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Effiient simulation of Bayesian logistiregression modelsby Chris C HolmesImperial College LondonLeonhard Knorr-HeldLudwig-Maximilians-University MunihSummaryIn this paper we highlight a data augmentation approah to inferene in the Bayesianlogisti regression model. We demonstrate that the resulting onditional likelihood ofthe regression oeÆients is multivariate normal, equivalent to a standard Bayesian linearregression, whih allows for eÆient simulation using a blok Gibbs sampler. We illustratethat the method is partiularly suited to problems in ovariate set unertainty and randome�ets models.Some Key Words: Auxiliary variables, Bayesian logisti regression, Data augmentation,Markov hain Monte Carlo, Model averaging, Random e�ets, Sale mixture of normals,Variable seletion.
1. IntrodutionBinary regression using Generalised Linear Models (GLMs) is a widely used teh-nique in applied statistis and the Bayesian approah to this subjet is well doumented,e.g. Dey, Gosh and Mallik (1999). However, inferene in Bayesian GLMs is ompliatedby the fat that no onjugate prior exists for the parameters in the model, other than fornormal regression, and this makes simulation diÆult. In a seminal paper, with over 200itations at time of writing, Albert & Chib (1993) demonstrated a data augmentationapproah for binary probit regression models whih renders the onditional distributions1



of the model parameters equivalent to those under the Bayesian linear regression modelwith Gaussian noise. Hene, onjugate priors are available to the onditional likelihoodand the blok Gibbs sampler an then be used to great e�et. In this paper we demon-strate that this is also possible for logisti regression, by using a sale mixture of normalsrepresentation and additional auxiliary variables. This is an important disovery as typ-ially the logit link is the method of hoie for most statistial appliations, due to thestrong interpretation of the regression oeÆients in terms of the hange to the log-oddsof one lass over another for unit hange in the assoiated ovariate. In addition, the logitlink avoids the need for a table look up, as in the umulative normal (probit link) whihis known to be sensitive to evaluation in the tails of the link funtion.In x2 we present the method and algorithms for sampling from a Bayesian logistiregression model. The approah is also well suited to generalisations of the standardlogisti model and in x3, x4 we desribe two suh appliations, namely, in ovariate setunertainty and random e�et models. Finally, in x5 we o�er a brief disussion, ontrastingthe approah to existing methods and pointing to possible extensions.2. A data augmentation approah to the logisti regression modelTo begin, onsider the Bayesian logisti regression model,yi � Bernoulli (g�1(�i))�i = xi�� � �(�) (1)where yi 2 f0; 1g; i = 1; : : : ; n is a binary response variable for a olletion of n objetswith assoiated p ovariate measurements xi = (xi1; : : : ; xip), g(u) = log(u=(1�u)) is thelogisti link funtion, �i is the linear preditor and � represents a (p� 1) olumn vetorof regression oeÆients whih a priori are from some distribution �(�).The logisti model in (1) has an equivalent representation using auxiliary variables,yi = ( 1 if zi > 00 otherwisezi = xi� + �i�i � �(�i)� � �(�) (2)where yi is now deterministi onditional on the sign of the stohasti auxiliary variablezi and �(�i) is the standard logisti distribution. Under independene of �i, i = 1; : : : ; n,2



the marginal distribution of y in model (2), having integrated out z and �, is the same asin (1). In what follows, we shall introdue a further set of variables, �i, i = 1; : : : ; n, andnote the additional representationyi = ( 1 if zi > 00 otherwisezi = xi� + �i�i � N(0; �i)�i = (2 i)2 i � KS� � �(�) (3)where N(0; �i) is a mean zero normal distribution with variane �i and  i, i = 1; : : : ; n,are independent random variables following the Kolmogorov-Smirnov (KS) distribution,e.g. Devroye (1986). In this ase, �i has a sale mixture of normal form with a marginallogisti distribution (Andrews & Mallows, 1974), so that the marginal distributions �(�jy)for models (3), (2) and (1) are equivalent.The advantage of working with representation (3) is that, for judiious hoie of �(�),it lends itself to eÆient simulation using the blok Gibbs sampler. In partiular, in thease of a normal prior on �, �(�) = N(m; v), the full onditional distribution of � is stillnormal, �jz;�;y � N(�̂; V )�̂ = V (v�1m + x0Wz)V = (v�1 + x0Wx)�1;W = diag(��11 ; : : : ; ��1n ); (4)here x = (x01;x02; : : : ;x0n)0, while the full onditional for zi is trunated normal,zij�;xi; yi; �i / ( N(xi�; �i) I(zi > 0) if yi = 1N(xi�; �i) I(zi � 0) otherwise; (5)whih is simple to sample from, see for example Robert (1995).The onditional distribution of the variane parameter �i does not have a standardform though updating is onveniently ahieved through a Metropolis-Hastings proposalfrom the prior distribution �(�i). This involves sampling from the KS distribution forwhih eÆient and exat algorithms exist (Devroye, 1986). The Metropolis-Hastings3



aeptane ratio will then be� = ��i��i � 12 exp�(zi � �i)2� 12�i � 12��i �� ; (6)where �i is the urrent and ��i the proposed new value. Note that sampling from the prioravoids the evaluation of the KS density using a table look up, as it is known only as anin�nite series.Alternatively we an easily onstrut a joint proposal for �i and zi by �rst sampling ��ifrom the prior, as above, then generating z�i from the trunated normal (5), onditionalon ��i , and then aept-rejet ��i and z�i jointly. The aeptane ratio is in this ase� = 8<: 1��(�i=p��i )1��(�i=p�i) if yi = 1�(�i=p��i )�(�i=p�i) if yi = 0; (7)here � denotes the umulative distribution funtion of the standard normal distribution.In this way, the formulas (4), (5), (6) or (7), provide the basis of eÆient samplingfrom the Bayesian logisti regression model. The approah is easy to inorporate intostatistial software and we believe it to be highly eÆient ompared to urrent samplingtehniques. Furthermore, in the next two setions we highlight two generalisations ofthe standard logisti regression model where the auxiliary variable representation (3) isespeially useful, namely in situations of ovariate set unertainty and for random e�etsmodels. 3. Covariate set unertaintyIt is often the ase that the statistial analyst may suspet that some of the availableovariates are irrelevant to the regression task. A onvenient approah to this problemis to adopt a prior distribution on the ovariate matrix �(x) that plaes mass on the2p possible sub-models made up of di�ering ovariates or olumns of x. In partiular,onsider the ovariate indiator vetor  = f1; : : : ; pg, i 2 f0; 1g, i = 1; : : : ; p, suhthat i = 1 if the ith ovariate is present in the model and i = 0 if it is not. A prioron the model spae an be spei�ed via a prior on the ovariate indiator, �(). Theparameter vetor  an then be inluded in the model spei�ation and updated as partof the simulation.Bayesian analysis of models of random dimension have beome extremely popular fol-lowing the introdution of sampling tehniques suh as Green (1995). However, simulationof variable dimensional models an be problemati as a hange to the model struturetypially auses a large hange to the likelihood of the urrent parameter values in the4



model, see Brooks et al. (2002). A key advantage of using model (3) is that when up-dating the ovariate set de�ned by  we an ondition on z and jointly update the �'s aswell, from their full onditional distribution given the new model struture. The vetorz retains information about the likelihood whih allows for optimal updates to be madeto �, given a hange in the ovariate set. Updating the � vetor jointly with  is ex-tremely important as typially, when the ovariates are non-orthogonal, there is stronglinear dependene between the regression oeÆients.To sample from the posterior model spae, we suggest a Metropolis-Hastings step toupdate the urrent ovariate set, de�ned by , with a joint update to � as well,q(�;��) = �(��j�; z;W ) q(�);where q() denotes a proposal distribution, �(��j�; z;W ) is the onditional multivariatenormal posterior distribution (4) given the ovariate set de�ned by �, and q(�) is a,possibly symmetri, Metropolis-Hastings proposal density that may, or may not, be basedon the urrent ovariate set . In this ase, some straightforward algebra leads to theaeptane probability of the move as,� = min(1; jV�j1=2jv j1=2jVj1=2jv�j1=2 exp(�0:5�̂0�V �1� �̂�)exp(�0:5�̂0V �1 �̂) �(�)q(j�)�()q(�j) ) (8)where � denotes the aeptane probability of the proposal and f�̂; Vg are de�ned in(4), where the subsripts indiate that they are onditioned on the ovariate set de�nedby . Note that the realised (drawn) values of f�;��g do not appear in the aeptaneprobability (8), whih resembles the Bayes fator of a standard Bayesian linear model.This impliit marginalisation of � in the proposal step leads to eÆient dimension sam-pling, as the �'s are being updated from their full onditional distributions given thehange to the ovariate set.To illustrate the approah we onsider a binary lassi�ation problem taken fromRipley (1996). The regression task is to predit whether patients will test positive ornegative for diabetes using a set of seven ovariate measurements, observed on a groupof adult females of Pima Indian heritage. There are 532 reords, seleted from a largerdata set, with the following preditor variables: number of pregnanies (NP); plasmagluose onentration (Gl); distoli blood pressure (BP); trieps skin fold thikness (TST);body mass index (BMI); diabetes pedigree funtion (DP); and, age (Ag). We obtainedthe data from the web site www.stats.ox.a.uk/�ripley/PRbook/. In Ripley (1996)they used a lassial (non-Bayesian) logisti regression model and noted that some of5



Covariates NP Gl BP TST BMI DP AgE[i℄ 0.925 0.998 0.009 0.034 0.992 0.946 0.131MCMC Std 0.087 0.001 0.009 0.013 0.001 0.034 0.111Table 1: Row 1, lists the ovariate aronyms for the Pima Indian data set examplein Setion 3: (NP), number of pregnanies; (Gl), plasma gluose onentration; (BP),distoli blood pressure; (TST), trieps skin fold thikness; (BMI), body mass index; (DP),diabetes pedigree funtion; and, (Ag), age. Row 2, lists the posterior probabilities ofovariate seletion. In row 3, we report the MCMC standard deviations of the estimates�(i = 1jy), taken aross nine onseutive post burn-in regions of size 1,000 MCMCsamples.the ovariates appeared irrelevant. Ripley (1996) went on to perform stepwise variableseletion using an AIC model hoie riteria and found that the ovariates blood pressureand skin thikness were dropped from the �nal model. We performed a Bayesian analysisusing independent priors on the ovariates and regression oeÆients as, �() =Qi �(i),with �(i = 1) = 0:5 for i = 1; : : : ; p and �(�) = N(0; 100Ip). Updates to �i were madeusing (6). Updates to the ovariate set were made using a Metropolis proposal as follows.We selet a ovariate at random and propose �i = 1, if the urrent i = 0, �i = 0otherwise. This results in the �nal term, �(�)q(j�)�()q(�j) , in (8) being one.We performed a simulation of 10,000 iterations and disarded the �rst 1,000 as a burn-in. In Table 1, we show the estimates of the posterior probabilities, �(i = 1jy), for theseven ovariates, along with the standard deviations in these MCMC estimates taken fromnine onseutive regions of the post burn-in MCMC samples, f(1001; 3000); : : : ; (9001; 10000)g.The hain appears to be mixing well under the data augmentation approah. The overallaeptane rate of the ovariate update proposals was around 4% whih is good when on-sidering the posterior probabilities �(ijy) shown in Table 1. The estimates of �(i = 1jy)are in aordane with the observations of Ripley (1996) though we �nd there also appearsto be some doubt as to the relevane of age.4. Random Effets ModelsThe proposed auxiliary variable approah is also well tailored to hierarhial logis-ti regression models, where latent random e�ets follow a Gaussian distribution. Thee�ets may be onditionally independent, as in multilevel models, or dependent, as forexample in in dynami models (for a reent review see Fahrmeir and Knorr-Held, 2000)or in hierarhial models with latent Gaussian Markov random �elds. In all these ases,the full onditional distributions for the random e�ets will follow multivariate Gaussiandistributions, whih are straightforward to sample from. If the random e�ets prior have6



a (spatial or temporal) Markov struture, the algorithm proposed in Rue (2001) providesa fast and eÆient way to simulate from the full onditional distribution in one blok.As an illustration for a random e�ets model, we onsider data on salamander matingtaken from MCullagh and Nelder (1989). The data set is termed \hallenging" by Karimand Zeger (1992) beause of the binary response variable, (0= failure, 1=suess) ofthe mating experiment between a female and a male, and the study design is rossedrather than nested, with two sets of random e�ets. The data have been olleted inthree experiments, one onduted in the summer and two in the fall where eah maleand female salamander has been taken from two di�erent populations: rough-butt andwhiteside population. The total number of experiments was 360. The data is available atwww.stat.uhiago.edu/�pm/glm/glm.html.We follow model B by Karim and Zeger (1992) losely, and inlude the following�xed e�ets in the model: an indiator of season, two indiators of the male and femalesalamander population and an indiator for the interation term. We then add for eahmale and female salamander an additional random e�et in the model, say bfj and bmk forthe j-th female and the k-th male, whih we assume to be independent realizations froma normal distribution with mean zero and variane �2f and �2k, respetively. The linearpreditor for the i-th experiment is hene�i = xi� + bfj + bmk :For the variane parameters �2f and �2k we assume independent inverse gamma distribu-tions with parameters a = 1:0 and b = 0:1 respetively. Assuming the logisti regressionmodel with our auxiliary variable approah, all full onditionals for the random e�etsfollow normal distributions.We performed a simulation of 21,000 iterations and disarded the �rst 1,000 as a burn-in, using either the separate update of �i, or the joint update of �i and zi. Mixing of allparameters was very good with autoorrelations dropping quikly to zero. The resultshave been in good agreement with those obtained by Karim & Zeger (1992), despite theslightly di�erent model spei�ation (Karim & Zeger use improper priors for varianeomponents and random e�ets of dimension 2, rather than 1). We fous here only on theaeptane rates for the separate and joint updates. Interestingly, the aeptane ratesin the joint updates (min = 0.72, median of 0.97, max = 0.99) are onsistently higherompared the ones obtained from the separate updates (min = 0.71, median of 0.89, max= 0.90). This suggests that the joint updates might be slightly more eÆient than theseparate ones, at virtually no additional omputational ost. The aeptane rates areeven higher in the orresponding model without the random e�ets, whih suggests that7



sampling from the prior for �i is an eÆient proedure. However, this might be di�erentin other appliations, and we will mention alternatives in the disussion.5. DisussionWe have presented an auxiliary variable representation for the Bayesian logisti re-gression model that lends itself to eÆient simulation using standard MCMC methods.In partiular we highlighted two non-standard models where we believe that gains ineÆieny will be marked.Popular urrent alternatives for MCMC simulation in Bayesian logisti regression mod-els are found in Albert & Chib (1993) and Gamerman (1997). In Albert & Chib (1993)it was noted that speifying a sale mixture for �i in (3) as �i � Gamma(4; 4) indues at-distribution for �i with 8 degrees of freedom whih gives a good approximation to thelogisti distribution (up to a hange in sale). However, this remains an approximationand a qq-plot of the true logisti distribution against that found using the Student approx-imation reveals onsiderable departure in the tails, see Figure 1. In appliations it willbe diÆult to assess the e�et of this bias on the posterior distribution of the regressionoeÆients. Our approah, however, is exat and provides a fast and eÆient algorithmfor inferene in logisti regression models. One urrent area of investigation is to usethe method of Albert & Chib (1993) to onstrut an independene Metropolis kernel forupdates to �i, where the aept-rejet step orrets for the approximation.
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Figure 1: Plot of t-quantiles against logisti quantiles for probabilities between 0.0001 and0.9999 (Solid line). The dashed line gives the referene line if the two distributions are idential.8



An alternative algorithm without auxiliary variables is desribed in Gamerman (1997).Gamerman suggests a \weighted least squares" Metropolis-Hastings proposal based on alinear Taylor-approximation of the likelihood. This algorithm works well in pratie, inpartiular if the number of parameters to be updated is not too large. However, aep-tane rates will typially beome too low in highly parameterized models, for example indynami logisti regression models. In ontrast, the orresponding aeptane rates in ourapproah will always be unity due to the introdution of the auxiliary variables. More-over, the extension of Gamerman's approah to variable dimension settings is non-trivialwhereas we have shown in x3 this to be straightforward using auxiliary variables.Finally we note that the approah proposed in this paper is straightforward to extendto the use of nonlinear regression splines (Denison et al., 2002) and to logisti regressionmodels for ordinal data, suh as the umulative (Albert & Chib, 1993) or the sequentialmodel (Albert & Chib, 2001). ReferenesAndrews, D.F. & Mallows, C.L. (1974). Sale mixtures of normal distributions.J. R. Statist. So. B 36, 99-102.Albert, J. & Chib, S. (1993). Bayesian analysis of binary and polyhotomous responsedata. Journal of the Amerian Statistial Assoiation 88, 669-679.Albert, J. & Chib, S. (2001). Sequential ordinal modeling with appliations tosurvival data. Biometris, 57, 829-836.Brooks, S.P., Giudii, P. & Roberts, G. O. (2003). EÆient onstrution ofreversible jump MCMC proposal distributions (with disussion). To appear. J. R.Statist. So. B.Denison, D.G.T., Holmes, C.C., Mallik, B.K. & Smith, A.F.M. (2002).Bayesian methods for nonlinear lassi�ation and regression. Chihester: Wiley.Dey, D.P., Gosh, S. & Mallik, B. (1999). Generalized Linear Models: A BayesianPerspetive. New York: Marel Dekker.Devroye, L. (1986). Non-Uniform Random Variate Generation. New York: Springer.Fahrmeir, L. and Knorr-Held, L. (2000). Dynami and semiparametri models.in: M. Shimek (ed.), Smoothing and Regression: Approahes, Computation andAppliations, Ch. 18, pp. 513-544, Wiley & Sons, New York.9
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