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1The Redu
ed Form of aBlo
k Re
ursive ModelHans S
hneeweissEri
h-Otto Mas
hkeManfred PfannesDepartment of Statisti
s,Ludwig-Maximilians-Universit�at M�un
hen,Akademiestr. 1/I, D-80799 M�un
hen, Germanyemail: S
hneeweiss�stat.uni-muen
hen.deAbstra
tVarious estimators of the redu
ed form of a blo
k re
ur-sive model are investigated and 
ompared to ea
h other.In parti
ular it is shown that the stru
tural redu
edform estimator, whi
h results from estimating separatelyea
h blo
k of the blo
k re
ursive model by some eÆ
ientmethod and then solving the system for the endogenousvariables, is more eÆ
ient than the OLS estimator of theredu
ed form. Other redu
ed form estimators derivedfrom OLS or Two Stage LS estimators of a partially re-du
ed form have intermediate eÆ
ien
y properties. Thepaper has been published in S
hneeweiss et al (2001),but without the appendi
es.Key Words: Blo
k re
ursive model, redu
ed form, simultane-ous equations model.



21 Introdu
tionThe redu
ed form of a stru
tural simultaneous equations model
an be estimated in (at least) two ways: either by estimating itdire
tly by OLS or, indire
tly, by estimating �rst the stru
turalparameters of the model by some eÆ
ient method and then solv-ing for the endogenous variables. A

ording to Dhrymes (1973)the indire
t estimation method leads to more eÆ
ient estimatesthan the dire
t method be
ause it utilizes all the informationinherent in the stru
tural model. Dhrymes, however, assumed,with one ex
eption, that the 
ovarian
e matrix of the errorswas not restri
ted in any way. He therefore did not 
onsiderto use the information that might be inherent in the error 
o-varian
e matrix. The ex
eption was the 
ase of a diagonal error
ovarian
e matrix, whi
h however did not lead him to designa spe
ial estimation method for this 
ase. One parti
ular andquite important 
ase ist the so-
alled re
ursive model,whi
h is
hara
terized by the two requirements that the system matrixof the endogenous variables should be triangular and the error
ovarian
e matrix diagonal. For this model S
hneeweiss (1993),building on earlier work of Kos�ak(1988), proved a similar re-sult as was given by Dhrymes (1973) in the 
ase of the moretraditional model with an unrestri
ted error 
ovarian
e matrix.An interesting feature of the re
ursive model is that it is iden-ti�ed without any further 
onditions and that OLS applied toea
h stru
tural equation already results in eÆ
ient estimators,whereas the traditional (limited or fully) "eÆ
ient" estimators



3like Two-Stage Least Squares or Three-Stage Least Squares ei-ther do not work or, if they do, are not ne
essarily eÆ
ient.This is shown in some detail in the present paper.The present paper 
ombines the results of Dhrymes (1973) andS
hneeweiss (1993) in that it studies a blo
k re
ursive model.Here the blo
ks have unrestri
ted error 
ovarian
e matri
es and
an ea
h be estimated by some eÆ
ient method, where the en-dogenous variables that are "explained" in subsequent blo
ksare 
onsidered as exogenous for the parti
ular blo
k to be es-timated. Again it 
an be shown that the dire
t estimator ofthe redu
ed form is less eÆ
ient than the indire
t one, whi
h is
onstru
ted by �rst estimating ea
h blo
k separately with someeÆ
ient method and then solving for the endogenous variables.The proof of this statement is a

omplished by referring toDhrymes' (1973) 
orresponding result for ea
h blo
k, therebyredu
ing the blo
k re
ursive model to a re
ursive model andthen using the result of S
hneeweiss (1993) for the latter model,see also Pfannes (1996). In doing so, it 
omes as a 
onvenien
ethat in S
hneeweiss (1993) the re
ursive model had already beenstru
tured in blo
ks, although it was not a blo
k re
ursive modelin the usual sense. The proof is only given for the 
ase of atwo-blo
ks model, but 
an be generalized by indu
tion to anarbitrary number of blo
ks. The result may seem not too sur-prising. If the errors are jointly normally distributed and if
onditional ML estimators are used for ea
h blo
k (
onditionalon the endogenous variables of subsequent blo
ks), then theresulting estimators of the stru
tural parameters of the whole



4model are ML estimators and so are the derived redu
ed formestimators. They are therefore more eÆ
ient than the dire
testimators of the redu
ed form parameters, as these ar not ML.However, this result holds also true even if the errors are notnormally distributed and if other eÆ
ient estimators for ea
hblo
k have been 
onstru
ted whi
h are not ML. For this reason,the solution of an old problem presented in this paper may stillbe of some interest.The re
ursive model has been advo
ated by Wold (1953, 1964).It was soon found, however, that simultaneous equations modelswhi
h were not re
ursive prevailed in pra
ti
e. An intermedi-ate model type is the blo
k re
ursive model, whi
h is re
ursivebetween the blo
ks, but has a simultaneity (interdependen
e)stru
ture within ea
h blo
k. Often models used to des
ribe ane
onomy are "almost" blo
k re
ursive: only one or two equa-tions spoil the blo
k re
ursive stru
ture. In small models thatdes
ribe only se
tors of an e
onomy, blo
k re
ursiveness mayo

ur more often.Estimation of the redu
ed form of a model has been 
onsideredby several authors, among others by Goldberger et al (1961)and Court (1973). Partially restri
ted form estimators havebeen studied by Kakwani and Court (1972), Sant (1978), Nagarand Sahay (1978). S
hneeweiss (1996) 
ompared redu
ed formestimators of re
ursive models for �nite samples. In the presentpaper only asymptoti
 results are presented.In Se
tion 2 we introdu
e the partially redu
ed form, dis
uss



5the properties of its OLS estimator and 
ompare it with itsstru
tural estimator via Dhrymes' theorem. In Se
tion 3 we
larify the relation between estimators of the partially redu
edform and of the redu
ed form. Two important estimators ofthe redu
ed form, OLS and RLS, are then related to ea
h otherin Se
tion 4. The main result, a 
omparison of the last twoestimators with the stru
tural estimator of the redu
ed formis presented in Se
tion 5. In Se
tion 6 we dis
uss Two andThree Stage Least Squares of the partially redu
ed form andtheir impli
ations for estimating the redu
ed form. Se
tion 7has some 
on
luding remarks. Some details of the proofs aredelegated to an appendix.2 Estimating the partially redu
ed formWe 
onsider the following two-blo
ks re
ursive modelY1G1 = Y2F1+ X1F2 +W1 (1)Y2G2 = X2F3 +W2 (2)where Xi and Yi are Txpi and Txqi matri
es, i = 1; 2, of ex-ogenous and endogenous variables, respe
tively, with p2 6= 0;W1 and W2 are independent Txqi matri
es of unobservable er-ror variables with iid rows having expe
tation zero and unre-stri
ted, but nonsingular, 
ovarian
e matri
es �wi ; the Gi andFj are parameter matri
es endowed with a priori restri
tionssu
h that ea
h blo
k is identi�able; the Gi are supposed to be



6non-singular, so that the system 
an be uniquely solved for Y1and Y2. The exogenous variables are taken to be nonsto
hasti
variables. Let X be the matrix of all exogenous variables su
hthat X = (X11; X12; X22); X1 = (X11; X12); X2 = (X12; X22).We introdu
e sele
tion matri
es Ai su
h that Xi = XAi , i =1; 2. Thus A1 = (I; 0)0; A2 = (0; I)0:In order to study the asymptoti
 properties of various estima-tors we 
on
eive a series of models (1), (2), indexed by T , wherethe transition from T to T + 1 is a

omplished by the additionof one further row to ea
h of the matri
es Xi; Yi;Wi; i = 1; 2.We assume that X 0X is nonsingular and that, as T ! 1,lim 1TX 0X =M with a nonsingular matrix M .Another assumption, whi
h we need for the main asymptoti
results, is that1Xt=1 x2ti=t2 <1; i = 1; : : : ; p; (A)where the xti are the elements of X . We will make a notewhenever a result is based on assumption (A). Note that be
auseof the independen
e of W1 and W2 the variables in Y2 
an be
onsidered as exogenous for the �rst blo
k in the sense that W1is independent of Y2. One 
an therefore treat the �rst blo
k,on the 
ondition that Y2 is given, as a simultaneous equationsmodel with endogenous variables Y1 and exogenous variablesY2 and X1. The se
ond blo
k is a 
onventional simultaneousequations model anyway.



7Multiplying ea
h blo
k by G�1i , i = 1; 2, we get the followingre
ursive system:Y1 = Y2B+ X1�1 + U1 = Z�+ U1 (3)Y2 = X2�2 + U2 (4)with B = F1G�11 ; �1 = F2G�11 ; �2 = F3G�12 ; (5)U1 = W1G�11 , and U2 = W2G�12 , where the notation was 
ho-sen to 
orrespond with the notation in S
hneeweiss (1993). InEquation (3) we used the abbreviatons Z = (Y2; X1) and � =(B0;�01)0. We denote the 
ovarian
e matrix of any row of Uiby �i, i = 1; 2. Apart from being positive de�nite �i is notrestri
ted in any way. (Note that �i = G0�1i �wiG�1i ). We 
allthe system (3), (4) the partially redu
ed form of the stru
turalmodel (1), (2). Note that equation (4) ist just the redu
ed formof (2), and equation (3) is the 
onditonal redu
ed form of (1)under the 
ondition that Y2 is given (and therefore 
onsideredas exogenous for Y1).We 
onsider two estimators for the parameter matri
es � and�2 of the partially redu
ed form: The OLS estimators, �̂ and �̂2are found by regressing Y1 on Z as in (3) and by regressing Y2 onX2 as in (4), respe
tively. The so-
alled stru
tural estimators,^̂� and ^̂�2, are 
onstru
ted by �rst estimating the parametermatri
es G1, F1, and F2 of blo
k (1) and G2 and F3 of blo
k(2) separately by some eÆ
ient estimation pro
edure like ThreeStage Least Squares (TSLS) within ea
h blo
k, taking the a



8priori restri
tions properly into a

ount and 
onsidering Y2 inblo
k (1) as exogenous, and then 
omputing estimates of B, �1,and �2 via (5).We will now derive the asymptoti
 properties of the OLS estima-tor. To this purpose, we ve
torize the parameter matri
es. Wedenote a ve
torized matrix by its small letter; thus Æ = ve
�,
2 = ve
�2 et
.Lemma 1:Denote by fy2g the in�nite series of the rows of Y2 when T !1.Then, under (A),pT (Æ̂ � Æ)jfy2g ! N(0; V (Æ̂)); a.s. (6)pT (
̂2 � 
2) ! N(0; V (
̂2)); (7)where V (Æ̂) = �1 
M�1Z (8)V (
̂2) = �2 
M�122 (9)are the asymptoti
 
ovarian
e matri
es of Æ̂ and 
̂2 withM22 = lim 1T X 02X2 = A02MA2 (10)MZ = lim 1T Z 0Z = 	0M	+��2; a.s (11)	 = (A2�2; A1)��2 = � �2 00 0 � :



9Proof : (7) together with (9) is simply the well-known resultfrom OLS theory, and (10) follows from the identity X2 = XA2.So we need only prove (6) together with (8) and (11).First note that Z = X	+ U�2 ; (12)where U�2 = (U2; 0). Now, assumption (A) implies lim 1TX 0U�2 =0, a.s. Indeed, let xt and ut be the t'th 
omponents of any
olums of X and U2, respe
tively. Then by (A)1X1 1t2 V ar(xtut) = 1X1 x2tt2 �2u <1;and by Kolmogorov's 
riterion, see, e.g., Bauer (1978)x37,lim 1T TX1 xtut = 0; a.s.With this result, (11) follows immediately from (12). Thus withprobability 1 the series fy2g is su
h that the limit MZ exists.As �2 and the part A01MA1 of 	0M	 are both positive de�-nite, it is easy to see that MZ is positive de�nite (see A1) andM�1Z exists. Therefore, by OLS theory, the 
onditional distri-bution of pT (Æ̂�Æ) given fy2g 
onverges, with probability 1, toN(0; V (Æ̂)) with V (Æ̂) = �1 
M�1Z . This proves (6) and (8).}



10Remark to the proof : The proof of (11) �lls a gap in theproof of Theorem 1 in S
hneeweiss (1993), where the almostsure 
onvergen
e was not proved.We 
an now formulate Dhrymes' result as it applies to ourmodel.Proposition 1 (Dhrymes):Suppose (^̂Æ; ^̂
2) are stru
tural estimators and (Æ̂; 
̂2) are the OLSestimators of (Æ; 
2) in the system (3) and (4). Then, under (A),for both types of estimators the statements (6) and (7) hold true,and for their asymptoti
 
ovarian
e matri
es we haveV (^̂Æ) � V (Æ̂) (13)V ( ^̂
2) � V (
̂2) (14)in the sense of the Loewe ordering of symmetri
 matri
es. (Forsymmetri
 matri
es, A � B means that B � A is positivesemide�nite).The inequalities be
ome equalities if, and only if,ea
h equation is just identi�ed.Proof : Let the ve
tor '1 
omprise all the unknown parame-ters in G1, F1, and F2 in blo
k (1) and let '̂1 be the TSLS (orany other eÆ
ient) estimator of '1 with Y2 taken to be exoge-nous. We know that, given fy2g and assuming that fy2g is su
hthat MZ exists as in Lemma 1, the 
onditional distribution ofpT ('̂1 � '1) 
onverges to N(0; V ('1)), where V ('1) dependson MZ but does not depend on fy2g, see Dhrymes (1973). The



11same then holds true for the derived estimator ^̂Æ, i.e., ^̂Æ obeysthe same asymptoti
 law (6) as does Æ̂ ex
ept that V (^̂Æ) di�ersfrom V (Æ̂). Similarly ^̂
2 satis�es (7) ex
ept that V ( ^̂
2) di�ersfrom V (
̂2).The inequalities (13) and (14) are now just the statement ofDhrymes' theorem (1973), applied separately to (1), given fy2g,and to (2). }3 Estimating the redu
ed form via thepartially redu
ed formWe now 
onsider the redu
ed form of the simultaneous equationsmodel (1) and (2). It is the same as the redu
ed form of thepartially redu
ed form (3) and (4) and is given byY1 = X�1 + V1 (15)Y2 = X2�2 + U2 (16)where �1 = 	� and V1 = U2B + U1. Note that the redu
edform (15), (16) di�ers from the redu
ed form as employed inS
hneeweiss (1993). There, a matrix W 
omprising X but notne
essarily identi
al to X was used instead of X and in addi-tion (16) was repla
ed with Y2 = W�2 + V2 or, in the presentnotation, Y2 = X�2 + V2: (17)



12Equation (16) looks more natural than (17), and estimating �2by OLS from (17) is less eÆ
ient that estimating �2 from (16).Therefore we prefer (16) to (17). But this means that the resultsof S
hneeweiss (1993) 
annot simply be taken over but must bemodi�ed 
orrespondingly.Now, the redu
ed form 
an again be estimated in (at least)two di�erent ways, either dire
tly by OLS from (15) and (16)separately or by estimating the partially redu
ed form (3) and(4) by whatever method and then solving this system for Y1 andY2. Of 
ourse, the result of the se
ond pro
edure depends on theestimation method used to estimate (3) and (4) to start with.Let us study this dependen
y �rst.Assume that there are two estimators for the parameters of (3)and (4), denote them again by (Æ̂; 
̂2) and (^̂Æ; ^̂
2), respe
tively.They may but need not be the same estimators as in Proposition1. For ea
h of these 
ompute redu
ed form estimates by theindire
t method des
ribed above. Consider for instan
e Æ̂ =ve
 �̂ and 
̂2 = ve
 �̂2. Then�̂1 = 	̂�̂ = (A2�̂2; A1)(B̂0; �̂01)0: (18)Let �1 = ve
�1, �̂1 = ve
 �̂1 and sta
k �1 and 
2 into oneve
tor � = (�01; 
02)0 and similarly �̂ = (�̂01; 
̂02)0. Do the same for^̂Æ = ve
 ^̂� and ^̂
2 = ve
 ^̂�2 and suppose that (Æ̂; 
̂2) and (^̂Æ; ^̂
2)have similar asymptoti
 properties as the OLS and stru
turalestimators 
onsidered in Proposition 1. We then 
an state thefollowing proposition



13Proposition 2:Let 
̂2 and ^̂
2 be two asymptoti
ally normal estimators of 
2being 
onstru
ted from the data X2 and Y2 of (4). Let Æ̂ and^̂Æ be two estimators of Æ 
onstru
ted from the data X1, Y1 andY2 of (3) su
h that they are a.s. 
onditonally asymptoti
allynormal on the 
ondition that fy2g, a realization of the pro
essgenerated by the rows of Y2 (T ! 1), is given. The 
ondi-tional asymptoti
 
ovarian
e matri
es of Æ̂ and ^̂Æ are supposedto be independent of fy2g. Suppose further that the asymp-toti
 
ovarian
e matri
es of these estimators satisfy (13) and(14). Then �̂ and ^̂�, 
omputed from (Æ̂; 
̂2) and (^̂Æ; ^̂
2), respe
-tively, are asymptoti
ally normally distributed with asymptoti

ovarian
e matri
es that satisfyV (^̂�) � V (�̂) :Suppose (3) is identi�able in the 
onventional sense (see Se
tion6), then V (^̂�) = V (�̂) if, and only if, equality holds in (13) and(14).Proof : The proof is almost identi
al to the proof of the Lemmain S
hneeweiss (1993), ex
ept that here we repla
e �2 with 
2and we 
onsider and 
ompare di�erent estimators for Æ and 
2,not only for Æ. We 
onsider, see (18),�̂1 ��1 = 	(�̂��) + (	̂�	)�+R ;where R = (	̂�	)(�̂ ��) turns out to be op(T� 12 ).Applyingthe ve
torization operator and using the fa
t that (	̂�	)� =



14A2(�̂2 � �2)B, we �nd that�̂1 � �1 = (I 
	)(Æ̂ � Æ) + (B0 
A2)(
̂2 � 
2) + op(T� 12 );and �nally for � = (�01; 
02)0:pT (�̂ � �) = FpT (Æ̂ � Æ) +GpT (
̂2 � 
2) + op(1) (19)with F = (I 
 	0; 0)0, G = (B 
 A02; I)0. By an argument ex-pounded in the appendix of S
hneeweiss (1993) it 
an be shownthat the assumptions of the proposition imply that the joint dis-tribution of pT (Æ̂�Æ) and pT (
̂2�
2) 
onverges to a multivari-ate normal distribution with (asymptoti
) 
ovarian
e matri
esV (Æ̂) and V (
̂2) and (asymptoti
) 
ovarian
e Cov(Æ̂; 
̂2) = 0.Therefore pT (�̂ � �)! N(0; V (�̂)) withV (�̂) = FV (Æ̂)F 0 +GV (
̂2)G0: (20)The same is true for ^̂Æ and ^̂
2. The main assertion of theproposition now follows immediately from (13), (14), and (20).IfV (^̂�) = V (�̂), then (20) implies �rstly V ( ^̂
2) = V (
̂2) be
auseof the spe
ial form of G and se
ondly V (^̂Æ) = V (Æ̂) if 	 is as-sumed to have full 
olumn rank, see A2. This last 
ondition isequivalent to (3) being identi�able in the sense of Se
tion 6. }



154 Estimating the redu
ed form by di-re
t and re
ursive OLSThe last step in the line of arguments is a 
omparison of theredu
ed form estimator �̂1 resulting indire
tly from the OLSestimators �̂2 and �̂ via (18) and the dire
t OLS estimatorof the redu
ed form, i.e., ~�1 = (X 0X)�1X 0Y1. As before, let�̂ = (�̂01; 
̂02)0 and ~� = ( ~�01; 
̂02)0, where ~�1 = ve
 ~�1. We 
all �̂the Re
ursive Least Squares (RLS) estimator and ~� the (dire
t)OLS estimator of �. Both estimators are asymptoti
ally normalwith asymptoti
 
ovarian
e matri
es V (�̂) and V (~�), whi
h wewill now derive.Lemma 2:The dire
t OLS estimator ~� of the redu
ed form (15), (16) isasymptoti
ally normal with an asymptoti
 
ovarian
e matrixgiven byV (~�) = � V (~�1) B0�2 
A2M�122�2B 
M�122 A02 �2 
M�122 �with V (~�1) = (�1 +B0�2B)
M�1:Proof :Starting from (15) and (16) we get after ve
torizationy1 = (I 
X)�1 + v1y2 = (I 
X2)
2 + u2



16with yi = ve
 Yi, i = 1; 2, v1 = ve
 V1, and u2 = ve
U2. Sta
k-ing the ve
tors of these two equations, we obtainy = ~X� + v (21)with y = (y01; y02)0, v = (v01; u02)0 and~X = � I 
X 00 I 
X2 � :The OLS estimator from (21) is ~� = ( ~X 0 ~X)�1 ~X 0y. Its 
ovari-an
e matrix (for �nite T) isVT (~�) = ( ~X 0 ~X)�1 ~X 0(�v 
 I) ~X( ~X 0 ~X)�1with �v being the 
ovarian
e matrix of a row of (V1; U2). AsV1 = U2B + U1, �v 
an be partitioned into�v = � �11 �12�21 �22 � = � B0�2B +�1 B0�2�2B �2 � : (22)After some algebrai
 manipulations we �ndVT (~�) = � �11 
 (X 0X)�1 �12 
A2(X 02X2)�1�21(X 02X2)�1A02 �22 
 (X 02X2)�1 � ;where the identity (X 0X)�1X 0X2 = A2 was used. Multiply-ing by T , going to the limit T ! 1, and substituting (22),we obtain the asymptoti
 
ovarian
e matrix of Lemma 2. Theasymptoti
 normality is simply a 
onsequen
e of OLS theory.}Remark: Note that ~� here is derived as the OLS estimator 
om-puted from (15) and (16) separately and not, as in S
hneeweiss



171993, from the multivariate regression system (15), (17). Thenew ~� of the present paper is more eÆ
ient than the ~� of theprevious paper.Next we derive the asymptoti
 
ovarian
e matrix of �̂.Lemma 3:Under assumption (A), the RLS estimator �̂ of the redu
ed form(15), (16) is asymptoti
ally normal with an asymptoti
 
ovari-an
e matrix given byV (�̂) = � V (�̂1) B0�2 
A2M�122�2B 
M�122 A02 �2 
M�122 �with V (�̂1) = �1 
	M�1Z 	0 +B0�2B 
A2M�122 A02:Proof : By Lemma 1, the assumptions of Proposition 2 holdtrue for the OLS estimators Æ̂ and 
̂2. From the proof of Propo-sition 2 it follows that �̂ is asymptoti
ally normal with V (�̂)as given by (20). Substituting (8) and (9) into (20) we obtain,with some algebra, the desired result. }Remark: Be
ause we took (15), (16) as our redu
ed form andnot (15), (17), �̂ di�ers, albeit only slightly, from the �̂ of The-orem 1 in S
hneeweiss (1993). It is for this reason that we hadto 
ompute V (�̂) anew. It is possible to derive the result ofLemma 3 when assumption (A) is repla
ed with the assumptionthat E(u2+") <1 for some " > 0.We now 
ompare V (�̂) to V (~�).



18Proposition 3:For the asymptoti
 
ovarian
e matri
es of the redu
ed form esti-mators �̂ and ~� the inequality V (�̂) � V (~�) holds, with equalityif, and only if, X1 = X2 = X .Proof : Due to Lemmas 2 and 3 we obviously need only 
ompareV (~�1) and V (�̂1). SubstitutingMZ from (11) andM22 from (10)we see that the assertion of the proposition is proved if we 
anshow that 	(	0M	+��2)�1	0 �M�1 (23)A2(A02MA2)�1A02 �M�1 (24)To prove (24) de�ne the p�p2 matrix A =M 12A2. Then (24) isequivalent to A(A0A)�1A0 � I , whi
h is obviously true be
ausethis is a proje
tion matrix. We have equality if, and only if, Ais a square matrix, whi
h means that p2 = p and thus X2 = X .To prove (23) de�ne the p � (q2 + p1) matrix H = M 12	 andthe q2 � (q2 + p1) matrix G = (� 122 ; 0) with rank G = q2. Then(23) is equivalent toR := H(H 0H +G0G)�1H 0 � I:Let L = (H 0; G0)0, then R is the upper left blo
k of the proje
tionmatrix P := L(L0L)�1L0 and therefore R � I .Now suppose R = I . Then the upper right blo
k of P is zero:H(L0L)�1G0 = 0:



19Let K = (L0L)�1G0. K is a (q2 + p1) � q2 matrix and rankK =rank G = q2. From HK = 0 it now follows that rankH � (q2+p1)�q2 = p1. On the other hand, R = I implies rankH = P . Hen
e p � p1. But as also p1 � p, therefore p1 = p and
onsequently X1 = X .Conversely, p = p1 implies that L is a square matrix and there-fore P = I and hen
e R = I .}5 Stru
tural and dire
t estimates ofthe redu
ed formColle
ting the results of Propositions 1 to 3, we �nally arrive atour main result:Theorem:Consider the following three estimators of the redu
ed form ofthe blo
k re
ursive model (1), (2) with assumption (A):� The stru
tural estimator ^̂� is found by 
omputing eÆ
ientestimates (like TSLS) for the stru
tural parameters of (1)and (2) separately, treating Y2 in (1) as exogenous, andsolving for Y1 and Y2.� The RLS estimator �̂ is found by applying OLS separatelyto (3) and (4) and solving for Y1 and Y2.



20� The (dire
t) OLS estimator ~� is found by applying OLSto (15) and (16).The asymptoti
 
ovarian
e matri
es of these estimators thensatisfy the following 
hain of inequalities:V (^̂�) � V (�̂) � V (~�):Proof : The se
ond inequality is just a restatement of Proposi-tion 3. A

ording to Proposition 1 the assumptions of Propo-sition 2 are satis�ed for the stru
tural and the OLS estimatorsof the parameters of the partially redu
ed form (3), (4). In par-ti
ular (13) and (14) hold true. As ^̂� and �̂ are the impliedredu
ed form parameter estimates, the �rst inequality of thetheorem follows from Proposition 2. }6 Two and Three Stage Least SquaresIn this se
tion we 
onsider only the partially redu
ed form model(3), (4). Its parameter matri
es � and �2 are now assumed tobe unrestri
ted. In this 
ase OLS is the estimation method of�rst 
hoi
e. As explained in the introdu
tion, the more tradi-tional Two and Three Stage LS pro
edures often do not work.They 
an be applied and lead to 
onsistent estimators if, andonly if, the model is identi�ed in the 
onventional sense, i.e.,identi�ed from the redu
ed form parameter matrix � and with-out regard to any restri
tions in the error 
ovarian
e matrix.



21Throughout this se
tion, the 
on
ept of identi�ability is alwaysto be undestood in this narrow sense. (Note that a re
ursivemodel is always identi�ed in the stri
t sense of the word). These
ond blo
k (4) is identi�ed without any further 
onditions.The �rst blo
k (3) is identi�ed if the well-known rank 
onditionis satis�ed. If we write (3) and (4) asY1 = Y2B +X11�11+ X12�12 +U1Y2 = X12�21 +X22�22 +U2 ;then the (ne
essary and suÆ
ient) 
ondition for the identi�abil-ity of (3) is that �22 has full 
olumn rank. From the de�nitionof 	: 	 = (A2�2; A1) = 0� 0 I 0�21 0 I�22 0 0 1Ait is seen that this is equivalent to the 
ondition that 	 has full
olumn rank. It is this "identi�ability 
ondition" (I) whi
h wewill assume to be satis�ed for the rest of this se
tion.Let us �rst study Two Stage Least Squares (2SLS). For these
ond blo
k, (4), 2SLS is identi
al to OLS: 
̂2;2SLS = 
̂2. Forthe �rst blo
k, (3), the 2SLS estimator is�̂2SLS = (Z 0PZ)�1Z 0PY1with P = X(X 0X)�1X 0. The estimator is asymptoti
ally nor-mal:



22Lemma 4:Under the identi�ability assumption (I), the 2SLS estimator ofÆ satis�es pT (Æ̂2SLS � Æ)! N(0; V (Æ̂2SLS))V (Æ̂2SLS) = �1 
 (	0M	)�1; (25)and Æ̂2SLS and 
̂2 are asymptoti
ally independent.Proof : From the theory of 2SLS we know that pT (Æ̂2SLS�Æ) isasymptoti
ally normal with the (asymptoti
) 
ovarian
e matrixV (Æ̂2SLS) = �1 
 (MZXM�1MXZ)�1; (26)where MXZ = plim 1TX 0Z. Be
ause of (12), this limit existsand is given by MXZ =M	: (27)Substituting (27) into (26) gives the desired result (25). Notethat the inverse of 	0M	 exists due to the identi�ability 
on-dition (I). The independen
e of Æ̂2SLS and 
̂2 is a 
onsequen
eof the independen
e of U1 and U2.}We 
an now derive estimates of the redu
ed form from the 2SLSestimates of � and �2 in the same way as we did for the otherestimators. Call the resulting estimator the 2SLS redu
ed formestimator �̂2SLS .Lemma 5:Suppose the identi�ability 
ondition (I) holds, then the 2SLS re-



23du
ed form estimator is asymptoti
ally normal with an asymp-toti
 
ovarian
e matrix given byV (�̂2SLS) = � V (�̂1;2SLS) B0�2 
A2M�122�2B 
M22A02 �2 
M�122 �withV (�̂1;2SLS) = �1 
	(	0M	)�1	0 +B0�2B 
A2M�122 A02:Proof : As by Lemma 4 Æ̂2SLS and 
̂2 are asymptoti
ally inde-pendent and as �̂2SLS is derived from these estimators in thesame way as �̂ was derived from Æ̂ and 
̂2, we 
an again use (19)from the proof of Proposition 2 to verify the asymptoti
 nor-mality of �̂2SLS and (20) to 
ompute its asymptoti
 
ovarian
ematrix. Just repla
e Æ̂ by Æ̂2SLS and use (25) and (9).}We 
an now 
ompare the asymptoti
 
ovarian
e matri
es of �̂,�̂2SLS , and ~�.Proposition 4:Suppose the identi�ability assumption (I) holds true. Then theasymptoti
 
ovarian
e matri
es of the redu
ed form estimators�̂, �̂2SLS , and ~� satisfy the following 
hain of inequalitiesV (�̂) � V (�̂2SLS) � V (~�)with equality in the se
ond inequality if, and only if, X2 = Xand blo
k (3) ist just identi�ed.The �rst inequality 
an neverbe
ome an equality.



24Proof : We need only 
ompare the 
ovarian
e matri
es of theestimators of �1. We have the obvious 
hain of inequalities	(	0M	+��2)�1	0 � 	(	0M	)�1	0 �M�1; (28)and we also have the inequality (24) again. A 
omparison ofthe 
ovarian
e matri
es in Lemmas 3, 5 and 2 then immediatelyimplies the assertion of Proposition 4. In parti
ular, equality inV (�̂2SLS) and V (~�) is equivalent to A2 = I and 	 nonsingular,whi
h is equivalent to X2 = X and blo
k (3) being just identi-�ed, respe
tively, see A3.Remark: It should be 
lear that Proposition 3 is not simplyimplied by Proposition 4. Proposition 3 is not based on theidenti�ability 
ondition (I), whereas Proposition 4 is. Thereforethe inequality 
hain (28) 
annot be used to prove inequality(23). (23) has to be proved without assuming the invertibilityof 	0M	.With regard to TSLS applied to the partially redu
ed form (3)and (4), we only remark that in this 
ase it is identi
al to 2SLS,so long as the independen
e of the Ui is properly taken intoa

ount, see A4. By this we mean that when the joint error 
o-varian
e matrix of the model is estimated (in preparation to thethird stage of TSLS), the 
ovarian
es between the u-variablesof the �rst blo
k, U1, and those of the se
ond blo
k, U2, arenot estimated but are taken to be zero a priori. Alternatively,if these 
ovarian
es are not set to zero but are estimated, with-out regard to the independen
e assumption of the model, thenTSLS di�ers from 2SLS. But even in this 
ase, both methodswill be asymptoti
ally equivalent.



257 Con
lusionThe main result of the paper 
an be summarized in the follow-ing diagram:(A) ) '̂ (A) (I)# + +^̂� � �̂ � �̂2SLS# # #^̂� � �̂ � �̂2SLS � ~�Here ' is the 
olle
tion of all the unknown parameters in the 
o-eÆ
ient matri
esGi and Fj of the blo
k re
ursive model (1), (2),and '̂ is an eÆ
ient estimator of ', where ea
h blo
k has beenestimated separately by some eÆ
ient method like TSLS. Theve
tor � = (Æ0; 
02)0 
omprises all the 
oeÆ
ients of the partiallyredu
ed form (3), (4), and �̂ and �̂2SLS are its OLS and 2SLSestimators, respe
tively, whereas ^̂� is the stru
tural estimatorof � derived from '̂. The ve
tor � 
omprises all the redu
edform 
oeÆ
ients of (15), (16), and ~� is the OLS estimator of �.^̂�, �̂, and �̂2SLS are derived from ^̂�, �̂, and �̂2SLS , respe
tively,by solving the system (3), (4) for Y1 and Y2. The arrows indi-
ate these derivations. The sign � is to be read as "is more (orequally) eÆ
ient than (as)". The symbols (A) and (I) indi
atethat the 
orresponding estimators are based on asssumptions(A) or (I).The eÆ
ien
y relation �̂ � �̂2SLS was not proved expli
itly. It



26follows, however, dire
tly from Lemmas 1 and 4.We also derived formulas for the various asymptoti
 
ovarian
ematri
es. They are given in Lemmas 1 to 5. Finally we statedne
essary and suÆ
ient 
onditions for the equality of the various
ovarian
e matri
es. It should be noted that in 
ase of equalityof the 
ovarian
e matri
es the estimators themselves (ex
ept for^̂� and ^̂�) are also equal.Finally we would like to emphasize some of the results whi
hmight be 
onsidered 
ounter-intuitive.1. Be
ause �̂2SLS = �̂TSLS and therefore �̂2SLS = �̂TSLS , itwould seem to follow from Dhrymes' theorem that �̂2SLSwas eÆ
ient. But, in fa
t, �̂ is more eÆ
ient. The reasonfor this is that in a re
ursive model �̂TSLS is not ne
es-sarily eÆ
ient any more, in 
ontrast to what one is usedin 
onventional simultaneous equation models. Indeed theOLS estimator �̂ is more eÆ
ient than �̂TSLS .2. Dhrymes' theorem might also seem to imply that the ef-�
ien
y relation �̂2SLS � ~� needs no further proof, as itseems to follow dire
tly from this theorem. But as �̂2SLSis not eÆ
ient in a re
ursive model, this relation is not soobvious after all.3. Even though �̂ is eÆ
ient in a general re
ursive model,we here have a more eÆ
ient estimator, viz., ^̂�. But notethat �̂ is only eÆ
ient if the re
ursive model parameters� are not restri
ted in any way. If the re
ursive model is



27derived from a blo
k re
ursive model -as is the 
ase here-,the parameters � will generally be restri
ted (unless allthe equations are just identi�ed). Therefore ^̂� � �̂ and
onsequently ^̂� � �̂.
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30AppendixA1 MZ is positive de�nite.By (11) MZ = 	0M	 + ��2 with 	 = (A2�2; A1). Partition	0M	 into four blo
ks a

ording to the partitioning of 	. Thelower right blo
k is A10MA1, whi
h is positive de�nite (p.d.),be
ause M is p.d. and A1 has full 
olumn rank. Let x be anarbitrary (q2 + p1)-dimensional ve
tor su
h that x0MZx = 0.Let x = (x10; x20)0 with x1 2 Rq2 and x2 2 Rp1 . Thenx0MZx = x0	0M	x+ x10�2x1 = 0. (A1)Be
ause �2 is p.d., it follows that x1 = 0, and the �rst term of(A1) be
omes x02A01MA1x2 = 0, whi
h implies x2 = 0. Hen
ex = 0 , and MZ must be p.d..A2 The 
ase of equality in Proposition 2Assume V (�̂) = V (^̂�). By(20), V (�̂)� V (^̂�) equalsF [V (Æ̂)� V (^̂Æ)℄F 0 +G[V (
̂2)� V ( ^̂
2)℄G0 = 0.(A2)But sin
e by (13) and (14) both terms of (A2) are positive semide�nite, both terms must be zero. With G0 = (BNA02; I), the



31lower right blo
k of the se
ond term is V (
̂2) � V ( ^̂
2), whi
hthus is zero. The vanishing of the �rst term implies, be
auseF 0 = (IN	0; 0),that (IN	)[V (Æ̂)� V (^̂Æ)℄(IN	0) = 0.If 	 has full 
olumn rank, then V (Æ̂)� V (^̂Æ) = 0. Thus V (�̂) =V (^̂�) implies V (
̂2) = V ( ^̂
2) and V (Æ̂) = V (^̂Æ) .A3 The 
ase of equality in Proposition 4Suppose V (�̂2SLS) = V (~�). By Lemmas 5 and 2 this implies	(	0M	)�1	0 =M�1 (A3)A2(A02MA2)�1A02 =M�1 (A4)As in the proof of Proposition 3, we see that (A4) is equivalentto A2 being square, whi
h is equivalent to p2 = p, and thusX2 = X .By the same argument, A3 is equivalent to 	 being square.This means that Y2 and X22 have the same number of 
olumns,whi
h is the 
ondition for (3) to be just identi�ed . Thus



32V (�̂2SLS) = V (~�), if and only if, X2 = X and (3) is just iden-ti�ed.A4 Three Stage Least Squares (TSLS)In order to derive the TSLS estimator of Æ and 
2, multiply (3)and (4) by the instrumental variable matrix X 0 from the left:X 0Y1 = X 0Z4+X 0U1X 0Y2 = X 0X2�2 +X 0U2Ve
torization yields� (INX 0)y1(INX 0)y2 � = � INX 0Z 00 INX 0X2 �� Æ
2 �+ � (INX 0)u1(INX 0)u2 � ;whi
h we write more shortly asy+ = X+Æ+ + u+with obvious notations. The 
ovarian
e matrix of u+ is givenby



33V + = � �1NX 0X 00 �2NX 0X) �where the independen
e of u1 and u2 was taken into a

ount.The TSLS estimator Æ̂+ is then given as the solution toX+0V +�1X+Æ̂+ = X+0V +�1y+.Introdu
ing the proje
tion matrix P = X(X 0X)�1X 0, this sys-tem 
an also be written more expli
itly as ��11 NZ 0PZ 00 ��12 NX20PX2) !� Æ̂̂
2 �=  ��11 NZ 0Py1��12 NX20Py2 !Multipli
ation by the blo
k diagonal matrix� �1N I 00 �2N I �yields � INZ 0PZ 00 INX20PX2) �� Æ̂̂
2 �= � INZ 0Py1INX20Py2 � ;



34whi
h is equivalent to the two equationsZ 0PZ14̂ = Z 0PY1X20PX2�̂2 = X20PY2.The �rst one is just the 2SLS estimating equation for 4, andthe se
ond one 
an be redu
ed toX20X2�̂2 = X20Y2be
ause X20P = X20.


