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Abstract

This paper studies how subsidies for photovoltaic solar systems can lead

to second-degree moral hazard - the impulse of installers to increase factors

determining the total subsidies and/or transaction when consumers receive larger

subsidy levels. Employing an instrumental variable strategy using plausibly

exogenous variation in the size of subsidy levels to address concerns about self-

selection of installers into specific subsidy levels, I quantify the impact of subsidy

levels on the expected electricity output and transaction prices of PV systems in

California. The results are consistent with hypothesized drivers of second-degree

moral hazard as larger subsidy levels are associated with i) an increased measure

of the expected electricity output leading to increased subsidies when third-parties

own the PV system and ii) increased transaction prices when consumers themselves

own the system. The results further suggest that subsidy programs should verify

the work of an installer, for example during mandatory field inspections, as these

reduce second-degree moral hazard.
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1 Introduction

Many countries use generous subsidy programs to accelerate the adoption of green

technologies such as photovoltaic solar (PV) systems. To maximize the social and

environmental value of each of the tens of billions USD spent on subsidy programs in the

US and other countries (International Energy Agency, 2016), subsidy programs should

be cost-effective. One key challenge to cost-effectiveness is that some characteristics

of PV systems are subject to informational asymmetries typical for credence goods.

In particular, installing PV systems consists of a complex arrangement of different

technological components and working steps (Giraudet et al., 2018; Gillingham et al.,

2016) which many consumers deliberately leave to professional installers. Moreover,

consumers face difficulties in verifying whether a system is installed and priced

appropriately because the definition of a counter-factual relative to which the electricity

output and price is measured is difficult (Giraudet, 2020; Lanz and Reins, 2021).

Therefore, professional installers may have incentives to exploit their informational

advantage, leading to supply-side inefficiencies typical for credence goods, including

overcharging for services or technological components (Giraudet et al., 2018; Giraudet,

2020; Lanz and Reins, 2021). The literature on credence goods further suggests

that third-party reimbursements may cause second-degree moral hazard and thereby

increase supply-side inefficiencies (Balafoutas et al., 2017).1 Because subsidies reduce

the transaction price paid by consumers, installers may be more inclined to increase

the transaction price of PV systems (Kerschbamer et al., 2016; Huck et al., 2016;

1 In the context of energy-transforming technologies such as PV systems, first-degree (or demand-side
moral hazard) implies that consumers install PV systems only because part of the financial burden
is taken over by a subsidy. The reduction of the financial burden associated with installing energy-
transforming technologies is an often cited reason for promoting their adoption via subsidies (Allcott
and Greenstone, 2012) and has the consequence that subsidies may not be targeted to maximize
adoption (see related discussion in Allcott et al., 2015; Globus-Harris, 2020). For a discussion on
demand- and supply side moral-hazard in the context of energy- efficient retrofits, see for example
Giraudet et al. (2018).
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Balafoutas et al., 2017, 2020). In addition, when the total amount of subsidies received

is determined by self-reported values on system characteristics, installers may have

incentives to exaggerate such values in order to increase the overall amount of subsidies

received.

In this paper I study how subsidies may trigger second-degree moral hazard and

hence i) increase the total amount of subsidies received and ii) increase transaction

prices of PV systems. For this purpose, I use data from the California Solar

Initiative (CSI) which is the largest solar subsidy program in California. Idiosyncratic

characteristics of the CSI and related data on subsidized PV systems make the program

particularly relevant for this research. First, the CSI offers regional and chronological

variation of subsidies enabling the identification as to how the expected electricity

output as measured by the design factor of a system and transaction prices depend

on the magnitude of received subsidies. Specifically, the CSI provides subsidies to

consumers in three different energy supply companies (or investor- owned utilities,

IOU) following the aim to generate a total of 1940 megawatts (mW) capacity installed

in new PV systems. The subsidy level available to consumers is categorized in ten

predetermined steps where the transition from one subsidy level step to the next is

determined by the of cumulative capacity of mW installed within an IOU.

Second, to calculate the total amount of subsidies a consumer receives, the CSI

program uses self-reported data on expected electricity output (or hereafter the

design factor) of a system. In particular, consumers have to report specific system

characteristics, such as its location, shading, orientation as well as the make and model

of installed PV modules and inverters. However, only a fraction of PV systems is subject

to a mandatory field inspection where the accuracy of these characteristics is verified.

Increased verification is a well studied countermeasure to supply-side inefficiencies in

markets for credence goods and I can identify systems where the applicant knew that
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the system characteristics were verified during a field inspection by the CSI, allowing

me to assess how such verification affects second-degree moral hazard.

In the empirical analysis, I quantify the impact of subsidy levels on the design factor

and transaction prices, using variations of subsidy levels afforded by the design of the

CSI program. Following Pless and van Benthem (2019), I estimate linear models using

a rich set of fixed effects (FE). Specifically, I employ fixed effects along four axes:

i) installer FE to capture time-invariant installer specific characteristics such as their

market power, ii) month of installation FE to capture national demand shocks and

general time trends for hardware prices, iii) regional FE to capture local differences

in demand and competition among installers and iv) make and model of modules and

inverters to control for unobserved differences in the installed technology, such as their

quality.

I further make use of an instrumental variable strategy to address potential concerns

about the endogeneity of actually implemented subsidy levels. The actually received

subsidy levels differ from predetermined subsidy levels for some systems and I cannot

rule out that installers were able to influence actually received subsidy levels, thereby

self-selecting into specific subsidy levels. In particular, some PV systems receive

weighted averages of up to 4 different subsidy level steps in contrast to sharp and

monotonic decreases of subsidy levels as determined by the CSI design.

To address this concern, I exploit plausibly exogenous variation of predetermined

subsidy levels to instrument actually received subsidy levels. In this context, the validity

of this instrument rests on two assumptions. First, the predetermined subsidy levels

need to be correlated to the actually implemented subsidy levels. This assumption

is likely to hold because the predetermined subsidy steps are the predominant factor

determining received subsidy levels and the differences between predetermined and

actually received subsidy levels is small.
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Second, the exclusion restriction implies that the ex ante-determined subsidy level

steps do not affect the design factor and transaction prices other than through the

actually received subsidy levels. Again, this assumption is likely to hold as even large

installers could not influence the total capacity installed within an IOU. I further include

the above set of fixed effects in the first stage and thereby control for any between

installer, between month, between IOU and county and between technology factors that

potentially link subsidy steps to the design factor and/or transaction prices of systems.

I study heterogeneity of supply-side inefficiencies along three dimensions that

have been highlighted as important factors driving second-degree moral hazard (see

Balafoutas et al., 2017, for a related discussion). As a first dimension, I study whether

second-degree moral hazard is increased if a system is third-party owned (TPO) and

hence the installers directly receives the subsidy as opposed to home-owned (HO)

systems where the consumer receives the subsidy. As a second dimension, I study

increased verification of installations and their potential to prevent second-degree moral

hazard (Dulleck and Kerschbamer, 2006; Dulleck et al., 2011). To this end, I exploit a

CSI rule imposing a mandatory field inspection for the first two PV systems installed by

each installer. Finally, I study how second-degree moral hazard depends on whether a

system is owned by a commercial, residential, non-profit or governmental consumer.

The empirical analysis shows evidence suggesting that second-degree moral hazard

is highly relevant in the context of upfront subsidies. First, I find that a one dollar

increase of upfront subsidies is associated with a statistically significant 0.5 percentage

points increase of the design factor of residential TPO systems. Such an increase is

for example equivalent to reporting a five degree difference in the module tilt toward

the optimal tilt. When systems are subject to a mandatory field inspection, there is

no statistically significant association, suggesting that increased verification prevents

installers from reporting exaggerated system characteristics. I do not find any significant
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marginal effect of the subsidy level on the design factor of HO systems.

Concerning transaction prices, I do find a significant marginal effect of the subsidy

level of HO systems for all consumer sectors, suggesting that a one dollar increase of the

subsidy level increases the transaction prices by 3.5 to 7.5 percent at the mean subsidy

level. For TPO systems, I only find such an effect for governmental consumers. This

effect is however very large as a one dollar increase of the subsidy level is associated

with a 25 to 50 percent increase of the transaction price per Watt at the mean of our

sample. Overall, these results are in line with a business strategy to increase the short-

term cash flow of installers, because TPO installers receive the total subsidies and HO

installers receive the transaction price directly after the installation .

These findings contribute to three different kinds of research avenues. First,

Davidson and Steinberg (2013) and Podolefsky (2013) have documented that some

TPO installers inflate the transaction price of residential PV systems to reap larger

tax credits. Yet, Pless and van Benthem (2019) somewhat surprisingly find that pass

through of residential TPO systems receiving upfront subsidies is higher and attribute

this effect to imperfect competition on the market for TPO systems in combination

with a sufficiently convex demand curve. The results in this paper suggest that TPO

installers do increase the total amount of subsidies received and at the same time, do

not adjust the transaction prices. Therefore, second-degree moral hazard provides a

parallel explanation for the over-shifting of subsidies found in Pless and van Benthem

(2019) as TPO installers do not increase transaction prices after increasing the total

amount of subsidies received. Potentially, competitive pressure in TPO markets may

drive installers to increase cash-flow by inflating short-term payments via larger subsidy

transfers and then acquire more new consumers with lower transaction prices.

Second, results from the literature assessing the optimal subsidy design to increase

adoption and cost-effectiveness of subsidy programs show that consumers significantly
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discount future subsidy payments and that upfront subsidies are a cheaper way to foster

the adoption of PV systems than feed-in subsidies (Burr, 2016; Feger et al., 2017;

De Groote and Verboven, 2019). These studies do however not account for second-

degree moral hazard associated with upfront subsidies and my analysis suggests that

the final amount of upfront subsidies received should not be based on self-reported

data on the expected electricity output of a system, unless this data is verified.

Finally, this paper substantiates that stylized findings from other credence goods

markets are relevant for the market of energy-transforming technologies (Giraudet,

2020; Lanz and Reins, 2021). My analysis is the first to document evidence of second-

degree moral hazard in the context of energy-transforming technologies. In line with

earlier discussions on the potential of strict verification to reduce opportunistic behavior

(Dulleck and Kerschbamer, 2006; Dulleck et al., 2011; Balafoutas et al., 2013), I

find that mandatory field inspections can limit second-degree moral hazard related to

increased total subsidies and also transaction prices. The results in this paper further

confirm heterogeneity of supply-side inefficiencies depending on who bears their costs

(Balafoutas et al., 2013; Gottschalk et al., 2020).

This paper proceeds as follows: in Section 2 I discuss the credence nature of energy-

transforming technologies, second-degree moral hazard, and resulting consequences for

the design factor as well as transaction prices of PV systems. Section 3 describes the CSI

program. In Section 4, I summarize the data and explain the identification strategy. I

present associated results in Section 5 and conclude in Section 6.
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2 PV systems, supply-side inefficiencies and second-

degree moral hazard

I illustrate the implications of the credence nature of PV systems in the context of the CSI

program building on the framework of Dulleck and Kerschbamer (2006). I assume that

there are two types of PV systems: those with high quality technological components

qh and those with lower quality technological components ql. The electricity output

of system i, V i(qi, li, di) is increasing in the quality of technology, the quality of labor

exerted during the installation li and the systems design factor di. The design factor

is a measure of the system’s real world potential for electricity output accounting for

the system’s technological components, its mounting method, orientation, tilt, azimuth,

and shading as well as the solar irradiation at its location.

The installer faces a cost for installing a system which increases in both, the cost of

technology and the cost for labor (i.e. ci(qi, li)). Then consumers pay the transaction

price for the system which is increasing in labor and hardware costs pi(ci). The installer’s

benefit from putting up a PV system hence equals the difference of the transaction price

and costs of provided hardware and labor πinstaller = pi(ci) − ci(qi, li). The consumer’s

benefits from investing in a PV system can be expressed as πconsumer = Vi(qi, li, di) −

pi(ci) + si. In this equation, pi is the (pre-incentive) transaction price determining the

amount of money the installer receives for setting up the system and pi − si is the

post incentive price determining what the consumer actually pays to set up his system

accounting for the received subsidies.

The credence nature of PV systems implies that there is asymmetric information on

qi, li and di (see Giraudet et al., 2018, for a similar assumption). In particular, there is

a significant cost to verify whether the self-reported information on the design factor is

correct, which technology was installed and whether the technology was mounted and
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wired in an appropriate way. This implies that an installer has some margin with respect

to determining the design factor and also transaction prices. If an installer knows that

his work will not be verified and if he only cares about his own profits, he has the

incentive to increase transaction prices. Such behavior can be expressed with σ ∈ [0, 1]

where σ = 1 indicates exploiting asymmetric information to a maximum leading to

maximized total subsidies and transaction prices while σ = 0 is equivalent to the fair

transaction price if there was no asymmetric information.

Next, evidence in markets for credence goods suggests that increased verification

measures imposed to detect and punish supply-side inefficiencies may change the

installer’s behavior (Dulleck and Kerschbamer, 2006; Dulleck et al., 2011; Balafoutas

et al., 2013). Let γ denote the probability of detecting supply-side inefficiencies σ and

t denote related punishment. Intuitively, larger verification of the installer’s work may

work as a threat to lose financial and/or reputation status. The larger γ and t, the larger

the expected disutility from supply-side inefficiencies. The CSI program administrators

demand that the first two systems installed by each installer are subject to mandatory

field inspections where the system’s characteristics and functionality are verified. Such

mandatory field inspections increase verifiability of the installers’ work and allow me to

estimate their effect on the design factor and transaction prices.

Moreover, it has been shown that agents in markets for credence goods care for the

consumer’s benefits, suggesting that installers have some form of social preferences

represented by λ (see for example Kerschbamer et al., 2017; Kandul et al., 2020).

Looking at the active market for PV systems, it seems plausible that a large heterogeneity

in λ exists, implying that many installers care for the consumer’s benefits and therefore

provide flawless services (see for example Kerschbamer et al., 2017). At the same time,

differences in the consumer owning the system may affect λ. When installers think

about who bears the consequences of supply-side inefficiencies, they may for example
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want to reduce the burden for residential consumers who they personally know (i.e

when λ is large) compared to more abstract entities with several stakeholders and

financiers such as governmental and commercial consumers (see Balafoutas et al., 2017,

for a discussion of how social distance may affect the behavior of installers).

Adding these insights to the framework of Dulleck and Kerschbamer (2006), the

objective of the installer can be written as follows:

πi = p(qi, li)− c(qi, li)− γtσ + λ(Vi(qi, li)− p(qi, li) + si).

The literature on credence goods further suggests that an installer may alter his

behavior conditional on the magnitude of the subsidy the consumer receives. In

particular, second-degree moral hazard in the context of PV systems implies that

installers further increase the transaction prices of PV systems when consumers receive

larger subsidies.

Importantly, the CSI program is designed such that the total amount of upfront

subsidies is increasing in the design factor of systems si(di) which is multiplied with the

subsidy level and the system size to determine the total amount of the upfront subsidy.

Second-degree moral hazard may therefore imply that installers also increase the design

factor of systems to maximize the total amount of subsidies received.

3 The California Solar Initiative program

The California Solar Initiative (CSI) program provides a useful setup where

predetermined subsidy levels are assigned to different consumers, enabling me to

analyze the associated relation with the design factor and transaction prices of PV

systems. This section starts with a general description of the program. Afterwards, I

describe which features of the CSI are exploited to study second-degree moral hazard
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related to the subsidy recipient, increased measures of verification and differences in

system ownership. Finally, I describe the main outcome variables of the empirical

section: the design factor and the transaction price.

3.1 Program description

The CSI subsidy program was rolled out in 2007 using a budget of $2.167 million for

the goal to install 1940 mW within 10 years. All consumer sectors could apply for the

program including residential, commercial, government and non-profit consumers. The

subsidy studied in this paper ("Expected Performance Based Buyout", or EPBB) is intended

for residential and small business consumers installing a system with less than 30 kW

and takes the form of a one time lumpsum payment. The size of the lumpsum payment

is determined by multiplying the subsidy level with the design factor and system size.

The subsidy level available to consumers is determined by the cumulative capacity

of already installed systems within the IOU of the consumer. Once a certain threshold

of cumulative mW in an IOU is passed, the subsidy level decreases. In particular, the

CSI provides subsidies to consumers in investor-owned utility territories of Pacific Gas

and Electric Company (PG&E), Southern California Edison (SCE), and San Diego Gas &

Electric (SDG&E). Table 1 provides an overview of the subsidy levels as per the design of

the CSI. After the first 50 mW in each IOU have been attributed under another program

(Lilly and Simons, 2006), passing the predetermined threshold of mW installed leads to

a sharp and monotonic decline of subsidy levels in the IOU.

The actual implementation of subsidy levels however differed from the theoretical

design. Figure 1 provides an overview of the implemented subsidy levels across IOUs

and time. One can see that for example in January 2010, many different upfront subsidy

levels were attributed to different PV systems in all IOUs. Contrasting the unique

subsidy levels in each mW step, some systems receive weighted averages of up to four
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Table 1: CSI subsidy levels

mW Step mW in step Residential/ Commercial Gov’t/ Nonprofit

1 50 n/a n/a
2 70 2.5 3.25
3 100 2.2 2.95
4 130 1.9 2.65
5 160 1.55 2.3
6 190 1.1 1.85
7 215 0.65 1.4
8 250 0.35 1.1
9 285 0.25 0.9
10 350 0.2 0.7

Notes: Subsidy levels in $ per Watt. Extract from Table 4 of California Public Utilities
Commision (2017).

different predetermined subsidy levels. In addition, subsidy levels do not monotonically

decline in time, but some systems which have applied in the same IOU at a later point

in time receive a higher subsidy rate.2

While the subsidy levels attributed to systems are predetermined by the mW step, the

total subsidy amount is increasing in the system size. Accordingly, installers can further

increase the total subsidy amount a consumer receives by installing larger systems.

To avoid the installation of unreasonably sized systems the CSI imposed rather strict

limitations to substantiate a system’s size and to ensure that a system is sized such

that it optimally serves the consumer’s needs. First, a system should primarily offset

the applicants own energy consumption, meaning that the annual expected electricity

output must not be larger than the sum of energy consumption within the last twelve

months. Second, no applicant may receive a total amount of subsidies that exceeds the

transaction price of the system. Third, there is a cost cap for applications implying that

the transaction price per Watt may not be larger than the 12 month rolling average of

the transaction price per Watt of other systems plus one dollar.

2 The CSI handbook does not provide an explanation for these observations which contrast the
theoretical design of the CSI. Presumably, the fact that some systems receive a weighted average
of several subsidy levels could be either due to cancellation of systems and liberated capacity under a
subsidy step which was already exhausted or an adjustment of CSI subsidies if systems receive other
benefits (Hughes and Podolefsky, 2015).

11



Figure 1: Evolution of subsidy levels
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Studying the distribution of systems around two arbitrary thresholds provides

information on whether installers strategically influence the size of systems. First,

systems smaller than five kW were not required to submit a substantiation of the system

size when applying for the CSI. Second, systems smaller than ten kW did not have to pay

an application fee.3 Figure A1 in Appendix A presents the size distribution of PV systems

in the range between zero and 30 kW in the upper panel, between four and six kW in

the lower left panel and between nine and eleven kW in the lower right panel. There are

not disproportionately many systems sized just below five or ten kW, affirming that the

system size is determined by the consumer’s needs rather than strategic considerations

(see also Gillingham et al., 2016; Pless and van Benthem, 2019, for similar conclusions

on the sizing of PV systems).

3.2 Subsidy recipients

Instead of buying a PV system, CSI consumers can choose to lease a PV system from

a third party (Podolefsky, 2013; Pless and van Benthem, 2019).4 In this case, TPO

installers pay the installation costs and receive the final subsidy (i.e. they directly

receive si Equation 2).

The US treasury department has investigated the pricing of some TPO installers, as

these were accused of increasing fair-market values in order to reap larger tax credits

3 For other system sizes the application fee equals 1250 USD for systems up to 30kW. Note that this fee
is refunded once the system is installed.

4 If consumer choose to lease a system, they can decide between a pure leasing contract or a power
purchase agreement (PPA). In a pure leasing contract, the consumer pays a monthly leasing rate to
the third party and owns the electricity output. In a PPA contract, the consumer pays a monthly rate
for his electricity consumption and the third party owns the electricity output. The contract types
mostly differ with respect to who is entitled to the benefit of excess output fed into the system. Under
either contract type, the third party pays for the installation and maintenance of the system and
consumer hence do not bear the upfront costs (see Davidson et al., 2015, for a detailed discussion of
pure lease and PPA contracts). In the dataset, I can identify the systems owned by a third party but I
cannot identify whether they have a leasing or PPA contract.
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(Trabish, 2013). Because TPO installers finance the upfront installation costs and the

transaction price to installers is paid in form of dispersed leasing rates, TPO installers

may have incentives to increase short-term cash flows in order to increase their market

value (Salzman, 2013). As the CSI subsidies are paid directly after the installation of

a system, TPO installers can increase their short-term cash flow by increasing the total

amount of subsidies received. As discussed by Pless and van Benthem (2019), such a

business strategy may affect estimates of subsidy pass-through, because inflated total

subsidies would artificially decrease the post incentive price and therefore falsely be

attributed to a larger pass-through.

3.3 Increased verification

Following the CSI rules, the first two PV systems installed by each installer are subject

to an onsite field inspection which serves the goal to detect differences between the

onsite technical calibrations of the system and those stated in the application form to

calculate the design factor.5 In particular, mandatory field inspections thus include

checking that equipment is installed as documented in the application (i.e. quantity and

make of modules and inverters, a systems tilt, azimuth, shading and standoff height)

as well as whether the system is operational and its electricity output is reasonable.

Finally, if subsidy payments resulting from onsite inspections and those calculated in

the application form documentation differ by more than 10 percent, the PV system and

its installer can be dismissed from the program.

This rule is public knowledge and thus known by installers. Mandatory field

inspection increase the probability γ of detecting supply-side inefficiencies and installers

face commercial consequences after detection (i.e. t > 0). In turn installers may limit

5 The CSI further has the right to audit additional systems according to his own assessment. These
audits are either performed online, via telephone or onsite.
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exaggerating the design factor and/or increasing transaction prices in order to prevent

financial and reputational consequences in case of detection (cp. Balafoutas et al., 2013;

Giraudet et al., 2018, who find that increased verification reduces increased prices

and supply-side inefficiencies are specifically pronounced in domains defined as hard

to observe).

3.4 Sector of consumer

Furthermore, installers in the sample face commercial, residential, non-profit and

governmental consumers. This enables me to study differences behind the entities

owning PV systems which differ with respect to financial resources and social distance

(i.e. heterogeneity in λ). Following Balafoutas et al. (2017), installers may be more

inclined to increase transaction prices when consumers are perceived as wealthier and

the financial consequences are borne by an anonymous entity compared to a residential

consumer with whom interaction is more direct and personal.

Evidence on distributional preferences of agents in markets for credence goods

suggests that supply-side inefficiencies are reduced when they have larger financial

consequences for the consumer (Kandul et al., 2020). If installers perceive non-profit

and residential consumers as less financially endowed and therefore have a higher

valuation for their benefits (i.e. a larger λ) compared to commercial and government

consumers, one would expect to observe differences in second-degree moral hazard

depending on the consumer sector.

3.5 Measures of the design factor and transaction price

To document second-degree moral hazard in the context of PV systems this paper

analyses the design factor and transaction prices of PV systems under different subsidy

levels. The design factor is calculated by the CSI, based on the following criteria

15



reported by the PV system’s applicant: the zip code and IOU of the installation location,

the sector of the applicant, the make, model and number of PV modules and inverters,

the mounting method, the tilt and azimuth of the PV system and the shading of the

system including a precise measure if there is shading. The CSI then calculates the

expected production of the proposed system based on the reported characteristics and

compares it to a reference system. In particular, this comparison includes i) a design

correction to account for differences in tilt and azimuth, ii) a geographic correction to

account for differences in the location with respect to temperature and solar irradiation

at the respective zip code, and iii) an installation correction to account for differences in

the mounting method relative to laboratory test conditions. While the zip code as well

as make, model and number of technological components may be easier to verify and

applicants would therefore need to deliberately misreport in order to increase the design

factor, applicants may exploit the asymmetric information and report exaggerated

measures of features which are hard to observe, such as a system’s shading, tilt and

azimuth.

The transaction price of PV systems is the second outcome variable of interest.

In line with technical conventions it is divided by the system size. In particular, the

system’s nameplate rating is used to determine the transaction price per Watt as this

measure reflects the system’s electricity generating potential under test conditions (see

Podolefsky, 2013; Hughes and Podolefsky, 2015; Dong et al., 2018; Pless and van

Benthem, 2019, for a similar procedure).6 The CSI data provides the transaction price

for each system, which includes costs for the technological components, construction

and installation costs, engineering and design costs, interconnection cost as well as

6 The CSI data reports three different measures of a system’s size. The nameplate measures the
electricity generating potential under standard test conditions. The CEC-AC rating accounts for
differences at the respective location of the system such as wind speed and ambient temperature.
The CSI rating equals the CEC-AC rating multiplied by the design factor of the system.
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warranty and maintenance costs.7 While the costs for technological components may

be easily verifiable, the idiosyncratic environment of each system demands specific

installation and maintenance work-steps where installers likely have some range to

exploit with regard to pricing.

Importantly, earlier literature has assessed the transaction price of HO systems as

a reliable measure of what a consumer pays to the installer before subsidies. For

TPO systems however, this measure has been deemed inconsistent because the actual

transaction price depends on the explicit contract details such as monthly payments,

term lengths and upfront payments (Pless and van Benthem, 2019). I therefore conduct

the analysis of transaction prices per Watt of HO and TPO systems separately (see

Section 5.2). I decide to keep the transaction prices of TPO systems as a benchmark

for comparisons and make a disclaimer that all qualitative and quantitative conclusions

related to the transaction prices of TPO systems are indicative.

4 Data and empirical strategy

I first provide a summary of the data in Section 4.1 and then present the identification

strategy to investigate supply-side inefficiencies and second-degree moral hazard in

Section 4.2.

7 All systems in the sample are eligible to receive investment tax credits (ITC). These take the form of
a 30 percent tax credit on the transaction price which was granted to all PV systems installed in the
US from 2006-2019. Adjusting the transaction price for the ITC is akin to a linear transformation
of the variable, as all systems installed during the sample period receive the same tax credit.
Consequently, this procedure would not affect the results. See Pless and van Benthem (2019) for
further information.
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4.1 Data summary

The information on the applicants of each PV system provides a rich set of system

characteristics. Table 2 presents summary statistics of the data for each year of the

sample time (2007 to 2016).8

Table 2: Summary statistics

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Mean subsidy level ($/W) 2.40 2.02 1.58 1.02 0.59 0.30 0.21 0.20 0.21 0.21
Min subsidy level ($/W) 0.90 0.20 0.65 0.09 0.21 0.07 0.06 0.05 0.09 0.15
Max subsidy level ($/W) 3.25 2.65 2.30 2.30 1.55 1.10 1.10 0.90 0.70 0.70

Mean price per Watt ($/W) (HO) 8.2 8.1 7.8 7.1 6.8 5.5 4.7 4.6 4.2 4.0
Mean price per Watt ($/W) (TPO) 8.2 9.8 7.7 7.1 6.4 5.4 5.0 4.5 4.7 4.9

Mean size in kW 6.4 5.7 6.1 5.8 5.6 6.1 6.5 6.8 7.8 8.1
Mean number of modules 34 30 31 27 25 24 25 26 29 29
Mean number of inverters 1 2 3 4 5 6 8 9 11 10

Mean design factor (in pct.) 94.48 94.04 94.46 94.28 94.67 94.29 94.48 95.04 94.73 95.99

Commercial (1,943) 2.8 2.8 1.8 1.8 1.0 0.8 0.8 2.3 4.4 10.6
Government (374) 0.6 0.5 1.1 0.4 0.8 0.0 0.0 0.1 . 0.6
Non-profit (565) 1.1 0.7 0.4 0.5 0.3 0.2 0.2 0.9 3.2 2.5
Residential (135,768) 95.5 96.0 96.6 97.3 98.6 98.9 98.9 96.7 92.3 86.2

Observations (138,650) 6477 9701 13344 18994 21692 31691 30416 5677 498 160
Observations (HO, 70,914) 6019 8308 11429 13120 10179 8918 10134 2407 297 103
Observations (TPO, 67,736) 458 1393 1915 5874 11513 22773 20282 3270 201 57

Notes: Summary statistics for 2006 and 2017 are not reported because there were only 81 applications in these years.

The first three rows show the mean, minimum and maximum subsidy level in a

given year. In line with Figure 1, subsidy levels vary considerably within each year. The

next two rows show the average transaction price per Watt, for HO and TPO systems

separately because of potentially inconsistent values for TPO systems (see Section 3.5

for further details). Importantly, the transaction price per Watt is declining over time

for both HO and TPO systems. This trend is in line with a decrease of hardware costs

in recent years. Because the CSI subsidy levels also decrease over time, controlling for

changes in time-varying factors affecting the transaction price and design factor of PV

systems is crucial when estimating second-degree moral hazard.

8 Note that I drop PV systems which have not been installed at the time of the data access. Also,
systems without entries for the subsidy level, transaction price or date of reservation were dropped
in the data.
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Next, the size in kW and the number of modules installed show no specific time

trend. The number of modules installed per Watt is decreasing which is in line with the

trend that the peak kW (i.e. the maximum kWh generated per module) has increased

over time and fewer modules are necessary to reach a given level of electricity output.

Also, the total number of inverters installed is increasing over time. Solar inverters

are the primary cost drivers of a PV system and their hardware costs have significantly

decreased over the sample period. In combination with the observation that the ratio

of inverters per module installed also increased, this suggests that early adopters of PV

technology limited the installation of installers to cap hardware costs.

The design factor stays constant over the sample period, indicating that neither low-

hanging fruits with a particular large design factor, nor systems with a particularly bad

potential to generate electricity output entered the CSI program early. The next four

rows show the distribution of the consumer sector. The systems installed in our sample

are predominantly owned by residential consumers, followed by commercial, non-profit

and government consumers which is in line with the intended allocation of EPBB to

smaller and residential consumers. Finally, one can further observe a strong growth of

TPO systems during the sample period.

4.2 Identification strategy

To estimate the association of subsidy levels and the design factor and transaction

prices per Watt, I employ regression specifications adapted from Pless and van Benthem

(2019). When the outcome variable is the design factor, the regression specification can

be written as follows:

Yi = α + βisi +Xiφ+ ϕu + ςf + χs + ωc + µt + εi (1)
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where Yi denotes the design factor of system i, and si denotes the subsidy level of

system i. In addition, I account for entered system characteristics used to calculate the

design factor by controlling for the number of modules and inverters Xiφ and further

employing IOU fixed effects ϕu, technology fixed effects ςf indicating the make and

model f of modules and inverters installed in system i to control for quality differences,

and sector fixed effects χs to control for differences in subsidy levels in the respective

sector (see Table 1).

I also make use of installer fixed effects ωc to eliminate potential bias at the installer

level such as measurement errors of the system characteristics. Further, I employ µt

which is a dummy variable for the month t in which system i was installed to control

for the development of the design factor over time. This is important because one

could argue that consumers with a particularly poor environment for solar electricity

generation have opted in the CSI program early, because only high subsidy levels make

the investment for such consumers profitable (see Globus-Harris, 2020; Gilbert et al.,

2019, for a related discussion of additionality effects). The inclusion of monthly fixed

effects prevents me from misinterpreting the association of subsidy levels and the design

factor as second-degree moral hazard when it can be actually attributed of additionality.

Finally, εi denotes a random error term and standard errors are clustered at the zip

code level to correct for potential correlation of data errors within regional CSI offices

(Podolefsky, 2013; Pless and van Benthem, 2019).

When the outcome variable Yi is the transaction price per Watt, I additionally

create variables to control for aspects of the market structure affecting the supply for

PV systems. To this end, the control vector Xiφ includes the rank of the respective

installer in terms of total installations within the zip code at month t to control

for the development of market power with time (Dong et al., 2018), a measure of

the experience of the installer calculated by how many systems an installer installed
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previous to system i (see Bollinger and Gillingham, 2019, for a discussion of the effects

of learning by doing) and the zip code level Herfindahl-Hirschmann Index (HHI) using

the share of cumulative installations in a zip code by the installer in the respective year

to control for local industry concentration and competition (Gillingham et al., 2016).

I furthermore include the same FE as described above when the outcome variable is

transaction price per Watt. In particular, using installer FE in this context is important

to address unobserved differences at the installer level, such as increased market power

due to more successful marketing campaigns or increased bargaining power when

negotiating transaction prices with the consumer and/or lower prices for technology

input with the manufacturer.

There is, however, a potential issue with specification 1 because the actual received

subsidy levels differed from the predetermined subsidy levels for some observations

for reasons which were not explained in the CSI program (California Public Utilities

Commision, 2017). I can thus not rule out that installers are able to influence the

subsidy level and therefore self-select into specific subsidy levels. To address this

concern, I exploit plausibly exogenous variation of the predetermined subsidy level

as part of an instrumental variable strategy. In the first stage, I instrument the

actually received subsidy level with the predetermined subsidy level depending on the

cumulative mW installed within an IOU (see Table 1). Because the actual allocation

of subsidy levels was mostly in line with the predetermined schedule, predetermined

subsidy levels are a good predictor of actually received subsidy levels.

Further, the exclusion restriction requires that the instrument affects the design

factor and transaction price per Watt of systems only through the subsidy level. It

is highly unlikely that installers had such influential market power to influence the

total capacity installed within an IOU, preventing them from influencing the transition

process from one subsidy level step to another. In addition, it is unclear what incentives
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such installers would have to shift the capacity level above thresholds or alternatively

postpone installations. Importantly, the exclusion restriction is conditional on a set of

control variables and I include the above mentioned fixed effects in the first stage. I

thereby control for any between installer, between month, between IOU and county

and between technology factors that potentially link subsidy steps to the design factor

and transaction price of systems. These notably include installers who only apply for

CSI subsidies under earlier steps when subsidy levels are larger, regional differences in

demand factors determining the transition speed to next subsidy steps or co-movement

of subsidy steps and declining hardware costs due to technological progress.

Formally, the received subsidy level (see Figure 1) is instrumented with the

predetermined subsidy level depending on the cumulative mW installed as presented

in Table 1:

Zi = predetermined si (2)

Consequently, the first stage regression can be written as:

si = η + θZi +Xiτ + ϑu + %f + ιs + ξc + κt + νi. (3)

Using this instrumental variable approach, the second stage estimate β accounts

for potential endogeneity of the actually received subsidy levels. The estimate is

further based on within month, within IOU, within county, within installer and

within technology variation of subsidy levels. Controlling for additional factors which

potentially influence the design factor and transaction prices per Watt, I interpret β as

the causal relation between a one dollar subsidy increase and associated changes of the
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design factor and transaction prices per Watt of PV systems.

I then study whether the association between subsidy levels and design factor/

transaction price per Watt is affected by increased verification of the installer’s work

and the ownership of systems. For this purpose, I interact the subsidy level si in

specification 1 with a variable indicating whether i) a system is subject to a mandatory

field inspection, and ii) the system is owned by a commercial, government, non-profit

or residential consumer. This procedure requires that I instrument each interaction

term with the predetermined subsidy level interacted with the category of the indicator

variables, resulting in several first stage regressions. To ease the interpretation of the

interaction terms, I further center the subsidy level variable around its mean. Hence,

interaction terms can be interpreted as the association of subsidy levels and the design

factor/ transaction prices per Watt at the mean subsidy level of the sample.

I complement this identification with a set of robustness checks. Hughes and

Podolefsky (2015) as well as Pless and van Benthem (2019) note that consumers could

to some extent anticipate subsidy step transition dates and therefore speed up the

application process to receive higher subsidy levels. I therefore follow Hughes and

Podolefsky (2015) and Pless and van Benthem (2019) and drop systems which applied

in the vicinity of two weeks before and after a subsidy level drop. I then apply the

instrumental variable strategy this subset of data.9

9 The possibility that consumers are able to decide on which side of the threshold for a subsidy step
in combination with the irregularities concerning the actually received subsidies impedes me from
using a regression discontinuity design. The instrumental variable strategy however mimics the first
stage regressions which one would have performed to determine abrupt subsidy level changes in the
vicinity of threshold for a transition to a next subsidy step.
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Table 3: Design factor of TPO systems

All obs. included

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level 0.359* 0.471** 0.360* 0.471** 0.707 1.315
(0.144) (0.164) (0.144) (0.164) (0.776) (0.714)

Field inspection (FI)

FI = 1 × Subsidy level −0.602 −0.421
(0.445) (0.467)

FI = 1 0.708 0.690
(0.423) (0.422)

Sector

Government × Subsidy level −1.086 −2.034
(2.228) (3.103)

Non-Profit × Subsidy level 0.795 1.324
(0.939) (1.388)

Residential × Subsidy level 0.360* 0.470**
(0.144) (0.164)

Government 1.696 2.383
(1.864) (2.356)

Non-Profit 0.818 0.825
(0.730) (0.755)

Residential −1.497*** −1.548***
(0.434) (0.433)

N 67,230 67,230 67,230 67,230 67,230 67,230
1st-stage partial F-stat. - 71982.4 - 47312.9; 10032.1 - 319.4; 32.4;

19.6; 24239.2

Notes: The outcome variable is the design factor of TPO systems. All specifications include fixed effects for the IOU, installer, month,
sector as well as for make and models of modules and inverters. Further, all specifications include controls for the amount of modules
and inverters. The 1st stage partial F-statistics for the instrumental variables are derived from first- stage regression results reported
in Appendix B, Table B1. Robust standard errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote
statistical significance at 5%, 1% and 0.1% respectively.

5 Empirical results

I start this section by presenting the impact of subsidy levels on the PV system’s design

factor (Section 5.1) followed by transaction prices per Watt (Section 5.2). I further

analyze implications from the framework in Section 2 and study heterogeneity related

to increased verification measures and the ownership of PV systems.

24



5.1 Subsidy levels and the design factor of upfront systems

Table 3 shows regression results for Equation 1 when the outcome is the design factor

of TPO upfront systems and all observations are included.10 In column (1), I report OLS

estimates and in column (2), I report 2-stage least squares (2SLS) estimates where the

actually received subsidy level is instrumented with the predetermined subsidy level as

shown in equation 2. In columns (3) and (4) I repeat this sequence and interact the

subsidy level with a variable equal to one if the system is subject to a mandatory field

inspection. In columns (5) and (6) I interact the subsidy level with a variable indicating

the sector of the consumer. Table C1 in Appendix C, shows regression results for the

same sequence dropping observations in the vicinity of a subsidy level drop date.

In columns (1), and (2) the coefficient on Subsidy level is positive and statistically

significant. When interacting the subsidy level with a variable indicating whether the

system is subject to a mandatory field inspection (FI = 1) in columns (3) and (4) the

positive association of subsidy levels and the design factor of systems which are not

subject to a mandatory field inspection (Subsidy level) is similar in size and significance.

At the same time, there is no statistically significant association of subsidy levels and the

design factor when systems are subject to a mandatory field inspection (FI = 1 x Subsidy

level). Looking at the marginal effect of the subsidy level by consumer sector in columns

(5) and (6), we observe that only residential consumers show statistically significant

and positive coefficients which are again similar in size to the coefficients without

interaction. Further, residential systems are associated with a statistically significant

lower design factor of approximately 1.5 percentage points.

The estimates after dropping observations in the vicinity of a rebate level drop date

10 Throughout this section, I use the Stata package REGHDFE to estimate linear models with multiple
fixed effects (Correia, 2019). I exclude singleton groups (i.e. groups with only one observation) to
avoid underestimated standard errors which could bias statistical inference (Correia, 2015). Keeping
singleton groups does not affect the qualitative conclusions.
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in Table C1, Appendix C are very similar in size and significance, suggesting that the

presence of consumers anticipating such dates does not affect the association of subsidy

levels and the design factor. Furthermore, the OLS and IV estimates are similar in size,

although the IV estimates tend to be larger. A negative endogeneity bias suggests that

any omitted variable influencing both the subsidy level and the error term lowers the

association between subsidy levels and the design factor. This indicates that the received

subsidy levels were not influenced by factors also increasing the design factor (such as

for example second-degree moral hazard). Using the predetermined subsidy level as

an instrument for the actually received subsidy level further has significant explanatory

power indicated by large first-stage F-statistics.

The results show that a one dollar increase of the upfront subsidy is associated

with an increase of the design factor of approximately 0.47 percentage points (in my

preferred specification in column 2). Following sample calculations of the design factor,

an increase of 0.47 percentage points is equivalent to an optimization of the module tilt

of 5 degrees.11 In combination with the observation that there is no such association

when systems are subject to a mandatory field inspection where the inputs to calculate

the design factor are verified, I interpret these results as evidence that TPO installers do

respond to larger subsidy levels and increase the design factor of systems, unless their

input is verified during mandatory field inspections.

The positive association between subsidy levels and the design factor for residential

consumers is further in line with heterogeneous social preferences depending on the

consumer sector as argued in section 2. Inflating and shifting the total amount of

subsidies to consumers has the consequence that consumers pay less for their systems.

Lower design factors of residential consumers can further potentially be attributed to

different intentions to invest in a PV system. Investments by residential consumers

11 See http://www.csi-epbb.com/ for further information and sample calculations.
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Table 4: Design factor of HO systems

All obs. included

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level 0.010 −0.067 0.006 −0.071 −0.015 −0.135
(0.105) (0.122) (0.105) (0.122) (0.206) (0.255)

Field inspection (FI)

FI = 1 × Subsidy level 0.117 0.074
(0.163) (0.176)

FI = 1 −0.410** −0.434**
(0.145) (0.149)

Sector

Government × Subsidy level −0.084 −0.436
(0.549) (0.662)

Non-Profit × Subsidy level −0.451 −0.467
(0.307) (0.348)

Residential × Subsidy level 0.005 −0.064
(0.105) (0.121)

Government −0.551 −0.208
(0.704) (0.849)

Non-Profit 0.623 0.617
(0.383) (0.421)

Residential −0.923*** −0.913***
(0.145) (0.145)

N 69,113 69,113 69,113 69,113 69,113 69,113
1st-stage partial F-stat. - 43892.7 - 88043.9; 34064.67 - 3090.8; 296.7;

1018.9; 1.2e+5

Notes: The outcome variable is the design factor of HO systems. All specifications include fixed effects for the IOU, installer, month,
sector as well as for make and models of modules and inverters. Further, all specifications include controls for the amount of modules
and inverters. The 1st stage partial F-statistics for the instrumental variables are derived from first- stage regression results reported in
Appendix B, Table B1. Robust standard errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical
significance at 5%, 1% and 0.1% respectively.

may be motived by an environmental perspective, which implies that the investments

are conducted although the location of their system may not be optimal to generate

electricity output and therefore have a lower design factor, such as carport structures.

Instead, commercial consumers may only want to invest if the location of the system

has high potential for large electricity output.

Next, Table 4 shows regression results for Equation 1 when the outcome is the design

factor of HO upfront systems. The columns are arranged in the same way as in Table

3. Table C1 in Appendix C, shows regression results for the same sequence dropping

observations in the vicinity of a subsidy level drop date.

While there is no statistically significant association of subsidy levels and the design
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factor, mandatory field inspections are associated with a significant decrease of the

design factor of 0.43 percentage points and the design factor of residential systems is

approximately 0.9 percentage lower compared to commercial systems. The estimates

after dropping observations in vicinity of a subsidy level drop date shown in Table C1,

Appendix C are similar in size and significance.

These results suggest that HO systems do not have an increased design factor

when they receive larger subsidy levels. The observation that HO systems subject

to a mandatory field inspection are associated with a significantly lower design

factor suggests that increased verification may trigger conservative reports of system

characteristics, as any discrepancies are more likely to be detected. Furthermore,

residential consumers are again associated with a lower design factor indicating that

residential consumers install PV systems in areas with lower potential to generate

electricity output.

Overall, these results suggest that TPO installers increase the design factor of PV

systems when they receive higher subsidy levels. This association indicates second-

degree moral hazard which, however, does not come at the expense of the consumer

but at that of the CSI as the subsidy provider. Because TPO installers receive the

total amount of subsidies directly after the installation has been completed and the

transaction price paid by the consumer is paid dispersed over time, increasing the

amount of subsidies can increase the short-term cash flow. Instead, installers of HO

systems receive the full transaction price and they do not receive the subsidies as they

are directed to the consumer. Increasing short-term cash flow for HO installations would

hence lead to larger transaction prices, which I study in the next section.
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Table 5: Transaction price per Watt of TPO systems

All obs. included

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level 0.045 0.001 0.045 0.001 −0.075 −0.218
(0.031) (0.030) (0.031) (0.030) (0.173) (0.206)

Field inspection (FI)

FI = 1 × Subsidy level 0.059 0.006
(0.149) (0.150)

FI = 1 −0.094 −0.091
(0.109) (0.109)

Sector

Government × Subsidy level 2.477** 2.358*
(0.937) (0.945)

Non-Profit × Subsidy level 0.208 0.297
(0.277) (0.490)

Residential × Subsidy level 0.042 0.002
(0.031) (0.030)

Government −0.243 −0.213
(0.542) (0.620)

Non-Profit 0.203 0.223
(0.212) (0.223)

Residential 0.243* 0.254*
(0.120) (0.121)

N 67,230 67,230 67,230 67,230 67,230 67,230
1st-stage partial F-stat. - 72154.6 - 47481.7; 9919.2 - 313.2; 33.0;

19.59; 24436.8

Notes: The outcome variable is the transaction price per Watt of TPO systems. All specifications include fixed effects for the IOU,
installer, month, sector as well as for make and models of modules and inverters. Further, all specifications include controls for
the amount of modules and inverters, the experience of installers, the relative market power of installers and a measure for local
industry concentration. The 1st stage partial F-statistics for the instrumental variables are derived from first-stage regression results
reported in Appendix B, Table B2. Robust standard errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗

denote statistical significance at 5%, 1% and 0.1% respectively.

5.2 Subsidy levels and transaction prices per Watt of PV systems

In this section, I study the association of subsidy levels and transaction prices per Watt

of PV systems and how it depends on increased verification and the consumer sector.

I first analyze the transaction price of TPO systems (which has been acknowledged to

be inconsistently reported and results are therefore indicative) and then redo the same

analysis for HO systems.

Table 5 shows regression results for Equation 1 when the outcome is the transaction

price per Watt of upfront TPO systems. The columns are arranged in the same way as

in the previous regression Tables. Table C3 in Appendix C, shows regression results for
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the same sequence dropping observations in the vicinity of a subsidy level drop date.

I recall the disclaimer, that all qualitative and quantitative conclusions related to the

transaction prices of TPO systems are indicative, because transaction prices reported to

the CSI may not necessarily represent what the consumer is actually paying to the TPO

installer (see Section 3.5 for further details).

Column (6) shows that there is a large, positive and statistically significant

association of the marginal subsidy level and transaction prices for governmental

consumers. A one dollar increase of the subsidy level is associated with a 2.4 $ increase

of the transaction price per Watt. Given average transaction prices per Watt range

between 4 and 8 $ per Watt (see Table 2), this translates to 50 to 25 percent increase

of the transaction price per Watt. This observation is in line with installers having

different valuations for consumer types (i.e. with heterogeneity of λ in equation 2).

The transaction prices of governmental consumers are ultimately paid by the tax-payer,

which adds another layer of third party reimbursements and may reduce the extent to

which installers care for the consumer’s benefits λ leading to larger transaction prices.

Furthermore, residential consumers are associated with a larger transaction price

per Watt. This association is however not statistically significant when dropping

observations in the vicinity of a rebate level drop date (Table C3, Appendix C). A larger

transaction price per Watt could again be attributed to less standardized installations

in residential consumers, such as carport structures (see Gillingham et al., 2016, for a

similar reasoning).

Next, Table 6 shows regression results for Equation 1 when the outcome is the

transaction price per Watt of HO systems. The columns are arranged in the same way as

in the previous regression Tables. Table C4 in Appendix C, shows regression results for

the same sequence dropping observations in the vicinity of a subsidy level drop date.

The association of subsidy levels and the transaction price per Watt is positive and
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Table 6: Transaction price per Watt of HO systems

All obs. included

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level 0.234*** 0.298*** 0.233*** 0.297*** 0.384*** 0.402***
(0.035) (0.047) (0.035) (0.047) (0.090) (0.102)

Field inspection (FI)

FI = 1 × Subsidy level 0.247*** 0.312***
(0.064) (0.064)

FI = 1 −0.095** −0.095*
(0.037) (0.037)

Sector

Government × Subsidy level 0.645** 0.598*
(0.220) (0.263)

Non-Profit × Subsidy level 0.649*** 0.715***
(0.107) (0.119)

Residential × Subsidy level 0.245*** 0.295***
(0.036) (0.047)

Government 0.440 0.506
(0.260) (0.314)

Non- Profit −0.537*** −0.590***
(0.114) (0.127)

Residential −0.137** −0.151**
(0.052) (0.051)

N 69,113 69,113 69,113 69,113 69,113 69,113
1st-stage partial F-stat. - 43965.8 - 87944.67; 33857.3 - 3102.2; 296.8;

1018.5; 1.2e+5

Notes: The outcome variable is the transaction price per Watt of HO systems. All specifications include fixed effects for the IOU,
installer, month, sector as well as for make and models of modules and inverters. Further, all specifications include controls for the
amount of modules and inverters, the experience of installers, the relative market power of installers and a measure for local industry
concentration. The 1st stage partial F-statistics for the instrumental variables are derived from first- stage regression results reported in
Appendix B, Table B2. Robust standard errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical
significance at 5%, 1% and 0.1% respectively.

statistically significant in columns (1) and (2). When interacting the subsidy level with

a variable indicating whether the system is subject to a mandatory field inspection (FI

= 1) in columns (3) and (4), we do not observe a significant difference of the marginal

effect of the subsidy level with respect to field inspections (Wald test column 4, H0 =

Subsidy level = FI=1 x Subsidy level, p = 0.786). At the same time, a mandatory field

inspection is further associated with a statistically significant decrease of the transaction

price per Watt of approximately 0.1 $ per Watt.

The marginal effects of the subsidy level on transaction prices per Watt by the

consumer sector in columns (5) and (6) are all positive and statistically significant.
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Pairwise comparisons of the coefficients show that the marginal effect for residential

consumers is significantly lower than that of non-profit consumers (Wald test column

6, H0 = Non Profit x Subsidy level = Residential x Subsidy level, p < 0.001). Finally,

residential and non-profit systems are associated with a statistically significant decrease

of the transaction price per Watt compared to commercial consumers.

These results suggest that a one dollar increase of upfront subsidies is associated

with an increase of the transaction price per Watt of approximately $ 0.3 per Watt.

Given average transaction prices per Watt range between 4 and 8 $ per Watt (see Table

2), this translates to a 7.5 to 3.7 percent increase of the transaction price per Watt.

While mandatory field inspections do not reduce this association, they are associated

with lower transaction prices per Watt, suggesting that they may trigger conservative

pricing of installers as any surcharges are more likely to be detected.

The observation that the marginal effect of subsidy levels on transaction prices per

Watt for non-profit consumers is the largest, is perhaps striking because non-profit

organizations may be perceived as serving a good cause with little financial resources.

There have, however, been some discussions on a decreased confidence in non-profit

organizations as the sector is mostly unregulated and sometimes viewed as unethical as

their good cause and "non-profit" status is doubted (O’Neill, 2009). This may in turn

reduce the extent in how far installers care for the NPO’s benefits λ and therefore lead

to higher transaction prices.

In combination with the insights from Section 5.1, the results suggest that TPO

installers do increase the design factor of residential consumers and at the same time

only increase the transaction prices per Watt for governmental consumers. For HO

systems, only the transaction price per Watt and not the design factor is increasing in

the subsidy level. These insights are in line with increasing the short-term cash flow of

installers, because directly after the installation TPO installers receive the total subsidies
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and HO installers receive the transaction price. In addition, the results can inform the

subsidy pass-through of TPO installers as they increase the total amount of subsidies

for residential consumers but do not adapt transaction prices accordingly which would

ultimately lead to a larger pass-through.

6 Discussion and conclusion

In this paper, I studied second-degree moral hazard of installers induced by the credence

component of energy-transforming technologies. To this end, I analyzed data from a

solar subsidy program in California and quantified the relationship of subsidy levels

and the design factor as well as transaction prices per Watt of PV systems. Employing

an instrumental strategy to account for potential self-selection of installers into specific

subsidy levels and further controlling for a wide range of potential confounding factors

such as an installer’s market power, I find that TPO installers increase the design factor

and thereby the total amount of subsidies received for residential systems. Such second-

degree moral hazard on expense of the subsidy provider is however non-existent when

the system is subject to a mandatory field inspection.

TPO installers do further not adapt transaction prices per Watt when residential

consumers receive larger subsidy. In addition, the design factor of HO systems is

unaffected by larger subsidy levels, but I find evidence suggesting that second-degree

moral hazard increases the transaction prices per Watt paid by all consumer sectors.

This is in line with a business strategy based on increasing short-term cash flows.

The results provide novel insights for different kinds of research avenues. First, they

contribute to the literature evaluating the cost-effectiveness of environmental subsidy

programs and show that such programs need to be robust towards second-degree

moral hazard of installers induced by the credence component of energy-transforming
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technologies. My empirical analysis suggests that program administrators should i)

account for the cost of second-degree moral hazard when installers can to some extent

determine the total amount of subsidies received and ii) impose stricter verification

measures on the work of installers.

Second, I document that stylized findings from other credence goods markets

are relevant for the market of energy-transforming technologies. This paper is the

first to document evidence of second-degree moral hazard in the context of energy-

transforming technologies. The results further confirm heterogeneity of second-degree

moral hazard depending on increased verification and the bearer of the financial

consequences (Balafoutas et al., 2013; Gottschalk et al., 2020). It is a promising route

for future research to further uncover dimensions of heterogeneity in second-degree

moral hazard as well as related solutions.
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A Distribution of system size

Figure A1: Size distribution of upfront systems
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Notes: Distribution of system size of upfront systems. The upper panel shows all upfront systems up to
30 kW. The lower left panel shows the distribution of the subset of system sized four to six kW. The lower
right panel shows the distribution of the subset of system sized nine to eleven kW. The width of bins set
to 0.01 kW.

Figure A1 shows the distribution of system size of upfront systems. As discussed
in section 3.1, there is no evidence of bunching around a five or ten kW threshold,
suggesting that strategic considerations do not play a role when choosing the system
size.

Consumers installing a system sized between ten and 30 kW could choose to receive
a different kind of subsidy which is paid conditional on actual electricity output rather
then expected output. If for example, installers would want to maximize the upfront
amount of subsidies received one would observe bunching of upfront systems with a size
just below the threshold of 30 kW. We do not observe evidence for bunching around this
threshold, suggesting that strategic self- selection into either subsidy type does not bias
the results.
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B First stage-regression results

Table B1: First stage regression results for Tables 3 and 4

TPO (Table 3 ) HO (Table 4)

(1) (2) (3) (4) (5) (6)

Zi 0.883*** 0.884*** 0.640*** 0.849*** 0.850*** 0.589***
(0.003) (0.003) (0.027) (0.004) (0.004) (0.008)

Field inspection (FI)

FI = 1 × Zi 0.989*** 0.965***
(0.007) (0.004)

Sector

Government × Zi 0.950*** 0.713***
(0.099) (0.022)

Non-Profit × Zi 0.702*** 0.755***
(0.081) (0.013)

Residential × Zi 0.973*** 0.987***
(0.006) (0.002)

N 67,230 67,230 67,230 69,113 69,113 69,113

Notes: The outcome variable is the actually received subsidy level. All specifications include fixed effects
for the IOU, installer, month, sector as well as for make and models of modules and inverters. Further, all
specifications include controls for the amount of modules and inverters. Robust standard errors clustered
at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1%
and 0.1% respectively.
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Table B2: First stage regression results for Tables 5 and 6

TPO (Table 5) HO (Table 6)

(1) (2) (3) (4) (5) (6)

Zi 0.883*** 0.883*** 0.641*** 0.849*** 0.850*** 0.589***
(0.003) (0.003) (0.027) (0.004) (0.004) (0.008)

Field inspection (FI)

FI = 1 × Zi 0.989*** 0.965***
(0.007) (0.004)

Sector

Government × Zi 0.950*** 0.713***
(0.099) (0.022)

Non-Profit × Zi 0.702*** 0.755***
(0.081) (0.013)

Residential × Zi 0.973*** 0.987***
(0.006) (0.002)

N 67,230 67,230 67,230 69,113 69,113 69,113

Notes: The outcome variable is the actually received subsidy level. All specifications include fixed effects
for the IOU, installer, month, sector as well as for make and models of modules and inverters. Further, all
specifications include controls for the amount of modules and inverters, the experience of installers, the
relative market power of installers and a measure for local industry concentration. Robust standard errors
clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at
5%, 1% and 0.1% respectively.
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C Additional Tables

Table C1: Design factor of TPO systems (Exclusion window)

Exclusion window +- two weeks

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level 0.398* 0.552** 0.399* 0.552** 0.690 1.208
(0.156) (0.172) (0.156) (0.172) (0.781) (0.709)

Field inspection (FI)

FI = 1 × Subsidy level −0.447 −0.221
(0.459) (0.480)

FI = 1 0.709 0.690
(0.449) (0.447)

Sector

Government × Subsidy level −3.668 −5.581
(3.165) (4.416)

Non-Profit × Subsidy level 1.202 2.189
(1.191) (1.905)

Residential × Subsidy level 0.400* 0.550**
(0.156) (0.172)

Government 3.643 5.272
(3.062) (4.044)

Non-Profit 1.207 1.319
(0.797) (0.873)

Residential −1.446*** −1.496***
(0.437) (0.437)

N 61,456 61,456 61,456 61,456 61,456 61,456

1st-stage partial F-stat. - 31145.7; 271.5; - 62.3; 183.2; - 157.6; 171.0;
435.5; 1.5e+05 100.3; 2056.5 139.0; 1516.1

Notes: The outcome variable is the design factor of TPO systems. All specifications include fixed effects for the IOU, installer, month,
sector as well as for make and models of modules and inverters. Further, all specifications include controls for the amount of modules and
inverters. Robust standard errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance
at 5%, 1% and 0.1% respectively.
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Table C2: Design factor of HO systems (Exclusion window)

Exclusion window +- two weeks

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level −0.016 −0.046 −0.019 −0.049 0.013 −0.017
(0.111) (0.126) (0.111) (0.127) (0.225) (0.267)

Field inspection (FI)

FI = 1 × Subsidy level 0.032 0.019
(0.170) (0.183)

FI = 1 −0.414* −0.427**
(0.162) (0.165)

Sector

Government × Subsidy level −0.012 −0.388
(0.621) (0.752)

Non-Profit × Subsidy level −0.442 −0.428
(0.319) (0.355)

Residential × Subsidy level −0.018 −0.042
(0.111) (0.126)

Government −0.805 −0.403
(0.816) (0.981)

Non-Profit 0.758 0.738
(0.389) (0.415)

Residential −0.856*** −0.849***
(0.153) (0.153)

N 69,113 63,063 63,063 63,063 63,063 63,063 63,063
1st-stage partial F-stat. - 31145.7; 271.5; - 62.3; 183.2; - 157.6; 171.0;

435.5; 1.5e+05 100.3; 2056.5 139.0; 1516.1

Notes: The outcome variable is the design factor of HO systems. All specifications include fixed effects for the IOU, installer, month, sector as well as
for make and models of modules and inverters. Further, all specifications include controls for the amount of modules and inverters. Robust standard
errors clustered at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1% and 0.1% respectively.
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Table C3: Transaction price per Watt of TPO systems (Exclusion window)

Exclusion windiw +- two weeks

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level 0.049 −0.008 0.049 −0.008 −0.083 −0.223
(0.028) (0.030) (0.028) (0.030) (0.184) (0.219)

Field inspection (FI)

FI = 1 × Subsidy level 0.044 −0.028
(0.151) (0.151)

FI = 1 −0.088 −0.084
(0.111) (0.111)

Sector

Government × Subsidy level 2.877* 3.411***
(1.133) (1.023)

Non-Profit × Subsidy level 0.589* 0.881
(0.300) (0.460)

Residential × Subsidy level 0.046 −0.008
(0.029) (0.030)

Government −0.578 −1.057
(0.802) (0.722)

Non-Profit 0.353 0.417
(0.222) (0.237)

Residential 0.205 0.210
(0.128) (0.129)

N 69,113 61,456 61,456 61,456 61,456 61,456 61,456
1st-stage partial F-stat. - 31145.7; 271.5; - 62.3; 183.2; - 157.6; 171.0;

435.5; 1.5e+05 100.3; 2056.5 139.0; 1516.1

Notes: The outcome variable is the transaction price per Watt of TPO systems. All specifications include fixed effects for the IOU, installer, month,
sector as well as for make and models of modules and inverters. Further, all specifications include controls for the amount of modules and inverters,
the experience of installers, the relative market power of installers and a measure for local industry concentration. Robust standard errors clustered
at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1% and 0.1% respectively.
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Table C4: Transaction price per Watt of HO systems (Exclusion window)

Exclusion window +- two weeks

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

Subsidy level 0.270*** 0.298*** 0.269*** 0.297*** 0.429*** 0.416***
(0.037) (0.047) (0.037) (0.047) (0.097) (0.105)

Field inspection (FI)

FI = 1 × Subsidy level 0.315*** 0.333***
(0.055) (0.062)

FI = 1 −0.077* −0.070
(0.037) (0.038)

Sector

Government × Subsidy level 0.767** 0.671*
(0.248) (0.302)

Non-Profit × Subsidy level 0.677*** 0.699***
(0.109) (0.117)

Residential × Subsidy level 0.282*** 0.295***
(0.038) (0.047)

Government 0.357 0.463
(0.298) (0.362)

Non-Profit −0.555*** −0.576***
(0.118) (0.128)

Residential −0.136* −0.141*
(0.056) (0.055)

N 69,113 63,063 63,063 63,063 63,063 63,063 63,063
1st-stage partial F-stat. - 31145.7; 271.5; - 62.3; 183.2; - 157.6; 171.0;

435.5; 1.5e+05 100.3; 2056.5 139.0; 1516.1

Notes: The outcome variable is the transaction price per Watt of HO systems. All specifications include fixed effects for the IOU, installer, month,
sector as well as for make and models of modules and inverters. Further, all specifications include controls for the amount of modules and inverters,
the experience of installers, the relative market power of installers and a measure for local industry concentration. Robust standard errors clustered
at the zip code level are reported in parentheses. ∗, ∗∗ and ∗∗∗ denote statistical significance at 5%, 1% and 0.1% respectively.
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