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Effi
ient simulation of Bayesian logisti
regression modelsby Chris C HolmesImperial College LondonLeonhard Knorr-HeldLudwig-Maximilians-University Muni
hSummaryIn this paper we highlight a data augmentation approa
h to inferen
e in the Bayesianlogisti
 regression model. We demonstrate that the resulting 
onditional likelihood ofthe regression 
oeÆ
ients is multivariate normal, equivalent to a standard Bayesian linearregression, whi
h allows for eÆ
ient simulation using a blo
k Gibbs sampler. We illustratethat the method is parti
ularly suited to problems in 
ovariate set un
ertainty and randome�e
ts models.Some Key Words: Auxiliary variables, Bayesian logisti
 regression, Data augmentation,Markov 
hain Monte Carlo, Model averaging, Random e�e
ts, S
ale mixture of normals,Variable sele
tion.
1. Introdu
tionBinary regression using Generalised Linear Models (GLMs) is a widely used te
h-nique in applied statisti
s and the Bayesian approa
h to this subje
t is well do
umented,e.g. Dey, Gosh and Malli
k (1999). However, inferen
e in Bayesian GLMs is 
ompli
atedby the fa
t that no 
onjugate prior exists for the parameters in the model, other than fornormal regression, and this makes simulation diÆ
ult. In a seminal paper, with over 200
itations at time of writing, Albert & Chib (1993) demonstrated a data augmentationapproa
h for binary probit regression models whi
h renders the 
onditional distributions1



of the model parameters equivalent to those under the Bayesian linear regression modelwith Gaussian noise. Hen
e, 
onjugate priors are available to the 
onditional likelihoodand the blo
k Gibbs sampler 
an then be used to great e�e
t. In this paper we demon-strate that this is also possible for logisti
 regression, by using a s
ale mixture of normalsrepresentation and additional auxiliary variables. This is an important dis
overy as typ-i
ally the logit link is the method of 
hoi
e for most statisti
al appli
ations, due to thestrong interpretation of the regression 
oeÆ
ients in terms of the 
hange to the log-oddsof one 
lass over another for unit 
hange in the asso
iated 
ovariate. In addition, the logitlink avoids the need for a table look up, as in the 
umulative normal (probit link) whi
his known to be sensitive to evaluation in the tails of the link fun
tion.In x2 we present the method and algorithms for sampling from a Bayesian logisti
regression model. The approa
h is also well suited to generalisations of the standardlogisti
 model and in x3, x4 we des
ribe two su
h appli
ations, namely, in 
ovariate setun
ertainty and random e�e
t models. Finally, in x5 we o�er a brief dis
ussion, 
ontrastingthe approa
h to existing methods and pointing to possible extensions.2. A data augmentation approa
h to the logisti
 regression modelTo begin, 
onsider the Bayesian logisti
 regression model,yi � Bernoulli (g�1(�i))�i = xi�� � �(�) (1)where yi 2 f0; 1g; i = 1; : : : ; n is a binary response variable for a 
olle
tion of n obje
tswith asso
iated p 
ovariate measurements xi = (xi1; : : : ; xip), g(u) = log(u=(1�u)) is thelogisti
 link fun
tion, �i is the linear predi
tor and � represents a (p� 1) 
olumn ve
torof regression 
oeÆ
ients whi
h a priori are from some distribution �(�).The logisti
 model in (1) has an equivalent representation using auxiliary variables,yi = ( 1 if zi > 00 otherwisezi = xi� + �i�i � �(�i)� � �(�) (2)where yi is now deterministi
 
onditional on the sign of the sto
hasti
 auxiliary variablezi and �(�i) is the standard logisti
 distribution. Under independen
e of �i, i = 1; : : : ; n,2



the marginal distribution of y in model (2), having integrated out z and �, is the same asin (1). In what follows, we shall introdu
e a further set of variables, �i, i = 1; : : : ; n, andnote the additional representationyi = ( 1 if zi > 00 otherwisezi = xi� + �i�i � N(0; �i)�i = (2 i)2 i � KS� � �(�) (3)where N(0; �i) is a mean zero normal distribution with varian
e �i and  i, i = 1; : : : ; n,are independent random variables following the Kolmogorov-Smirnov (KS) distribution,e.g. Devroye (1986). In this 
ase, �i has a s
ale mixture of normal form with a marginallogisti
 distribution (Andrews & Mallows, 1974), so that the marginal distributions �(�jy)for models (3), (2) and (1) are equivalent.The advantage of working with representation (3) is that, for judi
ious 
hoi
e of �(�),it lends itself to eÆ
ient simulation using the blo
k Gibbs sampler. In parti
ular, in the
ase of a normal prior on �, �(�) = N(m; v), the full 
onditional distribution of � is stillnormal, �jz;�;y � N(�̂; V )�̂ = V (v�1m + x0Wz)V = (v�1 + x0Wx)�1;W = diag(��11 ; : : : ; ��1n ); (4)here x = (x01;x02; : : : ;x0n)0, while the full 
onditional for zi is trun
ated normal,zij�;xi; yi; �i / ( N(xi�; �i) I(zi > 0) if yi = 1N(xi�; �i) I(zi � 0) otherwise; (5)whi
h is simple to sample from, see for example Robert (1995).The 
onditional distribution of the varian
e parameter �i does not have a standardform though updating is 
onveniently a
hieved through a Metropolis-Hastings proposalfrom the prior distribution �(�i). This involves sampling from the KS distribution forwhi
h eÆ
ient and exa
t algorithms exist (Devroye, 1986). The Metropolis-Hastings3



a

eptan
e ratio will then be� = ��i��i � 12 exp�(zi � �i)2� 12�i � 12��i �� ; (6)where �i is the 
urrent and ��i the proposed new value. Note that sampling from the prioravoids the evaluation of the KS density using a table look up, as it is known only as anin�nite series.Alternatively we 
an easily 
onstru
t a joint proposal for �i and zi by �rst sampling ��ifrom the prior, as above, then generating z�i from the trun
ated normal (5), 
onditionalon ��i , and then a

ept-reje
t ��i and z�i jointly. The a

eptan
e ratio is in this 
ase� = 8<: 1��(�i=p��i )1��(�i=p�i) if yi = 1�(�i=p��i )�(�i=p�i) if yi = 0; (7)here � denotes the 
umulative distribution fun
tion of the standard normal distribution.In this way, the formulas (4), (5), (6) or (7), provide the basis of eÆ
ient samplingfrom the Bayesian logisti
 regression model. The approa
h is easy to in
orporate intostatisti
al software and we believe it to be highly eÆ
ient 
ompared to 
urrent samplingte
hniques. Furthermore, in the next two se
tions we highlight two generalisations ofthe standard logisti
 regression model where the auxiliary variable representation (3) isespe
ially useful, namely in situations of 
ovariate set un
ertainty and for random e�e
tsmodels. 3. Covariate set un
ertaintyIt is often the 
ase that the statisti
al analyst may suspe
t that some of the available
ovariates are irrelevant to the regression task. A 
onvenient approa
h to this problemis to adopt a prior distribution on the 
ovariate matrix �(x) that pla
es mass on the2p possible sub-models made up of di�ering 
ovariates or 
olumns of x. In parti
ular,
onsider the 
ovariate indi
ator ve
tor 
 = f
1; : : : ; 
pg, 
i 2 f0; 1g, i = 1; : : : ; p, su
hthat 
i = 1 if the ith 
ovariate is present in the model and 
i = 0 if it is not. A prioron the model spa
e 
an be spe
i�ed via a prior on the 
ovariate indi
ator, �(
). Theparameter ve
tor 
 
an then be in
luded in the model spe
i�
ation and updated as partof the simulation.Bayesian analysis of models of random dimension have be
ome extremely popular fol-lowing the introdu
tion of sampling te
hniques su
h as Green (1995). However, simulationof variable dimensional models 
an be problemati
 as a 
hange to the model stru
turetypi
ally 
auses a large 
hange to the likelihood of the 
urrent parameter values in the4



model, see Brooks et al. (2002). A key advantage of using model (3) is that when up-dating the 
ovariate set de�ned by 
 we 
an 
ondition on z and jointly update the �'s aswell, from their full 
onditional distribution given the new model stru
ture. The ve
torz retains information about the likelihood whi
h allows for optimal updates to be madeto �, given a 
hange in the 
ovariate set. Updating the � ve
tor jointly with 
 is ex-tremely important as typi
ally, when the 
ovariates are non-orthogonal, there is stronglinear dependen
e between the regression 
oeÆ
ients.To sample from the posterior model spa
e, we suggest a Metropolis-Hastings step toupdate the 
urrent 
ovariate set, de�ned by 
, with a joint update to � as well,q(
�;��) = �(��j
�; z;W ) q(
�);where q() denotes a proposal distribution, �(��j
�; z;W ) is the 
onditional multivariatenormal posterior distribution (4) given the 
ovariate set de�ned by 
�, and q(
�) is a,possibly symmetri
, Metropolis-Hastings proposal density that may, or may not, be basedon the 
urrent 
ovariate set 
. In this 
ase, some straightforward algebra leads to thea

eptan
e probability of the move as,� = min(1; jV
�j1=2jv
 j1=2jV
j1=2jv
�j1=2 exp(�0:5�̂0
�V �1
� �̂
�)exp(�0:5�̂0
V �1
 �̂
) �(
�)q(
j
�)�(
)q(
�j
) ) (8)where � denotes the a

eptan
e probability of the proposal and f�̂
; V
g are de�ned in(4), where the subs
ripts indi
ate that they are 
onditioned on the 
ovariate set de�nedby 
. Note that the realised (drawn) values of f�;��g do not appear in the a

eptan
eprobability (8), whi
h resembles the Bayes fa
tor of a standard Bayesian linear model.This impli
it marginalisation of � in the proposal step leads to eÆ
ient dimension sam-pling, as the �'s are being updated from their full 
onditional distributions given the
hange to the 
ovariate set.To illustrate the approa
h we 
onsider a binary 
lassi�
ation problem taken fromRipley (1996). The regression task is to predi
t whether patients will test positive ornegative for diabetes using a set of seven 
ovariate measurements, observed on a groupof adult females of Pima Indian heritage. There are 532 re
ords, sele
ted from a largerdata set, with the following predi
tor variables: number of pregnan
ies (NP); plasmaglu
ose 
on
entration (Gl); distoli
 blood pressure (BP); tri
eps skin fold thi
kness (TST);body mass index (BMI); diabetes pedigree fun
tion (DP); and, age (Ag). We obtainedthe data from the web site www.stats.ox.a
.uk/�ripley/PRbook/. In Ripley (1996)they used a 
lassi
al (non-Bayesian) logisti
 regression model and noted that some of5



Covariates NP Gl BP TST BMI DP AgE[
i℄ 0.925 0.998 0.009 0.034 0.992 0.946 0.131MCMC Std 0.087 0.001 0.009 0.013 0.001 0.034 0.111Table 1: Row 1, lists the 
ovariate a
ronyms for the Pima Indian data set examplein Se
tion 3: (NP), number of pregnan
ies; (Gl), plasma glu
ose 
on
entration; (BP),distoli
 blood pressure; (TST), tri
eps skin fold thi
kness; (BMI), body mass index; (DP),diabetes pedigree fun
tion; and, (Ag), age. Row 2, lists the posterior probabilities of
ovariate sele
tion. In row 3, we report the MCMC standard deviations of the estimates�(
i = 1jy), taken a
ross nine 
onse
utive post burn-in regions of size 1,000 MCMCsamples.the 
ovariates appeared irrelevant. Ripley (1996) went on to perform stepwise variablesele
tion using an AIC model 
hoi
e 
riteria and found that the 
ovariates blood pressureand skin thi
kness were dropped from the �nal model. We performed a Bayesian analysisusing independent priors on the 
ovariates and regression 
oeÆ
ients as, �(
) =Qi �(
i),with �(
i = 1) = 0:5 for i = 1; : : : ; p and �(�) = N(0; 100Ip). Updates to �i were madeusing (6). Updates to the 
ovariate set were made using a Metropolis proposal as follows.We sele
t a 
ovariate at random and propose 
�i = 1, if the 
urrent 
i = 0, 
�i = 0otherwise. This results in the �nal term, �(
�)q(
j
�)�(
)q(
�j
) , in (8) being one.We performed a simulation of 10,000 iterations and dis
arded the �rst 1,000 as a burn-in. In Table 1, we show the estimates of the posterior probabilities, �(
i = 1jy), for theseven 
ovariates, along with the standard deviations in these MCMC estimates taken fromnine 
onse
utive regions of the post burn-in MCMC samples, f(1001; 3000); : : : ; (9001; 10000)g.The 
hain appears to be mixing well under the data augmentation approa
h. The overalla

eptan
e rate of the 
ovariate update proposals was around 4% whi
h is good when 
on-sidering the posterior probabilities �(
ijy) shown in Table 1. The estimates of �(
i = 1jy)are in a

ordan
e with the observations of Ripley (1996) though we �nd there also appearsto be some doubt as to the relevan
e of age.4. Random Effe
ts ModelsThe proposed auxiliary variable approa
h is also well tailored to hierar
hi
al logis-ti
 regression models, where latent random e�e
ts follow a Gaussian distribution. Thee�e
ts may be 
onditionally independent, as in multilevel models, or dependent, as forexample in in dynami
 models (for a re
ent review see Fahrmeir and Knorr-Held, 2000)or in hierar
hi
al models with latent Gaussian Markov random �elds. In all these 
ases,the full 
onditional distributions for the random e�e
ts will follow multivariate Gaussiandistributions, whi
h are straightforward to sample from. If the random e�e
ts prior have6



a (spatial or temporal) Markov stru
ture, the algorithm proposed in Rue (2001) providesa fast and eÆ
ient way to simulate from the full 
onditional distribution in one blo
k.As an illustration for a random e�e
ts model, we 
onsider data on salamander matingtaken from M
Cullagh and Nelder (1989). The data set is termed \
hallenging" by Karimand Zeger (1992) be
ause of the binary response variable, (0= failure, 1=su

ess) ofthe mating experiment between a female and a male, and the study design is 
rossedrather than nested, with two sets of random e�e
ts. The data have been 
olle
ted inthree experiments, one 
ondu
ted in the summer and two in the fall where ea
h maleand female salamander has been taken from two di�erent populations: rough-butt andwhiteside population. The total number of experiments was 360. The data is available atwww.stat.u
hi
ago.edu/�pm

/glm/glm.html.We follow model B by Karim and Zeger (1992) 
losely, and in
lude the following�xed e�e
ts in the model: an indi
ator of season, two indi
ators of the male and femalesalamander population and an indi
ator for the intera
tion term. We then add for ea
hmale and female salamander an additional random e�e
t in the model, say bfj and bmk forthe j-th female and the k-th male, whi
h we assume to be independent realizations froma normal distribution with mean zero and varian
e �2f and �2k, respe
tively. The linearpredi
tor for the i-th experiment is hen
e�i = xi� + bfj + bmk :For the varian
e parameters �2f and �2k we assume independent inverse gamma distribu-tions with parameters a = 1:0 and b = 0:1 respe
tively. Assuming the logisti
 regressionmodel with our auxiliary variable approa
h, all full 
onditionals for the random e�e
tsfollow normal distributions.We performed a simulation of 21,000 iterations and dis
arded the �rst 1,000 as a burn-in, using either the separate update of �i, or the joint update of �i and zi. Mixing of allparameters was very good with auto
orrelations dropping qui
kly to zero. The resultshave been in good agreement with those obtained by Karim & Zeger (1992), despite theslightly di�erent model spe
i�
ation (Karim & Zeger use improper priors for varian
e
omponents and random e�e
ts of dimension 2, rather than 1). We fo
us here only on thea

eptan
e rates for the separate and joint updates. Interestingly, the a

eptan
e ratesin the joint updates (min = 0.72, median of 0.97, max = 0.99) are 
onsistently higher
ompared the ones obtained from the separate updates (min = 0.71, median of 0.89, max= 0.90). This suggests that the joint updates might be slightly more eÆ
ient than theseparate ones, at virtually no additional 
omputational 
ost. The a

eptan
e rates areeven higher in the 
orresponding model without the random e�e
ts, whi
h suggests that7



sampling from the prior for �i is an eÆ
ient pro
edure. However, this might be di�erentin other appli
ations, and we will mention alternatives in the dis
ussion.5. Dis
ussionWe have presented an auxiliary variable representation for the Bayesian logisti
 re-gression model that lends itself to eÆ
ient simulation using standard MCMC methods.In parti
ular we highlighted two non-standard models where we believe that gains ineÆ
ien
y will be marked.Popular 
urrent alternatives for MCMC simulation in Bayesian logisti
 regression mod-els are found in Albert & Chib (1993) and Gamerman (1997). In Albert & Chib (1993)it was noted that spe
ifying a s
ale mixture for �i in (3) as �i � Gamma(4; 4) indu
es at-distribution for �i with 8 degrees of freedom whi
h gives a good approximation to thelogisti
 distribution (up to a 
hange in s
ale). However, this remains an approximationand a qq-plot of the true logisti
 distribution against that found using the Student approx-imation reveals 
onsiderable departure in the tails, see Figure 1. In appli
ations it willbe diÆ
ult to assess the e�e
t of this bias on the posterior distribution of the regression
oeÆ
ients. Our approa
h, however, is exa
t and provides a fast and eÆ
ient algorithmfor inferen
e in logisti
 regression models. One 
urrent area of investigation is to usethe method of Albert & Chib (1993) to 
onstru
t an independen
e Metropolis kernel forupdates to �i, where the a

ept-reje
t step 
orre
ts for the approximation.
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Figure 1: Plot of t-quantiles against logisti
 quantiles for probabilities between 0.0001 and0.9999 (Solid line). The dashed line gives the referen
e line if the two distributions are identi
al.8



An alternative algorithm without auxiliary variables is des
ribed in Gamerman (1997).Gamerman suggests a \weighted least squares" Metropolis-Hastings proposal based on alinear Taylor-approximation of the likelihood. This algorithm works well in pra
ti
e, inparti
ular if the number of parameters to be updated is not too large. However, a

ep-tan
e rates will typi
ally be
ome too low in highly parameterized models, for example indynami
 logisti
 regression models. In 
ontrast, the 
orresponding a

eptan
e rates in ourapproa
h will always be unity due to the introdu
tion of the auxiliary variables. More-over, the extension of Gamerman's approa
h to variable dimension settings is non-trivialwhereas we have shown in x3 this to be straightforward using auxiliary variables.Finally we note that the approa
h proposed in this paper is straightforward to extendto the use of nonlinear regression splines (Denison et al., 2002) and to logisti
 regressionmodels for ordinal data, su
h as the 
umulative (Albert & Chib, 1993) or the sequentialmodel (Albert & Chib, 2001). Referen
esAndrews, D.F. & Mallows, C.L. (1974). S
ale mixtures of normal distributions.J. R. Statist. So
. B 36, 99-102.Albert, J. & Chib, S. (1993). Bayesian analysis of binary and poly
hotomous responsedata. Journal of the Ameri
an Statisti
al Asso
iation 88, 669-679.Albert, J. & Chib, S. (2001). Sequential ordinal modeling with appli
ations tosurvival data. Biometri
s, 57, 829-836.Brooks, S.P., Giudi
i, P. & Roberts, G. O. (2003). EÆ
ient 
onstru
tion ofreversible jump MCMC proposal distributions (with dis
ussion). To appear. J. R.Statist. So
. B.Denison, D.G.T., Holmes, C.C., Malli
k, B.K. & Smith, A.F.M. (2002).Bayesian methods for nonlinear 
lassi�
ation and regression. Chi
hester: Wiley.Dey, D.P., Gosh, S. & Malli
k, B. (1999). Generalized Linear Models: A BayesianPerspe
tive. New York: Mar
el Dekker.Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer.Fahrmeir, L. and Knorr-Held, L. (2000). Dynami
 and semiparametri
 models.in: M. S
himek (ed.), Smoothing and Regression: Approa
hes, Computation andAppli
ations, Ch. 18, pp. 513-544, Wiley & Sons, New York.9
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hain Monte Carlo 
omputation and Bayesian modeldetermination. Biometrika, 82, 711-732.Karim, M.R. & Zeger, S.L. (1992). Generalized linear models with random e�e
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