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Abstract 
 
Reducing global carbon emissions and mitigating the adverse impacts of climate change is a 
fundamental environmental challenge. Australia’s target is to reduce carbon emissions by 
between 26% and 28% by 2030 compared to 2005 emission levels. Carbon pricing can be 
an effective market-based instrument for reducing carbon emissions. This paper examines 
the impact of varying carbon price levels on carbon emissions by incorporating the different 
carbon price levels in the electricity prices and eventually employing time series 
econometrics based on an autoregressive distributed lagged (ARDL) model. We use 
quarterly data spanning the period 2001 Q3 to 2019 Q1 and undertake varying scenario 
analysis. First, we design a scenario with a low and high carbon tax where we test and 
confirm the existence of a long-run equilibrium relationship among economic output, 
wholesale electricity price, and emissions under the high carbon tax scenario based on 
cointegration relationships. Our empirical results reveal that a stable wholesale electricity 
pricing with a carbon price and carbon emission nexus exists in the long run where a  
1% hike in wholesale electricity price under a high carbon price scenario reduces carbon 
emissions by 0.57%. The vector error correction modeling-based Granger causality test 
suggests the presence of a bidirectional causality among electricity pricing, carbon prices, 
and carbon emissions in the long run. Therefore, Australia needs to implement a carbon 
emissions mitigation scheme that places a high tax rate on polluters such as fossil-based 
electricity generators to achieve reduced emissions and a sustainable economy.  
 
Keywords: carbon emissions, carbon prices, Australia, VECM Granger causality  
 
JEL Classification: Q54, P22, N57, C51 
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1. INTRODUCTION 
The Australian electricity sector is carbon-intensive and emissions from the electricity 
sector are one of the significant drivers of rising national emissions. For example,  
fossil fuels contributed 77% of total electricity generation in 2019, including coal  
(56%) and gas (21%). Therefore, decarbonization of the Australian electricity sector 
offers a natural pathway towards reducing carbon emissions in Australia and is a 
cornerstone of the Australian low-carbon economic transition (Garnaut 2019). More 
than 200 terawatt hours (twh) of electricity is traded through wholesale electricity 
generation via the Australian National Electricity Market (NEM), which consists of  
more than 9 million customers and a total electricity generating capacity of more than 
50,000 megawatts (MW). However, until now, the impact of wholesale electricity pricing 
on emission reductions has received little detailed attention among researchers and 
policymakers in Australia. This study examines the impact of wholesale electricity 
prices with varying levels of carbon pricing on the reduction of carbon emissions in 
Australia while also incorporating the effect of economic output in a trivariate 
framework. 
Australia introduced the Carbon Pricing Mechanism (CPM) from July 2012 to motivate 
the use of clean energy through a legislation package under the Clean Energy Act in 
2011, and to meet the national longer-term target of reducing greenhouse gas (GHG) 
emissions to 80% below the 2000 levels by 2050. Carbon pricing is a crucial instrument 
for discouraging the largest carbon emitters and encouraging the adoption of, and 
investment in, sustainable and renewable energy sectors such as hydro, solar, wind, 
etc. (Quiggin, Adamson, and Quiggin 2014). Australia initiated the CPM from 1 July 
2012 with a fixed price of AUD23/tCO2e until 30 June 2013 and increased the carbon 
price to AUD24.15/tCO2e from 1 July 2013 until 30 June 2014. The carbon price further 
increased to AUD25.40/tCO2e from 1 July 2014 until 30 June 2015. The Emissions 
Trading Scheme (ETS) was also introduced in 2015, as a consequence of a new 
government being elected in July 2014, but it was ultimately shelved. How effective 
was the implementation of carbon pricing in reducing the carbon emissions from 
electricity generation in Australia? 
This paper explores the impact of carbon prices in reducing carbon emissions by also 
incorporating the effect on economic output in Australia by focusing on the impacts of 
different levels of carbon taxes on carbon emissions. However, the limited experience 
with carbon pricing in Australia has also resulted in very few studies being available 
(Ding, Zhang, and Song 2019; Han et al. 2019; Lin and Jia 2019; Weibin et al. 2011; 
Diaz, Muñoz, and Moreno 2020). Australia does not have continuous historical time 
series data on carbon pricing either. The future of carbon pricing in itself is also unclear 
in Australia (Quiggin, Adamson, and Quiggin 2014). We therefore develop scenario 
modeling based on different carbon price scenarios, namely a low-price scenario, 
middle-price scenario, and high-carbon price scenario, and compare the emission 
reduction performance of these three different scenarios with the business-as-usual 
(BAU) scenario to address the future uncertainty around carbon pricing. The 
estimations are undertaken by applying the autoregressive distributed lagged model 
(ARDL) approach and further supported by alternative modeling specifications and 
techniques based on vector error correction modeling (VECM) for ensuring the 
robustness of results.  
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The carbon pricing literature also points to a scarcity of studies examining the impact of 
carbon pricing in reducing CO2 emissions channeled through electricity prices while 
most of the existing studies are examined in a multivariable framework by incorporating 
economic growth, energy intensity, and other additional variables1. Recent studies 
examining the impacts of carbon pricing on emission reduction include those by Diaz, 
Muñoz, and Moreno (2020) for Chile; Adetutu, Odusanya, and Weyman-Jones (2020) 
for the UK; Yuan et al. (2011) for the US; Wang et al. (2019) for the European Union; 
and Lin and Jia (2018), Ding, Zhang, and Song (2019), and Cao et al. (2019) for the 
People’s Republic of China (PRC). The Australian evidence on the environmental 
impacts of carbon pricing, particularly focusing on emissions reduction, is also limited 
(Meng, Siriwardana, and McNeill 2013; Dwyer et al. 2013; Fahimnia et al. 2013; 
Bakhtiari 2018; Markham et al. 2018). 
Yuan at el. (2011) reported that carbon and energy taxes are the most cost-effective 
instruments for reducing emissions and curbing total energy usage in order to maintain 
a range of energy and environmental quality. Diaz, Muñoz, and Moreno (2020) showed 
that carbon tax leads to more cuts in carbon emissions than normal pollution policies 
through imposing a tax on carbon-emitting power generators using an equilibrium 
model. Lin and Jia (2018) considered different taxes on carbon based on different 
industries to examine the effects of carbon tax on the economy and the environment 
using a computable general equilibrium (CGE) framework. The results showed that the 
carbon tax negatively impacts GDP, but a high tax scenario will not surpass 0.5%. The 
findings recommended that the PRC should adopt a carbon tax scheme and alongside 
impose a higher tax on energy-generating firms and businesses that are highly energy-
intensive. Frey (2017) also applied a CGE model to examine the economic and 
environmental impacts of different carbon tax levels in Ukraine. 
In the Australian context, a study by Meng, Siriwardana, and McNeill (2013) simulated 
the impact of different carbon tax scenarios on CO2 emissions through a CGE model 
and also extending the social accounting matrix (SAM). The results showed that the 
carbon price is effective in reducing emissions but also brings about a small contraction 
in economic output. Likewise, Bakhtiari (2018) showed that the July 2012 to July 2014 
implementation of the carbon pricing scheme in Australia accelerated the deployment 
of cleaner technology and thereby reduced emissions based on a data envelopment 
analysis. A report by the Australian Department of the Environment recorded that the 
Australian economy experienced a 2.9% decrease in carbon emissions after carbon tax 
implementation throughout the plan and an 8.9% decrease in the electricity emissions 
sector during the same period (NGGI 2017). A recent study by Han et al. (2019) 
investigated the wealth impacts brought about by the introduction of the Australian 
CPM, with findings showing that carbon-intensive businesses and industries suffer the 
most in terms of value destruction with these businesses losing a value of 6.97% 
compared to other firms’ value losses of around 3.67%. 
Most of the existing studies empirically examining the impact of carbon prices on 
carbon emissions are based on simulations where the quantitative analysis is based  
on CGE modeling as the main method (Timilsina 2018). Studies based on historical 
time series data to model the impacts of wholesale electricity pricing on emissions 
reductions are very limited in general and more so in the Australian context. 
Furthermore, the importance of carbon pricing as a useful market-based instrument for 
curbing emissions and mitigating adverse climate change impacts has been gaining 
renewed attention since the Paris Agreement on climate change. Therefore, our study 

 
1  We interchangeably use the terms “prices” and “taxes” throughout the paper when referring to carbon 

tax/price. 
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is also timely in terms of providing policy inputs to energy and climate policymakers on 
the enabling role of carbon pricing on emissions pricing through the realms of the 
carbon-intensive electricity sector such as in Australia.  
The major findings of this paper include: (1) CO2 emissions, carbon prices, and 
economic output are cointegrated, implying the presence of a long-run equilibrium 
relationship among the variables; (2) both carbon prices and economic output 
coefficients are significant with respect to CO2 emissions; (3) a high carbon price plays 
a crucial role in mitigating carbon emissions. However, economic output is positively 
linked with CO2 emissions. We also found a bidirectional (or feedback) relationship 
between CO2 emissions and economic output while there is long-run Granger causality 
running from carbon prices to economic output and CO2 emissions. The results from 
the impulse response functions (IRFs) showed that one standard deviation shock to 
carbon tax results in a gradual reduction of carbon emissions while economic output 
also starts to decline after a certain period. We also conducted a robustness check  
by applying an autoregressive distributed lagged model (ARDL) and vector error 
correction model (VECM). These empirical results from the robustness checks support 
our major results. 
The rest of the paper is constructed as follows. Section 2 briefly discusses the 
wholesale electricity price formation in the Australian National Electricity Market (NEM). 
Section 3 outlines the model, the econometrics methods developed, and the data  
used in this study. The empirical findings for all of the estimation methods and the 
Granger causality tests are described in Section 4. Section 5 offers relevant policy 
recommendations and concludes the paper. 

2. PRICE FORMATION IN THE NATIONAL ELECTRICITY 
MARKET (NEM) IN AUSTRALIA 

The NEM is a wholesale electricity market that began operation in Australia in 1998 
and comprises the physically interconnected states of South Australia, New South 
Wales, Queensland, Victoria, and the Australian Capital Territory. Tasmania joined the 
NEM in 2005, with a direct physical interconnection being operational from 2006. 
Therefore, the NEM globally is among the largest interconnected power markets, with 
transmission network lengths spanning a distance of around 5,000 km running from 
Port Lincoln in South Australia to Port Douglas in Queensland while being connected to 
Tasmania through the Bass Strait (Australian Energy Market Operator 2020). The NEM 
reform is an energy-only gross pool design with a real-time spot market for coordinated 
scheduling and dispatch and a forward derivatives market that addresses concerns 
around resource adequacy and new capacity. The price volatility risk for future 
electricity sales is managed by retailers and generators, who often enter into hedging 
contracts.  
The Australian Energy Market Operator (AEMO) centrally coordinates the process of 
dispatching wholesale electricity while bearing in mind that the demand for electricity 
needs to be instantaneously matched with supply in real time as electricity storage is 
not possible. Therefore, the AEMO runs a spot wholesale exchange for electricity 
across the five physically interconnected regions where generators offer supply bids to 
the market with set amounts of electricity at set prices for set time periods (currently 
every five minutes), and with the possibility of resubmitting the offered amounts at any 
point in time. The AEMO then decides on the electricity generators to be deployed 
following a least-cost dispatch process where the cheapest generation will be put into 
operation first to meet demand. Meeting the electricity demand based on a least-cost 
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dispatch (or the most cost-efficient way) has served the NEM well in the past (Nepal 
and Foster 2016; Do, Nepal, and Smyth 2020) while the wholesale market has been an 
epitome of the microeconomic reform in Australia for most of the past two decades by 
virtually any metric (Simshauser 2019).  
More than 100 electricity generators and retailers participate in the NEM where 
wholesale electricity is sold to large customers and retailers, and eventually gets sold 
to all consumers. Wholesale electricity prices in the NEM fluctuate at any point in time 
as per changing demand and supply conditions, implying that the wholesale price of 
electricity is based on generator offers to supply electricity to the market at specified 
volumes and prices at set times and the electricity demand at any given time. The 
National Electricity Rules have set a limit on the maximum spot price (also known as 
the “market price cap”) of $14,200 per megawatt hour (MWh) and a minimum spot 
price in the form of a market price floor of -$1,000 per MWh to achieve the NEM’s 
reliability standards. 

3. EMPIRICAL MODEL, DATA, AND METHODOLOGY 
Our aim is to examine the short- and long-run relationships between wholesale 
electricity prices and varying levels of carbon prices, carbon emissions, and economic 
output. The debate around carbon pricing has shifted from academic discussion to  
one of practical importance over the last 30 years with a general consensus around  
its effectiveness in reducing emissions (Meinshausen et al. 2009; Bureau 2011; 
Edenhofer and Kalkuhl 2011; Liang and Wei 2012). Thus, carbon pricing can affect the 
extent to which carbon emissions decrease desirably without reducing economic 
output, which needs to be examined in the Australian context. 

3.1 Model 
Previous studies have noted that carbon pricing is a key market-based instrument  
in reducing emissions (Fang et al. 2012, 2013; Tian and Jin 2012;). Therefore, the 
relationship between economic output with carbon price constraints and CO2 emissions 
is expressed as below: 

𝐶𝐶𝐶𝐶2𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1 𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜 (𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑣𝑣𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑒𝑒𝑜𝑜𝑒𝑒𝑐𝑐𝑜𝑜𝑣𝑣 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜)𝑡𝑡  

+𝛽𝛽2𝑜𝑜𝑒𝑒𝑜𝑜𝑣𝑣𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑒𝑒𝑝𝑝𝑜𝑜𝑒𝑒𝑡𝑡 + 𝜀𝜀𝑡𝑡 (1) 

All the variables in Eq. (1) can be transformed into a natural logarithmic linear form  
and 𝜀𝜀𝑡𝑡 is the disturbance term. 𝐶𝐶𝐶𝐶2𝑡𝑡 represents carbon emissions at time t, wholesale 
electricity price is adjusted to include carbon prices under the three different scenarios 
as previously discussed, and GDP is used to capture the underlying economic output. 
The long-run elasticity parameters of emissions are respectively 𝛽𝛽1 and 𝛽𝛽2 with respect 
to wholesale electricity price with carbon prices and economic output.  

3.2 Data 

This study has collated and retrieved data on carbon emissions from the Department of 
the Environment and Energy of the Australian Government and wholesale electricity 
price data from the Australian Energy Market Operator (AEMO), and real GDP data are 
sourced from the Australian Bureau of Statistics (ABS). The data span from the third 
quarter (Q3) of 2001 to up to the first quarter (Q1) of 2019. The carbon emissions 
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(million tonnes CO2 equivalent), wholesale electricity price (in AUD$ per megawatt 
hour), and real GDP (in billion AUD) data variables are seasonally adjusted. 

3.2.1  Scenario Design 
We developed three scenarios to gauge the effect of carbon prices on emissions 
reductions: AUD23/t CO2e (low carbon tax rate), AUD60/t CO2e (medium carbon tax 
rate), and AUD80/t CO2e (high carbon tax rate) (in 2012 dollars), respectively. We 
raised the tax rate by 5% each year, reflecting a rational range in many countries and 
regions of the world, and provided market-based policy instrument schemes (Chapple, 
Clarkson, and Gold 2013; Sarkis and Tamarkin 2005; Fahimnia et al. 2013). Table 1 
shows the different carbon tax levels. Our BAU scenario does not include a carbon tax 
for the entire time span apart from its implementation between 2012 and 2014 in 
Australia. ELECP12, ELECP2, and ELECP3 scenarios assume that the government 
imposes a carbon tax of AUD23, AUD60, and AUD80 per ton of emissions, 
respectively. We convert the unit of tCO2e to MWh3 to simplify our analysis. Figure 1 
below shows that the wholesale electricity price was not changed drastically even after 
the Australian government introduced carbon prices (AUD23/tCO2e) between 2012  
and 2014. 

Table 1: Scenario Design of Carbon Pricing 
Scenarios Carbon Prices (AUD/tCO2e) 
BAU – 
ELECP1 23 
ELECP2 60 
ELECP3 80 

Figure 1: Electricity Price (AUD/MWh) 

 

 
2  ELECP refers to electricity price with carbon prices under varying carbon price scenarios (ELECP1, 

ELECP2, and ELECP3). 
3  We convert the unit from tCO2e to MWh according to the guidelines of the Department of the 

Environment and Energy produced by the Australian government. 
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3.3 Econometric Methodology  

3.3.1  ARDL (Autoregressive Distributed Lag) Model 
We employed the ARDL model advocated by Pesaran and Smith (1998) and Pesaran, 
Shin, and Smith (2001) to explore the dynamics and existence of long- and short-run 
relationships between carbon emissions, electricity prices with carbon prices, and 
economic output. ARDL estimations have many econometric benefits over other time 
series econometric frameworks. Most notably, Pesaran and Shin (1999) show that 
ARDL estimation handles a mixed order of integration of time series data variables 
whether the series integrated is of the order zero (I(0)) or 1 (I(1)). Moreover, the ARDL 
method, by following a simple linear transformation, enables the generation of a 
dynamic and unrestricted error correction model incorporating short-run dynamics  
with long-run equilibrium while not losing any long-run information. The ARDL 
representation for Eq. (1) is formally expressed in the following terms:  

Δ𝐶𝐶𝐶𝐶2𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶2𝑡𝑡 + 𝛽𝛽2𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜 𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑒𝑒𝑜𝑜𝑒𝑒𝑐𝑐𝑜𝑜𝑣𝑣 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑡𝑡−1   

+ 𝛽𝛽3𝑜𝑜𝑒𝑒𝑜𝑜𝑣𝑣𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑒𝑒𝑝𝑝𝑜𝑜𝑒𝑒𝑡𝑡−1 + �𝛾𝛾𝑖𝑖

𝑝𝑝

𝑖𝑖=1

Δ𝐶𝐶𝐶𝐶2𝑡𝑡−1 

+�𝛾𝛾𝑗𝑗

𝑝𝑝

𝑗𝑗=0

Δ 𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜 𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑒𝑒𝑜𝑜𝑒𝑒𝑐𝑐𝑜𝑜𝑣𝑣 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑡𝑡−𝑗𝑗 

+�𝛾𝛾𝑘𝑘

𝑝𝑝

𝑘𝑘=0

Δ𝑜𝑜𝑒𝑒𝑜𝑜𝑣𝑣𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑒𝑒𝑝𝑝𝑜𝑜𝑒𝑒𝑡𝑡−𝑘𝑘 + 𝜀𝜀𝑡𝑡  

(2) 

where the symbol ∆ is the first-difference operator and refers to the dynamics of error 
correction dynamics, the terms with 𝛽𝛽𝑖𝑖 are the parameters of the long-run relationships, 
and 𝜀𝜀𝑡𝑡 is iid (independent and identically distributed) error terms. The choice of  
the optimal lag length structure is based on the Akaike information criteria (AIC).  
We first estimated the F-test in the ARDL model based on Pesaran, Shin, and Smith 
(2001) and conducted an F-test of joint significance on the coefficient of the lagged 
variables. The specifications of the null hypothesis (𝐻𝐻0) of no cointegration and the 
alternative hypothesis (𝐻𝐻𝑎𝑎)  of cointegration among the variables are as follows: 
𝐻𝐻0:𝛽𝛽1 = 𝛽𝛽2 = 𝛽𝛽3 = 0 and 𝐻𝐻𝑎𝑎:𝛽𝛽1 ≠ 𝛽𝛽2 ≠ 𝛽𝛽3 ≠ 0. The rejection of the null hypothesis of 
no cointegration is based on the calculated F-test statistics surpassing the upper critical 
bound and thereby suggesting a long-run relationship among the variables (Pesaran, 
Shin, and Smith 2001). The findings of long-run relationships are inconclusive when the 
F-statistic falls between the lower critical and upper bounds. We cannot reject the null 
hypothesis when the F-statistic is below the lower bound. We also performed different 
diagnostic tests to confirm the robustness of ARDL estimations: serial correlation, 
Gaussian error term normality tests, functional form (RESET), heteroskedasticity tests, 
and autoregressive conditional heteroskedasticity (ARCH) tests. 
An error correction model (ECM) was also estimated to enable exploration of short-run 
dynamics and long-run adjustment based on the specification below: 
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∆𝐶𝐶𝐶𝐶2𝑡𝑡 = 𝛽𝛽0 + �𝛽𝛽1∆𝐶𝐶𝐶𝐶2𝑡𝑡−1

𝑝𝑝

𝑖𝑖−1

 

+�𝛽𝛽2∆𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜 𝑤𝑤𝑒𝑒𝑒𝑒ℎ 𝑒𝑒𝑜𝑜𝑒𝑒𝑐𝑐𝑜𝑜𝑣𝑣 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑡𝑡−1 
𝑝𝑝

𝑖𝑖−1

 

+�𝛽𝛽3∆𝑜𝑜𝑒𝑒𝑜𝑜𝑣𝑣𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑒𝑒𝑝𝑝𝑜𝑜𝑒𝑒𝑡𝑡−1 +
𝑝𝑝

𝑖𝑖−1

𝜏𝜏𝜏𝜏𝐶𝐶𝜏𝜏𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 

(3) 

The ECM model enables CO2 emissions to converge towards their long-run equilibrium 
after experiencing a shock in the short run. The error correction term ECTt-1 captures 
the speed of adjustment in the short run towards the long-run equilibrium steady state. 
The cumulative sum of recursive (CUSUM) and the cumulative sum of recursive 
residual square (CUSUMSQ) tests are employed to check the stability of the 
coefficients.  
The Johansen and Juselius (1990) cointegration technique is conducted to test for the 
long-run equilibrium relationships among emissions, carbon prices, and economic 
output in Australia. The Johansen cointegration test is based on the significance of the 
𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚  and 𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 statistics. We can proceed sequentially from r = 0 to r = k – 1 until we 
fail to reject in determining the different number of cointegrating vectors (r). The 
maximum eigenvalue test is computed as follows: 

𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚 = −T log (1− 𝜆𝜆𝑡𝑡+1∗ )  (4) 

where 𝜆𝜆𝑖𝑖∗, 𝑒𝑒 = 1, 2, . . , 𝑘𝑘 − 1 indicates the estimated eigenvalues. The null hypothesis  
of 𝑒𝑒  cointegrating relations is tested against the alternative hypothesis of  
(𝑒𝑒 + 1) cointegrating relations. 
The trace statistics under the null hypothesis of r cointegrating vectors that is tested 
against the alternative hypothesis 𝑘𝑘 is estimated as follows: 

𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 = −𝜏𝜏 �  log
𝑘𝑘

𝑖𝑖=𝑡𝑡+1

(1 − 𝜆𝜆𝑖𝑖∗) (5) 

The cointegration test of the null hypothesis by Johansen and Juselius (1990) suggests 
that there is no long-run cointegration among the variables. 

3.3.2  Granger Causality Test 
The Granger causality must be at least in one direction if the variables form a long-run 
equilibrium relationship (i.e., cointegrated) (Granger 1988). The confirming of a 
cointegration relationship, therefore, merits the application of the Granger causality test 
based on the vector error correction modeling (VECM) framework as specified by  
Eq. (6) below in determining the direction of the causality among the variables: 
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where f is a 3 × 3 matrix containing the parameters of the explanatory variables (i.e., 
∆CO2t, ∆Outputt, and ∆ELECPt). j  is also a parameter matrix containing the lagged 
error correction term ECTt-1, obtained from the long-run estimation, while ith  are  
white noise terms. The existence of short-run causality relationships is conditional  
on 0k kf ¹ " , from Eq. (7), while 0j ¹ implies the presence of long-run causality 
relationships. The determination of the direction of the short-run causality relationships 
is based on assessing the 2c  test statistic of the first difference of the lagged 
independent variable. We also obtain the t-test statistic on the coefficient of  
lagged error correction for one period to determine the long-run Granger causality 
relationships. 

4. RESULTS AND DISCUSSION OF RESULTS  
FROM THE EMPIRICAL ANALYSIS  

4.1 Testing of Unit Root and Results 

We first undertake the unit root testing in our data variables consisting of carbon 
emissions, electricity prices with varying levels of carbon price, and economic output. 
We use three unit root tests for this purpose, namely the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) null stationary test, the augmented Dickey-Fuller (ADF) unit root test, and 
the Phillips-Perron (PP) test. We compare the unit root testing results of ADF and 
KPSS tests to ensure greater accuracy of results (Henricsson and Lundback 1995). 
The tests are performed to ensure that variables do not exceed the integration order of 
1(I 1) and thereby justify the suitability of the ARDL method.  
The results from the unit root tests conducted at the levels and first difference of the 
variables are reported in Table 2. ADF and PP test results for all variables at their 
levels confirm the nonrejection of the null hypothesis of a unit root presence. However, 
all variables, namely carbon emissions, electricity price with carbon prices, and 
economic output, are found to be stationary at their first-difference level. Therefore, the 
test results from both the ADF and PP confirm the presence of a unit root. Similarly, the 
findings of the KPSS unit root testing also reveal that the variables are integrated of the 
order 1 (I(1)). Thus, as our data variables have mixed orders of integration based on 
Table 2, the application of the ARDL estimations is as follows.  

Table 2: Unit Root Test Results 
Variable ADF PP KPSS 
lnCO2t –1.202(1) –1.500 0.377* 
∆lnCO2t –10.900***(0) –10.856*** 0.283 
Outputt –2.063(0) –2.097 1.119*** 
∆Outputt –8.165***(0) –8.192*** 0.329 
BAUt  –1.046(2) –2.461 0.897*** 
∆BAUt –9.967***(1) –19.093*** 0.273 
ELECP1t –0.678(2) –1.865 0.961*** 
∆ELECP1t –10.058***(1) –18.690*** 0.256 
ELECP2t –0.357(2) –1.000 1.002*** 
∆ELECP2t –10.122***(1) –17.669*** 0.253 
ELECP3t –0.423(2) –0.949 1.037*** 
∆ELECP3t –10.160***(1) –19.093*** 0.251 

*** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 
10% level. 
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However, structural breaks due to policy, political, regulatory, and economic changes 
over time can impact the time series properties. Unit root testing must account for such 
structural breaks and the application of the unit root testing in the presence of structural 
breaks developed by Zivot and Andrews (1992) is justifiable for this purpose. The 
findings obtained from the Zivot-Andrews (Z&A hereafter) unit root test are reported in 
Table 3. All the variables are nonstationary at levels after allowing for both trend and 
intercept in the data variables while they are stationary at their first differences. Table 3 
reports on the timing of the structural breaks. For example, significant structural breaks 
in carbon emissions and economic output occurred in 2014 and 2008, respectively. 
The structural break in 2008 in economic output can be attributed to the slowdown of 
the world economy and the global financial crisis (GFC), while the structural break in 
2014 can be attributed to the Australian government’s repeal of the carbon price. 

Table 3: Results of Zivot-Andrews (1992) Test 

Variable 
Level Variables 1st Difference Variables 

T-statistic Timing Outcome T-statistic Timing Outcome 
CO2t –3.032 6/1/2010 Unit Root –12.204*** 3/1/2014 Stationary 
Outputt –4.061 12/1/2008 Unit Root –6.421*** 6/1/2008 Stationary 
BAUt –4.632 6/1/2010 Unit Root –8.196*** 6/1/2008 Stationary 
ELECP1t –4.603 6/1/2010 Unit Root –8.243*** 6/1/2008 Stationary 
ELECP2t –4.573 6/1/2010 Unit Root –8.275*** 6/1/2008 Stationary 
ELECP3t –4.569 6/1/2010 Unit Root –8.282*** 6/1/2008 Stationary 

*** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 
10% level.  

4.2 Cointegration Test  
The optimum lag length is chosen to be 6 based on the Akaike information criteria after 
estimating the vector autoregression (VAR) model. The critical bounds used are based 
on Pesaran, Shin, and Smith (2001). The examination of the cointegration relationship 
is based on the Wald test of the computed F-statistics. The null hypothesis of  
no cointegration (𝛽𝛽1 = 𝛽𝛽2 = 𝛽𝛽3 = 0 ) is tested and compared against the results of  
the alternative hypothesis of cointegration in our model. Table 4 reports the results and 
shows that the computed F-statistics are 2.66, 4.175, 5.777, and 8.69, respectively. 
The computed F-statistics exceed the upper critical bound at the 10%, 5%, and 1% 
level of significance except for the BAU scenario when carbon emissions is modeled as 
a dependent variable. The rejection of the null hypothesis leads us to conclude that 
there exists a long-run equilibrium relationship among the variables.  
The results of the ARDL cointegration tests are further compared with the long-run 
equilibrium results of the Johansen and Juselius (1990) cointegration test (here we 
dealt with the ELECP3 scenario only). The results from Table 5 show that there is one 
cointegrating vector as the null hypothesis of no cointegration at the 5% level can be 
rejected based on the critical values of the trace statistics and maximum eigenvalue 
statistics. Thus, the results affirm the presence of a long-run equilibrium relationship 
between carbon price, carbon emissions, and economic output in Australia. The results 
from the ARDL tests are not different to the results obtained from the Johansen and 
Juselius (1990) cointegration test, thereby also asserting the robustness of the results. 
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Table 4: ARDL Bounds Testing 
Estimation Model Lag Length F-statistic Decision 
F(CO2|output, BAU) (2, 0, 0) 2.665 No cointegration 
F(CO2|output, ELECP1) (4, 6, 0) 4.176* Cointegration 
F(CO2|output, ELECP2) (2, 6, 0) 5.777** Cointegration 
F(CO2|output, ELECP3) (5, 6, 0) 8.688*** Cointegration 
Pesaran, Shin, and Smith (2001) critical values I(0) I(1)  
1% (significance level) 5.15 6.36  
5% (significance level) 3.79 4.85  
10% (significance level) 3.17 4.14  

*** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 
10% level. 

Table 5: Cointegration Results from Johansen and Juselius (1990) Test 
Hypothesized Trace 5% Critical Max-Eigenvalue 5% Critical 
No. of CE(s) Statistic Value Statistic Value 
None* 33.284* 29.797 22.305* 21.132 
At most 1 13.344 15.495 9.249 14.265 
At most 2 0.251 3.841 0.230 3.841 

Note: The * indicates the number of vectors cointegrating at a significant level of 5%. 

4.3 ARDL Estimates: Long-run and Short-run  

Further estimation involves obtaining long-run and short-run estimates of carbon 
emission from the electricity price with carbon prices and economic output. The long-
run dynamics from the ARDL model with different carbon pricing scenarios are reported 
in Table 6. The results indicate that the carbon prices in BAU, ELECP1, and ELECP2 
scenarios are not statistically significantly associated with carbon emissions. However, 
in the ELECP3 scenario, the statistical significance of coefficients is indicated by the 
related p-value, in which elasticities of both independent variables (electricity price with 
carbon price and economic output) are significant at 1 and 5 % significance levels, 
respectively. Interestingly, carbon prices are found to be an effective instrument for 
reducing carbon emissions as a 1% increase in electricity price with carbon price 
reduces carbon emission by 0.58%, all other things remaining equal. Earlier findings in 
the Australian context also documented that carbon prices drive emissions reduction 
(Lin and Jia 2018; Zhou et al. 2011; Yuan et al. 2011; Meng 2012; Meng, Siriwardana, 
and McNeill 2013; Dwyer et al. 2013; Cao et al. 2019; Diaz, Muñoz, and Moreno 2020). 
This negative nexus (emissions-electricity price with carbon prices) implies that pricing 
carbon correctly drives innovation, energy-efficient technology, and the development of 
renewable generation. However, economic output is positively influenced by carbon 
emissions. The results obtained from our empirical exercise imply that carbon 
emissions increase by 0.95% with a 1% increase in economic output.  
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Table 6: ARDL Long-run Estimation Results 

Variable 
Scenario 

BAU ELECP1 ELECP2 ELECP3 
Electricity price with carbon price –0.638 0.103 –0.809 –0.578*** 
 (–1.334) (1.629) (–1.416) (–3.562) 
Economic output 0.937 0.065 0.082* 0.948** 
 (1.378) (0.449) (1.745) (2.995) 
Constant 0.204 4.265*** 0.225 0.010 
 (0.067) (6.298) (0.090) (0.007) 

*** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 
10% level. 

Table 7: Results from Short-run Estimation 

Dependent Variable 
Lag Order 

0 1 2 3 4 5 
Panel I: carbon price (BAU) 
∆CO2  –0.247**     
  (–2.043)     
∆BAU  –0.026     
  (–0.542)     
∆GDP 0.010      
 (0.088)      
ECTt-1 –0.135*      
 (–1.816)      
Panel II: carbon price (CP1)  
∆CO2  –0.356** –0.142 –0.094 –0.349**  
  (–2.316) (–0.940) (–0.639) (–2.587)  
∆ELECP1 –1.861 –1.936 9.978 –12.752** 1.051 4.095 
 (–0.584) (–0.327) (1.458) (–2.101) (0.162) (1.292) 
∆GDP 0.141      
 (0.983)      
ECT –0.108      
 (0.380)      
Panel III: carbon price (CP2) 
∆CO2  –0.198     
  (–1.548)     
∆ELECP2 –3.118 –5.436 4.686 –4.945 6.331 –0.172 
 (–1.048) (–0.939) (0.712) (–0.772) (0.925) (–0.029) 
∆GDP –0.691      
 (–1.085)      
ECT –0.401***      
 (–3.627)      
Panel IV: carbon price (CP3) 
∆CO2  0.249 0.372** 0.496*** 0.215 0.488*** 
  (1.487) (2.479) (3.342) (1.460) (3.283) 
∆ELECP3 –0.286 8.279 –2.760 –1.391 8.347 –8.735** 
 (–0.064) (0.819) (–0.285) (–0.147) (0.944) (–1.931) 
∆GDP –0.063      
 (–0.106)      
ECT –0.789***      
  (–4.588)      

*** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 
10% level. 
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We also estimate the short-run effect on CO2 emissions of the corresponding variables 
along with an error correction term (ECT) as specified under Eq. (3). Table 7 provides 
short-run estimate results. We find that electricity price with carbon prices and 
economic output do not generate statistically significant effect on CO2 emissions across 
all panels (i.e., Panel I, Panel II, and Panel III as reported below) except Panel IV.  
The wholesale electricity price under a high carbon price generates significantly 
negative effect on CO2 emissions. A 1% increase in the wholesale electricity price with 
high carbon price in the short run is associated with a carbon emissions reduction  
of 8.74% in Australia. Conversely, the economic output coefficient is negative but  
no longer statistically significant, indicating no significant impact on emissions. The 
negative and statistically significant coefficient estimate at the 1% level of significance 
documents the presence of a long-run equilibrium relationship among the variables 
taking into account the statistical properties of the lagged error correction term (ECTt-1). 
Furthermore, the ECTt-1 coefficient suggests that short-run deviations from the long-run 
equilibrium are corrected by about 0.79% in the following quarter, suggesting an 
oscillating adjustment towards the long-run equilibrium relationship. CO2 emissions are 
not influenced by changes in economic output in the short run but the carbon price is a 
key instrument of emissions reduction.  

4.4 Model Diagnostic Test Results  
We show in this subsection that the ARDL estimated model has survived different 
diagnostic tests and hence supports the model validity. The goodness of fit of the 
model specification, (R2 = 0.90) and (adjR2 = 0.87), is near to one, which indicates that 
the model is favored in econometrics analysis. Table 8 shows the results of several 
diagnostic tests (we only reported the ELECP3 scenario). The null hypothesis of no 
serial correlation cannot be rejected at the 5% significance level against the alternative 
hypothesis of serial correlation as the corresponding p-value is far greater than 0.05. 
Similarly, the Gaussian residuals assume a normally distributed error term, no 
functional error, and no autoregressive conditional heteroskedasticity (ARCH). Table 8 
correctly specifies all diagnostic tests. Furthermore, we also conduct a model stability 
test based on cumulative sum (CUSUM) and cumulative sum of square (CUSUMQ) 
tests as another measure of goodness of fit. The results indicate that the estimated 
parameters of the model are stable as confirmed by the positioning of the residuals 
inside the critical bounds at the 5% level of significance.  

Table 8: ARDL Model Diagnostic Test Results 

 Test Statistics P-value  Test Statistics P-value 
R-squared 0.904 Adj. R squared  0.867 
Serial correlation 2 (1) 6.04E-06 0.998 Normality 0.114 
RESET 2 (1) 0.013 0.990 Heteroskedasticity 2 (1) 10.75813 0.869 
ARCH 2 (1) 0.310 0.578 ARCH 2 (2) 1.357 0.507 
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Figure 2: Plot of Recursive CUSUM and CUSUMQ 

 

4.5 Results from Granger Causality Test 
The presence of cointegration simply confirms the underlying causality among 
variables and does not specify the direction of actual causal relationships. Engle and 
Granger (1987) document that the existence of the long-run equilibrium relationship 
must be held in at least one direction of causality. Therefore, the Granger causality 
tests are conducted in the VECM to ascertain the direction of causation. Evidence  
of a long-run equilibrium association among electricity price with carbon price, CO2 
emissions, and economic output provides a clear basis for policymakers to regulate 
appropriate CO2 emissions policy, electricity price with carbon prices, and economic 
output strategies by considering the direction of causation between the variables. The 
appeal of the VECM-based Granger causality test lies in its endogeneity assumption  
of variables, which allows a distinction to be made between long-run and short-run 
causation.  
Table 8 reports the results from the VECM Granger causality tests (only considering 
ELECP3). There are short-run unidirectional Granger causality relationships between 
CO2 emissions and electricity price with high carbon price, and electricity price with 
high carbon price and economic output at the 5% significance level. This implies the 
following results: (a) a Granger causality relationship spanning from electricity price 
with high carbon price to CO2 emissions; (b) a Granger causality relationship running 
from electricity price with high carbon price to economic output. However, there is  
no short-run causality relationship between economic output and CO2 emissions,  
as was also reported in an earlier study by Salahuddin and Khan (2013) in the case  
of Australia. The empirical findings are robust to these two alternative estimation 
techniques.  
In the long run, we find that the coefficient of the lagged error correction term (ECTt-1) is 
negative and statistically significant at the 5% significance level in CO2 emissions and 
economic output equations. Thus, there is a bidirectional causality relationship in the 
long run between economic output and CO2 emissions with feedback effect. This result 
corresponds to findings from a previous study by Balaguer and Cantavella (2018) in 
Australia. Furthermore, the electricity price with high carbon price equation also shows 
a negative and statistically significant coefficient at the 10% significance level. There is 
also a bidirectional causality relationship between CO2 emissions and electricity with 
high carbon price. The negative significant coefficient of ECTt-1 suggests that a long-run 
equilibrium relationship is achievable as the variables are stable and do not overshoot. 
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Several conclusions can be drawn from these findings. Both electricity price with high 
carbon price and economic output are key drivers of CO2 emissions reduction in 
Australia. Therefore, any change in one or both of these variables generates an impact 
on the level of emissions in Australia. Second, electricity price with carbon price is a 
crucial policy instrument tool that will affect both economic output and emissions in the 
short and long run. Third, our findings reveal that a feedback relationship effect exists 
between economic output and emissions, implying that emissions can be reduced by 
reducing economic output. 

Table 9: Results from VECM Granger Causality Test 

Dependent Variable 
Causality (Short-run)  Causality (Long-run) 

∆CO2 ∆GDP ∆ELECP3 ECT 
∆CO2  1.418 10.423** –0.325** 
  (0.701) (0.015) [–2.652] 
∆GDP 2.334  8.071** –0.095** 

 (0.506)  (0.045) [–2.506] 
∆ELECP3 0.789 0.907  –0.005* 
  (0.852) (0.824)  [–1.946] 

*** indicates significance at the 1% level, ** indicates significance at the 5% level, and * indicates significance at the 
10% level. 

4.6 Impulse Response Function (IRF) and Variance 
Decomposition Model (VDM) 

The impulse response function (IRF) tests are based on the Cholesky degree of 
freedom and are calibrated for 20 periods. The IRF analyzes the effect of a random 
“shock” in the variable itself and in other endogenous variables. The IRF indicates how 
a random shock in the standard deviation affects the underlying and anticipated values 
of the endogenous variables. Figure 3 plots the results of the IRF.  
Figure 3a reveals that the response of carbon emissions is positive for a very short 
period but is negative and gradually decreases after the third time horizon after a 1 
standard deviation shock from electricity price with high carbon price. This means that 
an increase in electricity price with a high carbon price gradually reduces emissions. 
Such a gradual reduction is possibly due to a switch to more renewable electricity 
generation from nonrenewable electricity generation. Similarly, Figure 3b reveals how a 
1 standard deviation shock in economic output affects emissions. Figure 3c shows that 
the response of economic output is positive but with a sharply declining trend due  
to electricity price with high carbon price being exposed to a 1 standard deviation 
shock. This implies that the rise in electricity price due to a high carbon price appears 
to have impacted energy producers, which would directly affect the manufacturing 
sector and decrease economic output. Likewise, Figure 3d shows that a 1 standard 
deviation shock on electricity price gradually increases economic output.  
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Figure 3: The Impulse Response Function  

 
Note: These graphs consider the response of ELECP3 to CO2, the response of ELECP3 to GDP, the response of GDP 
to CO2, and the response of GDP to ELECP3, but other responses are excluded from the analysis. 

We also applied the generalized forecast error variance decomposition method based 
on VECM specifications to test the magnitude of causal relationships between 
electricity price under a high carbon price, CO2 emissions, and economic output in  
the Australian context. Testing decomposition of the variance not only decomposes  
the portions of a shift in a variable stemming from own and other variables but  
also provides information about the degree of causation between the variables  
(Enders 1995).  
Table 10 reports the results from the variance decomposition approach. The results 
suggest that 54.47% of CO2 emissions are explained by their innovation shocks,  
while innovation shocks of electricity price with carbon price and economic output 
respectively contribute to emissions by 14.29 and 31.24 %. The variance 
decomposition of economic output suggests that the innovative shocks originating in 
CO2 emissions contribute to national economic output by 26%. The contribution of 
electricity price under a high carbon price to GDP is 16.02% and the remaining is 
attributed to innovation shocks in GDP. 
Overall, our findings show that there is a feedback relationship effect between 
emissions and economic output in the long run in Australia. There is a unidirectional 
short-run causality relationship running from electricity price under a high carbon price 
to emissions and economic output. Overall, our results correspond well to the findings 
obtained from impulse response function plots.  
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Table 10: Variance Decomposition Method (VDM) 

Period 
Variance Decomposition of CO2: Variance Decomposition of GDP: 
CO2 GDP CP3 CO2 GDP CP3 

1 100.000 0.000 0.000 0.433 99.567 0.000 
5 88.611 8.946 2.443 11.382 68.352 20.267 
10 67.298 12.941 19.761 16.270 60.444 23.286 
15 59.180 14.064 26.756 21.716 58.280 20.004 
16 58.035 14.157 27.808 22.767 58.035 19.198 
17 57.002 14.219 28.779 23.801 57.813 18.386 
18 56.069 14.260 29.672 24.816 57.603 17.581 
19 55.228 14.283 30.489 25.813 57.398 16.790 
20 54.469 14.291 31.240 26.788 57.191 16.021 

Note: Cholesky Ordering: CO2, GDP. 
Standard error: Monte Carlo (EC) method is chosen using 100 repetitions. 

5. CONCLUSIONS AND POLICY IMPLICATIONS 
This paper, to the best of our knowledge, is possibly the first of its kind in the literature 
to carry out empirical research on carbon emissions, electricity price incorporating  
the effects of varying levels of carbon prices, and economic output. We examine the 
long-run and short-run dynamic relationships between the three variables of electricity 
price under varying carbon price levels, economic output, and CO2 emissions based on 
ARDL and VECM modeling. We assume that different levels of carbon prices in 
exploring the appropriate carbon price scenario would be effective in reducing carbon 
emissions and guiding Australian climate policymakers.  
Carbon tax is a strategic instrument that plays a pivotal role in curbing carbon 
emissions and enhancing air quality. However, energy consumption in Australia  
mostly relies on more than 60% use of nonrenewable energy resources such as coal, 
lignite, and petroleum products. Fossil fuel electricity generation is one of the major 
contributors to greenhouse gas emissions and is thus driving climate change in 
Australia and other global economic regions such as Asia. Australia is one of the 
world’s largest emitters of greenhouse gases (among the top 20 polluters) and 
therefore merits this study on investigating the impact of carbon prices on carbon 
emissions and economic output. 
Our empirical findings reveal that the variables are cointegrated and thereby implicate 
the existence of a long-run equilibrium relationship among the different variables. Our 
findings show that Australia would have achieved a significant carbon reduction in  
line with the Paris commitments had it priced carbon appropriately since 2001. The 
European economies, for instance, initiated carbon pricing in the 1990s and they seem 
quite successful in achieving emissions goals targeted by the UNFCC by 2030. 
However, Australia initiated carbon prices in 2012 with lower carbon prices than the EU 
region. Our BAU scenario incorporated carbon prices after the period 2012‒2014, but 
that did not bring about a significant reduction in carbon emissions. We show that the 
Australian government would have succeeded in achieving sustainable emissions 
reduction with high carbon price if correct carbon prices had been implemented from 
2001 onwards as per our data and analysis.  
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This paper recommends that Australia should implement an emissions mitigation 
scheme that places a high tax rate on carbon emissions from fossil-based electricity 
generators. This will increase cuts in pollution and impact Australia’s economic output 
only marginally. The government can also allocate a share of the revenue collected 
from taxing carbon towards encouraging the development of renewable energy 
sources.  
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