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ABSTRACT 

 

In a seminal 1972 paper, Robert M. May asked: “Will a Large Complex System Be Stable?” and 

argued that stability (of a broad class of random linear systems) decreases with increasing 

complexity, sparking a revolution in our understanding of ecosystem dynamics. Twenty-five 

years later, May, Levin, and Sugihara translated our understanding of the dynamics of ecological 

networks to the financial world in a second seminal paper, “Complex Systems: Ecology for 

Bankers.” Just a year later, the US subprime crisis led to a near worldwide “great recession,” 

spread by the world financial network. In the present paper we describe highlights in the 

development of our present understanding of stability and complexity in network systems, in 

order to better understand the role of networks in both stabilizing and destabilizing economic 

systems. A brief version of this working paper, focused on the underlying theory, appeared as an 

invited feature article in the February 2020 Society for Chaos Theory in Psychology and the Life 

Sciences newsletter (Hastings et al. 2020). 

 

KEYWORDS: Stability; Complexity; May-Wigner; Noise; Subprime Crisis; Liquidity Shock 
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1. INTRODUCTION 

 

The subprime crisis of 2007 generated a near worldwide “great recession,” spread by the world 

financial network. May, Levin, and Sugihara’s (2008) widely cited paper “Ecology for bankers”1 

(see also May’s keynote2) argued that the study of ecosystem dynamics could provide an 

important framework for analyzing the dynamics and, in particular, the stability of economic 

networks. 

 

The study of ecosystem dynamics had provided conflicting answers to the question: “Will a large 

complex system be stable?” (the title of Robert May’s widely cited 1972 paper). Robert 

MacArthur (1955) and G. Evelyn Hutchinson (1959) had previously argued that stability 

increases with increasing complexity, whereas May argued that stability decreases with 

increasing complexity.1  

 

As economic systems become more complex, it becomes more relevant to translate stability 

results and more generally network dynamics from ecosystems to economic systems.  

 

1.1. The Econo-system: Economics = Ecology + Currency 

As a working ansatz, we quote from May, Levin, and Sugihara (2008):  

 

There is common ground in analysing financial systems and ecosystems, 
especially in the need to identify conditions that dispose a system to be 
knocked from seeming stability into another, less happy state […] “Tipping 
points,” “thresholds and breakpoints,” “regime shifts”—all are terms that 
describe the flip of a complex dynamical system from one state to another. 
For banking and other financial institutions, the Wall Street Crash of 1929 
and the Great Depression epitomize such an event. These days, the 
increasingly complicated and globally interlinked financial markets are no 
less immune to such system-wide (systemic) threats. Who knows, for 
instance, how the present concern over sub-prime loans will pan out? 
(emphasis added; we all learned a year later) 

 

Remarks. A note on style. We will make significant use of direct quotations in order to 

accurately capture historical developments as well as the thought of key leaders and opinion 

makers. 

 
1 See, e.g., the historical discussion in Bersier (2007). 
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In this paper we shall develop and analyze the relationship between the complexity of economic 

networks and their stability, beginning with a discussion and resolution of the apparent conflict 

between May (1972) on the one hand and MacArthur (1955) and Hutchinson (1959) on the other. 

Two disclaimers first: 

 

1. We do not claim to provide an answer to the important question of how to design 

stable economic systems, only a framework for that discussion. 

2. We do not aim to provide a complete history of the stability-complexity discussion, 

only our personal selection of important highlights. Instead we refer the reader to 

Allesina and Tang (2015) for a good recent history. 

 

We again quote May, Levin, and Sugihara (2008): 

 

Catastrophic changes in the overall state of a system can ultimately derive from 
how it is organized—from feedback mechanisms within it, and from linkages 
that are latent and often unrecognized. The change may be initiated by some 
obvious external event, such as a war, but is more usually triggered by a 
seemingly minor happenstance or even an unsubstantial rumour. […] For 
instance, to what extent can mechanisms that enhance stability against inevitable 
minor fluctuations, in inflation, interest rates or share price for example, in other 
contexts perversely predispose towards full-scale collapse? 

 

1.2. The Hutchinson and MacArthur–May Debate: The Role of Scaling 

Our discussion (Hastings 1983) (see section 2.3) of the conflict between Hutchinson (1959) and 

MacArthur (1955) (complexity  stability) and May (1972) (complexity  instability) focuses 

on how the strength of interactions in a system scales with the number of interactions in a system 

(complexity of the underlying graph). Whereas May (1972) considered the stability of arbitrary 

complex systems, Hutchinson (1959) and MacArthur (1955) argued that complexity in the form 

of multiple pathways for a fixed energy flow enhances stability; roughly, each pathway is less 

important and disruption of one pathway leaves others intact. In order to more carefully compare 

these viewpoints, we introduce the following definitions and notation. 
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1.2.1 Definitions and Notation 

System. For now, we shall consider linear, discrete-time systems of the form 

 

𝒙 𝑡 1 𝐴𝒙 𝑡          (1) 

 

where 𝒙 is a column vector with 𝑛 rows and 𝐴 is a 𝑛 𝑛 matrix, typically not symmetrical. We 

shall refer to 𝑛 as the size of the system. 

 

Underlying graph. The underlying graph of system (1) consists of 𝑛 nodes, one for each 

component of the system, together with a directed edge from node j to node i if component j 

affects component i, that is, if 𝐴  0. 

 

Degree of a vertex. The in-degree of vertex i in the underlying graph of linear, discrete-time 

system (1) is the number of nonzero entries in the ith row of the matrix 𝐴, that is, the number of 

components which affect the ith component of the system. 

 

Connectance. The connectance 𝐶 of the matrix 𝐴 is defined by the equation 𝐶 𝑘/𝑛, where 𝑘 

is the average in-degree. Essentially, the connectance is the fraction of entries in the matrix 𝐴 

that are nonzero. 

 

Mean interaction strength. The mean interaction strength 𝛼 is the size, suitably defined, of 

interactions in the system, that is, nonzero entries in the matrix 𝐴. 

 

May (1972) used the following specific form of large random complex systems to relate stability 

of a system to its size, connectance, and mean interaction strength. Let 𝑋 be a random variable 

with a symmetric distribution of expectation 0 and second moment 1.2 Then the entries of 𝐴 are 

chosen independently identically distributed to be 𝛼𝑋 with probability 𝐶, and 0 otherwise.3 

 

 
2 The proof requires additional bounds on the distribution 𝑋, such as that its fourth moment is finite. See section 2.2, 
below. 
3 Such random graphs in which edges are added independently are known as Erdős-Rényi random graphs. More 
general random graphs and matrices are discussed in section 2.2. 
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Then asymptotically almost surely as 𝑛 → ∞, the spectral radius (size of dominant eigenvalue) 

of 𝐴 approaches 𝛼√𝑛𝐶. Thus, for large 𝑛, the system 𝒙 𝑡 1 𝐴𝒙 𝑡  is stable provided 𝛼√𝑛𝐶 

< 1, and unstable otherwise. This result, the May-Wigner stability theorem, provides a formal, 

mathematical setting for the concepts “too big,” and “too connected.” 

 

Too big, too connected. For fixed mean interaction strength 𝛼, the size of the largest eigenvalue 

increases with increasing size or connectance, and thus stability decreases with increasing 

complexity (May 1972). The system ultimately becomes too big or too connected for stability, 

namely: 

 

𝑛𝐶  1 𝛼⁄           (2) 

 

Multiple pathways, diversification. MacArthur (1955) and Hutchinson’s (1959) model 

considered energy flows through a complex network, with the energy flow into a node divided 

among the pathways into that node. If we consider the edges incident on a given node, the mean 

energy per edge scales inversely with the in-degree (number of edges incident on) 𝑘 of that node. 

Since 

 

𝑘 𝑛𝐶           (3) 

 

the mean energy flow into a typical node scales inversely with the product of the size and 

connectance of the system. MacArthur (1955) and Hutchinson (1959) assume that increasing size 

or connectance provides multiple (independent) pathways for flows through the network, 

resulting in a decrease in average interaction strength 𝛼. If 𝛼  were to decrease sufficiently 

quickly with increasing size or connectance, so that 

 

𝛼 𝑛𝐶 const 1 for sufficiently large 𝑘 𝑛𝐶     (4) 

 

then stability would increase with increasing complexity. 
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As we shall see, although increasingly linked and complex structures may be assembled/ may 

evolve so as to enhance (Lyapunov) stability, these very linkages have the potential (realized in 

the subprime loan crisis) to cause collapse (reduced structural stability4) (Hastings 1984). 

One might expect that diversification in finance (for example, in stock portfolios, mortgage 

pools, linkages among banks) would work the same way, at least as long as (financial) flows 

remain bounded and interactions remain uncorrelated (as in May’s “random matrices”). In fact, 

analogous diversification is the basis of Markowitz’s (1952) “modern portfolio theory.” 

Markowitz defines an efficient strategy to be one which maximizes expected returns for a given 

variance of return (a measure of “risk”?), or equivalently, which minimizes variance for a given 

expected return. 

 

This “Gaussian” philosophy leads to “value at risk” models (Jorion 1997), “sanctioned for 

determining market risk capital requirements for large banks by US and international banking 

authorities through the 1996 Market Risk Amendment to the Basle Accord,” However, 

“‘reduced-form’ or ‘time-series’ models of portfolio P&L [profit and loss] cannot account for 

positions’ sensitivities to current risk factor shocks or changes in current positions. However, 

their parsimony and flexibility are convenient and accurate for modeling the mean and variance 

dynamics of P&L” (Berkowitz and O’Brien 2002). 

 

But what if major risks are unanticipated (and thus not part of the design/evolution of the 

system), and not adequately characterized by Gaussian distributions? 

 

1.3. From the subprime loan crisis to the Great Recession: An Emergent Problem 

Many leading economists failed to predict that the subprime loan crisis would spread into a 

virtually worldwide Great Recession (May, Levin, and Sugihara 2008; Krugman 2009; Rajan 

2010). In 2007, it appeared that the “state of macro is good” (Blanchard 2009) (the projected 

scale of the subprime loan crisis is discussed later in this section). 

  

 
4 Roughly, a system is structurally stable if small changes in parameters cause only small changes in dynamics; see 
section 2.4, below. 
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However, as we shall see below, it can be hard to determine whether a system is stable, or more 

generally to understand the tails (Taleb 2010) of its dynamics (Caballero 2010). But rare events 

can be extremely important, even catastrophic—such as Taleb’s (2007) “black swan”: 

 

The Black Swan is defined here as a random event satisfying the following three 
properties: large impact, incomputable probabilities, and surprise effect. First, it 
carries upon its occurrence a disproportionately large impact. The impact being 
extremely large, no matter how low the associated probability, the expected 
effect (the impact times its probability), if quantified, would be significant. 
Second, its incidence has a small but incomputable probability based on 
information available prior to its incidence [Arrow 1987]. Third, a vicious 
property of a Black Swan is its surprise effect: at a given time of observation 
there is no convincing element pointing to an increased likelihood of the event.  

 

In particular, Taleb offers the following blast at modern portfolio theory: 

 

But the [Nobel Memorial Prize in Economic Sciences] committee has gotten 
into the habit of handing out Nobel Prizes to those who “bring rigor” to the 
process with pseudo-science and phony mathematics. Harry Markowitz and 
William Sharpe, who built beautiful Platonic models on a Gaussian base, 
contributing to what is called Modern Portfolio Theory. Simply, if you remove 
their Gaussian assumptions and treat prices as scalable, you are left with hot air. 

 

1.4. What Happened? 

Clearly the subprime crisis was not contained. Instead one saw a systemwide breakdown 

(Haldane and May 2011; Markose et al.  2012; Hellwig 2009; Mat and Arinaminpathy 2009; 

Battison et al.  2016). Dymski (2009) describes the breakdown in terms of Minskyan (1975, 

1986, 1993) dynamics:  

 

financing decisions in the economy, financial-market dynamics and 
macroeconomic growth are interlinked. Minsky argues that economic units 
move systematically from “robust” financial positions, with minimal credit 
outstanding and little leverage, toward “fragile” and then “Ponzi” financial 
positions, which leave them increasingly unable to meet debt obligations taken 
on due to overoptimistic expectations. Eventually, cash-flow constraints bind 
and slow the expansion. Then expectations break down and asset values fall; if 
unchecked, a debt deflation process may be unleashed. 

 

One might even consider the failure to be an emergent phenomenon—one not predictable from 

local dynamics, but rather one which “emerges” from interactions in an unpredictable way 

(Arrow 1987). 
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It appears that the financial network, “designed” in some sense to be stable, became too big and 

too complex (Haldane and May 2011; Battiston et al.; Haldane 2013) and, in particular, too 

connected (Markise et al. 2012; León et al. 2011), and thus served as a substrate to transmit the 

shock caused by the failure of Lehman (Allington, McCombie, and Pike 2012), which then 

resulted in a financial freeze-up and near collapse, a network realization of Minsky’s dynamics.5 

In Allington, McCombie, and Pike (2012) they argue that: “the major problem was the 

assumption that the future could be modelled in terms of Knightian risk (as in the rational 

expectations and efficient markets hypotheses). It is shown that the near collapse of the banking 

system in the advanced countries was due to a rapid increase in radical uncertainty.” 

 

It is interesting and potentially important to recall the definition of ergodicity here. One can 

regard the time series of key economic state variables tracing out a trajectory in an economic 

state space, the state space of the economy as a dynamical system. This dynamical system is 

ergodic if “most” trajectories pass near “most” points in the economic state space, defining an 

underlying probability measure for computing the probability of a measurable subspace of the 

economic state space. Thus, for ergodic systems, the probability of seeing a given event can be 

approximated by the probability that it has occurred in the past, along a trajectory in economic 

state space—a white swan, not Taleb’s black swan. Ergodicity may fail for many reasons, but we 

cite here two important reasons:  

 

(1) The past history (trajectory) is too short—there is little evidence of the 500-year 

storm in a 50-year history. 

(2) The underlying dynamics themselves may have changed. 

 

For the latter, Allington, McCombie, and Pike argue for increases in the sensitivity of the 

financial system due to “amplifying effects of the large increase in leverage of the banks that had 

occurred over the last two decades” (see, for example, Blanchard [2009], Brunnermeier [2009], 

Rajan [2005, 2010], and Roubini and Mihm [2010]). 

 

 
5 See also Raddatz (2010), Dooley and Hutchison (2009), and Hesse, Frank, and González-Hermosillo (2008). 
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At this point, the failure of Lehman provided an unanticipated shock to the system: “Bankruptcy 

counsel for Lehman Brothers, Harvey Miller, argued that hedge funds ‘expected the Fed to save 

Lehman’s based on the Fed’s involvement in LTCM’s rescue. That’s what history has taught 

them.’” (FCIR 2011, 58).6  

 

1.5. A Key Observation 

As described above, complexity can make a system more resilient (as measured by Lyapunov 

stability), but also susceptible to failure under an unanticipated shock. As Bardoscia et al.  (2017) 

stated:  

 

Here we show how processes that are widely believed to stabilize the 
financial system, that is, market integration and diversification, can actually 
drive it towards instability, as they contribute to create cyclical structures 
which tend to amplify financial distress, thereby undermining systemic 
stability and making large crises more likely. This result holds irrespective of 
the details of how institutions interact, showing that policy-relevant analysis 
of the factors affecting financial stability can be carried out while abstracting 
away from such details… The application of network theory to finance 
(Schweitzer 2009) has made it clear that complexity can destabilize the 
financial system (Stiglitz 2010, Brock 2009, Battiston et al.  2012, 
Arinaminpathy et al.  2012). 

 

In particular, Stiglitz (2010) makes the point that “well-designed networks have circuit 

breakers, to prevent the ‘contagion’ of the failure of one part of the system from spreading to 

others.”7 Circuit breakers (Schwert 1998; Harris 1998; Subrahmanyam 1994) have been used to 

(attempt to) arrest precipitous market declines. Since, as Arinaminpathy, Kapadia, and May 

(2012) observed, “more hedging instruments may destabilize markets,” is it possible for one to 

design workable network-level circuit breakers? 

 

1.6. Too Big to Fail? Too Interconnected to Fail?  

In a 30,000-foot view, the financial network was allowed to become too complex (too connected, 

see section 2.3) and increasing leverage reduced fault tolerance (the “distance to a tipping point,” 

see section 2.5), at which point the Lehman failure triggered a cascade of freeze-ups. 

 

 
6 See Allington McCombie, and Pike (2012, fn 10). 
7 Compare the modular structure of power grid, as in section 2.6, below; see also McCall (2020). 
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Hellwig (2009) provides a deeper dive into how the Lehman failure triggered the Great 

Recession, and in particular the failure of mortgage securitization to properly allocate risk: 

 

Excessive maturity transformation through conduits and structured-investment 
vehicles (SIVs); when this broke down in August 2007, the overhang of asset-
backed securities that had been held by these vehicles put significant additional 
downward pressure on securities prices. Second, as the financial system adjusted 
to the recognition of delinquencies and defaults in US mortgages and to the 
breakdown of maturity transformation of conduits and SIVs, the interplay of 
market malfunctioning or even breakdown, fair value accounting and the 
insufficiency of equity capital at financial institutions, and, finally, systemic 
effects of prudential regulation created a detrimental downward spiral in the 
overall financial system. The paper argues that these developments have not 
only been caused by identifiably faulty decisions, but also by flaws in financial 
system architecture. In thinking about regulatory reform, one must therefore go 
beyond considerations of individual incentives and supervision and pay attention 
to issues of systemic interdependence and transparency. 

 

An illustrative quotation from Liar’s Poker (Lewis 2010), a historical novel about the dynamics 

leading up to Black Monday, provides an interesting summary of what might go (and had gone) 

wrong:  

 

We had overlooked the need to obtain the approval of the German government 
[to create warrants on German interest rates, and the opportunist saved us from 
embarrassment. The German government has no say in the Euromarkets. The 
beauty of the Euromarket was that it fell under no government’s jurisdiction. We 
could, in theory, have ignored the Germans. But we had to be polite. Salomon 
Brothers hoped to open an office in Frankfurt, and the last thing the firm needed 
was angry German politicians. […] So the opportunist became our emissary to 
the German Finance Ministry. He persuaded the authorities that our deal would 
neither undermine their ability to control their money supply (true) nor 
encourage speculation in German interest rates (false; the whole point was to 
encourage speculation.) (emphasis added) 

 

Mac Arthur (1955) and Hutchinson (1959) versus May (1972), reprise, translated loosely to 

economics. The Mac-Arthur-Hutchinson argument that the existence of multiple pathways for 

energy flow enhances stability is similar to conventional arguments for portfolio diversification 

in economics. For example, one expects a generalist predator with many (substitutable) food 

sources (prey) to be less affected by the failure of one food source than a specialist predator 

dependent upon one or a few food sources; similarly, one expects a more diverse investment 

portfolio to display less volatility than a less diverse portfolio. 
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The effectiveness of diversity in reducing volatility of course depends upon diversity increasing 

the effective number of degrees of freedom in the system. The increase in effective number of 

degrees of freedom can be illusory or even false in the presence of systemic or correlated shocks; 

for example, a national decline in housing prices affects the solvency of whole portfolios of 

mortgages (the subprime crisis) and liquidity shocks such as those caused by the collapse of 

Lehman can destabilize the whole financial network (see Dooly and Hutchinson [2009], Hesse 

Frank, and González-Hermosillo [2008], and Raddatz [2010]). 

 

Finally, large shocks can cause tipping points where the whole dynamics change (May, Levin, 

and Sugihara (2008). In section 2, we shall relate the potential for tipping points to extensions of 

May’s classic result on the stability of large systems (May 1972): the May-Wigner stability 

theorem. 

 

Projected scale of the subprime loan crisis. Projected losses were similar to losses from the 

savings and loan (S&L) crisis, which did not generate a worldwide recession. In May 2007, the 

subprime crisis had been projected to cause losses of $300 billion, an estimate which later rose to 

$350–420 billion (Blundell-Wignall 2008). In comparison, losses from the S&L crisis were 

estimated between $152.9 billion (Curry and Lynn 2000) and $160 billion (Gramling 1996). In 

both cases, projected losses represent 2–3 percent of GDP. 

 

One way to understand the size of these projected losses is to compare them to the US GDP, 

which was $14.383 billion in 2007Q2 and $14.681 billion on the eve of the subprime crisis in 

2007Q3 (BEA 2019a). Projected losses thus represented 2–3 percent of US GDP, at a time when 

nominal GDP was growing at 4 percent per year and real GDP was growing at 2 percent per 

year (figure 1). Losses in the S&L crisis represented 2.7 percent of US GDP of $5.873 billion in 

1990Q1 (roughly the midpoint of the resolution of the S&L crisis) and 2.1 percent of 1995Q1 

GDP of $7.522. Thus, projected losses in the subprime crisis were comparable in relative size to 

losses in the S&L crisis. 
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Figure 1. GDP Growth through the Subprime Crisis 

 
Notes: GDP, seasonally adjusted annual rate (BEA 2019b). GDP: Implicit Price Deflator (A191RI1A225NBEA), 
annual data, percent change from previous year (BEA 2019c).  
Real GDP (GDPC1): billions of chained 2012 dollars, seasonally adjusted change over previous year (BEA 2019d). 
For more information see the “Guide to the National Income and Product Accounts of the United States (NIPA).”  
 

The rest of this paper is organized as follows. Section 2 discusses the stability-complexity 

debate. We explore the relationship between stability and complexity further, formalize the May-

Wigner stability theorem, discuss the probability of collapse when noise is added, and finally 

consider extensions to nonlinear dynamics. Section 3 discusses the implications for economics, 

and section 4 (“It’s a Small World”) presents random matrix models for the world trade network. 

We show that the world trade network is “effectively small” and discuss how this limits the 

ability to forecast stability properties. We conclude in section 5 with a discussion of our results. 
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2. THE STABILITY-COMPLEXITY DEBATE 

 

This relatively long section is organized as follows. We first compare MacArthur (1955) and 

Hutchinson’s (1959) argument that complexity increases stability (section 2.1) with May’s 

(1972) argument (the May-Wigner stability theorem) that complexity decreases stability (section 

2.2). We then seek to resolve this conflict by invoking a following scaling argument based on 

MacArthur (1955) and Hutchinson (1959). The average interaction strength of a component of a 

network (food web or economic network) that interacts with many components should do so 

more weakly than that of a component with fewer interactions (section 2.3). We then review 

various definitions of stability (section 2.4). This discussion is followed by an analysis of the 

effect of adding noise to the linear systems considered by May (section 2.5), with applications to 

survival times (persistence) of these systems, and a concluding summary (section 2.6). 

 

2.1. Complexity Increases Stability: MacArthur and Hutchinson 

First, a 30,000-foot view of stability and complexity of ecosystems finds a general trend (see 

May (2001) and references therein): increased complexity correlates with reductions in 

variability (table 1). One may take variability as a measure of instability; in which case lower 

variability corresponds to increased stability.8  

 

Table 1. Stability and Complexity of Ecosystems 
System  Tropical Mid-latitude Northern 
Complexity High Intermediate Low 
Variability Low Intermediate High 
 

MacArthur and Hutchinson offered an explanation. We quote from Hutchinson’s 1958 

Presidential Address to the American Society of Naturalists (Hutchinson 1959): 

 

  

 
8 See Harrison (1979) and Pimm (1984), who discuss a variety of stability concepts; see also section 2.4. 



14 
 

Recently MacArthur (1955) using an ingenious but simple application of 
information theory has generalized the points of view of earlier workers by 
providing a formal proof of the increase in stability of a community as the 
number of links in its food web increases. MacArthur concludes that in the 
evolution of a natural community two partly antagonistic processes are 
occurring. More efficient species will replace less efficient species, but more 
stable communities will outlast less stable communities. In the process of 
community formation, the entry of a new species may involve one of three 
possibilities. It may completely displace an old species. This of itself does not 
necessarily change the stability, though it may do so if the new species 
inherently has a more stable population (cf. Slobodkin, 1955) than the old. 
Secondly, it may occupy an unfilled niche, which may, by providing new 
partially independent links, increasing stability. Thirdly, it may partition a niche 
with a pre-existing species. 

 

In essence, MacArthur (1959) argued that an increase in complexity of a food web provides 

additional links for energy flow, and fluctuations in flow along any link have less effect upon 

overall dynamics. 

 

2.2. “Will a Large Complex System Be Stable?” (May 1972)  

Following seminal work by Wigner (1953, 1958) and observations of Gardner and Ashby 

(1970), May (1972) asked: “Will a large complex system be stable?” and interpreted this 

question as asking about the Lyapunov stability of a system of first order differential equations 

 

𝒙 𝒇 𝒙           (5) 

 

with an equilibrium at 𝒙  𝒙 . If 𝒇 𝒙  is sufficiently smooth, we can linearize system (5) about 

the equilibrium, and then replace 𝒙  𝒙  with 𝒙, obtaining the linear system 

 

𝒙 𝐹𝒙          (6) 

 

Here  𝐹 denotes the Jacobian matrix of 𝒇  evaluated at 𝒙  𝒙 .  

 

The dynamics of the system (5) are approximated by the dynamics of its linear approximation (6) 

near equilibrium. Moreover, both systems have equivalent stability properties near their 

respective equilibria 𝒙  𝒙  and 𝒙  𝟎, respectively. These equilibria are stable if and only if 

all eigenvalues of 𝐹 have negative real part. 
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The system (5) yields two different discrete-time systems. The first, 

 

 𝒙 𝑡 ∆𝑡 𝑒𝑥𝑝 ∆𝑡 𝐹  𝒙 𝑡         (7) 

 

is obtained by solving system (2) analytically and then evaluating the solution at times spaced at 

intervals of ∆𝑡. 

 

The second, 

 

 𝒙 𝑡 ∆𝑡 𝐼  ∆𝑡 𝐹  𝒙 𝑡         (8) 

 

is obtained by solving system (2) with the Euler method, or equivalently expanding 𝑒𝑥𝑝 ∆𝑡 𝐹   

as a Taylor series in ∆𝑡, and deleting higher order terms in ∆𝑡. 

 

System (7) is Lyapunov stable if and only if all eigenvalues of the matrix 

 

A = 𝑒𝑥𝑝 ∆𝑡 𝐹           (9) 

 

lie strictly within the unit circle, that is,  

 

 ∥ 𝜆 ∥ 1          (10)  

 

and similarly, system (8) is Lyapunov stable if and only if all eigenvalues of the matrix 

 

𝐴  𝐼  ∆𝑡 𝐹           (11) 

 

lie strictly within the unit circle. These criteria are essentially the same for small “time steps” ∆𝑡, 

but different for large time steps. Criterion (9) requires only that the real part of all eigenvalues 
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of the matrix A be negative, whereas criterion (11) will fail for real parts significantly below 0 

(𝑅𝑒 𝜆  2 ∆𝑡 ⁄ will yield exponentially increasing oscillations).9 

 

May then considers random matrices A whose entries are chosen independently as follows: 

 

 𝐴
0    with probability 1 𝐶
𝛼𝑋         with probability 𝐶       (12) 

 

where X is a random variable with expectation 0 and second moment 1. Note that the underlying 

graph of A, that is a graph with n nodes and an edge from node j to node i whenever 𝐴  0, is 

an Erdős-Rényi random graph of connectance C. Then May argued that for large n, the spectral 

radius of A approaches 𝛼√𝑛𝐶  implying the asymptotic stability criterion of equation (2) above: 

 

𝛼 𝑛𝐶 1          (13) 

 

2.2.1 Proofs and Counterexamples 

However, as Cohen and Newman (1984, 1985) showed, the May-Wigner stability criterion (2) is 

false without additional hypotheses on bounds for the higher moments of the distribution X.  

Several authors (Girko 1985; Bai and Yin 1986; Geman 1986) proved the May-Wigner criterion 

under these hypotheses, for example, Bai and Yin (1986), who require only a bound on the 

fourth moment of X. Under these hypotheses, May’s stability criterion (9) only holds 

asymptotically almost surely (a.a.s), that is, with probability approaching one as the size of the 

system approaches , for fixed connectance and . 

 

2.2.2 More General Networks 

The graphs (or networks) underlying the May-Wigner stability theorem are known as Erdős-

Rényi random graphs, edges (nonzero entries in the matrix) are chosen independently with equal 

probability (Erdös and Rényi 1961). See Erdös and Rényi (1959), Gilbert (1959), and Bollobás 

(2001) for a general discussion of random graphs. 

 
9 Consider, for example, the one-dimensional system 𝑥 𝑡 ∆𝑡 1  𝑟∆𝑡  𝑥 𝑡 . Stability requires that |1
 𝑟∆𝑡| 1, and thus both the conditions:  𝑟 0 and a second condition requiring that the time delay not be too large 
compared with the time scale1 |𝑟|⁄ , namely that |𝑟∆𝑡| 2. Please see further discussion below. 



17 
 

2.3. Complexity May or May Not Increase Stability  

“Early studies suggested that simple ecosystems were less stable than complex ones, but  

later studies came to the opposite conclusion. Confusion arose because of the many  

different meanings of ‘complexity’ and ‘stability.’ Most of the possible questions about the  

relationship between stability-complexity have not been asked. Those that have yield a  

variety of answers” (Pimm 1984), in some cases depending on the particular definition of 

stability (Harrison 1979, Pimm 1984); see section 2.4, below. 

 

In MacArthur’s (1955) “multiple energy pathways” scenario, the flow into a node is distributed 

over the edges into that node (in-degree), and therefore the average flow along each edge scales 

inversely with the in-degree. More generally, in ecology, a species interacting with many species 

can be expected to interact more weakly with each one than a species interacting with fewer 

species, thus 𝛼 decreases with increasing 𝑘  𝑛𝐶. If, as MacArthur’s information theoretic 

analysis suggested,  

 

 𝛼  𝑐𝑜𝑛𝑠𝑡 𝑛𝐶         (14) 

 

then 

 

∥ 𝜆 ∥  𝛼√𝑛𝐶   𝑐𝑜𝑛𝑠𝑡
√𝑛𝐶

→ 0  as 𝑘  𝑛𝐶 →  ∞    (15) 

 

and Lyapunov stability increases with increasing complexity. More generally, if 𝛼 scales 

inversely with some power of 𝑛𝐶, for example, 

 

 𝛼  𝑐𝑜𝑛𝑠𝑡 𝑛𝐶          (16) 

 

then stability increases with increasing complexity if 𝑠 1 2⁄ , and stability decreases with 

increasing complexity if 𝑠 1 2⁄ ; see Hastings (1984) and also Pimm (1984) for constant 𝑘

 𝑛𝐶. 
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2.4. Stability Concepts, Structural Stability versus Complexity 

We shall briefly review stability concepts before returning to the stability-complexity debate 

from the previous section. 

 

2.4.1 Stability Concepts  

Harrison (1979) compared four concepts of “stability under environmental stress: resistance, 

resilience, persistence, and variability.”10 To this list, we add two more mathematically oriented 

stability concepts: Lyapunov stability (c.f. Holmes and Shea-Brown 2006) and structural stability 

(c.f. Pugh and Peixoto 2008). 

 

Table 2. Stability Concepts 
Concept Definition Remarks 
Resistance (to environmental 
stress) 

A more resistant system has a 
smaller response 

More resistant systems tend to be more 
persistent. “Friction” may increase 
resistance but also decreases resilience. 

Resilience (in the presence of 
environmental stress) 

A more resistant system (with a 
steady state) returns more quickly 
to the steady state 

More resilient systems tend to be more 
persistent. Increasing Lyapunov stability 
increases resilience. 

Persistence A more persistent system is less 
likely to fail in the presence of 
environmental stress. 

Resistance and resilience both favor 
persistence. Another important factor is 
how much variability the system can 
handle before failing. It can be difficult to 
assess persistence (Connel and Sousa 
1983). 

Variability One may regard less variable 
systems as more stable. 

Resistant systems tend to have less 
variability, but low variability may also 
reflect lower environmental stress 
(smaller and/or fewer shocks). More 
resilient systems display less variability 
in the presence of a series of shocks. 

Lyapunov stability (near a 
steady state) 

Lyapunov stability measures the 
rate of return to steady state with 
eigenvalues of the corresponding 
Jacobian matrix. 

The May-Wigner stability theorem 
assesses estimated Lyapunov stability. 
Increased Lyapunov stability is associated 
with increased resilience, and less 
variability (Hastings 1984; Schriber and 
Hastings 1995). 

Structural stability Structural stability measures the 
effect of changes in model 
parameters, or even in the model 
itself; in contrast to Lyapunov 
stability which measures the 
effect of perturbing state 
variables. 

One major perturbation involves 
correlation among interaction terms; see 
Junior and Franca (201) for the effect of 
correlation in financial markets. More 
generally, liquidity shocks can destabilize 
the financial network; see Dooley and 
Hutchinson (2009), Hesse, Frank, and 
González-Hermosillo (2008), and 
Raddatz (2010). 

 
10 See also Pimm (1984) and Holling (1973). 



19 
 

2.4.2 Scaling and the Stability-Complexity Debate, Revisited.  

Our discussion of scaling and stability above assumed random interactions with a 0 mean. What 

happens if the system is perturbed so as to make the mean interaction nonzero? This is a question 

considered briefly above and more thoroughly in Stone’s (2016) paper “When Google meets 

Lotka-Volterra.” 

 

We begin with a simulation. For the mean 0 case of the May-Wigner stability theorem, let 𝐴 be 

a16 16 random matrix whose entries 𝐴  are chosen independently from a uniform distribution 

on the interval 0.5, 0.5 . For the case of nonzero mean 𝜇, the entries 𝐴  are chosen 

independently from 𝑈 𝜇 0.5, 𝜇 0.5 , a uniform distribution on the interval 𝜇 0.5, 𝜇

0.5 . The resulting matrices are among the simplest Google matrices (Brin and Page 1998; Ding 

and Zhou 2007) because of their role in Google’s page rank computations. This changes the 

expected row sum or column sum to 16𝜇, in which case the Gershgorin circle theorem (c.f. 

Weisstein 2003) predicts that the expected row sum is an approximate bound to the size of the 

dominant eigenvalue. We found the spectral radius with the power law in Python and ran 10,000 

replicates for each set of parameters. Results are shown in table 3, in each case showing the 

mean and standard deviation of the size of the dominant eigenvalue. 

 

Table 3. Effect of Perturbing Random Interactions Making the Mean Nonzero 

Mean 𝜇  Spectral radius 

0 1.2402 ± 0.1611 

0.031 1.2524 ± 0.1669 

0.062 1.3336 ± 0.2001 

0.094 1.5729 ± 0.2888 

0.125 1.9873 ± 0.3494 

0.188 2.9888 ± 0.3207 

0.25 4.0000 ± 0.3033 

 
Notes: Small perturbations (expected row sum = 0.5, 𝜇 0.5/16 0.03125), that is, 𝐴 𝑈 0.46875, 0.53125 , 
have almost no effect on the spectral radius, as in Stone’s (2016) asymptotic results. The spectral radius increases for 
intermediate perturbations (0.062 𝜇 0.094) and finally is very close to the expected row sum for larger 
perturbations (𝜇 0.125,  expected row sum 16𝜇 2), as expected from the Gerschgorin circle theorem. 
 

  



20 
 

The above change in eigenvalues may reflect a change in stability after all entries are scaled so 

as to make the spectral radius < 1 in the case of 0 mean (May-Wigner), but > 1 after perturbation, 

a form of structural instability. More generally, for asymptotically large systems, Lyapunov 

stability increases with complexity (here size, connectance, or both), provided that the mean 

interaction strength 𝛼 satisfies the scaling rule: 

 

𝛼  ℴ 1 √𝑛𝐶⁄ , that is, lim
 →

𝛼√𝑛𝐶 0      (17) 

 

In contrast, structural stability requires a more rapid decrease in 𝛼 with increasing complexity, 

namely 

 

 𝛼  ℴ 1 𝑛𝐶⁄ , that is, lim
 →

𝛼 𝑛𝐶 0      (18) 

 

For intermediate values of scaling, e.g.,  

 

 𝛼  ℴ 1 𝑛𝐶⁄  , with 1 2⁄ 𝑠 1      (19) 

 

increasing complexity increases Lyapunov stability, but decreases structural stability. More 

generally, a system may approach the limits of stability in one environment, but become fragile 

with respect to “exogenous” forces that change the environment and thus the dynamics. 

  

2.5. Stochastics 

Here we review and update the results of Hastings (1984). What happens if we add “noise” to the 

basic model 

 

𝒙 𝑡 1 𝐴𝒙 𝑡 , 

 

obtaining the system of stochastic difference equations 

 

𝒙 𝑡 1 𝐴𝒙 𝑡  𝜎∆𝒘 𝑡         (20) 
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Here the increments ∆𝒘 𝑡  are independent and identically distributed (i.i.d.) Gaussian 

distributions with mean 0 and variance 1 (the increments in a discrete time random walk = 

discrete time Brownian motion). 

 

For large 𝑡, equation (20) implies 

 

 𝒙 𝑡 𝜎 ∆𝒘 𝑡 1  𝐴 ∆𝒘 𝑡 2 𝐴 ∆𝒘 𝑡 3 ⋯  𝐴 ∆𝒘 0   (21) 

 

Equation (20) is an AR(1) or discrete-time Ornstein-Uhlenbeck (Uhlenbeck and Ornstein 1930) 

process.  

 

2.5.1 Falling off a Financial Cliff   

Suppose an economic system “falls off a cliff” if  ∥ 𝒙 𝑡 ∥ becomes too large. Following 

Hastings (1974), we compute the long-term behavior of ∥ 𝒙 𝑡 ∥. Since the increments ∆𝒘 𝑡  

are i.i.d. N 0,1 , replacing 𝐴  by ∥ 𝜆 ∥   𝛼√𝑛𝐶   implies that the long-term distribution of  

𝒙 𝑡  is given by a normal distribution of mean 0 and variance 𝜎 1 𝛼 𝑛𝐶 provided 𝛼 𝑛𝐶< 1 

(the variance approaches ∞ as 𝛼 𝑛𝐶 → 1). For 𝛼 𝑛𝐶< 1, the distance to the cliff, denoted 𝑠, 

normalized by the long-term standard deviation of ∥ 𝒙 𝑡 ∥, namely 

 

𝑠√1 𝛼 𝑛𝐶 𝜎         (22) 

 

provides a measure of the likelihood of collapse: collapse is highly unlikely if 

 

𝑠√1 𝛼 𝑛𝐶 𝜎  5         (23) 

 

a “5𝜎” deviation.11 

 

 
11 5𝜎 or more is appropriate given the importance of avoiding collapse and the challenge of estimating parameters 
and tails of distributions. For example, if the trajectory in the economic state space has autocorrelation = 0 after 2 
years (c.f. Hastings, Young-Taft, and Wang 2019), the probability of a 3𝜎 event in 10 years is almost 1 percent. 
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Figure 2. Falling off a Financial Cliff 

 

 
 
 
 
 
 
 

 
 
Notes: Left: A cartoon view of a trajectory governed by an Ornstein-Uhlenbeck process with an “absorbing barrier” 
at ∥ 𝒙 𝑡 ∥ 𝑠 , shown here as a cliff.  Right: The “Wile-e-coyote” effect: a temporarily insolvent firm may survive 
and become solvent (green arrow) or fail (red arrow), depending upon creditor and investor confidence, analogously 
for governments (the effects of large debt as a percentage of GDP depend upon confidence in the ability to avoid 
default, see IMF data as reported in World Population Review [2020]).12 
 
 

 

 
12 Predictions of a “fiscal cliff” can be difficult and are often wrong. Consider the following 2012 prediction from 
the Fiscal Times: 
 

The Bank of America [B of A] economists note that the prospects of lawmakers 
forging a broad deal during the lame duck session are dim—and that the chatter 
that we could go over the cliff, if only briefly, without serious consequences 
could be dangerous for investors and the economy. 
 
The “consumer confidence could dry up quickly” if companies decide to 
postpone hiring as the attention turns to the fiscal cliff and the full scope of the 
quagmire in Washington becomes more apparent. “We continue to see only 
limited scope for some sort of action during the lame duck session of Congress 
that would avoid most of the cliff—especially if the election largely returns the 
status quo that created it,” B of A economist Michael Hanson wrote. 
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A deeper analysis shows that the first passage time to a “cliff” at 𝒙 𝑡 𝑠 for the analogous 

continuous-time Ornstein-Uhlenbeck process  

 

𝑑𝑥  𝑟𝑥𝑑𝑡  𝜎𝑑𝑤         (24) 

 

where 𝑑𝑤 denotes the infinitesimal increment in a Wiener process (continuous-time random 

walk, c.f. Weisstein [2003]); thus 𝑑𝑤 𝑁 0,1 , a normal distribution of mean 0 and variance 1 

scales as follows (Marlin 1975): 

 

𝑇~ 1 𝑟⁄  exp 0.46 2𝑟𝑠 ⁄        (25) 

 

2.5.2 Remarks 

One can think of  𝑟⁄  as the diffusion rate in natural time units 1 𝑟⁄  ; thus  𝑟⁄  has units of 

length . Then 𝑟𝑠 ⁄  represents the square of the distance to the boundary divided by the 

normalized diffusion rate.  

 

The parameter 𝑟 is related to the Lyapunov exponent in the discrete-time process as follows: 𝜆

𝑒𝑥𝑝 𝑟 , or 𝑟 𝑙𝑛 𝜆 , suggesting (caution for small 𝑇) 

 

𝑇~ 1 𝑙𝑛 𝜆⁄  exp 0.46 2𝑙𝑛 𝜆 𝑠 ⁄    

 

or more simply 

 

𝑇~ 1 𝑙𝑛 𝜆⁄  𝜆 . ⁄         (26) 

 

Note that the probability of falling off the cliff increases sharply with increasing . The 

eigenvalue  is related to the natural time scale of return to steady state by the formula 

 

time scale  1 1 ⁄         (27) 
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Of course, falling off a (financial) cliff frequently arises as a loss of confidence following a 

significant financial event. Here is a schematic illustrating the idea of “falling off a (financial) 

cliff,” as well as what we term the “Wile-e-coyote” effect: a bankrupt firm may not fail until 

confidence is lost (red arrow in figure 2). Alternatively consider how the Lehman bankruptcy 

triggered the liquidity crisis, which then triggered the Great Recession (Dymski 2009; Allington 

McCombie, and Pike 2012; Hesse, Frank, and González-Hermosillo 2008; Financial Crisis 

Inquiry Comission 2011).  

 

However, large variability makes it “not very useful” in practice (Lindenberg et al. 1975). For 

that reason, we explore instead how the probability of falling off a cliff scales with key 

parameters in a one-dimensional Orenstein-Uhlenbeck model (figure 3). 
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Figure 3. Probability of “Falling off the Fiscal Cliff” 

Panel A: Effects of Spectral Radius and Distance to Fiscal Cliff on Probability of Falling Off 

 
Panel B: The “Front Face” Panel A (effects of spectral radius on probability of falling off the fiscal cliff) 

 
Notes:  Methods: we simulated the one-dimensional AR(1) process 
 

 𝑥 𝑡 1 𝑥 𝑡  𝜎∆𝑤 𝑡 , 𝜎 1, 𝑥 0     (17) 
 

with an absorbing barrier (“fiscal cliff”) at 𝑠 4, 5, … , 8 in Excel. The required normal distributions ∆𝑤 N 0, 1  
were generated by applying norm.inv(rand()), the inverse of the cumulative normal distribution, to samples from a 
uniform distribution U 0, 1 . 50,000 replicates were performed for each combination of parameters, except for  
0.8 where 250,000 replicates were performed. We computed the probability of “falling off the cliff” (hitting the 
absorbing barrier) for 𝑡 40. Results: the probability of falling off the cliff decreases sharply with increasing 
distance to absorbing barrier and increases sharply with increasing spectral radius . In particular, the probability of 
falling off decreases faster than exponentially with distance to the cliff, as shown by the left face of the top graph. 
The probability of falling off also decreases faster than exponentially with a decreasing spectral radius (increasing 
stability of deterministic model), as shown in the bottom graph.   

A 

B 
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Ornstein-Uhlenbeck processes have been widely used to analyze financial dynamics. Widely 

cited papers include Barndorff‐Nielsen and Shephard (2001) and Vasicek (1977), who relate 

Ornstein-Uhlenbeck processes to the classical Merton-Black-Scholes model, but see Haug and 

Taleb (2011) for a critique (practical heuristics versus theory). Generalized Ornstein-Uhlenbeck 

processes, that is processes 

 

𝑑𝑥  𝑟𝑥𝑑𝑡  𝜎𝑑𝜂         (27) 

 

in which the noise term 𝜂 is not Gaussian are also widely used in financial dynamics.13 

 

2.6. Extensions 

Sections 2.1–2.5 described the stability-complexity relationship for “random” linear systems 

(with and without added Gaussian noise) as prototype models for the dynamics of ecological and 

economic networks. Here we briefly describe extensions to this linear theory. 

 

2.6.1 More General “Random” Networks 

Many other types of random networks have been studied. A detailed discussion would add 

greatly to the length of this paper, so we shall simply briefly cite some key references. One major 

class of networks is called small-world networks (Watts and Strogatz 1998): “these systems can 

be highly clustered, like regular lattices, yet have small characteristic path lengths, like random 

graphs. We call them ‘small-world’ networks, by analogy with the small-world phenomenon 

(Milgram 1967; Kochen 1989) (popularly known as six degrees of separation [Guare 1990]).”14 

 

Small-world networks include scale-free networks, where the degree distribution follows a 

power law, rather than the normal distribution in Erdős-Rényi networks (Amaral et al.  2000). 

Barabási-Albert graphs form another important class (Barabási and Albert 1999); see also 

Barabási (2009), more generally, his book on Network Science (Barabási  2016), and Havlin et al. 

(2012) and references therein. 

 

 
13 See Benth, Kallsen, and Meyer‐Brandis (2007) and Masuda (2004). 
14 See Jackson and Rogers (2005) for applications to economics. 
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One also sees various forms of preferential attachment in evolving/growing networks: edges are 

added preferentially to vertices of high degree (Newman 2001; Jeong, Néda, and Barabási 2003; 

Válesquez 2003). One can also weight the interactions in a random model (Wang and Chen 

2008)—compare with our analysis of the world trade network in section 5. 

 

Finally, one can also consider constrained random networks; for example, real food webs are not 

random (Pimm 1979, 1980; Pimm and Lawton 1980); in some cases this contributes to their 

stability (Allesina and Pascual 2016), in others it reduces Lyapunov stability (Hastings, Juhasz, 

and Schreiber 1992). Despite this nonrandomness, random matrix models can also serve as 

useful neutral models, providing benchmarks for stability analysis so that one can assess the 

effects of structure (nonrandomness) upon stability.  

 

2.6.2 Modular Networks  

Finally, many networks are modular, and their modular structure appears to yield enhanced 

stability (Gillarranz 2017). One key example is the US power grid: 

 
 Electricity generated at power plants moves through a complex network of 

electricity substations, power lines, and distribution transformers before it 
reaches customers. In the United States, the power system consists of more than 
7,300 power plants, nearly 160,000 miles of high-voltage power lines, and 
millions of low-voltage power lines and distribution transformers, which 
connect 145 million customers. […] “Local electricity grids are interconnected 
to form larger networks for reliability and commercial purposes. At the highest 
level, the United States power system in the Lower 48 states is made up of three 
main interconnections, which operate largely independently from each other 
with limited transfers of power between them. 

 The Eastern Interconnection encompasses the area east of the Rocky Mountains 
and a portion of northern Texas. The Eastern Interconnection consists of 36 
balancing authorities: 31 in the United States and 5 in Canada. 

 The Western Interconnection encompasses the area from the Rockies west and 
consists of 37 balancing authorities: 34 in the United States, 2 in Canada, and 1 
in Mexico. 

 The Electric Reliability Council of Texas (ERCOT) covers most, but not all, of 
Texas and consists of a single balancing authority. 

The network structure of the interconnections helps maintain the reliability 
of the power system by providing multiple routes for power to flow and by 
allowing generators to supply electricity to many load centers. This redundancy 
helps prevent transmission line or power plant failures from causing 
interruptions in service. 

 
(from US Energy Information Administration 2016; emphasis added); 
redundancy due to multiple [parallel] routes for power is reminiscent of 
MacArthur’s (1955) “multiple energy pathways” scenario. 
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2.6.3 Cascading Failures 

Networks can provide a substrate for localized failures to rapidly propagate through a network. 

These are known as cascading failures (c.f. Crucitti, Latora, and Marchiori 2004).15 The 

cascading failure of the 2003 blackout demonstrated the need to balance the underlying 

dynamics of the power grid with appropriate regulation; the rapidity of the failure emphasized 

the need to consider and protect against such failures in advance. 

 

2.6.4 Robustness 

Hines, Balasubramaniam, and Sanchez (2009) discussed how decentralized (modular) 

organization and “reciprocal altruism” promote survivability from “cascading failures in power 

grids.” Weighted networks (Wang and Chen 2008) and small-world structures (Xia, Fan, and 

Hill 2010) also promote robustness in the face of cascading failures; on the other hand, “dead 

ends” can undermine stability of the power grid (Menck 2014). 

 

2.6.6 Universality of the May-Wigner Transition  

(from stability if 𝛼 𝑛𝐶  1  to  instability if 𝛼 𝑛𝐶 1). This transition has also been observed 

in nonlinear dynamical systems (Sinha and Sinha 2005; Fyodorov and Khoruzhenko 2016; Ipsen 

2017) in addition to the linear systems near equilibrium considered above. In particular, Sinha 

and Sinha (2005) consider: “the persistence of individual nodes in a network of randomly 

coupled nonlinear maps undergoing a wide range of local dynamics. We observe that the results 

of the May-Wigner theorem seem to be valid universally, namely, increasing the number of 

interactions per node or increasing interaction strength will give rise to increased likelihood of 

extinction.” 

 

Fyodorov and Khoruzhenko (2016) provide a more detailed description of the transition to 

instability. Ornstein-Uhlenbeck dynamics (see section 2.5) might also be extended to nonlinear 

systems (c.f Beale 1989). 

 

Question: How far can universality be extended? 

 

 
15 For cascading failures in the US grid, such as the failures that caused the 2003 blackout, see Lerner (2013). 
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2.6.7 Feasibility 

The May-Wigner stability theorem concerned linear stability near a steady state. In considering 

nonlinear systems in ecology and economics, we need to explore feasibility of steady states as 

well as their stability. Here a steady state is called “feasible” if all state variables are positive: 

One cannot have negative populations! An economic entity with negative net worth is 

fundamentally different from one with positive net worth. Stone (2018) and Dougoud et al. 

(2018) discuss the importance of feasibility in ecosystem modeling. 

 

2.6.8 Evolution/Assembly/Design to the Edge of Stability  

“The economy [can be considered] as an evolving complex system” (Blume and Durlauf 2005;  

see also Arthur, Durlauf, and Lane [2018] and Anderson, Arrow, and Pines [2018]), in which one 

can see emergent dynamics, that is system-level dynamics that cannot be easily derived from an 

examination of dynamics at the component level (c.f. Sinha and Sinha 2006). We posit 

evolution/assembly/design to the edge of stability in complex financial systems, as financial 

institutions seek out profits. Compare the formation of complex yet fragile food webs in tropical 

environments described in section 2.1 above, as well as the concept of evolution to the edge of 

chaos in many complex systems (Lewin 1999; Packard 1988; Kauffman and Johnse 1991), and 

in particular economic systems (Oxley and George 2007; Beinhocker 1997) in which linearized 

stability analysis can readily fail (Oxley and George 2007).  

 

Bak et al. (1992) described this evolution in economics as self-organized criticality, dynamics at 

the limit of stability in which one may see “avalanches” of all scales whose magnitudes follow a 

power law distribution (compare the Gutenberg-Richter [1944] law for earthquakes). Power law 

distributions appear in the Gutenberg-Richter law as evidence of self-organized criticality (Bak 

and Tang 1989; Bak et al.  2002). Power law distributions are also one example of fat-tailed 

distributions, yielding fragility and “Black Swan” (Taleb 2007, 2010) events. Fluctuations in 

self-organized criticality are one example of fractal dynamics (Mandelbrot 1982; Hastings and 

Sugihara 1993). Samuelson’s observation that “properly anticipated prices fluctuate randomly” 

(Samuleson 1965; Merton 2006) can be considered the antecedent to these dynamics in that a 

random walk is perhaps the prototype random fractal, much as the Merton-Black-Scholes 
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formula (Schachermayer and Teichmann 2008; Duffie 1998) is an application of Ornstein-

Uhlenbeck dynamics. 

 

 

3. WHAT THIS MEANS FOR ECONOMICS 

 

We briefly raise some questions implicit in May, Levin, and Sugihara’s (2008) “Ecology for 

Bankers,” including the effects of structure upon stability and the potential for forecasting.  

 

3.1 The Nature of Stability  

Suppose one observes low variability in a complex system (thus high stability by one measure; 

see tables 1 and 2 in sections 2.1 and 2.4, respectively. For complex stochastic systems modelled 

by [discrete-time] Ornstein-Uhlenbeck processes [equation 20]) 

 

 𝒙 𝑡 1 𝐴𝒙 𝑡  𝜎∆𝒘 𝑡 , 

 

or nonlinear generalizations, variability as measured by the standard deviation of 𝒙 𝑡  at large 

times depends both upon the Lyapunov stability of the corresponding deterministic system 

 

𝒙 𝑡 1 𝐴𝒙 𝑡  

 

and the environment—the amount 𝜎 of “exogenous” noise. Namely, the standard deviation of 

𝒙 𝑡  at large times is given by the ratio 

 

𝜎
√1 𝜆

         (28) 

 

where 𝜆, the size of the dominant eigenvalue of 𝐴, describes the Lyapunov stability of the 

underlying deterministic system. Thus a system evolving in a low-noise environment (compare 

Minsky’s growth phase [Dymski 2009; Minsky 1975, 1986,1993]) might have low variability, 

only to fail if the noise level increases, increasing the standard deviation of 𝒙 𝑡 , or the 
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distance to a fiscal cliff (see section 2.5) decreases (increasing fragility in a manner analogous to 

Minsky’s Ponzi phase). 

 

3.2 The Substrate for Failure: Too Big? Too Centralized? Too Correlated? Too Much 

Leverage/Not Enough Reserves? 

As Heiberger (2014) observed: “Despite many efforts crises on financial markets are in large part 

still scientific black-boxes. In this paper, we use a winner-take-all approach to construct a 

longitudinal network of S&P 500 companies and their correlations between 2000 and 2012. A 

comparison to complex ecosystems is drawn, especially whether the May-Wigner theorem can 

describe real-world economic phenomena. The results confirm the utility of the May-Wigner 

theorem as a stability indicator for the US stock market, since its development matches with the 

two major crises of this period, the dot-com bubble and, particularly, the financial crisis. In those 

times of financial turmoil, the stock network changes its composition, but unlike ecological 

systems it tightens and the disassortative structure of prosperous markets transforms into a more 

centralized topology.” (emphasis added)16  

 

The answer to the first question, likely “all of the above” could serve as a call for more effective 

forecasting (Sidorowich and Farmer [2018] ask “Can New Approaches to Nonlinear Modeling 

Improve Economic Forecasts?”; see also Aymanns et al.’s [2018] “Models of financial stability 

and their application” and Arrow et al.’s [2018] discussion of economic cycles), leading to more 

appropriate regulation. Empirical dynamical modeling, which presupposes no underlying model, 

may also be useful (Ye et al.  2015). 

 

3.2.1 Remarks. See, e.g., Hastings, Young-Taft, and Wang (2019) and references therein for 

the use of interest rate spreads and dynamics for forecasting recessions in US economic cycles. 

 

We now consider how the structure of the world trade network—dominated by a few to 10–30 

large economies—limits the ability to forecast stability. 

 

 
16 See also Bardoscia et al. (2017) for pathways towards instability, discussed in the Introduction,  Junior and Franca 
(2012) for correlation in times of crisis; and León and Berndsen (2014) for “challenges arising from financial 
networks’ modular scale-free [and thus small-world] architecture.” 
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4. IT’S A SMALL WORLD: RANDOM MATRIX MODELS FOR THE WORLD TRADE 

NETWORK 

 

“The network formed by the trade relationships between all world countries, or World Trade 

Web (WTW). Each (directed) link is weighted by the amount of wealth flowing between two 

countries, and each country is characterized by the value of its Gross Domestic Product  

 (GDP).”  (Garlaschelli et al. 2007) May-Wigner is asymptotic result, we shall see that the 

WTW is effectively small. 

 

4.1 Scaling in the World Trade Web 

In previous sections we considered the effect of how interaction strength scales with vertex 

degree assuming i.i.d. random interactions. However, interactions in many real economic 

networks, such as the trade and financial networks, vary widely in scale. 

 

If we consider the world trade network, trade between two countries is closely approximated by 

the well-known “gravity law” (Tinbergen 1962; Pöyhönen 1963; Krugman 1980); also the recent 

review (Garlaschelli et al. 2007) and references therein, states that trade between two countries is 

proportional to the product of their GDPs divided by the “difficulty of trade between them,” the 

latter frequently expressed as a distance. 

 

trade between country 𝑖 and country 𝑗 𝑐𝑜𝑛𝑠𝑡   
  

,
   (24) 

 

With recent sharp declines in shipping costs, we shall consider a simplified case in which 

dist 𝑖, 𝑗 1, resulting in the following simplified formula. 

 

trade between country 𝑖 and country 𝑗 𝑐𝑜𝑛𝑠𝑡   GDP   GDP   (25) 

 

Moreover, the GDP scales as a power law at the high end (Garlaschelli et al.  2007, Fagiolo et al.  

2009) (figure 4), and this behavior may be universal (Garlaschelli et al. 2007; Montroll and 

Shlesinger 1982; Solomon and Richmond 2001, 2002; Reed and Hughes 2002; Mitzenmacher 

2004); that is, the GDP of the 𝑛  largest economy scales as 
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GDP  ~ 𝑛          (26) 

 

for some scaling (Zipf) exponent 𝑏. We found 𝑏 1 , thus 

 

  GDP  ~ 1 𝑛⁄          (27) 

 

Power laws are sometimes referred to as Pareto distributions or in the case 𝑏 1, Zipf 

distributions (Adamic n.d.).17 

 

Garlaschelli et al. (2007) had argued that “the dynamics of all GDP values and the evolution of 

the WTW (trade flow and topology) are tightly coupled. The probability that two countries are 

connected [with weight above a given threshold] depends on their GDP values… On the other 

hand, the topology is shown to determine the GDP values due to the exchange between 

countries.” In comparison, Chaney (2018) showed how the denominator (distance) in gravity 

law arises from a Pareto/power law distribution of sizes of firms. 

 

  

 
17 The use of methods from physics in economics is known as econophysics (Yakovenko 2009; Yakovenko and 
Rosser 2009). See Clauset, Shalizi, and Newman (2009) for a caution on fitting power laws. 
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Figure 4. GDP and per capita GDP Follow Power Laws at High End 

 
Notes: The data appears to follow a Zipf power law scaling for the largest GDPs (GDP  1/rank), followed by a 
middle region with exponential fall off, and finally the lowest values fall off like the tail of a normal distribution 
(exponential with the square of rank). There are suggestions that the data is not lognormal. The Shapiro-Wilks test 
for normality of log-transformed GDP’s yields 𝑝 0.0448 for 1980 data and 𝑝 0.1505 for 2016 data, but these 
data sets are not independent (a linear analysis of log-transformed data yields R² = 0.718, N = 139, p < 0.0001) 
(Vassarstats, http://vassarstats.net/corr_big.html, May 23, 2019). Further analysis with Vassarstats is shown in table 
2. 
 

Table 2. Statistical Analysis of GDP Data 
  Power law region (blue) Exponential fall-off region (orange) 

1980 GDP GDP  rank-0.93 
R² = 0.969 
N = 21, p < 0.0001 
Lower bound: 1.2  1011 USD 

GDP  exp ( 0.046  rank) 
R² = 0.996 
N = 101, p < 0.0001 
Lower bound: 109 USD 

2016 GDP GDP  rank-0.99 
R² = 0.978 
N = 25, p < 0.0001 
Lower bound: 9  1011 USD 

GDP  exp ( 0.032  rank) 
R² = 0.991 
N = 129, p < 0.0001 
Lower bound: 1010 USD 

Methodology: Scaling regions were estimated with the goal of maximizing the coefficient of correlation. The 
transition points are thus approximate. Small changes in the transition points have little effect upon the slopes, 
parameters and R2.  
Source: Data from Wikipedia (2020), IMF (2018): “This is an alphabetical list of countries by past and 
projected Gross Domestic Product, based on the Purchasing Power Parity (PPP) methodology, not on market 
exchange rates. Values are given in USDs. These notional figures have been taken from the International Monetary 
Fund’s World Economic Outlook (WEO) Database, October 2018 Edition.” 
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4.2.  A Simplified Model: Scaled Random Matrices 

We investigate the following simplified model for the stability of random systems scaled like the 

WTW. The model combines random matrix theory, the observed empirical power law for GDPs, 

and the gravity model with denominator 1 for the amount of trade between two countries. 

 

Let 𝐴 be an 𝑛 𝑛 random matrix whose entries 𝐴  are chosen independently from scaled 

uniform distributions 

 

 𝐴  1
𝑖𝑗  𝑈 0.5, 0.5         (28) 

 

Here 𝑛 denotes the number of countries in the model WTW, 𝑟 measures how interaction strength 

scales with the amount of trade, 𝑏 denotes the Zipf exponent in the power law distribution of 

world GDPs by country, and 𝑈 0.5, 0.5  denotes a uniformly distributed random variable 

taking values in the interval 0.5, 0.5 . 

 

Since our interest here is the spread of eigenvalues and its effect on predictability, we did not 

introduce any other scaling in interaction strengths. Instead, we rescaled the spectral radius (size 

of dominant eigenvalue) to 1, which can be accomplished by applying a similar scaling factor to 

all interaction strengths, thus not affecting relative interaction strengths. 

 

4.2.1 Methods 

We found the spectral radius with the power law in Python, ran 10,000 replicates for each set of 

parameters, and reported the mean, standard deviation, and histogram. Our results are shown in 

figure 5, where we scaled the resulting eigenvalues instead of scaling the interaction strength. 
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Figure 5. Distribution of Dominant Eigenvalues in Simulations of Simple Model “Trade” 
Networks 
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4.2.2 Conclusions 

As shown in figure 5, small, economically relevant random matrices display a wide spread in 

dominant eigenvalues, thus May’s criterion 

 

 𝛼 𝑛𝐶 1 

 

may not provide a sufficiently sharp bound on the size of the dominant eigenvalue to adequately 

insure stability. For example, for small (8 8) systems with interactions scaled by a 

combination of the gravity law for trade and the empirical distribution of the sizes of the largest 

economies, the coefficient of variability of the dominant eigenvalue is 0.44, with a range up to 

twice its average value. More generally, in many ways, the world economy is “effectively 

small,” limiting the utility of asymptotic results.  

 

Thus, it may be difficult to regulate or control the evolution/design/assembly to the limits of 

forecast stability. 

 

  

5. DISCUSSION 

 

We have aimed to provide a quasihistorical overview of the key mathematical ideas underlying 

important common features of ecological and economic networks. The world economic system 

has grown increasingly complex and interconnected in many ways:  

 

(1) Real and financial corporations operate largely independently of national 

boundaries (Chowla and Bolton 2005; Oxfamblogs 2011). In fact, by 2015, 69 of 

the largest 100 economic entities were businesses: “the US, China, Germany, 

Japan, France and the UK make up the top six economic entities followed by 

Italy, Brazil and Canada. Walmart ranks as the 10th largest, followed by China’s 

electricity monopoly State Grid at number 14, China National Petroleum at 15 

and Chinese oil firm Sinopec Group at 16. Apple ranked 26th behind the 18th-
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placed Royal Dutch Shell, with Exxon Mobil at 21, Volkswagen at 22 and Toyota 

at 23” (Lordon 1997). 

(2) World trade has become larger and more complex, with extensive trade in 

intermediate goods (global supply chains). 

(3) Finance has become an international electronic-networked phenomenon. 

(4) A variety of central bank, fiscal, and regulatory activity drives trajectories in 

interacting ways. 

(5) Finally, the current econo-system involves a broad range of time scales 

(Lordon 1997), from the millisecond scale of high-frequency trading (recall the 

Flash Crash of May 6, 2010) (Kirilenko et al.  2017) to the 10+ year scale of 

major infrastructure structure projects. 

 

These changes challenge our ability to ability to understand, manage, and forecast economic 

trajectories in a complex, high-dimensional state space, in the absence of stationarity and at best 

limited applicability of ergodicity. 

 

One might hope and expect that the theory and applications of random matrices would provide a 

framework for exploring such complex dynamics. The theory of random matrices has played 

important roles in physics beginning with Wigner (1955, 1958, 1967) (28,000 papers listed in 

Google Scholar, June 18, 2019), ecology following May (1972) (2,200 papers listed in Google 

Scholar, June 18, 2019), and economics (c.f. “Ecology for bankers” [May, Levin, and Sugihara 

2008], 4,800 papers listed in Google Scholar, June 18, 2019). Hopefully extensions of the May-

Wigner stability theorem discussed above will lead to improved understanding and control of the 

complex “econo-system” as well as mitigation of the effects of dangerous interactions within the 

system. 

 

5.1. Future Work 

We are planning to extend our work on the dynamics of economic systems and also to examine 

the role of modularity and analogs of circuit breakers in power grids to prevent cascading failure 

in other networks. Here are some specific goals in understanding the dynamics of economic 

systems. 
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(1) Understand/incorporate/analyze multilevel economic networks including the 

major players, countries, banks, and firms, within an extended May-Wigner 

framework. 

(2) Incorporate multiple time scales within the model. 

(3) Develop circuit breakers to better isolate potential shocks to the economic 

system and forestall cascading failures. 

(4) Improve forecasting, or at least better understand the limits of forecasting. 

 

One can also consider the spread of COVID-19 as a cascading event (failure), in which case 

network science may provide useful ideas about curtailing its growth and spread, and ultimately 

may help design a more resilient, less fragile city of the future. 

 

5.2. Limitations 

We have not discussed the key role of nonlinearity beyond a few citations and we have not 

answered (or even attempted to answer) how we can best prevent or at least mitigate future 

financial crises. 

 

We conclude with two key observations, the first due to Battiston et al. (2016): 

 

Traditional economic theory could not explain, much less predict, the near 
collapse of the financial system and its long-lasting effects on the global 
economy. Since the 2008 crisis, there has been increasing interest in using ideas 
from complexity theory to make sense of economic and financial markets. 
Concepts, such as tipping points, networks, contagion, feedback, and resilience 
have entered the financial and regulatory lexicon, but actual use of complexity 
models and results remains at an early stage. Recent insights and techniques 
offer potential for better monitoring and management of highly interconnected 
economic and financial systems and, thus, may help anticipate and manage 
future crises. 

 

Secondly, translating Donohue et al. (2016) from ecology to economics in the spirit of “Ecology 

for Bankers” (May, Levin, and Sugihara 2008), we need more conversations among theorists, 

empiricists, and regulators. 
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