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Abstract

Various estimators of the reduced form of a block recur-
sive model are investigated and compared to each other.
In particular it is shown that the structural reduced
form estimator, which results from estimating separately
each block of the block recursive model by some efficient
method and then solving the system for the endogenous
variables, is more efficient than the OLS estimator of the
reduced form. Other reduced form estimators derived
from OLS or Two Stage LS estimators of a partially re-
duced form have intermediate efficiency properties. The
paper has been published in Schneeweiss et al (2001),
but without the appendices.

Key Words: Block recursive model, reduced form, simultane-
ous equations model.



1 Introduction

The reduced form of a structural simultaneous equations model
can be estimated in (at least) two ways: either by estimating it
directly by OLS or, indirectly, by estimating first the structural
parameters of the model by some efficient method and then solv-
ing for the endogenous variables. According to Dhrymes (1973)
the indirect estimation method leads to more efficient estimates
than the direct method because it utilizes all the information
inherent in the structural model. Dhrymes, however, assumed,
with one exception, that the covariance matrix of the errors
was not restricted in any way. He therefore did not consider
to use the information that might be inherent in the error co-
variance matrix. The exception was the case of a diagonal error
covariance matrix, which however did not lead him to design
a special estimation method for this case. One particular and
quite important case ist the so-called recursive model,which is
characterized by the two requirements that the system matrix
of the endogenous variables should be triangular and the error
covariance matrix diagonal. For this model Schneeweiss (1993),
building on earlier work of Kosdk(1988), proved a similar re-
sult as was given by Dhrymes (1973) in the case of the more
traditional model with an unrestricted error covariance matrix.

An interesting feature of the recursive model is that it is iden-
tified without any further conditions and that OLS applied to
each structural equation already results in efficient estimators,
whereas the traditional (limited or fully) ”efficient” estimators



like Two-Stage Least Squares or Three-Stage Least Squares ei-
ther do not work or, if they do, are not necessarily efficient.
This is shown in some detail in the present paper.

The present paper combines the results of Dhrymes (1973) and
Schneeweiss (1993) in that it studies a block recursive model.
Here the blocks have unrestricted error covariance matrices and
can each be estimated by some efficient method, where the en-
dogenous variables that are ”explained” in subsequent blocks
are considered as exogenous for the particular block to be es-
timated. Again it can be shown that the direct estimator of
the reduced form is less efficient than the indirect one, which is
constructed by first estimating each block separately with some
efficient method and then solving for the endogenous variables.

The proof of this statement is accomplished by referring to
Dhrymes’ (1973) corresponding result for each block, thereby
reducing the block recursive model to a recursive model and
then using the result of Schneeweiss (1993) for the latter model,
see also Pfannes (1996). In doing so, it comes as a convenience
that in Schneeweiss (1993) the recursive model had already been
structured in blocks, although it was not a block recursive model
in the usual sense. The proof is only given for the case of a
two-blocks model, but can be generalized by induction to an
arbitrary number of blocks. The result may seem not too sur-
prising. If the errors are jointly normally distributed and if
conditional ML estimators are used for each block (conditional
on the endogenous variables of subsequent blocks), then the
resulting estimators of the structural parameters of the whole



model are ML estimators and so are the derived reduced form
estimators. They are therefore more efficient than the direct
estimators of the reduced form parameters, as these ar not ML.
However, this result holds also true even if the errors are not
normally distributed and if other efficient estimators for each
block have been constructed which are not ML. For this reason,
the solution of an old problem presented in this paper may still
be of some interest.

The recursive model has been advocated by Wold (1953, 1964).
It was soon found, however, that simultaneous equations models
which were not recursive prevailed in practice. An intermedi-
ate model type is the block recursive model, which is recursive
between the blocks, but has a simultaneity (interdependence)
structure within each block. Often models used to describe an
economy are ”almost” block recursive: only one or two equa-
tions spoil the block recursive structure. In small models that
describe only sectors of an economy, block recursiveness may
occur more often.

Estimation of the reduced form of a model has been considered
by several authors, among others by Goldberger et al (1961)
and Court (1973). Partially restricted form estimators have
been studied by Kakwani and Court (1972), Sant (1978), Nagar
and Sahay (1978). Schneeweiss (1996) compared reduced form
estimators of recursive models for finite samples. In the present
paper only asymptotic results are presented.

In Section 2 we introduce the partially reduced form, discuss



the properties of its OLS estimator and compare it with its
structural estimator via Dhrymes’ theorem. In Section 3 we
clarify the relation between estimators of the partially reduced
form and of the reduced form. Two important estimators of
the reduced form, OLS and RLS, are then related to each other
in Section 4. The main result, a comparison of the last two
estimators with the structural estimator of the reduced form
is presented in Section 5. In Section 6 we discuss Two and
Three Stage Least Squares of the partially reduced form and
their implications for estimating the reduced form. Section 7
has some concluding remarks. Some details of the proofs are
delegated to an appendix.

2 Estimating the partially reduced form

We consider the following two-blocks recursive model

YiGi= Y2+ XqaF + W) (1)
YsGo = XoF3 + W,y (2)

where X; and Y; are Txp; and Txq; matrices, i = 1,2, of ex-
ogenous and endogenous variables, respectively, with ps # 0;
W1 and W5 are independent T'xq; matrices of unobservable er-
ror variables with iid rows having expectation zero and unre-
stricted, but nonsingular, covariance matrices X, ; the G; and
F}; are parameter matrices endowed with a priori restrictions
such that each block is identifiable; the G; are supposed to be



non-singular, so that the system can be uniquely solved for Y;
and Y2. The exogenous variables are taken to be nonstochastic
variables. Let X be the matrix of all exogenous variables such
that X = (X11,X12, X92), X1 = (X11, X12), Xo = (X12, X09).
We introduce selection matrices A; such that X; = XA; , i =
1,2. Thus A; = (1,0)', As = (0, I)".

In order to study the asymptotic properties of various estima-
tors we conceive a series of models (1), (2), indexed by T, where
the transition from T to T + 1 is accomplished by the addition
of one further row to each of the matrices X;,Y;, W;,i = 1,2.
We assume that X'X is nonsingular and that, as T — oo,
lim%X’X = M with a nonsingular matrix M.

Another assumption, which we need for the main asymptotic
results, is that

foi/t2<oo,i:1,...,p, (A)
t=1

where the x4 are the elements of X. We will make a note
whenever a result is based on assumption (A). Note that because
of the independence of W7 and W5 the variables in Y5 can be
considered as exogenous for the first block in the sense that W;
is independent, of Y3. One can therefore treat the first block,
on the condition that Y5 is given, as a simultaneous equations
model with endogenous variables Y¥; and exogenous variables
Ys and X;i. The second block is a conventional simultaneous
equations model anyway.



Multiplying each block by Gi_l, i = 1,2, we get the following
recursive system:

Yi= YoaB+ XiTh+U =ZA+U; (3)
Y, = Xol's +Us (4)

with
B=FG" T, =FRG ' T, =FRG,", (5)

Ui = WiG!, and Uy = WhG, ', where the notation was cho-
sen to correspond with the notation in Schneeweiss (1993). In
Equation (3) we used the abbreviatons Z = (Y3, X1) and A =
(B',T'})'. We denote the covariance matrix of any row of U;
by 3;, i = 1,2. Apart from being positive definite ¥; is not
restricted in any way. (Note that X; = G;fleiGjl). We call
the system (3), (4) the partially reduced form of the structural
model (1), (2). Note that equation (4) ist just the reduced form
of (2), and equation (3) is the conditonal reduced form of (1)
under the condition that Y3 is given (and therefore considered
as exogenous for Y7).

We consider two estimators for the parameter matrices A and
['s of the partially reduced form: The OLS estimators, Aand I
are found by regressing Y} on Z as in (3) and by regressing Y> on
Xo as in (4), respectively. The so-called structural estimators,
A and fg, are constructed by first estimating the parameter
matrices Gy, Fy, and F5 of block (1) and G and F3 of block
(2) separately by some efficient estimation procedure like Three
Stage Least Squares (TSLS) within each block, taking the a



priori restrictions properly into account and considering Y5 in
block (1) as exogenous, and then computing estimates of B, 'y,
and I'y via (5).

We will now derive the asymptotic properties of the OLS estima-
tor. To this purpose, we vectorize the parameter matrices. We
denote a vectorized matrix by its small letter; thus § = vecA,
v2 = vecl's etc.

Lemma 1:
Denote by {y>} the infinite series of the rows of Y> when 7' — oc.
Then, under (A),

VTG = 8|{y} — N(0,V(5)), as. (6)
VT2 = %) = N(O,V(%)), (7)
where
V() =3 0 My' 8)
V(%2) = By @ Myy' 9)

are the asymptotic covariance matrices of $ and A2 with

1
1
Mz = lim-2'Z=¥'MU+55, as (11)
U= (AT, Ay)

* ¥ 0
22:<020>.



Proof: (7) together with (9) is simply the well-known result
from OLS theory, and (10) follows from the identity Xo = X A,.
So we need only prove (6) together with (8) and (11).

First note that
Z=XU+U;, (12)
where U3 = (Us,0). Now, assumption (A) implies lim+X'Us =

0, a.s. Indeed, let z; and u; be the t’th components of any
colums of X and Us, respectively. Then by (A)

l o0 2

t

m —=Var(ziuy) E 2
1

and by Kolmogorov’s criterion, see, e.g., Bauer (1978)§37,

o

1 X
lim? zlzxtut =0, a.s.

With this result, (11) follows immediately from (12). Thus with
probability 1 the series {y2} is such that the limit My exists.

As ¥ and the part AJM A; of ' MU are both positive defi-
nite, it is easy to see that My is positive definite (see A1) and
MZ_1 exists. Therefore, by OLS theory, the conditional distri-
bution of \/T(S —9) given {y2} converges, with probability 1, to
N(0,V(8)) with V() = £; ® M. This proves (6) and (8).<
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Remark to the proof: The proof of (11) fills a gap in the
proof of Theorem 1 in Schneeweiss (1993), where the almost
sure convergence was not proved.

We can now formulate Dhrymes’ result as it applies to our
model.

Proposition 1 (Dhrymes):

Suppose (8, 7») are structural estimators and (8,42) are the OLS
estimators of (§,72) in the system (3) and (4). Then, under (A),
for both types of estimators the statements (6) and (7) hold true,
and for their asymptotic covariance matrices we have

S>>
S

V(9) V(9) (13)
V(32) V(42) (14)

in the sense of the Loewe ordering of symmetric matrices. (For
symmetric matrices, A < B means that B — A is positive
semidefinite).The inequalities become equalities if, and only if,
each equation is just identified.

IN A

Proof: Let the vector ¢; comprise all the unknown parame-
ters in G, Fy, and F5 in block (1) and let ¢; be the TSLS (or
any other efficient) estimator of ¢; with Y5 taken to be exoge-
nous. We know that, given {y>} and assuming that {y»} is such
that My exists as in Lemma 1, the conditional distribution of
VT (p1 — 1) converges to N(0,V(¢1)), where V(p;) depends
on Mz but does not depend on {y2}, see Dhrymes (1973). The
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same then holds true for the derived estimator o, i.e.,AS obeys
the same asymptotic law (6) as does § except that V(8) differs
from V(6). Similarly v, satisfies (7) except that V(vs) differs
from V (42).

The inequalities (13) and (14) are now just the statement of
Dhrymes’ theorem (1973), applied separately to (1), given {y2},
and to (2).

3 Estimating the reduced form via the
partially reduced form

We now consider the reduced form of the simultaneous equations
model (1) and (2). It is the same as the reduced form of the
partially reduced form (3) and (4) and is given by

Yy = XTI + V, (15)
Yo = Xolh + Us (16)

where II; = YA and V; = UsB + U;. Note that the reduced
form (15), (16) differs from the reduced form as employed in
Schneeweiss (1993). There, a matrix W comprising X but not
necessarily identical to X was used instead of X and in addi-
tion (16) was replaced with Yo = W1y 4+ V5 or, in the present
notation,

Y, = XTI, + V. (17)
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Equation (16) looks more natural than (17), and estimating IT,
by OLS from (17) is less efficient that estimating T's from (16).
Therefore we prefer (16) to (17). But this means that the results
of Schneeweiss (1993) cannot simply be taken over but must be
modified correspondingly.

Now, the reduced form can again be estimated in (at least)
two different ways, either directly by OLS from (15) and (16)
separately or by estimating the partially reduced form (3) and
(4) by whatever method and then solving this system for ¥; and
Y5. Of course, the result of the second procedure depends on the
estimation method used to estimate (3) and (4) to start with.
Let us study this dependency first.

Assume that there are two estimators for the parameters of (3)

and (4), denote them again by (5%) and (5,%), respectively.
They may but need not be the same estimators as in Proposition
1. For each of these compute reduced form estimates by the
indirect method described above. Consider for instance § =
vec A and A9 = vec f‘g. Then

I, = WA = (4,15, A))(B', 1)) (18)

Let m; = wvecll;, m; = vecll; and stack m; and 7- into one

vector T = (], v4)" and similarly # = (#1,44)’. Do the same for

6 =wvec A and 5, = vecTy and suppose that (8,42) and (8, 72)
have similar asymptotic properties as the OLS and structural
estimators considered in Proposition 1. We then can state the
following proposition
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Proposition 2:
Let 42 and 72 be two asymptotically normal estimators of 72
being constructed from the data X5 and Y5 of (4). Let ¢ and

5 be two estimators of § constructed from the data X1, Y7 and
Y5 of (3) such that they are a.s. conditonally asymptotically
normal on the condition that {y»}, a realization of the process
generated by the rows of Ya (' — o0), is given. The condi-

tional asymptotic covariance matrices of $ and § are supposed
to be independent of {y»}. Suppose further that the asymp-
totic covariance matrices of these estimators satisfy (13) and

(14). Then # and 7, computed from (8,%2) and (3, ¥2), respec-
tively, are asymptotically normally distributed with asymptotic
covariance matrices that satisfy

V(7)< V(7).

Suppose (3) is identifiable in the conventional sense (see Section
6), then V() = V(#) if, and only if, equality holds in (13) and
(14).

Proof: The proof is almost identical to the proof of the Lemma
in Schneeweiss (1993), except that here we replace 79 with 7o

and we consider and compare different estimators for § and ~s,
not only for 6. We consider, see (18),

I -1, =9 (A - A)+ (¥ - 9)A+ R,

where R = (¥ — ®)(A — A) turns out to be op(T’%).Applying
the vectorization operator and using the fact that (¥ — ¥)A =
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Ay(Ty — I'y) B, we find that
ir—m =T @) -0)+ (B ®As) (32 — 72) + 0p(T " 2),
and finally for 7 = (7], ~4)":

VT(it —m) = FVT(6 — 6) + GVT (32 — v2) + 0,(1)  (19)

with FF = (I ® ¥',0)', G = (B ® A}, I)’. By an argument ex-
pounded in the appendix of Schneeweiss (1993) it can be shown
that the assumptions of the proposition imply that the joint dis-
tribution of VVT'(§—6) and VT (32 —2) converges to a multivari-
ate normal distribution with (asymptotic) covariance matrices
V(6) and V(4,) and (asymptotic) covariance Cov(d,42) = 0.
Therefore T (# — ) — N(0,V(#)) with

V(7)) = FV()F' + GV (%)G. (20)

The same is true for & and ’fg. The main assertion of the
proposition now follows immediately from (13), (14), and (20).If
V(#) = V(#), then (20) implies firstly V(v2) = V(72) because

of the special form of G and secondly V(8) = V(4) if ¥ is as-
sumed to have full column rank, see A2. This last condition is
equivalent to (3) being identifiable in the sense of Section 6. <
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4 Estimating the reduced form by di-
rect and recursive OLS

The last step in the line of arguments is a comparison of the
reduced form estimator I1; resulting indirectly from the OLS
estimators Ty and A via (18) and the direct OLS estimator
of the reduced form, i.e., I} = (X'X)"'X'Y;. As before, let
7= (7],%) and @ = (x},44)", where 7, = vecIl;. We call &
the Recursive Least Squares (RLS) estimator and 7 the (direct)
OLS estimator of 7. Both estimators are asymptotically normal
with asymptotic covariance matrices V(#) and V (%), which we
will now derive.

Lemma 2:

The direct OLS estimator # of the reduced form (15), (16) is
asymptotically normal with an asymptotic covariance matrix
given by

Vo = (gpiiiy me =)
SB® MytA, Y, M,,
with
V(i) = (E1+B'S:B) o M1,
Proof:

Starting from (15) and (16) we get after vectorization

y1 =TI ®X)m +u
yo = (I ® X2)v2 + us



16

with y; = vecY;, 1 = 1,2, v; = vecVq, and us = vecUs. Stack-
ing the vectors of these two equations, we obtain

y=Xr+v (21)

with y = (), 4)', v = (v}, u3)’ and

. (I®X 0

X= ( 0 I®X ) '
The OLS estimator from (21) is # = (X'X)~!'X'y. Its covari-
ance matrix (for finite T) is

Vr(7) = (X'X)1X'(2, @ DX (X'X)!

with ¥, being the covariance matrix of a row of (Vi,Us). As
Vi =UsB + Uy, ¥, can be partitioned into

Y11 Y12 B'Y;B+XY, B'Y;
Yo = = . 22
( Yo1 Yoo ) ( ¥»B Yo (22)

After some algebraic manipulations we find

v (’ﬁ') N Y ® (XIX)il Y12 ® Az(XéXQ)il
T B 221 (XéXQ)_lAIZ 222 [ (XéXQ)_l

where the identity (X'X) " 1X'X, = Ay was used. Multiply-
ing by T, going to the limit 7' — oo, and substituting (22),
we obtain the asymptotic covariance matrix of Lemma, 2. The
asymptotic normality is simply a consequence of OLS theory.{
Remark: Note that 7 here is derived as the OLS estimator com-
puted from (15) and (16) separately and not, as in Schneeweiss
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1993, from the multivariate regression system (15), (17). The
new 7 of the present paper is more efficient than the & of the
previous paper.

Next we derive the asymptotic covariance matrix of 7.

Lemma 3:

Under assumption (A), the RLS estimator # of the reduced form
(15), (16) is asymptotically normal with an asymptotic covari-
ance matrix given by

Vir) = V(#1) B'Yy ® Ay M5!
T\ %eB® Myt A, Yo @ Myy!

with
V(i) =51 @ UM;' V' + B'S, B @ Ay My, Ab.

Proof: By Lemma 1, the assumptions of Proposition 2 hold
true for the OLS estimators § and 42. From the proof of Propo-
sition 2 it follows that # is asymptotically normal with V(%)
as given by (20). Substituting (8) and (9) into (20) we obtain,
with some algebra, the desired result.

Remark: Because we took (15), (16) as our reduced form and
not (15), (17), # differs, albeit only slightly, from the # of The-
orem 1 in Schneeweiss (1993). It is for this reason that we had
to compute V(7) anew. It is possible to derive the result of
Lemma 3 when assumption (A) is replaced with the assumption
that E(u’*®) < oc for some ¢ > 0.

We now compare V(7) to V(7).
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Proposition 3:

For the asymptotic covariance matrices of the reduced form esti-
mators 7 and 7 the inequality V(7) < V(7) holds, with equality
if, and only if, X; = Xo, = X.

Proof: Due to Lemmas 2 and 3 we obviously need only compare
V(1) and V (71). Substituting Mz from (11) and My from (10)
we see that the assertion of the proposition is proved if we can
show that

TP MI+35) 1 <M (23)
Ap(ApMA) T Ay < M (24)

To prove (24) define the p X py matrix A = M2 Ay. Then (24) is
equivalent to A(A’A)~tA’ < I, which is obviously true because
this is a projection matrix. We have equality if, and only if, A
is a square matrix, which means that p, = p and thus X; = X.
To prove (23) define the p x (g2 + p1) matrix H = M2 ¥ and

1
the g2 X (g2 + p1) matrix G = (X3,0) with rank G = go. Then
(23) is equivalent to

R:=H(H'H+GG'H <I.

Let L = (H',G")', then R is the upper left block of the projection
matrix P := L(L'L)~'L’ and therefore R < I.

Now suppose R = I. Then the upper right block of P is zero:
H(L'L)'G' =0.
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Let K = (L'L)"'G'. K is a (¢2 + p1) X g2 matrix and rank
K =rank G = ¢2. From HK = 0 it now follows that rank
H < (g2+p1)— g2 = p1. On the other hand, R = I implies rank
H = P. Hence p < p;. But as also p; < p, therefore py = p and
consequently X7 = X.

Conversely, p = p; implies that L is a square matrix and there-
fore P = I and hence R = I.$

5 Structural and direct estimates of
the reduced form

Collecting the results of Propositions 1 to 3, we finally arrive at
our main result:

Theorem:
Consider the following three estimators of the reduced form of
the block recursive model (1), (2) with assumption (A):

e The structural estimator # is found by computing efficient
estimates (like TSLS) for the structural parameters of (1)
and (2) separately, treating Y3 in (1) as exogenous, and
solving for Y7 and Y53.

e The RLS estimator 7 is found by applying OLS separately
to (3) and (4) and solving for Y] and Y5.
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e The (direct) OLS estimator 7 is found by applying OLS
to (15) and (16).

The asymptotic covariance matrices of these estimators then
satisfy the following chain of inequalities:

V() <V(7) < V(7).

Proof: The second inequality is just a restatement of Proposi-
tion 3. According to Proposition 1 the assumptions of Propo-
sition 2 are satisfied for the structural and the OLS estimators
of the parameters of the partially reduced form (3), (4). In par-
ticular (13) and (14) hold true. As 7 and # are the implied
reduced form parameter estimates, the first inequality of the
theorem follows from Proposition 2. {

6 Two and Three Stage Least Squares

In this section we consider only the partially reduced form model
(3), (4). Its parameter matrices A and T's are now assumed to
be unrestricted. In this case OLS is the estimation method of
first choice. As explained in the introduction, the more tradi-
tional Two and Three Stage LS procedures often do not work.
They can be applied and lead to consistent estimators if, and
only if, the model is identified in the conventional sense, i.e.,
identified from the reduced form parameter matrix II and with-
out regard to any restrictions in the error covariance matrix.
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Throughout this section, the concept of identifiability is always
to be undestood in this narrow sense. (Note that a recursive
model is always identified in the strict sense of the word). The
second block (4) is identified without any further conditions.
The first block (3) is identified if the well-known rank condition
is satisfied. If we write (3) and (4) as

Yi= YoB+XI'u+ Xiolie +Uy
Y, = Xiol'or  +X9ole  +Us,

then the (necessary and sufficient) condition for the identifiabil-
ity of (3) is that 'y has full column rank. From the definition
of U:

0 I 0
N (AQFQ,Al) = I‘21 0 I
I'es 0 O

it is seen that this is equivalent to the condition that ¥ has full
column rank. It is this ”identifiability condition” (I) which we
will assume to be satisfied for the rest of this section.

Let us first study Two Stage Least Squares (2SLS). For the
second block, (4), 2SLS is identical to OLS: 42 2515 = #2. For
the first block, (3), the 2SLS estimator is

Assrs = (Z'PZ)" 7' PY;

with P = X(X'X)~'X'. The estimator is asymptotically nor-
mal:
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Lemma 4:
Under the identifiability assumption (I), the 2SLS estimator of
d satisfies

VT (82515 — 8) = N(0,V(dasr5))
V(dsrs) =51 @ (U MU)~!, (25)

and S2SLS and 4 are asymptotically independent.

Proof: From the theory of 2SLS we know that v/T (62515 —0) is
asymptotically normal with the (asymptotic) covariance matrix

V(dasrs) =51 @ (Mzx M~ Mx 7)™t (26)

where Mx; = plim#+X'Z. Because of (12), this limit exists
and is given by

Mxz = MV. (27)

Substituting (27) into (26) gives the desired result (25). Note
that the inverse of U'M ¥ exists due to the identifiability con-
dition (I). The independence of S2SLS and 4, is a consequence
of the independence of Uy and Us.$

We can now derive estimates of the reduced form from the 2SLS
estimates of A and I'; in the same way as we did for the other
estimators. Call the resulting estimator the 2SLS reduced form
estimator ﬂQSLS.

Lemma 5:
Suppose the identifiability condition (I) holds, then the 2SLS re-
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duced form estimator is asymptotically normal with an asymp-
totic covariance matrix given by

- _ V(f19s0s) B'Ya® Ay My!
V('/TQSLS) - ( ZQB ® M22A{2 22 ® M231

with
V(f10s05) =21 @ U(W' M)W + B'SyB @ Ay Myt Al

Proof: As by Lemma 4 S2SLS and 4 are asymptotically inde-
pendent and as 7asy,s is derived from these estimators in the
same way as 7 was derived from § and 4», we can again use (19)
from the proof of Proposition 2 to verify the asymptotic nor-
mality of #2575 and (20) to compute its asymptotic covariance
matrix. Just replace 8 by dss1.s and use (25) and (9).$

We can now compare the asymptotic covariance matrices of 7,
’ﬁ-QSLS, and 7.

Proposition 4:

Suppose the identifiability assumption (I) holds true. Then the
asymptotic covariance matrices of the reduced form estimators
T, asrs, and 7 satisfy the following chain of inequalities

V() < V(ftasrs) < V(7)
with equality in the second inequality if, and only if, X, = X

and block (3) ist just identified.The first inequality can never
become an equality.
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Proof: We need only compare the covariance matrices of the
estimators of m;. We have the obvious chain of inequalities

T(UMT +33)" 10 < (W M) < ML (28)

and we also have the inequality (24) again. A comparison of
the covariance matrices in Lemmas 3, 5 and 2 then immediately
implies the assertion of Proposition 4. In particular, equality in
V(fta2srs) and V (7) is equivalent to A» = I and ¥ nonsingular,
which is equivalent to X = X and block (3) being just identi-
fied, respectively, see A3.

Remark: It should be clear that Proposition 3 is not simply
implied by Proposition 4. Proposition 3 is not based on the
identifiability condition (I), whereas Proposition 4 is. Therefore
the inequality chain (28) cannot be used to prove inequality
(23). (23) has to be proved without assuming the invertibility
of U'MWU.

With regard to TSLS applied to the partially reduced form (3)
and (4), we only remark that in this case it is identical to 2SLS,
so long as the independence of the U; is properly taken into
account, see A4. By this we mean that when the joint error co-
variance matrix of the model is estimated (in preparation to the
third stage of TSLS), the covariances between the u-variables
of the first block, Uy, and those of the second block, Us, are
not estimated but are taken to be zero a priori. Alternatively,
if these covariances are not set to zero but are estimated, with-
out regard to the independence assumption of the model, then
TSLS differs from 2SLS. But even in this case, both methods

will be asymptotically equivalent.
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7 Conclusion

The main result of the paper can be summarized in the follow-
ing diagram:

4) = ¢ (4) (1)
Lo ’
a = a =  Qas5Ls
Lo I
T = #* = Tosns = 7

Here ¢ is the collection of all the unknown parameters in the co-
efficient matrices G; and F; of the block recursive model (1), (2),
and ¢ is an efficient estimator of ¢, where each block has been
estimated separately by some efficient method like TSLS. The
vector a = (&', 4)" comprises all the coefficients of the partially
reduced form (3), (4), and & and éag15 are its OLS and 2SLS
estimators, respectively, whereas & is the structural estimator
of a derived from ¢. The vector 7 comprises all the reduced
form coefficients of (15), (16), and 7 is the OLS estimator of =.
fr, 7, and T257,5 are derived from &, &, and dagr 5, respectively,
by solving the system (3), (4) for Y7 and Y5. The arrows indi-
cate these derivations. The sign > is to be read as ”is more (or
equally) efficient than (as)”. The symbols (A) and (I) indicate
that the corresponding estimators are based on asssumptions

(A) or (1).

The efficiency relation & > Gas1s was not proved explicitly. It
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follows, however, directly from Lemmas 1 and 4.

We also derived formulas for the various asymptotic covariance
matrices. They are given in Lemmas 1 to 5. Finally we stated
necessary and sufficient conditions for the equality of the various
covariance matrices. It should be noted that in case of equality
of the covariance matrices the estimators themselves (except for
& and 7) are also equal.

Finally we would like to emphasize some of the results which
might be considered counter-intuitive.

1. Because dssrs = arsrs and therefore o579 = Arsrs, it
would seem to follow from Dhrymes’ theorem that 72515
was efficient. But, in fact, 7 is more efficient. The reason
for this is that in a recursive model &rgy g is not neces-
sarily eflicient any more, in contrast to what one is used
in conventional simultaneous equation models. Indeed the
OLS estimator & is more efficient than argr.s.

2. Dhrymes’ theorem might also seem to imply that the ef-
ficiency relation agrs > 7 needs no further proof, as it
seems to follow directly from this theorem. But as #s51.¢
is not efficient in a recursive model, this relation is not so
obvious after all.

3. Even though & is efficient in a general recursive model,
we here have a more efficient estimator, viz., &. But note
that & is only efficient if the recursive model parameters
a are not restricted in any way. If the recursive model is
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derived from a block recursive model -as is the case here-,
the parameters a will generally be restricted (unless all
the equations are just identified). Therefore & = & and
consequently T - 7.
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Appendix
A1 M, is positive definite.

By (11) Mz = ' MU + 5 with ¥ = (45T, A;). Partition
¥ MV into four blocks according to the partitioning of ¥. The
lower right block is A;'M A;, which is positive definite (p.d.),
because M is p.d. and A; has full column rank. Let x be an
arbitrary (gs + p1)-dimensional vector such that 2’ Mzx = 0.

Let z = (xl’,xg’)' with z; € R2 and z3 € RP'. Then
T Mzx =2' V' MYz 4+ 21"z = 0. (A7)
Because X5 is p.d., it follows that z; = 0, and the first term of

A1) becomes xh A" M Ajxs = 0, which implies 5 = 0. Hence
(41) 2411 ) P
z =0, and Mz must be p.d..

A2 The case of equality in Proposition 2

Assume V(7)) = V(fr). By(20), V(#) — V(fr) equals
FIVG) = VI + GV () - VR =0.
(A2)

But since by (13) and (14) both terms of (A2) are positive semi
definite, both terms must be zero. With G' = (B Q) A}, I), the
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lower right block of the second term is V(72) — V(72), which
thus is zero. The vanishing of the first term implies, because
P =(IQWT,0),

that

IQW[V(E) - VIR T) =0.

If ¥ has full column rank, then V(§) — V(S) =0. Thus V(7)) =
V(7) implies V (2) = V(72) and V(§) = V() .

A3 The case of equality in Proposition 4

Suppose V(ragr.g) = V(7). By Lemmas 5 and 2 this implies

V(O MY) Y =Mt (A43)
As(ALMAy) P AL = MY (A4)

As in the proof of Proposition 3, we see that (A4) is equivalent
to As being square, which is equivalent to ps = p, and thus
X, =X.

By the same argument, A3 is equivalent to ¥ being square.
This means that Y5 and X55 have the same number of columns,
which is the condition for (3) to be just identified . Thus
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V(rtasrg) = V(#), if and only if, X5 = X and (3) is just iden-
tified.

A4 Three Stage Least Squares (TSLS)

In order to derive the TSLS estimator of § and ~y,, multiply (3)
and (4) by the instrumental variable matrix X' from the left:

X' =XZAN+ X'
X'Ys = X' XoT'y + X'Us
Vectorization yields
<(I®X’)y1> ~ ( IQX'Z 0 )( 5 )
I®X"y: ) — \0 IQX'X, o

- (G8xm )

which we write more shortly as
yt = X+tot +ut

with obvious notations. The covariance matrix of ut is given
by
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A O S

where the independegce of u; and uy was taken into account.
The TSLS estimator 4T is then given as the solution to

XHyH-1x+tit = XHy+-1yt,

Introducing the projection matrix P = X(X’X)le’, this sys-
tem can also be written more explicitly as

v, ' ®2z'Pz 0 ( b )
0 5, ® X' PXs) V2
[ 2 ®7Py
= -1
Y, QX2 Py,
Multiplication by the block diagonal matrix

< 21?1 zﬁgu)

(R g ) (4)

_ IQ Z'Py,
T\ IQX,'Py; )7

yields
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which is equivalent to the two equations
Z'PZi A = Z'PY;
X' PXoly = Xo' PYs.

The first one is just the 2SLS estimating equation for A, and
the second one can be reduced to

Xo' XoT'y = Xo'Ys

because X,'P = X',



