df=0) 2d order
interaction
(df)

3d order
interaction
(df)

4th order
interaction
(df)

5th order
interaction
(df)

Correct
(df=6)

1 11239 11076 (11) 10976 (8) 10942 (6) 10942 (6) 10942
2 11110 10941 (9) 10860 (5) 10844 (4) 10844 (4) 10820
3 11121 10986 (10) 10884 (9) 10860 (5) 10860 (5) 10814
4 11161 10946 (9) 10893 (6) 10868 (4) 10857 (6) 10822
5 11094 10966 (9) 10787 (11) 10803 (5) 10803 (5) 10764
6 11093 10929 (10) 10861 (5) 10819 (5) 10804 (8) 10784
7 11132 10914 (13) 10801 (12) 10736 (10) 10736 (10) 10761
8 11103 10919 (11) 10857 (5) 10819 (5) 10819 (5) 10803
9 11109 10998 (6) 10878 (7) 10828 (7) 10828 (7) 10805

1

10 11189 11015 (11) 10912 (12) 10894 (8) 10894 (8) 10903
1 8651 8608 (3) 8593 (5) 8581 (5) 8581 (5) 8555
2 8705 8677 (3) 8633 (6) 8636 (5) 8636 (5) 8632
3 8441 8422 (2) 8394 (5) 8395 (3) 8382 (5) 8366
4 8525 8491 (5) 8476 (3) 8472 (3) 8472 (3) 8447
5 8407 8381 (3) 8321 (9) 8329 (7) 8329 (7) 8324
6 8412 8387 (3) 8365 (5) 8363 (4) 8363 (4) 8343
7 8444 8410 (3) 8401 (3) 8384 (4) 8384 (4) 8368
8 8584 8529 (4) 8522 (3) 8503 (3) 8503 (3) 8472
9 8428 8397 (3) 8342 (4) 8335 (4) 8335 (4) 8316

5

10 8586 8547 (3) 8495 (3) 8486 (3) 8486 (3) 8453
1 2740 2722 (3) 2722 (3) 2722 (3) 2724
2 2474 2455
3 2614 2600
4 2643 2627 (2) 2627 (2) 2627 (2) 2631
5 2845 2829 (3) 2829 (3) 2829 (3) 2829 (3) 2823
6 2956 2945
7 2509 2489
8 2738 2729 (1) 2729 (1) 2729 (1) 2729 (1) 2724
9 2751 2745

9

10 2291 2279
bold = models with better LR than the corresponding correct model

             = identical models (valid for the row)

5.2 The proposed responder identification method

The three versions of the responder identification method were applied on 200 data sets

in each of the nine simulation groups from table 1. Martingale residuals were calculated

on half of the data sets in each group. Deviance residuals were calculated on the other
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half. Our goals were: (1) to evaluate the prognostic power of the responder

identification procedure with regression trees, ordinary and stabilized bump hunting, by

comparing the identified through the method groups of responders to the correct groups

and (2) to compare the power of identification of the method when martingale and

deviance residuals are used as response variables in the predictive models. Step 1 of the

responder identification algorithm can be skipped in the simulation study. The

prognostic model here is known. It was simulated to contain factors X1, X3, and their

linear interaction.  Table 3 shows the average number of times the entire responder sets

were chosen correctly over the 100 data sets in each simulation group, each residual

type, and each predictive model. 

Table 3: Number of times the correct responder groups were chosen from 100
simulations for each simulation group, using martingale (MART) or
deviance (DEVI) residuals as response in a regression tree (tree), bump
hunting (original), or stabilized bump hunting (stabilized) predictive
model. MIN denotes search for a minimal region in the residuals (i.e.
positive responders); MAX – maximal region (i.e. negative responders).

MART DEVI
tree original stabilized tree original stabilized

sim.
group #

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
1 98 0 71 95 97 99 100 65 42 100 72 100
2 73 23 65 98 88 100 94 71 33 100 52 100
3 22 10 47 94 84 99 52 10 26 100 46 100
4 94 0 72 98 99 99 94 81 39 100 78 100
5 76 41 67 97 92 99 76 70 35 99 59 100
6 28 6 52 97 79 100 33 6 22 100 36 100
7 66 60 75 96 97 99 59 52 43 100 78 100
8 51 53 67 94 89 99 53 32 31 100 48 100
9 21 4 56 94 83 98 10 1 26 99 35 100

It turned out, that in the simulated data the p-value of the log-rank statistic never grew

insignificant in the stabilized and original bump hunting. We developed the bump

hunting models using minimal support of .05 as stopping criteria. Since we knew the

correct responder and non-responder groups, we considered just one box per bump and

just the first three selected borders. The developed model was considered correct if the

first three borders of the maximal box were any permutation of the following: X2 � 0,

X2 � 1, X5 � 0 and the minimal box – any permutation of the following borders: X4 � 0,
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X5 � 0, X6 � 0. Naturally, the correct bumps are usually not known. One does not even

know how many boxes each bump has. Fortunately, "real life" data sets are not as clean

and ordered as our simulated data, so that the bump growth process can actually be

governed by the log-rank statistic, as in the suggested algorithm (see [2]).  

5.3 Results

5.3.1 Cox-PH model with treatment interaction

In defense of the forward stepwise selection procedure, one should note, that in most

cases (21 out of 24 constructed models) it did not add a fifth order interaction term, but

delivered the model chosen from the procedure including up to fourth order interactions

(see table 2). Unfortunately, it also chose the correct model only once out of 30 times

(run 1, simulation group 1)!

Consider first simulation group 9, the most realistic one. In 6 out of 10 cases the

forward selection procedure did not find any significant factors. In the 4 data sets, in

which significant factors were found, they were other than the simulated ones (i.e.

noise). In simulation groups 1 and 5 (see table 2), the likelihood ratio of the correct

model was better than that of the forward selected models for 18 out of 20 data sets. In

the cases where LR(forward) < LR(correct) the forward selected model contained the

correct model and some additional factors. The overall impression is that the Cox-PH

model with interactions is not a sensitive enough method for responder identification

purposes when the effect of factors and factor combinations on treatment is weak and

there is large percentage of censoring in the data. It performs well on data sets with

small to moderate percent censoring and strong to moderate treatment effect. The

problem with applying this responder identification procedure in praxis is that the

correct model is unknown and the forward selection procedure has low power when

choosing from a large number of terms.

5.3.2 Algorithm 2 with a regression tree predictive model

Deviance residuals in general performed about the same or better than martingale

residuals in positive responder identification (i.e. negative nodes). The same was true

for negative responders (positive nodes), except for data sets with large percentage of
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censoring. Overall, the responder identification algorithm using regression trees showed

acceptable power of identification for data, in which the groups to be identified were

with much larger (or much smaller) hazard than the entire data set (sim. groups 1, 4, & 7

with large predictive coefficients). The results were miserable for the data in sim.

groups 3, 6, & 9, where the predictive coefficients were very small. This leads us to the

conclusion, that regression trees are not sensitive enough to be applied in responder

identification. Nevertheless, if we had to make a recommendation which residuals

to be used as a response factor in CART, we would prefer deviance residuals, as

they have acceptable performance at least for the case when censoring is not too

large and the responder coefficients are strong (sim. groups 1, 2, 4, & 5). For data

with large percentage censoring it is preferable to use martingale residuals. 

5.3.3 Algorithms 1 & 3 with bump hunting predictive models

The results with bump hunting seem to be independent of percent censoring: simulation

groups (1, 4, 7), (2, 5, 8), and (3, 6, 9) have similar outcomes across the different

methods. Size of the cmin and cmax coefficients show effect: larger in absolute value

coefficients result in better performance of the different methods. Martingale residuals

show to be better suited for positive responder identification (minimal bump) than

deviance residuals. For negative responder identification (maximal bump) deviance

residuals perform just as well or slightly better than martingale residuals. In all cases

where improvement was possible, the stabilized bump hunting algorithm showed much

better results than the original algorithm.

Deviance residuals perform excellent in negative responder identification and

unsatisfactory in positive responder identification. Their use is not recommended when

both responder groups are needed. The stabilized bump hunting procedure with

martingale residuals as response variable delivers excellent results both in positive

and negative responder identification, especially if the effect is strong.

5.4 Comparison

We did not formally include the classical Cox-PH model with treatment interactions in

this comparison, because simulations with this model were performed only on groups 1,



Kehl & Ulm
Responder Identification in Clinical Trials with Censored Data 25

5, & 9 and only on 10 data sets in each group. The correct model was found on only one

data set in the “easiest” simulation group 1. This results in 10%, 0%, & 0% recognition

rate for groups 1, 5, & 9 respectively. Then the Cox-PH model with treatment

interactions is only better than the regression tree and mantingale residuals version of

the responder identification algorithm. 

Figure 4 gives a summary of the results of the responder identification algorithm when

the regression trees, original, and stabilized bump hunting is employed (see table 3).

Note, that comparison between a tree and a bump model can only be made in a very lose

sense, since tree models describe the entire space and bump models – just extreme parts

of it. In 16 out of the 18 cases with martingale residuals as response, bump hunting was

more powerful than regression tree as predictive model in the responder identification

algorithm. In the two other cases the results of both models were comparable; regression

tree performed slightly better than bump hunting. When deviance residuals were used as

a response variable, all three versions of the responder identification method performed

unsatisfactory in finding positive responders, especially on data sets with high

percentage of censoring. Finding negative responders with deviance residuals and bump

hunting (both original and stabilized) was extremely successful. Regression trees

performed unsatisfactory in a combination with deviance residuals in the responder

identification method when negative responders were sought.  It is, therefore,

recommendable that the responder identification method be used with martingale

residuals as a response variable in the stabilized bump hunting. 
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Figure 4: Number of correctly identified responder groups from 100
simulations in each simulation group.
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5.5 Implementation

This simulation study was performed with the help of the readily available statistical

packages SPSS and S-PLUS and the programming languages S and C. The Cox model

with interactions and the Kaplan-Meier curves were generated using the survival

analysis tools in SPSS 10.0. The simulation of all data sets, as well as the bump hunting

analysis were done with especially written for the purpose S programs, which run with

S-PLUS 4.5. Construction of the bump models was done in S-PLUS for Unix, using the

algorithms of Becker [14] called .boxes, .express.boxes, and .border.ranking, which use

C subroutines.  The part of the simulation study involving regression tree models was

done in S-PLUS for Windows. S routines using the S-PLUS tools for regression tree

construction were written for that purpose. 

6. Discussion

The responder identification method was developed with a situation in mind, in which

overall the new treatment does not show to be better or worse than the classical

treatment (i.e. the survival curves in both treatment arms do not differ significantly).

The method needs slight alteration if initial difference in survival is present. Ordinarily,

one would use the change in p-value of the log-rank statistic as a stopping criteria in the

bump hunting procedure (Algorithm 3, point 6). In the peeling process of bump hunting,

one would reduce the new treatment patient arm step by step. If there is a significant

difference for the entire population, reducing the group would lead to less and less

significant p-values before it eventually reduces the new treatment group to this one

special subgroup, for which the p-values become significant again to show difference in

survival between the new and the old treatment subgroups in the opposite direction from

the initial situation. In those cases, the p-value of the log-rank statistic cannot be used as

an automatic stopping criteria and the growth of the bump hunting model needs to be

controlled manually. Alternatively, the algorithm can be changed to "intelligently"

evaluate the p-values by looking some steps ahead.

As further improvement to the responder identification method for censored data, one

may choose to allow for pasting in the bump model growth or looking several steps

ahead at the log-rank statistic performance in the predictive model growth. As discussed
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earlier, this improves the shortsightedness of a stopping criteria, but unfortunately also

complicates the automation of algorithms. 

The best version of the responder identification algorithm (algorithm 3) can be modified

to include pasting as well. In this case, we would use the minimal support (calculated in

the original data set) as stopping criteria of the peeling process instead of the p-value of

the log rank statistic. Pasting borders would also be chosen through bootstrapping. Here

we can use both the p-value of the log rank statistic and the indicator for increase

(decrease) of the box mean as stopping parameter.

We limit the stabilized bump hunting procedure to categorical or categorized continuous

factors, but we are currently working on changes allowing continuous factors as well.

So far we have only considered the ordinary Cox-PH model as a prognostic model in

our algorithms. One may choose to investigate time-varying effects of the prognostic

factors before looking for predictive factors. Additional research is needed on the

influence the choice of prognostic model exerts on the predictive model outcome.   

A note on application: We are currently using the best version of the proposed

responder identification method as a routine on all appropriate clinical data we have.

First results can be seen in [2].
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