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1The Redued Form of aBlok Reursive ModelHans ShneeweissErih-Otto MashkeManfred PfannesDepartment of Statistis,Ludwig-Maximilians-Universit�at M�unhen,Akademiestr. 1/I, D-80799 M�unhen, Germanyemail: Shneeweiss�stat.uni-muenhen.deAbstratVarious estimators of the redued form of a blok reur-sive model are investigated and ompared to eah other.In partiular it is shown that the strutural reduedform estimator, whih results from estimating separatelyeah blok of the blok reursive model by some eÆientmethod and then solving the system for the endogenousvariables, is more eÆient than the OLS estimator of theredued form. Other redued form estimators derivedfrom OLS or Two Stage LS estimators of a partially re-dued form have intermediate eÆieny properties. Thepaper has been published in Shneeweiss et al (2001),but without the appendies.Key Words: Blok reursive model, redued form, simultane-ous equations model.



21 IntrodutionThe redued form of a strutural simultaneous equations modelan be estimated in (at least) two ways: either by estimating itdiretly by OLS or, indiretly, by estimating �rst the struturalparameters of the model by some eÆient method and then solv-ing for the endogenous variables. Aording to Dhrymes (1973)the indiret estimation method leads to more eÆient estimatesthan the diret method beause it utilizes all the informationinherent in the strutural model. Dhrymes, however, assumed,with one exeption, that the ovariane matrix of the errorswas not restrited in any way. He therefore did not onsiderto use the information that might be inherent in the error o-variane matrix. The exeption was the ase of a diagonal errorovariane matrix, whih however did not lead him to designa speial estimation method for this ase. One partiular andquite important ase ist the so-alled reursive model,whih isharaterized by the two requirements that the system matrixof the endogenous variables should be triangular and the errorovariane matrix diagonal. For this model Shneeweiss (1993),building on earlier work of Kos�ak(1988), proved a similar re-sult as was given by Dhrymes (1973) in the ase of the moretraditional model with an unrestrited error ovariane matrix.An interesting feature of the reursive model is that it is iden-ti�ed without any further onditions and that OLS applied toeah strutural equation already results in eÆient estimators,whereas the traditional (limited or fully) "eÆient" estimators



3like Two-Stage Least Squares or Three-Stage Least Squares ei-ther do not work or, if they do, are not neessarily eÆient.This is shown in some detail in the present paper.The present paper ombines the results of Dhrymes (1973) andShneeweiss (1993) in that it studies a blok reursive model.Here the bloks have unrestrited error ovariane matries andan eah be estimated by some eÆient method, where the en-dogenous variables that are "explained" in subsequent bloksare onsidered as exogenous for the partiular blok to be es-timated. Again it an be shown that the diret estimator ofthe redued form is less eÆient than the indiret one, whih isonstruted by �rst estimating eah blok separately with someeÆient method and then solving for the endogenous variables.The proof of this statement is aomplished by referring toDhrymes' (1973) orresponding result for eah blok, therebyreduing the blok reursive model to a reursive model andthen using the result of Shneeweiss (1993) for the latter model,see also Pfannes (1996). In doing so, it omes as a onvenienethat in Shneeweiss (1993) the reursive model had already beenstrutured in bloks, although it was not a blok reursive modelin the usual sense. The proof is only given for the ase of atwo-bloks model, but an be generalized by indution to anarbitrary number of bloks. The result may seem not too sur-prising. If the errors are jointly normally distributed and ifonditional ML estimators are used for eah blok (onditionalon the endogenous variables of subsequent bloks), then theresulting estimators of the strutural parameters of the whole



4model are ML estimators and so are the derived redued formestimators. They are therefore more eÆient than the diretestimators of the redued form parameters, as these ar not ML.However, this result holds also true even if the errors are notnormally distributed and if other eÆient estimators for eahblok have been onstruted whih are not ML. For this reason,the solution of an old problem presented in this paper may stillbe of some interest.The reursive model has been advoated by Wold (1953, 1964).It was soon found, however, that simultaneous equations modelswhih were not reursive prevailed in pratie. An intermedi-ate model type is the blok reursive model, whih is reursivebetween the bloks, but has a simultaneity (interdependene)struture within eah blok. Often models used to desribe aneonomy are "almost" blok reursive: only one or two equa-tions spoil the blok reursive struture. In small models thatdesribe only setors of an eonomy, blok reursiveness mayour more often.Estimation of the redued form of a model has been onsideredby several authors, among others by Goldberger et al (1961)and Court (1973). Partially restrited form estimators havebeen studied by Kakwani and Court (1972), Sant (1978), Nagarand Sahay (1978). Shneeweiss (1996) ompared redued formestimators of reursive models for �nite samples. In the presentpaper only asymptoti results are presented.In Setion 2 we introdue the partially redued form, disuss



5the properties of its OLS estimator and ompare it with itsstrutural estimator via Dhrymes' theorem. In Setion 3 welarify the relation between estimators of the partially reduedform and of the redued form. Two important estimators ofthe redued form, OLS and RLS, are then related to eah otherin Setion 4. The main result, a omparison of the last twoestimators with the strutural estimator of the redued formis presented in Setion 5. In Setion 6 we disuss Two andThree Stage Least Squares of the partially redued form andtheir impliations for estimating the redued form. Setion 7has some onluding remarks. Some details of the proofs aredelegated to an appendix.2 Estimating the partially redued formWe onsider the following two-bloks reursive modelY1G1 = Y2F1+ X1F2 +W1 (1)Y2G2 = X2F3 +W2 (2)where Xi and Yi are Txpi and Txqi matries, i = 1; 2, of ex-ogenous and endogenous variables, respetively, with p2 6= 0;W1 and W2 are independent Txqi matries of unobservable er-ror variables with iid rows having expetation zero and unre-strited, but nonsingular, ovariane matries �wi ; the Gi andFj are parameter matries endowed with a priori restritionssuh that eah blok is identi�able; the Gi are supposed to be



6non-singular, so that the system an be uniquely solved for Y1and Y2. The exogenous variables are taken to be nonstohastivariables. Let X be the matrix of all exogenous variables suhthat X = (X11; X12; X22); X1 = (X11; X12); X2 = (X12; X22).We introdue seletion matries Ai suh that Xi = XAi , i =1; 2. Thus A1 = (I; 0)0; A2 = (0; I)0:In order to study the asymptoti properties of various estima-tors we oneive a series of models (1), (2), indexed by T , wherethe transition from T to T + 1 is aomplished by the additionof one further row to eah of the matries Xi; Yi;Wi; i = 1; 2.We assume that X 0X is nonsingular and that, as T ! 1,lim 1TX 0X =M with a nonsingular matrix M .Another assumption, whih we need for the main asymptotiresults, is that1Xt=1 x2ti=t2 <1; i = 1; : : : ; p; (A)where the xti are the elements of X . We will make a notewhenever a result is based on assumption (A). Note that beauseof the independene of W1 and W2 the variables in Y2 an beonsidered as exogenous for the �rst blok in the sense that W1is independent of Y2. One an therefore treat the �rst blok,on the ondition that Y2 is given, as a simultaneous equationsmodel with endogenous variables Y1 and exogenous variablesY2 and X1. The seond blok is a onventional simultaneousequations model anyway.



7Multiplying eah blok by G�1i , i = 1; 2, we get the followingreursive system:Y1 = Y2B+ X1�1 + U1 = Z�+ U1 (3)Y2 = X2�2 + U2 (4)with B = F1G�11 ; �1 = F2G�11 ; �2 = F3G�12 ; (5)U1 = W1G�11 , and U2 = W2G�12 , where the notation was ho-sen to orrespond with the notation in Shneeweiss (1993). InEquation (3) we used the abbreviatons Z = (Y2; X1) and � =(B0;�01)0. We denote the ovariane matrix of any row of Uiby �i, i = 1; 2. Apart from being positive de�nite �i is notrestrited in any way. (Note that �i = G0�1i �wiG�1i ). We allthe system (3), (4) the partially redued form of the struturalmodel (1), (2). Note that equation (4) ist just the redued formof (2), and equation (3) is the onditonal redued form of (1)under the ondition that Y2 is given (and therefore onsideredas exogenous for Y1).We onsider two estimators for the parameter matries � and�2 of the partially redued form: The OLS estimators, �̂ and �̂2are found by regressing Y1 on Z as in (3) and by regressing Y2 onX2 as in (4), respetively. The so-alled strutural estimators,^̂� and ^̂�2, are onstruted by �rst estimating the parametermatries G1, F1, and F2 of blok (1) and G2 and F3 of blok(2) separately by some eÆient estimation proedure like ThreeStage Least Squares (TSLS) within eah blok, taking the a



8priori restritions properly into aount and onsidering Y2 inblok (1) as exogenous, and then omputing estimates of B, �1,and �2 via (5).We will now derive the asymptoti properties of the OLS estima-tor. To this purpose, we vetorize the parameter matries. Wedenote a vetorized matrix by its small letter; thus Æ = ve�,2 = ve�2 et.Lemma 1:Denote by fy2g the in�nite series of the rows of Y2 when T !1.Then, under (A),pT (Æ̂ � Æ)jfy2g ! N(0; V (Æ̂)); a.s. (6)pT (̂2 � 2) ! N(0; V (̂2)); (7)where V (Æ̂) = �1 
M�1Z (8)V (̂2) = �2 
M�122 (9)are the asymptoti ovariane matries of Æ̂ and ̂2 withM22 = lim 1T X 02X2 = A02MA2 (10)MZ = lim 1T Z 0Z = 	0M	+��2; a.s (11)	 = (A2�2; A1)��2 = � �2 00 0 � :



9Proof : (7) together with (9) is simply the well-known resultfrom OLS theory, and (10) follows from the identity X2 = XA2.So we need only prove (6) together with (8) and (11).First note that Z = X	+ U�2 ; (12)where U�2 = (U2; 0). Now, assumption (A) implies lim 1TX 0U�2 =0, a.s. Indeed, let xt and ut be the t'th omponents of anyolums of X and U2, respetively. Then by (A)1X1 1t2 V ar(xtut) = 1X1 x2tt2 �2u <1;and by Kolmogorov's riterion, see, e.g., Bauer (1978)x37,lim 1T TX1 xtut = 0; a.s.With this result, (11) follows immediately from (12). Thus withprobability 1 the series fy2g is suh that the limit MZ exists.As �2 and the part A01MA1 of 	0M	 are both positive de�-nite, it is easy to see that MZ is positive de�nite (see A1) andM�1Z exists. Therefore, by OLS theory, the onditional distri-bution of pT (Æ̂�Æ) given fy2g onverges, with probability 1, toN(0; V (Æ̂)) with V (Æ̂) = �1 
M�1Z . This proves (6) and (8).}



10Remark to the proof : The proof of (11) �lls a gap in theproof of Theorem 1 in Shneeweiss (1993), where the almostsure onvergene was not proved.We an now formulate Dhrymes' result as it applies to ourmodel.Proposition 1 (Dhrymes):Suppose (^̂Æ; ^̂2) are strutural estimators and (Æ̂; ̂2) are the OLSestimators of (Æ; 2) in the system (3) and (4). Then, under (A),for both types of estimators the statements (6) and (7) hold true,and for their asymptoti ovariane matries we haveV (^̂Æ) � V (Æ̂) (13)V ( ^̂2) � V (̂2) (14)in the sense of the Loewe ordering of symmetri matries. (Forsymmetri matries, A � B means that B � A is positivesemide�nite).The inequalities beome equalities if, and only if,eah equation is just identi�ed.Proof : Let the vetor '1 omprise all the unknown parame-ters in G1, F1, and F2 in blok (1) and let '̂1 be the TSLS (orany other eÆient) estimator of '1 with Y2 taken to be exoge-nous. We know that, given fy2g and assuming that fy2g is suhthat MZ exists as in Lemma 1, the onditional distribution ofpT ('̂1 � '1) onverges to N(0; V ('1)), where V ('1) dependson MZ but does not depend on fy2g, see Dhrymes (1973). The



11same then holds true for the derived estimator ^̂Æ, i.e., ^̂Æ obeysthe same asymptoti law (6) as does Æ̂ exept that V (^̂Æ) di�ersfrom V (Æ̂). Similarly ^̂2 satis�es (7) exept that V ( ^̂2) di�ersfrom V (̂2).The inequalities (13) and (14) are now just the statement ofDhrymes' theorem (1973), applied separately to (1), given fy2g,and to (2). }3 Estimating the redued form via thepartially redued formWe now onsider the redued form of the simultaneous equationsmodel (1) and (2). It is the same as the redued form of thepartially redued form (3) and (4) and is given byY1 = X�1 + V1 (15)Y2 = X2�2 + U2 (16)where �1 = 	� and V1 = U2B + U1. Note that the reduedform (15), (16) di�ers from the redued form as employed inShneeweiss (1993). There, a matrix W omprising X but notneessarily idential to X was used instead of X and in addi-tion (16) was replaed with Y2 = W�2 + V2 or, in the presentnotation, Y2 = X�2 + V2: (17)



12Equation (16) looks more natural than (17), and estimating �2by OLS from (17) is less eÆient that estimating �2 from (16).Therefore we prefer (16) to (17). But this means that the resultsof Shneeweiss (1993) annot simply be taken over but must bemodi�ed orrespondingly.Now, the redued form an again be estimated in (at least)two di�erent ways, either diretly by OLS from (15) and (16)separately or by estimating the partially redued form (3) and(4) by whatever method and then solving this system for Y1 andY2. Of ourse, the result of the seond proedure depends on theestimation method used to estimate (3) and (4) to start with.Let us study this dependeny �rst.Assume that there are two estimators for the parameters of (3)and (4), denote them again by (Æ̂; ̂2) and (^̂Æ; ^̂2), respetively.They may but need not be the same estimators as in Proposition1. For eah of these ompute redued form estimates by theindiret method desribed above. Consider for instane Æ̂ =ve �̂ and ̂2 = ve �̂2. Then�̂1 = 	̂�̂ = (A2�̂2; A1)(B̂0; �̂01)0: (18)Let �1 = ve�1, �̂1 = ve �̂1 and stak �1 and 2 into onevetor � = (�01; 02)0 and similarly �̂ = (�̂01; ̂02)0. Do the same for^̂Æ = ve ^̂� and ^̂2 = ve ^̂�2 and suppose that (Æ̂; ̂2) and (^̂Æ; ^̂2)have similar asymptoti properties as the OLS and struturalestimators onsidered in Proposition 1. We then an state thefollowing proposition



13Proposition 2:Let ̂2 and ^̂2 be two asymptotially normal estimators of 2being onstruted from the data X2 and Y2 of (4). Let Æ̂ and^̂Æ be two estimators of Æ onstruted from the data X1, Y1 andY2 of (3) suh that they are a.s. onditonally asymptotiallynormal on the ondition that fy2g, a realization of the proessgenerated by the rows of Y2 (T ! 1), is given. The ondi-tional asymptoti ovariane matries of Æ̂ and ^̂Æ are supposedto be independent of fy2g. Suppose further that the asymp-toti ovariane matries of these estimators satisfy (13) and(14). Then �̂ and ^̂�, omputed from (Æ̂; ̂2) and (^̂Æ; ^̂2), respe-tively, are asymptotially normally distributed with asymptotiovariane matries that satisfyV (^̂�) � V (�̂) :Suppose (3) is identi�able in the onventional sense (see Setion6), then V (^̂�) = V (�̂) if, and only if, equality holds in (13) and(14).Proof : The proof is almost idential to the proof of the Lemmain Shneeweiss (1993), exept that here we replae �2 with 2and we onsider and ompare di�erent estimators for Æ and 2,not only for Æ. We onsider, see (18),�̂1 ��1 = 	(�̂��) + (	̂�	)�+R ;where R = (	̂�	)(�̂ ��) turns out to be op(T� 12 ).Applyingthe vetorization operator and using the fat that (	̂�	)� =



14A2(�̂2 � �2)B, we �nd that�̂1 � �1 = (I 
	)(Æ̂ � Æ) + (B0 
A2)(̂2 � 2) + op(T� 12 );and �nally for � = (�01; 02)0:pT (�̂ � �) = FpT (Æ̂ � Æ) +GpT (̂2 � 2) + op(1) (19)with F = (I 
 	0; 0)0, G = (B 
 A02; I)0. By an argument ex-pounded in the appendix of Shneeweiss (1993) it an be shownthat the assumptions of the proposition imply that the joint dis-tribution of pT (Æ̂�Æ) and pT (̂2�2) onverges to a multivari-ate normal distribution with (asymptoti) ovariane matriesV (Æ̂) and V (̂2) and (asymptoti) ovariane Cov(Æ̂; ̂2) = 0.Therefore pT (�̂ � �)! N(0; V (�̂)) withV (�̂) = FV (Æ̂)F 0 +GV (̂2)G0: (20)The same is true for ^̂Æ and ^̂2. The main assertion of theproposition now follows immediately from (13), (14), and (20).IfV (^̂�) = V (�̂), then (20) implies �rstly V ( ^̂2) = V (̂2) beauseof the speial form of G and seondly V (^̂Æ) = V (Æ̂) if 	 is as-sumed to have full olumn rank, see A2. This last ondition isequivalent to (3) being identi�able in the sense of Setion 6. }



154 Estimating the redued form by di-ret and reursive OLSThe last step in the line of arguments is a omparison of theredued form estimator �̂1 resulting indiretly from the OLSestimators �̂2 and �̂ via (18) and the diret OLS estimatorof the redued form, i.e., ~�1 = (X 0X)�1X 0Y1. As before, let�̂ = (�̂01; ̂02)0 and ~� = ( ~�01; ̂02)0, where ~�1 = ve ~�1. We all �̂the Reursive Least Squares (RLS) estimator and ~� the (diret)OLS estimator of �. Both estimators are asymptotially normalwith asymptoti ovariane matries V (�̂) and V (~�), whih wewill now derive.Lemma 2:The diret OLS estimator ~� of the redued form (15), (16) isasymptotially normal with an asymptoti ovariane matrixgiven byV (~�) = � V (~�1) B0�2 
A2M�122�2B 
M�122 A02 �2 
M�122 �with V (~�1) = (�1 +B0�2B)
M�1:Proof :Starting from (15) and (16) we get after vetorizationy1 = (I 
X)�1 + v1y2 = (I 
X2)2 + u2



16with yi = ve Yi, i = 1; 2, v1 = ve V1, and u2 = veU2. Stak-ing the vetors of these two equations, we obtainy = ~X� + v (21)with y = (y01; y02)0, v = (v01; u02)0 and~X = � I 
X 00 I 
X2 � :The OLS estimator from (21) is ~� = ( ~X 0 ~X)�1 ~X 0y. Its ovari-ane matrix (for �nite T) isVT (~�) = ( ~X 0 ~X)�1 ~X 0(�v 
 I) ~X( ~X 0 ~X)�1with �v being the ovariane matrix of a row of (V1; U2). AsV1 = U2B + U1, �v an be partitioned into�v = � �11 �12�21 �22 � = � B0�2B +�1 B0�2�2B �2 � : (22)After some algebrai manipulations we �ndVT (~�) = � �11 
 (X 0X)�1 �12 
A2(X 02X2)�1�21(X 02X2)�1A02 �22 
 (X 02X2)�1 � ;where the identity (X 0X)�1X 0X2 = A2 was used. Multiply-ing by T , going to the limit T ! 1, and substituting (22),we obtain the asymptoti ovariane matrix of Lemma 2. Theasymptoti normality is simply a onsequene of OLS theory.}Remark: Note that ~� here is derived as the OLS estimator om-puted from (15) and (16) separately and not, as in Shneeweiss



171993, from the multivariate regression system (15), (17). Thenew ~� of the present paper is more eÆient than the ~� of theprevious paper.Next we derive the asymptoti ovariane matrix of �̂.Lemma 3:Under assumption (A), the RLS estimator �̂ of the redued form(15), (16) is asymptotially normal with an asymptoti ovari-ane matrix given byV (�̂) = � V (�̂1) B0�2 
A2M�122�2B 
M�122 A02 �2 
M�122 �with V (�̂1) = �1 
	M�1Z 	0 +B0�2B 
A2M�122 A02:Proof : By Lemma 1, the assumptions of Proposition 2 holdtrue for the OLS estimators Æ̂ and ̂2. From the proof of Propo-sition 2 it follows that �̂ is asymptotially normal with V (�̂)as given by (20). Substituting (8) and (9) into (20) we obtain,with some algebra, the desired result. }Remark: Beause we took (15), (16) as our redued form andnot (15), (17), �̂ di�ers, albeit only slightly, from the �̂ of The-orem 1 in Shneeweiss (1993). It is for this reason that we hadto ompute V (�̂) anew. It is possible to derive the result ofLemma 3 when assumption (A) is replaed with the assumptionthat E(u2+") <1 for some " > 0.We now ompare V (�̂) to V (~�).



18Proposition 3:For the asymptoti ovariane matries of the redued form esti-mators �̂ and ~� the inequality V (�̂) � V (~�) holds, with equalityif, and only if, X1 = X2 = X .Proof : Due to Lemmas 2 and 3 we obviously need only ompareV (~�1) and V (�̂1). SubstitutingMZ from (11) andM22 from (10)we see that the assertion of the proposition is proved if we anshow that 	(	0M	+��2)�1	0 �M�1 (23)A2(A02MA2)�1A02 �M�1 (24)To prove (24) de�ne the p�p2 matrix A =M 12A2. Then (24) isequivalent to A(A0A)�1A0 � I , whih is obviously true beausethis is a projetion matrix. We have equality if, and only if, Ais a square matrix, whih means that p2 = p and thus X2 = X .To prove (23) de�ne the p � (q2 + p1) matrix H = M 12	 andthe q2 � (q2 + p1) matrix G = (� 122 ; 0) with rank G = q2. Then(23) is equivalent toR := H(H 0H +G0G)�1H 0 � I:Let L = (H 0; G0)0, then R is the upper left blok of the projetionmatrix P := L(L0L)�1L0 and therefore R � I .Now suppose R = I . Then the upper right blok of P is zero:H(L0L)�1G0 = 0:



19Let K = (L0L)�1G0. K is a (q2 + p1) � q2 matrix and rankK =rank G = q2. From HK = 0 it now follows that rankH � (q2+p1)�q2 = p1. On the other hand, R = I implies rankH = P . Hene p � p1. But as also p1 � p, therefore p1 = p andonsequently X1 = X .Conversely, p = p1 implies that L is a square matrix and there-fore P = I and hene R = I .}5 Strutural and diret estimates ofthe redued formColleting the results of Propositions 1 to 3, we �nally arrive atour main result:Theorem:Consider the following three estimators of the redued form ofthe blok reursive model (1), (2) with assumption (A):� The strutural estimator ^̂� is found by omputing eÆientestimates (like TSLS) for the strutural parameters of (1)and (2) separately, treating Y2 in (1) as exogenous, andsolving for Y1 and Y2.� The RLS estimator �̂ is found by applying OLS separatelyto (3) and (4) and solving for Y1 and Y2.



20� The (diret) OLS estimator ~� is found by applying OLSto (15) and (16).The asymptoti ovariane matries of these estimators thensatisfy the following hain of inequalities:V (^̂�) � V (�̂) � V (~�):Proof : The seond inequality is just a restatement of Proposi-tion 3. Aording to Proposition 1 the assumptions of Propo-sition 2 are satis�ed for the strutural and the OLS estimatorsof the parameters of the partially redued form (3), (4). In par-tiular (13) and (14) hold true. As ^̂� and �̂ are the impliedredued form parameter estimates, the �rst inequality of thetheorem follows from Proposition 2. }6 Two and Three Stage Least SquaresIn this setion we onsider only the partially redued form model(3), (4). Its parameter matries � and �2 are now assumed tobe unrestrited. In this ase OLS is the estimation method of�rst hoie. As explained in the introdution, the more tradi-tional Two and Three Stage LS proedures often do not work.They an be applied and lead to onsistent estimators if, andonly if, the model is identi�ed in the onventional sense, i.e.,identi�ed from the redued form parameter matrix � and with-out regard to any restritions in the error ovariane matrix.



21Throughout this setion, the onept of identi�ability is alwaysto be undestood in this narrow sense. (Note that a reursivemodel is always identi�ed in the strit sense of the word). Theseond blok (4) is identi�ed without any further onditions.The �rst blok (3) is identi�ed if the well-known rank onditionis satis�ed. If we write (3) and (4) asY1 = Y2B +X11�11+ X12�12 +U1Y2 = X12�21 +X22�22 +U2 ;then the (neessary and suÆient) ondition for the identi�abil-ity of (3) is that �22 has full olumn rank. From the de�nitionof 	: 	 = (A2�2; A1) = 0� 0 I 0�21 0 I�22 0 0 1Ait is seen that this is equivalent to the ondition that 	 has fullolumn rank. It is this "identi�ability ondition" (I) whih wewill assume to be satis�ed for the rest of this setion.Let us �rst study Two Stage Least Squares (2SLS). For theseond blok, (4), 2SLS is idential to OLS: ̂2;2SLS = ̂2. Forthe �rst blok, (3), the 2SLS estimator is�̂2SLS = (Z 0PZ)�1Z 0PY1with P = X(X 0X)�1X 0. The estimator is asymptotially nor-mal:



22Lemma 4:Under the identi�ability assumption (I), the 2SLS estimator ofÆ satis�es pT (Æ̂2SLS � Æ)! N(0; V (Æ̂2SLS))V (Æ̂2SLS) = �1 
 (	0M	)�1; (25)and Æ̂2SLS and ̂2 are asymptotially independent.Proof : From the theory of 2SLS we know that pT (Æ̂2SLS�Æ) isasymptotially normal with the (asymptoti) ovariane matrixV (Æ̂2SLS) = �1 
 (MZXM�1MXZ)�1; (26)where MXZ = plim 1TX 0Z. Beause of (12), this limit existsand is given by MXZ =M	: (27)Substituting (27) into (26) gives the desired result (25). Notethat the inverse of 	0M	 exists due to the identi�ability on-dition (I). The independene of Æ̂2SLS and ̂2 is a onsequeneof the independene of U1 and U2.}We an now derive estimates of the redued form from the 2SLSestimates of � and �2 in the same way as we did for the otherestimators. Call the resulting estimator the 2SLS redued formestimator �̂2SLS .Lemma 5:Suppose the identi�ability ondition (I) holds, then the 2SLS re-



23dued form estimator is asymptotially normal with an asymp-toti ovariane matrix given byV (�̂2SLS) = � V (�̂1;2SLS) B0�2 
A2M�122�2B 
M22A02 �2 
M�122 �withV (�̂1;2SLS) = �1 
	(	0M	)�1	0 +B0�2B 
A2M�122 A02:Proof : As by Lemma 4 Æ̂2SLS and ̂2 are asymptotially inde-pendent and as �̂2SLS is derived from these estimators in thesame way as �̂ was derived from Æ̂ and ̂2, we an again use (19)from the proof of Proposition 2 to verify the asymptoti nor-mality of �̂2SLS and (20) to ompute its asymptoti ovarianematrix. Just replae Æ̂ by Æ̂2SLS and use (25) and (9).}We an now ompare the asymptoti ovariane matries of �̂,�̂2SLS , and ~�.Proposition 4:Suppose the identi�ability assumption (I) holds true. Then theasymptoti ovariane matries of the redued form estimators�̂, �̂2SLS , and ~� satisfy the following hain of inequalitiesV (�̂) � V (�̂2SLS) � V (~�)with equality in the seond inequality if, and only if, X2 = Xand blok (3) ist just identi�ed.The �rst inequality an neverbeome an equality.



24Proof : We need only ompare the ovariane matries of theestimators of �1. We have the obvious hain of inequalities	(	0M	+��2)�1	0 � 	(	0M	)�1	0 �M�1; (28)and we also have the inequality (24) again. A omparison ofthe ovariane matries in Lemmas 3, 5 and 2 then immediatelyimplies the assertion of Proposition 4. In partiular, equality inV (�̂2SLS) and V (~�) is equivalent to A2 = I and 	 nonsingular,whih is equivalent to X2 = X and blok (3) being just identi-�ed, respetively, see A3.Remark: It should be lear that Proposition 3 is not simplyimplied by Proposition 4. Proposition 3 is not based on theidenti�ability ondition (I), whereas Proposition 4 is. Thereforethe inequality hain (28) annot be used to prove inequality(23). (23) has to be proved without assuming the invertibilityof 	0M	.With regard to TSLS applied to the partially redued form (3)and (4), we only remark that in this ase it is idential to 2SLS,so long as the independene of the Ui is properly taken intoaount, see A4. By this we mean that when the joint error o-variane matrix of the model is estimated (in preparation to thethird stage of TSLS), the ovarianes between the u-variablesof the �rst blok, U1, and those of the seond blok, U2, arenot estimated but are taken to be zero a priori. Alternatively,if these ovarianes are not set to zero but are estimated, with-out regard to the independene assumption of the model, thenTSLS di�ers from 2SLS. But even in this ase, both methodswill be asymptotially equivalent.



257 ConlusionThe main result of the paper an be summarized in the follow-ing diagram:(A) ) '̂ (A) (I)# + +^̂� � �̂ � �̂2SLS# # #^̂� � �̂ � �̂2SLS � ~�Here ' is the olletion of all the unknown parameters in the o-eÆient matriesGi and Fj of the blok reursive model (1), (2),and '̂ is an eÆient estimator of ', where eah blok has beenestimated separately by some eÆient method like TSLS. Thevetor � = (Æ0; 02)0 omprises all the oeÆients of the partiallyredued form (3), (4), and �̂ and �̂2SLS are its OLS and 2SLSestimators, respetively, whereas ^̂� is the strutural estimatorof � derived from '̂. The vetor � omprises all the reduedform oeÆients of (15), (16), and ~� is the OLS estimator of �.^̂�, �̂, and �̂2SLS are derived from ^̂�, �̂, and �̂2SLS , respetively,by solving the system (3), (4) for Y1 and Y2. The arrows indi-ate these derivations. The sign � is to be read as "is more (orequally) eÆient than (as)". The symbols (A) and (I) indiatethat the orresponding estimators are based on asssumptions(A) or (I).The eÆieny relation �̂ � �̂2SLS was not proved expliitly. It



26follows, however, diretly from Lemmas 1 and 4.We also derived formulas for the various asymptoti ovarianematries. They are given in Lemmas 1 to 5. Finally we statedneessary and suÆient onditions for the equality of the variousovariane matries. It should be noted that in ase of equalityof the ovariane matries the estimators themselves (exept for^̂� and ^̂�) are also equal.Finally we would like to emphasize some of the results whihmight be onsidered ounter-intuitive.1. Beause �̂2SLS = �̂TSLS and therefore �̂2SLS = �̂TSLS , itwould seem to follow from Dhrymes' theorem that �̂2SLSwas eÆient. But, in fat, �̂ is more eÆient. The reasonfor this is that in a reursive model �̂TSLS is not nees-sarily eÆient any more, in ontrast to what one is usedin onventional simultaneous equation models. Indeed theOLS estimator �̂ is more eÆient than �̂TSLS .2. Dhrymes' theorem might also seem to imply that the ef-�ieny relation �̂2SLS � ~� needs no further proof, as itseems to follow diretly from this theorem. But as �̂2SLSis not eÆient in a reursive model, this relation is not soobvious after all.3. Even though �̂ is eÆient in a general reursive model,we here have a more eÆient estimator, viz., ^̂�. But notethat �̂ is only eÆient if the reursive model parameters� are not restrited in any way. If the reursive model is



27derived from a blok reursive model -as is the ase here-,the parameters � will generally be restrited (unless allthe equations are just identi�ed). Therefore ^̂� � �̂ andonsequently ^̂� � �̂.
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30AppendixA1 MZ is positive de�nite.By (11) MZ = 	0M	 + ��2 with 	 = (A2�2; A1). Partition	0M	 into four bloks aording to the partitioning of 	. Thelower right blok is A10MA1, whih is positive de�nite (p.d.),beause M is p.d. and A1 has full olumn rank. Let x be anarbitrary (q2 + p1)-dimensional vetor suh that x0MZx = 0.Let x = (x10; x20)0 with x1 2 Rq2 and x2 2 Rp1 . Thenx0MZx = x0	0M	x+ x10�2x1 = 0. (A1)Beause �2 is p.d., it follows that x1 = 0, and the �rst term of(A1) beomes x02A01MA1x2 = 0, whih implies x2 = 0. Henex = 0 , and MZ must be p.d..A2 The ase of equality in Proposition 2Assume V (�̂) = V (^̂�). By(20), V (�̂)� V (^̂�) equalsF [V (Æ̂)� V (^̂Æ)℄F 0 +G[V (̂2)� V ( ^̂2)℄G0 = 0.(A2)But sine by (13) and (14) both terms of (A2) are positive semide�nite, both terms must be zero. With G0 = (BNA02; I), the



31lower right blok of the seond term is V (̂2) � V ( ^̂2), whihthus is zero. The vanishing of the �rst term implies, beauseF 0 = (IN	0; 0),that (IN	)[V (Æ̂)� V (^̂Æ)℄(IN	0) = 0.If 	 has full olumn rank, then V (Æ̂)� V (^̂Æ) = 0. Thus V (�̂) =V (^̂�) implies V (̂2) = V ( ^̂2) and V (Æ̂) = V (^̂Æ) .A3 The ase of equality in Proposition 4Suppose V (�̂2SLS) = V (~�). By Lemmas 5 and 2 this implies	(	0M	)�1	0 =M�1 (A3)A2(A02MA2)�1A02 =M�1 (A4)As in the proof of Proposition 3, we see that (A4) is equivalentto A2 being square, whih is equivalent to p2 = p, and thusX2 = X .By the same argument, A3 is equivalent to 	 being square.This means that Y2 and X22 have the same number of olumns,whih is the ondition for (3) to be just identi�ed . Thus



32V (�̂2SLS) = V (~�), if and only if, X2 = X and (3) is just iden-ti�ed.A4 Three Stage Least Squares (TSLS)In order to derive the TSLS estimator of Æ and 2, multiply (3)and (4) by the instrumental variable matrix X 0 from the left:X 0Y1 = X 0Z4+X 0U1X 0Y2 = X 0X2�2 +X 0U2Vetorization yields� (INX 0)y1(INX 0)y2 � = � INX 0Z 00 INX 0X2 �� Æ2 �+ � (INX 0)u1(INX 0)u2 � ;whih we write more shortly asy+ = X+Æ+ + u+with obvious notations. The ovariane matrix of u+ is givenby



33V + = � �1NX 0X 00 �2NX 0X) �where the independene of u1 and u2 was taken into aount.The TSLS estimator Æ̂+ is then given as the solution toX+0V +�1X+Æ̂+ = X+0V +�1y+.Introduing the projetion matrix P = X(X 0X)�1X 0, this sys-tem an also be written more expliitly as ��11 NZ 0PZ 00 ��12 NX20PX2) !� Æ̂̂2 �=  ��11 NZ 0Py1��12 NX20Py2 !Multipliation by the blok diagonal matrix� �1N I 00 �2N I �yields � INZ 0PZ 00 INX20PX2) �� Æ̂̂2 �= � INZ 0Py1INX20Py2 � ;



34whih is equivalent to the two equationsZ 0PZ14̂ = Z 0PY1X20PX2�̂2 = X20PY2.The �rst one is just the 2SLS estimating equation for 4, andthe seond one an be redued toX20X2�̂2 = X20Y2beause X20P = X20.


