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Abstract

We document non-linear stock effects in the relationship linking emerging technology

adoption and network infrastructure increments. We exploit 2010-2017 data covering nascent

to mature electric vehicle (EV) markets across 422 Norwegian municipalities together with

two complementary identification strategies: control function regressions of EV sales on flex-

ible polynomials in the stock of charging stations and charging points, and synthetic control

methods to quantify the impact of initial infrastructure provision in municipalities that previ-

ously had none. Our results are consistent with indirect network effects and the behavioral

bias called “range anxiety”, and support policies targeting early infrastructure provision to

incentivize EV adoption.
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1 Introduction

The demand for personal mobility is associated with significant local and global externalities,

and many countries consider electrification as the future of on-road transportation.1 Even in the

presence of externality-correcting taxes, however, indirect network effects hamper decisions to

purchase an electric vehicle (EV) at the individual level (Greaker and Midttomme, 2016). In

particular, the benefit of EV adoption depends on the size of charging infrastructure, whereas

providers of charging stations will not invest in infrastructure provision when the base of EVs

in circulation is small.2 In the presence of unpriced benefits to consumers (e.g. lower search

costs), the private deployment of network infrastructure is likely suboptimal (Farrell and Saloner,

1986; Katz and Shapiro, 1986; Cabral, 2011). In turn, policies supporting the provision of public

charging infrastructure can alleviate a chicken and egg dilemma between EV consumers and

charging station providers.

In this setting, the objective of this paper is to provide novel evidence about how increments

to charging infrastructure affect EV adoption decisions. We employ data for all 422 Norwegian

municipalities from 2010 to 2017, with quarterly information on EV registrations by make and

model, and the number of available charging stations, together with the number of charging

points within these. Figure 1a illustrates how registrations of new EVs increased from around

90 in Q2 2010 to around 23,000 in Q4 2017, the latter representing 49 percent of all new

car registrations (OFV, 2018), the world’s highest rate of EV use (International Energy Agency,

2019b).3 Over the same period, the number of charging stations increased from around 640 in

Q2 2010 to 2194 by the end of 2017 (Figure 1b). Charging points follow a similar trend, rising

from around 2,600 to 10,240 over the period.

1 The transport sector is responsible for about 25% of GHG emissions globally (International Energy Agency, 2019a),
57% of Nitrous Oxides, and 20% of particulate matter 2.5 (European Environmental Agency, 2018). See Interna-
tional Energy Agency (2019b) for projected trends in EV adoption. Importantly, Holland et al. (2016) emphasize
regional heterogeneity in the benefits associated with the electrification of transports in relation to the use of
alternative electricity generation technologies.

2 Note that EVs can be recharged at home (e.g. overnight), although potential adopters may still derive utility from
the availability of public charging infrastructure. This issue is particularly important for battery-only EVs (BEVs),
but plug-in hybrids can also benefit from public charging stations once they run out of electricity.

3 Norway implemented a range of incentive schemes to promote EVs, including subsidies for charging infrastructure,
financial incentives such as exemptions from registration tax and VAT, the free use of toll roads, public parking,
and bus lanes, and discounted ferry tickets (see Zhou et al., 2015, for an overview). We emphasize that these
policies have been implemented before 2010 and controlled for in our estimation strategy. Instead, our objective
is to isolate exogenous variation in charging infrastructure and quantify its impact on EV purchase.
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Figure 1: Electric vehicle registrations and charging stations/points in Norway, 2010 - 2017

(a) New registrations of electric vehicles
(source: OFV, 2018)

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
R

eg
is

tra
tio

ns
 (n

o.
)

Q
2 

20
10

Q
4 

20
10

Q
2 

20
11

Q
4 

20
11

Q
2 

20
12

Q
4 

20
12

Q
2 

20
13

Q
4 

20
13

Q
2 

20
14

Q
4 

20
14

Q
2 

20
15

Q
4 

20
15

Q
2 

20
16

Q
4 

20
16

Q
2 

20
17

Q
4 

20
17

Quarter

EV registrations

(b) Cumulative charging stations/points
(source: NOBIL, 2018)
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We use two complementary strategies to identify the impact of charging infrastructure on EV

adoption from the emergence of the market in 2010 to a more mature market in 2017. First,

we regress the log of new EV registrations on the log of charging stations available in a given

municipality-quarter, and thereby estimate the elasticity of EV purchases with respect to incre-

mental charging infrastructure. The primary issue with this analysis, however, is endogeneity

in the municipality-level availability of charging infrastructure (Li et al., 2017). In particular,

demand for EVs and the availability of charging infrastructure are potentially jointly affected by

unobserved factors such as environmental preferences and associated government policies (e.g.

subsidies for local charging infrastructure). Moreover, indirect network effects imply a reverse

causality problem whereby greater EV registrations lead to more charger installations, for exam-

ple through higher expected financial returns.

To isolate the impact of incremental charging infrastructure on EV adoption, we follow Li

et al. (2017) and construct a Bartik (1991) instrument based on the stock of public parking spaces

available in each municipality and the nation-wide trend of charger installations.4 In this con-

text, identification rests on two assumptions: (i) more abundant parking space isolates plausibly

4 In this we include all registered public parking spaces (SSB, 2018) such as government-controlled on- and off-
street parking, schools, churches, sports facilities, and other parking lots.
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exogenous variation in the opportunity to supply charging infrastructure and (ii) municipalities

with more parking space are more likely to respond to a nation-wide trend in EV adoption. Im-

portantly, these assumptions are conditional on a set of control variables capturing differential

changes in prices and income, among other things, as well as quarter fixed effects (national de-

mand shocks and policy incentives for EVs) and municipality-model fixed effects (time invariant

EV attribute and within-municipality preferences).

Based on this, the first contribution of this paper is to exploit the development of the EV

market in Norway to study how consumers respond to charger installations at early and developed

market stages. Specifically, we investigate how the pre-existing stock of installed charging stations

affects the charger-elasticity of EV demand. We use a set of control function (CF) regressions

(Wooldridge, 2015) in which residuals from the first stage regression are included in the second

stage, which allow us to estimate flexible polynomial specifications in the size of the stock.5 We

find that elasticity estimates increase with the stock of charging stations, which suggests that

charger installations are subject to increasing returns from network externalities. We further

show that the largest impact of incremental charging infrastructure occurs when there is little

to no pre-existing charger network. As discussed in Meunier and Ponssard (2020), this is in

line declining marginal benefit of charging infrastructure as the size of the network grows (e.g.

through declining disutility associated with locating and reaching a charging point).

Quantitatively, we estimate that a 10 percent increase in charging stations causes a rise in EV

registrations by around 1.4 percent at the mean of our sample. We further provide suggestive

evidence that consumers respond differently to the provision of charging points, with a corre-

sponding estimate of 0.9 percent. A higher elasticity for the provision of stations vs. points is

consistent with existing empirical evidence documenting a behavioral bias called “range anxi-

ety”, whereby drivers tend to systematically over-estimate their required driving range. See for

example DeShazo et al. (2017) and Dimitropoulos et al. (2016). This behavioral bias magni-

fies the network externality problem, and suggests that expanding the network of infrastructure

with charging stations with a single or few charging point(s) delivers the greatest benefits to

consumers.

5 This approach is based on Hausman (1978) and Heckman and Robb (1985), as described by Wooldridge (2015),
and is similar to Terza et al. (2008)’s otherwise named two-stage residual inclusion procedure.
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The second empirical strategy is geared towards the role of initial infrastructure provision. We

focus on a subset of 64 Norwegian municipalities with a base of zero charging stations in 2010

and for which we observe either just one station being installed (one-station group) or multiple

stations installed within a window of 4 consecutive quarters (multi-station group). To quantify

the impact of this one-off infrastructure provision on EV registrations, we employ the synthetic

control method (SCM; Abadie and Gardeazabal, 2003; Abadie et al., 2010).6 In this approach,

a synthetic municipality is constructed by giving weights to all those in a set of potential control

units (the donor pool), which we take to be all municipalities that never installed any charging

stations over the entire observation period. The weights attributed to each municipality in the

donor pool are selected so as to minimize pre-treatment differences in cumulative EV sales be-

tween a given treated unit and the synthetic municipality. For this purpose, we implement the

ridge-augmented SCM (Ben-Michael et al., 2018), which adds a bias-correction term to the orig-

inal SCM weights and allows for the use of negative weights in the construction of the synthetic

control unit (see also Abadie and Imbens, 2011).

Building on an absence of difference in EV registrations for pairs of treated and synthetic

municipalities during the pre-treatment period, the trajectory for the synthetic municipality can

be interpreted as a counterfactual trajectory for EV adoption in the absence of treatment. Conse-

quently, a comparison of the treated municipalities and their respective synthetic municipalities

quantifies the impact of initial infrastructure provision on cumulative EV purchases. Overall, our

results suggest a positive impact of the first charging stations. One year after the installation the

cumulative EV sales in treated municipalities increases on average by 5.4 percent for one-station

group and 8.0 percent for multi-station group relative to control. The average treatment effect

increases with time, and two years post-treatment we estimate 21.7 and 46.2 percent increases in

the one-station and multi-station groups respectively. These results suggests large consumer ben-

efits associated with early infrastructure provision, so that policy intervention in nascent markets

can significantly contribute to initiate adoption dynamics.

These results contribute to a broad literature on indirect network effects and two-sided mar-

kets in relation to early technology adoption (see Caillaud and Jullien, 2003; Armstrong, 2006;

6 The SCM is a quantitative tool for case study analysis which can be applied in situations where there is no clear,
observed counterfactual for comparison. See for example Moser (2005), Mideksa (2013), Barone and Mocetti
(2014), Andersson (2019) and Clinton and Steinberg (2019).
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Rochet and Tirole, 2006). For example, Gandal et al. (2000) studies the adoption of CDs and how

this depends on and affects the diffusion of CD player hardware, so that both sides of the market

await developments in the other before making a commitment. Rysman (2004) demonstrates a

positive network effect in the two-sided Yellow Pages market, and Rochet and Tirole (2002) ana-

lyze the interaction between payment card users (consumers) and merchants’ acceptance of such

cards. Lee (2013) investigates the feedback between consumer demand for video game hardware

and software, and software demand for various hardware platforms, demonstrating the negative

impact of incompatibility.

Our work also contributes to a growing literature focusing on the adoption of EVs.7 In partic-

ular, our work is closely related to Li et al. (2017), who study the early development of the U.S.

market for EVs based on 2011 to 2013 data for 353 metropolitical statistical areas (MSA) with

significant EV sales. They employ a Bartik-style instrument based on the number of local super-

markets to generate exogenous variation in the provision of charging stations, which also uses an

assumption that more abundant parking areas facilitate the installation of EV chargers without

affecting the trade-off between EVs and standard vehicles. They report an elasticity of around

0.8, which is significantly larger than our central estimate (0.14). Our results suggest, however,

that part of this difference can be attributed to the size of the stock of charging infrastructure in

MSAs considered in their analysis: 22.13 in Li et al. (2017), and only 3.09 in our data. Using our

polynomial specification, we find that the elasticity corresponding to a stock of stations of 22 in

our data is 0.45, which illustrates the role of non-linear stock effects in the provision of network

infrastructure.

Related evidence focuses on the role of policy incentives for the adoption of EVs. For exam-

ple, Clinton and Steinberg (2019) uses 2011 to 2015 data for the U.S. to quantify the impact of

direct financial incentives in Texas and Massachusetts on EV adoption.8 Using both panel data

and SCM, they show that subsidies increase adoption, although they suggest that the net welfare

7 A related literature studies the adoption of alternative-fuel vehicles and the provision of fueling infrastructure.
For example, Corts (2010) and Shriver (2015) provide empirical evidence that fueling stations supplying ethanol
increase the adoption of ethanol-compatible vehicles in the U.S., and discuss the provision of subsidies to fuel
retailers.

8 On the impact of direct financial incentives on EV and hybrid purchases, see also DeShazo et al. (2017), Sallee
(2011), Beresteanu and Li (2011), Chandra et al. (2010), Gallagher and Muehlegger (2011), and Diamond
(2009).
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effect of direct EV subsidies is negative. Similarly, Springel (2017) uses 2010 to 2015 data for 19

Norwegian counties to study subsidies for EVs and charging stations.9 She estimates a structural

demand model for EVs, showing that subsidizing charging stations is more efficient than directly

subsidizing EVs. Relative to these two studies, we provide a first set of empirical results suggest-

ing that indirect network effects are large when the stock of charging stations is small, so that

directing subsidies towards small and medium markets can mitigate the associated inefficiencies

(see also Meunier and Ponssard, 2020).

Finally, our research is related to the non-monetary and psychological barriers to adoption of

new energy technologies demonstrated by Fowlie et al. (2015). Jaffe and Stavins (1994) argue

that a lack of uptake of energy efficient technologies is due to factors such as incomplete informa-

tion and unobserved costs, while Heutel and Muehlegger (2015) shows that consumer learning

about the practical use and attributes of new technologies increases adoption. Other papers

demonstrate the effect of community and personal environmental preferences on the adoption of

traditional hybrid vehicles (Kahn, 2007; Kahn and Vaughn, 2009), for which we account in our

analysis.

This paper proceeds as follows. Section 2 outlines our empirical strategy, first by providing

our data and laying out summary statistics, and second by detailing our panel data and SCM

approaches. Section 3 then reports our empirical results. Finally, Section 4 provides concluding

comments.

2 Empirical strategy

In this section we first give a summary of our data, and then present our two complementary

empirical approaches to identify the impact of charging infrastructure on EV demand.

9 While the purpose of our work is different, our data is closely related to Springel (2017), with a few differences.
First, we work at a more disaggregated municipality-level, with 422 cross-sectional units instead of 19 counties.
Second, our analysis includes 2016 and 2017, and during these years EV sales increased by more than 80 percent,
charging stations rose by a quarter, and charging points grew by around 40 percent (see Figure 1). Lastly, our data
covers both charging stations and charging points.
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Table 1: Descriptive statistics for all 422 Norwegian municipalities

Mean Std. Dev. Min Max

New EVs per model 0.56 5.44 0 528
Total of new EVs 16.07 93.54 0 3 815
EV models available 28.93 14.64 4 50
Charging stations 3.09 14.36 0 376
Charging points 13.46 78.77 0 2 331
Points per station 3.63 2.48 1.00 40.33
Parking spaces 570.06 1 472.56 0 19 719
Car price 547 575.60 395 827.50 124 108.30 2 027 016.00
Mean household income 385 606.10 40 471.95 285 091.80 841 848.80
Hybrids 2008 10.11 46.09 0 736

Notes: Data sources are OFV (2018), NOBIL (2018), and SSB (2018). Car price and mean
municipal household income are measured in 2015 Norwegian kroner (NOK), with 1 USD approx.
8 NOK in 2015.

2.1 Data overview

Our dataset covers all of Norway’s 422 municipalities for each quarter from Q3 2010 to Q4 2017

(T=30). The data includes the quantity of newly registered EVs by car model, month and munic-

ipality, and the prices for each car (OFV, 2018). Car models here refer to the broadest classifica-

tion thereof (e.g. Tesla Model S or Nissan Leaf). We obtain data on every publicly accessible EV

charging station across Norway from the Norwegian Charging Station Database (NOBIL, 2018),

including its location, opening date and number of charging points.10 Other variables capturing

municipality-level characteristics originate from Statistics Norway (SSB, 2018).

Table 1 summarizes our data. The average quantity of each EV model sold per quarter in each

municipality is 0.56, and the total number of EVs sold of all models per municipality per quarter

is over 16 on average. Note that, since EV models enter and exit the Norwegian car market over

the period considered, we have an unbalanced panel. In 2010 there are only 4 models available,

and this rose progressively to reach 50 in 2017.

The number of charging stations available per municipality and quarter ranges between 0 and

376, with an average of 3.09. These values indicate large differences in charging infrastructure

between municipalities and over time. Moreover, while the average number of charging points

10 Note that for simplicity we do not differentiate chargers by speed, connector type, owning company, or access and
usage fees.
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Table 2: Descriptive statistics for municipalities included in the synthetic control analysis

Mean Median Std. Dev. Min Max

One-station municipalities
Cumulative EVs 23.51 2 62.98 0 654
Charging stations 0.38 0 0.49 0 1
Population 4 756.27 3 549 3 411.46 346 18 709
Household income 382 723.20 373 923.30 43 237.82 300 324.10 541 030.90
Detached houses 90.30 92.24 6.37 67.23 98.36

Multi-station municipalities
Cumulative EVs 12.52 1 25.37 0 151
Charging stations 0.90 0 2.28 0 13
Population 4 781.40 4 060 3 222.24 1 003 11 723
Household income 374 043.80 373 378.30 28 878.90 303 889.10 461 981.80
Detached houses 87.03 90.04 10.14 58.06 97.25

Donor municipalities
Cumulative EVs 10.51 1 35.84 0 395
Charging stations 0 0 0 0 0
Population 2 879.55 2 016 2 879.07 196 18 850
Household income 370 738.70 367 781.60 36 625.30 285 091.80 841 848.80
Detached houses 92.04 93.85 5.56 68.83 100

Notes: Data sources are OFV (2018), NOBIL (2018), and SSB (2018). Mean municipal household income is
measured in 2015 NOK, with 1 USD approx. 8 NOK in 2015. Detached houses is measured as the percentage of
all households that are detached or duplex.

available is over 13, many charging stations only provide 1 or 2 points. Although the average

municipal-level number of points per station goes up to 40 points.

One remarkable feature of the data is that, despite the relatively large market share of EVs,

there are still many Norwegian municipalities that have either no or very few charging station

installations over our observation period. We exploit this feature of the data with a SCM strategy.

First, 110 municipalities had zero charging stations over the entire period (donor municipalities).

Second, we observe 47 municipalities that installed a single charging station in 1 quarter between

Q1 2011 and Q1 2017, with no installations before or after (one-station municipalities). Third,

we additionally observe 17 municipalities that installed multiple stations over a period of up

to 4 consecutive quarters, however that had zero stations prior to Q1 2011 and no more after

their 4-quarter installation period (multi-station municipalities). In this group, between 2 and 13

stations were installed over the installation period, with an average of 2.94.
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Table 2 shows the difference in the outcome and treatment variables (EV numbers and charg-

ing stations available, respectively) between these 3 municipality groups across the entire obser-

vation period.11 Aside from differences in charging stations, cumulated EV registrations is higher

in the two treatment groups than in the donor group. We further observe that the municipalities

in these three groups are similar in terms of their population size, wealth, and urban density. In

particular, while the mean donor population is lower than those of the treated groups, it is less

than two-thirds of a standard deviation smaller. We observe that the support of observables for

all three groups overlap.

2.2 Panel data approach

The objective of our panel data strategy is to estimate the non-linear impacts of EV charging

infrastructure on the number of EVs purchased. Our main outcome variable is the quantity of

new cars registered, at the car model-level m, and across municipalities i, and quarters t. Our

treatment variable is the number of charging stations (or alternatively charging points) available

in a given municipality i and at a given time t.

Formally, our baseline panel data specification is given by:

ln(EV)mit = α+ β ln(chargers)it + γ Xmit + δmi + θt + εmit , (1)

where ln(EV)mit is the log of new cars registered by model, municipality and quarter, ln(chargers)it

is the natural log of publicly accessible EV charging stations (or charging points).12 Xmit is a set

of control variables including the log of a municipality’s mean household income and the price of

each car model. This specification closely follows Li et al. (2017), and we also further include two

trend variables. First, we interact household income with a time-trend to allow for the income ef-

fect to change over time as the EV market becomes more mature. Second, we interact the quantity

of hybrid vehicles registered in 2008 (before our sample period) with a time-trend to proxy for

environmental preferences in each municipality. We also include a rich set of municipality-model

fixed effects, δmi, which captures model-specific preference heterogeneity across municipalities

11 Appendix A lists the names of these 3 groups of municipalities, and provides the quarters of charger installation.
12 We deal with values of zero EVs, charging stations/points, and parking places by adding one before log-

transforming the data.
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due to availability of certain brands, or practicality of different types of cars, as well as quarter

fixed effects θt. Lastly, εmit is a random error term.

One conceptual issue with equation (1) is the potential endogeneity of charging infrastruc-

ture. As discussed above, demand for EVs can be affected by various factors that vary across time

and municipalities, and that also influence investments in chargers and therefore their quantity.

Additionally, through reverse causality, a greater number of EVs in circulation could lead to more

investments in EV charging stations.

In an attempt to address this problem, we exploit plausibly exogenous variation in the avail-

ability of public parking places in each municipality as part of an instrumental variable strategy.

The first stage model is driven by the fact that public charging infrastructure generally requires

space to park electric vehicles, so that available publicly regulated parking areas in a municipal-

ity increase the probability and level of treatment by providing potential locations for charger

installations.

We further argue that the exclusion restriction, which requires that our instrument Zit affects

EV purchases in any given municipality-quarter only through the variable ln(chargers)it, is plausi-

ble. First, municipality fixed effects control for any time-invariant individual municipality effects.

Second, we use the number of parking places in 2017, and specify a Bartik-type instrument (Bar-

tik, 1991) to generate exogenous temporal variation:

Zit = ln(car parksi)× ln(
∑
j,j 6=i

chargersj,t−1) , (2)

where the first part of Zit is the log of publicly regulated parking places in municipality i, and the

second is the lagged log of charging stations (or points) installed in all other municipalities. This

yields the following first stage equation:

ln(chargers)it = τ + σZit + πXmit + ψmi + ξt + µmit , (3)

where the notation follows from above and µmit is a random error term.

This identification strategy is close to Li et al. (2017), who interact the log of the number of

grocery stores with the lagged log of charging stations in other MSAs. Similarly, our instrument

in equation 2 captures the exogenous national trend in charger installations, accounting for all

10



national subsidies and incentives, as well as national-level shocks to costs, technologies, culture

and policies, and interacts the municipal potential for installations. Intuitively, national-level

trends affect municipalities differently based on their local characteristics, and municipalities with

more abundant parking spaces are expected to be more likely to install charging infrastructure in

response to national trends or shocks.

In order to document non-linearities presumably associated with network effects, we estimate

a set of specifications using polynomial forms of the instrumented charger variable. For this

purpose, we implement the CF approach discussed in Wooldridge (2015), whereby residuals

from the first stage regression µ̂mit are included in the second stage to control for variability that

is not associated with the instrumental variable:

ln(EV)mit = α+ f(chargers) + γ Xmit + δmi + θt + ρ µ̂mit + emit , (4)

where f(·) is a quadratic or cubic function.13

Finally, we also carry out the following robustness checks. First, we drop the car price vari-

able, to account for any potential endogeneity arriving from simultaneous causation with the

dependent variable from unobserved exogenous factors, or reverse causality, as argued in Berry

(1994) and Berry et al. (1995). Second, we use the number of parking spaces in 2015 rather than

2017 to construct an alternative instrument and test it’s robustness to an alternative measure in

the number of parking places. Third, we construct an alternative instrument that excludes neigh-

boring municipalities, addressing potential concerns associated with regional effects. Fourth, we

interact the treatment variable with a dummy for BEVs, and test for differences in the provision of

charging infrastructure as compared to plug-in hybrids. Fifth, we add further control variables,

namely municipal-level population, and level of urbanization. Lastly, we estimate a separate

treatment elasticity for ‘early’ and ‘late’ periods of our sample, splitting between observations in

2010-2013 and 2014-2017.

13 Bootstrapped standard errors are estimated based on 500 replications.
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2.3 Synthetic control method

We now discuss the SCM approach, which allows us to estimate the impact of providing charging

infrastructure in municipalities that previously had none. Specifically, we focus on 47 one-station

municipalities that installed a single charging station, and on 17 multi-station municipalities that

installed more than one station. For each treated unit, we construct a counterfactual “synthetic”

unit by estimating a set of weights applied to the 110 municipalities with zero charging stations

included in the donor pool. Intuitively, the weights are selected so as to minimize the distance

between the pre-treatment outcome of the treated unit and that of the synthetic unit, and the

latter is used as a counterfactual to quantify post-treatment differences with the treated unit.

Formally, in the SCM approach derived from Abadie and Gardeazabal (2003) and Abadie et al.

(2010), for each treated municipality j (either in the one-station and multi-station groups) the

outcome is the cumulative number of EV purchases EVjt. We define a synthetic municipality as a

weighted sum of the cumulative number of EV purchases EVit in all municipalities i of the donor

pool:

EVSCM
jt =

∑
i

ωjiEVit , (5)

where ωji is the weight attributed for municipality i in constructing a synthetic control for treated

municipality j. The weights result from minimization of the squared-sum of pre-treatment differ-

ences in our outcome variable, cumulative EV sales, between each synthetic and treated munici-

pality – the mean squared prediction error (MSPE):

min
ωji

T0∑
t=0

(EVjt −
∑
i

ωjiEVit)
2 (6)

s.t.
∑
i

ωji = 1 , ωji ≥ 0 ,

where T0 is last quarter before treatment. Note that the quarter of treatment differs for each

municipality, and thus the number of periods before and after treatment also varies (see Appendix

A).

Before treatment, the difference between observed cumulative EVs, EVjt, and the counterfac-

tual synthetic outcome EVSCM
jt should be as close as possible to 0. Post-treatment, the difference
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between EVjt and EVSCM
jt , denoted φt, measures the treatment effect. Formally we calculate:

EVjt = φtDt + EVSCM
jt , (7)

where Dt is the post-treatment period indicator. We repeat the above for every treated munici-

pality in the 2 treatment groups, and show the variation in impacts between these, as well as the

overall trend and average treatment effects.

Abadie and Imbens (2011) show, however, that the SCM is subject to a version of the curse

of dimensionality, whereby the probability that the weights assigned achieve a perfect match

between the synthetic and treated unit decreases with the dimension of the matching. This can

lead to a bias in the estimated treatment effect. To overcome this the ridge-augmented SCM

approach adds a bias-correction term derived from a ridge regression of post-treatment outcomes

for donor units on pre-treatment outcome values. The estimated ridge regression coefficients, η̂,

are then introduced into the model as the bias correction (see Ben-Michael et al., 2018). Formally,

the ridge-augmented SCM weights are derived from:

EVRASCM
jt =

∑
i

ωRASCM
ji EVit + (Yj −

∑
i

ωRASCM
ji Yi) · η̂ (8)

where Y is the vector of pre-treatment cumulative EVs, and (Yj −
∑

i ωjiYi) is an estimate of the

SCM bias. Importantly, the ridge-augmented SCM weights ωRASCM
ji are not constrained to be

positive, which provides additional flexibility for fitting pre-treatment outcomes. Ben-Michael

et al. (2018) show that the ridge-augmented SCM achieves smaller pre-treatment residuals, and

in turn generates a more accurate estimate of the treatment effect. In our results, we focus

primarily on the ridge-augmented SCM results and report the standard SCM results in Appendix

C for comparison.

We further conduct extensive robustness analysis of our ridge-augmented SCM results. Con-

sistent with the SCM literature, these take the form of placebo tests where certain aspects of

treatment assignment are changed in order to rule out spurious effects (Abadie and Gardeazabal,

2003). First, we carry out a spatial placebo analysis, where observed treatment interventions are

iteratively reassigned to every untreated municipality in the donor pool, generating placebo treat-

ment corresponding to the treatment dates among treated municipalities. From this we are able
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to compute p-values for our original estimates (see also Abadie et al., 2015; Andersson, 2019).

Specifically, the p-value is calculated as the proportion of placebo estimates that are at least as

large as the average treatment effect estimated for treated municipalities.14

As a second robustness check, we conduct a set of temporal placebo tests (Abadie et al.,

2015), based on Heckman and Hotz (1989) and Bertrand et al. (2004). Specifically, for each

treated municipality we shift the treatment period a year (4 quarters) earlier and estimate the

ridge-augmented SCM weights. In other words, the pre-treatment matching period is reduced by

four quarters in order to check that the estimated effect is not spurious. If we observe systematic,

sizeable differences between treated and synthetic outcomes after the artificial treatment period,

this would provide evidence against the ridge-augmented SCM estimates.

3 Estimation results

This section reports our empirical results. First, we present the panel data analysis, document-

ing non-linear impacts of EV charging infrastructure on the number of EVs purchased. Second,

we discuss results from the ridge-augmented SCM, and document the impact of initial charging

infrastructure provision on cumulative EV sales.

3.1 Panel data results

We start by estimating a set of linear specifications (equation 1), which closely align with the work

of Li et al. (2017). Next, we consider non-linear specifications based on polynomial function of

charging stations (equation 4). Lastly, we report robustness results.

3.1.1 Linear specifications

Our estimation results from the linear models are reported in Table 3. In columns (1), we report

OLS estimates for a regression of the log of EV registrations on the log of charging stations. In

column (2) we report results for the same function estimated with 2-stage least squares (2SLS).

14 Following Andersson (2019), we restrict the analysis of placebo results to municipalities in the donor pool for
which a good synthetic unit can be found. In particular, we consider only those units with a MSPE smaller or equal
to the worse fit achieved in our set of treated units. This focuses the comparison among units for which the fit of
the SCM approach is similar.
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Table 3: Baseline results from panel data estimation

Charging stations Charging points

OLS 2SLS OLS 2SLS
(1) (2) (3) (4)

ln(charging stations) -0.008 0.126** − −
(0.006) (0.054)

ln(charging points) − − -0.004 0.074***

(0.003) (0.026)

ln(car price) 0.108*** 0.110*** 0.108*** 0.110***

(0.008) (0.008) (0.008) (0.008)
ln(income) -0.007 -0.036 -0.007 -0.025

(0.092) (0.109) (0.092) (0.110)
ln(income) x Time -0.0002 0.0001 -0.0003 -0.0001

(0.005) (0.005) (0.005) (0.005)

ln(hybrids) x Time 0.008*** 0.008*** 0.008*** 0.008***

(0.001) (0.001) (0.001) (0.001)
Constant -1.298 -1.370 -1.290 -1.348

(1.090) (1.314) (1.089) (1.334)

N 367, 984 366, 296 367, 984 366, 296

Within-R2 0.0779 0.0675 0.0779 0.0646

1st-stage partial F-stat. − 19.01 − 25.54

Notes: In all columns, the dependent variable is the log of new electric vehicle regis-
trations (ln(EV)mit). Columns (1) and (2) consider charging stations as the treatment
variable, and columns (3) and (4) instead use charging points. All specifications in-
clude quarter and municipality-model fixed effects. The 1st stage partial F-statistic for
the instrumental variable (columns (2) and (4)) are derived from first-stage regression
reported in Appendix B, Table B1. Standard errors clustered at the municipality level
reported in parentheses. ∗, ∗∗ and ∗∗∗ respectively denote significance at 10%, 5% and
1% levels.

Columns (3) and (4) repeat this sequence, with charging points as the treatment variable instead

of charging stations. All models include quarter and municipality-model fixed effects, and stan-

dard errors are clustered at the municipality level and reported in parentheses. First-stage results

for the 2SLS specifications are provided in Appendix B, Table B1.

OLS results in column (1) indicate no statistically significant effect of charging stations on

EV purchases. Comparing this to the 2SLS specification in column (2), suggests a negative en-

dogeneity bias. Our IV specification in column (2) shows a highly significant estimated elasticity

of charging stations on EVs of 0.126. Furthermore, our instrument interacting parking spaces

with trends in national charger availability has significant explanatory power over the quantity of

charging stations available in a given municipality-quarter, with a first-stage F-statistic associated
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with the instrument of 19.01. A comparison of columns (3) and (4) confirms a downward bias

associated with OLS estimation, with the 2SLS estimate for the elasticity of charging points on

EVs of 0.074. The F-statistic associated with the instrument for charging points in the first-stage

regression is 25.54.

Our results show that the elasticity with respect to charging points is almost half the mag-

nitude of the elasticity for charging stations. This suggests that consumers respond more on

average to the simple visual presence of stations than to the specific number of plugs available.

That is, ceteris paribus, constructing more EV charging stations with fewer points each would

tend to engender more EV purchases than installing fewer stations with more points each. This is

consistent with a psychological reassurance effect that the charging station network provides to

curbing drivers’ range anxiety.

3.1.2 Non-linear specifications

Table 4 reports results from the polynomial forms using a CF approach (equation 4). Columns

(1) to (3) respectively provide linear, quadratic, and cubic model estimates with charging stations

as the treatment variable. Columns (4) to (6) repeat the same sequence of estimations but

using charging points as the treatment variable. In all models we additionally include quarter

and municipality-model fixed effects. Standard errors are clustered at the municipality level,

bootstrapped with 500 replications, and reported in parentheses.15

Based on the overall model fit, our preferred model for charging stations is the cubic form

(column 3), and we illustrate the implied schedule for elasticity estimates in Figure 2a (panel

a). At low values for the installed stock of charging stations, the elasticity of chargers on EV

purchases is similar across specifications (e.g. at the sample mean of 3.09 charging stations

the cubic specification gives an elasticity of 0.14). However, cubic polynomial results indicate a

significant increase in the elasticity of charging stations on EV purchases as the stock of installed

stations rises. At around 100 charging stations available, the elasticity is approximately unity,

although the rise in elasticity for each additional installed station quickly diminishes.

Interestingly, our non-linear results also provide a rejoinder with the elasticity estimates of

15 Note that results in column (1) and (4) correspond to Table 3, column (2) and (4) respectively, illustrating that
2SLS and CF procedures generate the same coefficient estimates whereas bootstrapped standard errors differ
slightly. First-stage results remain the same and are reported in Appendix B Table B1.
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Table 4: Results from control function estimation

Charging stations Charging points

Linear Quadratic Cubic Linear Quadratic Cubic
(1) (2) (3) (4) (5) (6)

ln(charging stations) 0.126*** 0.043 0.131*** − − −
(0.045) (0.041) (0.046)

ln(charging stations)2 − 0.046*** -0.036 − − −
(0.008) (0.029)

ln(charging stations)3 − − 0.018** − − −
(0.009)

ln(charging points) − − − 0.074*** 0.025 0.132***

(0.021) (0.020) (0.021)

ln(charging points)2 − − − − 0.015*** -0.055***

(0.003) (0.094)

ln(charging points)3 − − − − − 0.012***

(0.002)

ln(car price) 0.110*** 0.110*** 0.110*** 0.110*** 0.110*** 0.110***

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
ln(income) -0.036 -0.099 -0.130 -0.025 -0.057 -0.108

(0.100) (0.087) (0.080) (0.103) (0.091) (0.077)
ln(income) x Time 0.0006 0.002 0.003 -0.0001 0.001 0.002

(0.005) (0.005) (0.004) (0.005) (0.005) (0.004)

ln(hybrids) x Time 0.008*** 0.006*** 0.006*** 0.008*** 0.007*** 0.006***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.0005)

First stage residuals -0.137*** -0.127*** -0.136*** -0.080*** -0.071*** -0.079***

(0.046) (0.039) (0.038) (0.021) (0.019) (0.018)
Constant -1.370 -1.288 -1.062 -1.348 -1.389 -1.118

(1.214) (1.256) (1.127) (1.211) (1.201) (1.033)

N 366, 296 366, 296 366, 296 366, 296 366, 296 366, 296

Adjusted within-R2 0.0778 0.0796 0.0817 0.0779 0.0790 0.0826

1st-stage partial F-stat. 19.01 19.01 19.01 25.54 25.54 25.54

Notes: In all columns, the dependent variable is the log of new electric vehicle registrations (ln(EV)mit). Columns (1) to (3)
consider charging stations as the treatment variable, and columns (4) to (6) instead use charging points. All specifications
include quarter and municipality-model fixed effects. The 1st stage partial F-statistic for the instrumental variable is derived
from first-stage regression results reported in Appendix B, Table B1. Standard errors bootstrapped with 500 replications and
clustered at the municipality level reported in parentheses. ∗, ∗∗ and ∗∗∗ respectively denote significance at 10%, 5% and
1% levels.

about 0.8 reported in Li et al. (2017), which refer to 353 MSAs with relatively significant EV

sales over the period from 2011 to 2013. These MSAs also feature a stock of installed chargers of

22.13, which is significantly larger than what we have in our sample. Evaluating the polynomial

function for a stock of installed chargers of 22, we obtain an elasticity of 0.45.

Results for charging points (Table 4 columns (4) to (6) and Figure 2b also support an increas-
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Figure 2: Elasticity of electric vehicle registrations as a function of the charging infrastructure

(a) Elasticity schedule for charging stations
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(b) Elasticity schedule for charging points
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Notes: Based on the model estimates shown in Table 4. The graphed lines provide point elasticity estimates, and the shaded areas
cover the 95% confidence intervals.

ing elasticity schedule as the number of available charging points rises, although at a declining

rate. In our preferred cubic specification (column 6), the elasticity evaluated at the mean value

of charging point availability (13.46) is 0.091. At 200 charging points, the elasticity is around

0.55, and surpasses unity for a stock of around 800. Overall, the consumer reaction to a marginal

increase in charging points is smaller compared to an increase in charging stations, which further

supports the behavioral bias discussed previously.

Implications of cubic specifications are further illustrated in Figure 3, which reports the impact

of a 1-station increment (panel a) and a 1-point increment (panel b) on EV registrations across

varying levels of existing infrastructure and EV purchasing. This shows that the largest impact

from installing an additional charging station is at a low level of existing infrastructure, and that

the impact increases with the number of EVs purchased in the quarter just before installation.

As the existing stock of stations grows, the additional EVs generated by further incremental in-

stallations diminishes. The pattern for charging points is similar, although the consumer reaction

declines more rapidly than for charging stations, which is in line with a behavioral difference

between charging stations and points discussed above.

18



Figure 3: Electric vehicle registrations associated with incremental charging infrastructure

(a) Unit change in the stock of charging stations
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(b) Unit change in the stock of charging point
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Notes: Based on the cubic model estimates shown in Table 4. This shows the number of new EVs registered after the installation

of a single charging station (panel a) or point (panel b), across varying levels of existing infrastructure and previous EV purchases.

"Quarterly EV purchases" refers to the quantity in the period before the charger installation.

3.1.3 Robustness checks for panel data estimation

Next, we report robustness checks for charging stations (Table 5) and points (Table 6). In both

tables, column (1) reports results excluding the car price variable; column (2) uses 2015 parking

spaces to construct the instrument instead of 2017; in column (3) the instrument excludes each

municipality’s neighbors; column (4) adds the interaction between chargers and BEVs; column

(5) adds extra control variables; and column (6) allows the treatment elasticity to vary between

early and late periods in our dataset. For simplicity and ease of interpretation we focus on linear

specifications, and provide estimates of our preferred cubic specifications in appendix Table B2

and Table B3.16 All models are estimated with a CF procedure and bootstrapped standard errors

(500 replications) clustered at the municipality level are reported in parentheses. First stage

results for all specifications are reported in Tables B4 and B5 of Appendix B for charging stations

and points, respectively.

Starting with results for charging stations (Table 5), we find that the elasticity estimates re-

main close to our primary linear elasticity estimate of 0.126, and the partial F-statistics associated

16 It suffices to note here that robustness results for the cubic specifications do not substantially differ from the
primary results in Table 4, and that explanations for linear robustness checks in Tables 5 and 6 apply to the cubic
specifications, too.
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Table 5: Alternative panel data specifications – charging stations

No price 2015 parking No neighbours Chargers x BEV Additional controls Chargers x time
(1) (2) (3) (4) (5) (6)

ln(charging stations) 0.126*** 0.139** 0.140*** 0.121*** 0.131*** −
(0.046) (0.055) (0.048) (0.046) (0.045)

ln(charging stations) x BEV − − − 0.011** − −
(0.005)

ln(charging stations) x early − − − − − 0.130***
(0.046)

ln(charging stations) x late − − − − − 0.128***
(0.045)

ln(car price) − 0.110*** 0.110*** 0.108*** 0.110*** 0.110***
(0.008) (0.008) (0.007) (0.008) (0.008)

ln(income) -0.036 -0.038 -0.039 -0.036 -0.065 -0.035
(0.096) (0.095) (0.089) (0.095) (0.098) (0.095)

ln(income) x Time 0.001 0.001 0.001 0.001 0.002 0.001
(0.005) (0.004) (0.004) (0.004) (0.005) (0.005)

ln(hybrids) x Time 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ln(population) − − − − -0.034 −
(0.122)

Proportion of detached and − − − − 0.003 −
duplex dwellings (0.003)
First stage residual -0.137*** -0.149*** -0.150*** -0.136*** -0.142*** -0.139***

(0.046) (0.055) (0.048) (0.046) (0.045) (0.045)
Constant 0.051 -1.382 -1.383 -1.346 -1.368 -1.139

(1.190) (1.163) (1.169) (1.232) (1.631) (1.269)

N 366, 296 366, 296 366, 296 366, 296 366, 296 366, 296
Adjusted within-R2 0.0767 0.0778 0.0779 0.0779 0.0779 0.0778
1st-stage partial F-stat. 18.32 11.29 16.80 19.01 19.51 19.01

Notes: In all columns, the dependent variable is the log of new electric vehicle registrations (ln(EV)mit). Column (1) omits the car price variable.
Column (2) uses the number of parking spaces in 2015 to construct the instrument. Column (3) excludes neighboring municipalities to construct the
instrument. In column (4), we interact the treatment variable with a dummy for battery-only EVs. Column (5) includes further control variables. In
column (6), we estimate separate elasticities for observations in 2010-2013 and 2014-2017. All specifications are estimated with a control function
approach and include quarter and municipality-model fixed effects. The 1st stage partial F-statistic for the instrumental variable is derived from first-
stage regression results reported in Appendix B, Table B4. Standard errors bootstrapped with 500 replications and clustered at the municipality level
reported in parentheses. ∗, ∗∗ and ∗∗∗ respectively denote significance at 10%, 5% and 1% levels.

with the instrument are also very similar across specifications. Using parking space data for 2015

(column 2) or removing neighboring municipalities from the instrument (column 3) have only

minor effects on the elasticity estimates, which reinforces our confidence in the instrument. Sim-

ilarly, changing the set of controls (columns 1 and 5) also has very little impacts on the elasticity

estimates, and population and urbanization are not statistically significant at conventional levels.

This suggests that our control strategy, which closely follows Li et al. (2017), already captures

these potential drivers of EV purchases. Interacting the treatment variable with an indicator for

BEVs (column 4) suggests that the elasticity for BEVs is slightly larger (p-value <0.05). Finally,

column (6) suggests no significant difference in the treatment effect for early and late time peri-

ods.

Results for charging points (Table 6) follow the same logic, and elasticity estimates from alter-

native specifications do not part significantly from the primary linear model’s 0.074. Column (1)
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Table 6: Alternative panel data specifications – charging points

No price 2015 parking No neighbours Chargers x BEV Additional controls Chargers x time
(1) (2) (3) (4) (5) (6)

ln(charging points) 0.074*** 0.087*** 0.079*** 0.072*** 0.077*** −
(0.020) (0.026) (0.022) (0.021) (0.022)

ln(charging points) x BEV − − − 0.005* − −
(0.003)

ln(charging points) x early − − − − − 0.081***
(0.023)

ln(charging points) x late − − − − − 0.076***
(0.022)

ln(car price) − 0.110*** 0.110*** 0.108*** 0.110*** 0.110***
(0.008) (0.008) (0.008) (0.008) (0.008)

ln(income) -0.025 -0.029 -0.027 -0.025 -0.059 -0.025
(0.097) (0.100) (0.099) (0.097) (0.103) (0.098)

ln(income) x Time -0.0001 -0.0002 -0.0002 -0.0001 0.001 -0.0003
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

ln(hybrids) x Time 0.008*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ln(population) − − − − -0.049 −
(0.124)

Proportion of detached and − − − − 0.003 −
duplex dwellings (0.002)
First stage residual -0.080*** -0.093*** -0.085*** -0.080*** -0.083*** -0.083***

(0.020) (0.026) (0.022) (0.021) (0.022) (0.022)
Constant 0.074 -1.364 -1.355 -1.326 -1.259 -1.427

(1.234) (1.170) (1.186) (1.166) (1.577) (1.220)

N 366, 296 366, 296 366, 296 366, 296 366, 296 366, 296
Adjusted within-R2 0.0768 0.0779 0.0780 0.0780 0.0780 0.0780
1st-stage partial F-stat. 24.57 14.17 23.73 25.54 23.04 25.54

Notes: In all columns, the dependent variable is the log of new electric vehicle registrations (ln(EV)mit). Column (1) omits the car price variable.
Column (2) uses the number of parking spaces in 2015 to construct the instrument. Column (3) excludes neighboring municipalities to construct the
instrument. In column (4), we interact the treatment variable with a dummy for battery-only EVs. Column (5) includes further control variables. In
column (6), we estimate separate elasticities for observations in 2010-2013 and 2014-2017. All specifications are estimated with a control function
approach and include quarter and municipality-model fixed effects. The 1st stage partial F-statistic for the instrumental variable is derived from first-
stage regression results reported in Appendix B, Table B5. Standard errors bootstrapped with 500 replications and clustered at the municipality level
reported in parentheses. ∗, ∗∗ and ∗∗∗ respectively denote significance at 10%, 5% and 1% levels.

suggests that results do not suffer from otherwise unaccounted endogeneity through the vehicle

price, and columns (2) and (3) show that our instrument stands up to changes in both halves

of the Bartik construction. We also observe insignificant changes when we add an interaction

term for BEVs (column 4), control variables (column 5), and check for differences between early-

period and late-period elasticities (column 6). Overall, each of these alternative specifications

supports our primary estimations and the strength of our instrument.

3.2 Synthetic control results

We now report results from the SCM approach, quantifying how cumulative EV purchases respond

to the installations of the first charging station(s). We focus on results from the ridge-augmented

SCM, which tends to generate smaller pre-treatment residuals, and report results for the tradi-
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tional SCM approach in Appendix C. We then follow with a set of placebo tests to document

robustness of the analysis.

3.2.1 Pre-treatment matching and treatment effect estimates

Figure 4, panels 4a and 4b, present our ridge-augmented SCM estimation results for pre-treatment

matching periods for the one-station treatment group and multi-station treatment group, respec-

tively. These show that, for both treatment groups, the differences between the numbers of EVs

registered in each treated and its synthetic municipality prior to the charger installation shock is

close to zero across the pre-treatment periods. This suggests that synthetic control units precisely

track EV registrations in the pre-treatment period, and provides confidence that synthetic munici-

palities provide credible counter-factual information for each treated municipality in the absence

of charging infrastructure.17

In panels 4c and 4d, we report post-treatment quarterly differences between numbers of EVs

in a treated municipality and the corresponding number for the estimated synthetic municipality,

for the one-station and multi-station treatment groups, respectively. We also plot the average

treatment effect across treated municipalities as a dashed line, and provide the mean and median

differences between treated and synthetic municipalities for each post-treatment quarter in Table

7.18

Overall, results suggest that the provision of an initial charging station has a positive impact

on EV registrations. Quantitatively, we estimate a one-station average treatment effect of 1.7

extra EVs registered four quarters post-installation. Eight quarters post-treatment, the estimated

difference rises to 8.0 more EVs than would otherwise be registered. This is equal to 5.4 and 21.7

percent more EVs than would otherwise have been bought after one and two years, respectively.

Evidence further suggests that the impact increases with the size of the shock – the multi-station

average treatment effect is larger. Four quarters after the first installation, this group had on

average 1.9 additional EVs registered. We also observe an upward trend in the treatment effect,

17 As expected, the ridge augmented SCM provides a more precise matching relative to the traditional SCM, as shown
in C1, panels C1a and C1b. Treatment effects, discussed next, are however consistent across the two approaches.

18 Due to the differing dates of charging station installation across treated units, the number of post-treatment
periods varies across municipalities. One implication, shown in Table 7, is that the number of treated-synthetic
municipality pairs declines over time from the initial provision of charging infrastructure.
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Figure 4: Gap in cumulative EV stock between treated municipalities and synthetic controls

(a) One-station municipalities: matching periods
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(b) Multi-station municipalities: matching periods
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(c) One-station municipalities: treatment effect
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(d) Multi-station municipalities: treatment effect
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Notes: The solid gray lines represent the ridge-augmented SCM estimated differences between each treated municipality and its

synthetic counterpart. The black dashed lines present the mean differences across treated units.

as the average difference between treated and synthetic units increases to 13.8 extra EVs two

years post-treatment. The positive treatment effect associated with multi-station installations

amounts to about 8.0 and 46.1 percent more EVs on average, respectively.

These results also match the panel data findings above in Section 3.1.2, where we see the
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Table 7: Summary of post-treatment synthetic control results

Quarter
post-
treatment

One-station municipalities Multi-station municipalities

Obs. Mean Median Obs. Mean Median

1 47 0.20 -0.08 17 0.01 -0.05
2 47 0.18 0.04 17 0.64 -0.14
3 47 0.74 0.50 17 0.82 0.59
4 47 1.68 0.52 17 1.85 -0.58
5 46 3.50 0.66 13 2.07 -0.93
6 38 5.31 1.88 10 8.12 6.45
7 36 7.19 3.83 8 8.86 10.06
8 35 7.96 3.65 8 13.81 10.53
9 33 9.15 4.97 7 20.22 16.71

10 30 12.81 5.99 7 25.99 22.60
11 26 17.85 6.63 7 31.23 24.80
12 24 22.08 9.95 5 55.53 65.42
13 20 31.31 12.09 4 62.40 58.28
14 18 29.67 8.80 4 69.68 63.26
15 17 34.91 4.98 2 34.80 34.80
16 14 43.66 9.40 1 65.60 65.60
17 13 54.09 14.25 1 74.20 74.20
18 8 20.64 12.37
19 7 14.25 11.76
20 6 10.20 5.88
21 4 24.31 29.82
22 3 35.81 52.23
23 1 85.06 85.06
24 1 100.16 100.16
25 1 117.87 117.87
26 1 153.76 153.76

Notes: This table summarizes results for the post-treatment gap in cumulative
EV stock between treated municipalities and synthetic controls. Mean and
median reported refer to the distribution of treatment effects estimated from
the ridge-augmented SCM.

immediate impact of the first charging infrastructure is low when there are few EVs previously

registered. Applying the single-increment results from Section 3.1.2 and Figure 3 to the two SCM

municipality groups, we find that the installation of the first charging station in the one-station

group generated approximately 0.39 new EVs, on average, directly in the period of installation.

For the multi-station group, an average of 3 charging stations were installed in the initial phase,

and we therefore find that this lead to an average of around 0.78 additional EVs being purchased

in the initial treatment period. Moreover, we find that when there is no existing charging infras-

tructure, the installation of the first charging point has a similar impact to that of the first station.
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Figure 5: Synthetic control results for the spatial placebo tests

(a) One-station municipalities
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(b) Multi-station municipalities
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Notes: This figure shows the results for the spatial placebo tests, comparing average gap in cumulative EV stock between treated

municipalities and synthetic controls with placebo gaps for the control municipalities. The solid grey lines represent the placebo

difference estimates for donor pool municipalities. The black dashed lines provide the mean difference estimates for the treated

municipalities from Figure 4. The dashed-dotted lines give the means of the placebo estimates.

Fundamentally, we see it takes time for the network dynamics to play out and the full benefits of

early charger provision to be seen.

3.2.2 Robustness: Placebo tests for synthetic control results

We now we present the results of placebo tests to document robustness of our SCM findings. As

described above, we first conduct a set of spatial placebo tests, with results shown in Figure 5 for

one-station municipalities (panel 5a) and multi-station municipalities (panel 5b). In both panels,

individual placebo estimates of EV number differences are displayed in gray, while the dashed-

dotted line shows the average placebo ‘treatment effect’ for comparison to the black dashed line

with the average treatment effect of our treated municipalities.19

The estimated placebo differences in EV purchases exhibit significant heterogeneity, although

19 Placebo tests include only estimates for which pre-treatment MSPE is at least as good as the largest MPSE obtained
for treated units. This leads us to exclude 7 municipalities from the one-station group (out of 2200) and 134
municipalities from the multi-station group (out of 990).
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Table 8: Summary results for spatial placebo tests

Quarter
post-
treatment

One-station municipalities Multi-station municipalities

Obs. Mean Median p-value Obs. Mean Median p-value

1 2193 0.02 -0.08 0.244 856 -0.06 -0.11 0.293
2 2193 0.04 -0.15 0.311 856 -0.11 -0.30 0.263
3 2193 0.08 -0.23 0.255 856 -0.18 -0.40 0.251
4 2193 0.14 -0.28 0.204 856 -0.27 -0.43 0.189
5 2086 0.23 -0.34 0.150 773 -0.38 -0.34 0.189
6 1977 0.29 -0.47 0.123 688 -0.48 -0.48 0.063
7 1867 0.38 -0.66 0.111 598 -0.44 -0.74 0.074
8 1757 0.47 -0.65 0.118 598 -0.51 -0.87 0.050
9 1648 0.51 -0.94 0.126 509 -0.74 -1.17 0.037
10 1539 0.51 -1.21 0.110 509 -0.75 -1.54 0.033
11 1430 0.54 -1.81 0.092 509 -0.83 -1.64 0.033
12 1320 0.47 -2.16 0.084 411 -0.99 -2.03 0.024
13 1210 0.49 -2.83 0.069 312 -0.95 -1.92 0.029
14 1100 0.40 -2.86 0.080 312 -0.98 -2.27 0.029
15 990 0.23 -3.59 0.085 211 0.59 -3.07 0.076
16 880 -0.44 -4.82 0.076 107 -0.17 -5.15 0.056
17 770 -0.03 -5.69 0.075 107 -0.04 -5.57 0.056
18 660 -0.05 -6.57 0.155
19 550 0.49 -7.40 0.187
20 440 0.71 -8.13 0.209
21 330 1.29 -8.98 0.148
22 220 1.34 -9.36 0.118
23 110 1.15 -9.38 0.082
24 110 1.24 -10.91 0.055
25 110 1.37 -10.65 0.064
26 110 1.62 -12.02 0.055

Notes: This table summarizes results for the post-treatment gap in cumulative EV stock for non-
treated municipalities subject to placebo treatments corresponding to the treatment dates among
treated municipalities, and synthetic controls. We report mean and median placebo treatment ef-
fects. The p-values represent the proportion of placebo difference estimates that are at least as large
as the average treatment effect for treated municipalities.

the average placebo treatment effect for both one-station and multi-station is estimated to be

consistently close to 0. This is also shown in Table 8, which provides per period average and

median spatial placebo estimates for each group. We also report an estimate of the p-value

associated with the average treatment effect reported in Table 7, each period, as measured by the

share of placebo estimates that are larger than the average treatment effect estimated on treated

municipalities.

Results generally indicate that the significance of our average treatment effect increases over

time. For one-station municipalities, the treatment effect estimates for treated municipalities

are marginally significant, and we find that it is below a 10 percent threshold between the 11th
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Figure 6: Synthetic control results for the temporal placebo tests

(a) One-station municipalities
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(b) Multi-station municipalities
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Notes: This figure shows the results for the temporal placebo tests, comparing average gap in cumulative EV stock between treated

municipalities and synthetic controls with those derived with an artificial 4-quarter earlier treatment. The solid grey lines represent

the estimated differences between each treated municipality and its synthetic counterpart, with a placebo installation of charging

stations 4 quarters prior to the actual installation. The black dashed lines provide the mean difference estimates for the treated

municipalities from Figure 4. The dashed-dotted lines present the means of the placebo estimates. See Appendix C, Table C2, for the

underlying data.

and the 18th quarters.20 Results for multi-station municipalities provide further evidence for the

greater impact of a larger treatment, as the p-value for the multi-station average treatment effect

falls under 0.10 in the 6th quarter post-treatment, and below the 0.05 threshold after two years.

Results for the second placebo test are reported in Figure 6, which shows our temporal placebo

results. The solid grey lines present the individual placebo estimates generated by giving each

municipality an artificial treatment 4 quarters prior to the observed one. The dashed-dotted

line shows the mean placebo differences, and the black dashed line the original SCM average

treatment effect estimates. Table C2 in the appendix provides the means and medians of the

temporal placebo estimates for the two treatment groups.

Results suggest that the mean placebo differences remain close 0 in the initial 4 placebo

treatment periods. After the true treatment period, the temporal placebo average closely follows

20 The p-value for the average treatment effect estimate is also below 10 percent after the 23rd quarter, although it
refers to only one municipality. See Table 7.
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our average treatment effect estimates. The small differences from the original estimates can

be explained by the use of a shorter matching period, which implies slightly different weights

attributed to donor municipalities. This provides further confidence that our estimated difference

in EV purchases can be attributed to the early installation of charging infrastructure at observed

dates.

4 Discussion and conclusions

In this study, we have provided novel empirical evidence on the impact of EV charging infras-

tructure on the adoption of EVs, focusing on how the size of the infrastructure network affects

the response of consumers. Our work is based on fine-scale temporal and geographical data for

Norway, from the emergence of the market and the early movers of 2010 to the mature market

with large market share by 2017.

Our results provide a first account of consumer response to infrastructure in locations that

previously had none. We show that the very first charging station installations initially induce

a small response by consumers, although a one-off shock has a lasting, increasing impact over

time after installation. We have also shown that the size of the initial installation shock matters,

as providing multiple charging stations leads to a larger response by consumers. Beyond initial

charging infrastructure, we have identified a non-linear relationship between the adoption of

emerging EV technology and the size of the associated charging infrastructure network. Our

results imply that the greatest effect of incremental infrastructure on EV purchases is when little to

no pre-existing infrastructure exists, and when EV sales are already substantial. This is consistent

with indirect network effects, and suggests an initial hurdle to the adoption of EVs. Moreover, the

response by consumers gradually declines as the pre-existing network infrastructure expands.

Taken together, a low consumer response when existing EV purchases are small and a decreas-

ing marginal installation impact trend can lead to a stand-off between initial EV purchases and

charger investments. Once some EVs have been purchased, however, further charger installations

do imply indirect network effects, fostering growth in both sides of the market. As the charging

network grows, incremental charging infrastructure have a declining impact on EV sales, sug-

gesting declining marginal benefits to consumers. Therefore one interpretation of our results
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is that unpriced benefits to consumers are largest at the initial stage of the market, which sug-

gests that government interventions may be most relevant early to support investments network

infrastructure.

Our results further support the view that a behavioral bias magnifies indirect network effects

on the market for EVs, as the impact of charging points on EV registrations is consistently lower

than that of stations. The fact that consumers respond more to additional installations of charging

stations than they do to the addition of more charging points, ceteris paribus, supports the view

that consumers’ behavioral response is in part driven by range anxiety. This makes the number of

charging points potentially less relevant than the physical presence of a charging station.

While our paper contributes to an active research agenda on electric vehicles, we close by

emphasizing that much remains to be done. Our analysis does not account for feedback effects

from EV purchases to charging station installation, so that our estimate can be seen as a lower

bound of the impact of charging infrastructure on EV adoption. Future research may consider

how such feedback loops are affected by the pre-existing stock of charging infrastructure.
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Appendix A Municipalities used for synthetic control estimation

Table A1: Group of one-station municipalities

Municipality code Municipality name County Treatment quarter

135 Råde Østfold Q4 2016
227 Fet Akershus Q4 2013
239 Hurdal Akershus Q4 2015
418 Nord-Odal Hedmark Q4 2012
423 Grue Hedmark Q4 2014
425 Åsnes Hedmark Q4 2013
436 Tolga Hedmark Q1 2013
514 Lom Oppland Q3 2015
522 Gausdal Oppland Q4 2015
536 Søndre Land Oppland Q4 2013
619 Ål Buskerud Q1 2013
633 Nore og Uvdal Buskerud Q3 2012
814 Bamble Telemark Q4 2014
817 Drangedal Telemark Q4 2015
831 Fyresdal Telemark Q1 2017
833 Tokke Telemark Q2 2014
937 Evje og Hornnes Aust-Agder Q3 2015

1021 Marnardal Vest-Agder Q1 2014
1037 Kvinesdal Vest-Agder Q3 2013
1114 Bjerkreim Rogaland Q4 2016
1121 Time Rogaland Q4 2013
1127 Randaberg Rogaland Q3 2011
1135 Sauda Rogaland Q1 2016
1141 Finnøy Rogaland Q3 2015
1142 Rennesøy Rogaland Q4 2016
1222 Fitjar Hordaland Q4 2013
1231 Ullensvang Hordaland Q2 2016
1252 Modalen Hordaland Q1 2016
1264 Austrheim Hordaland Q2 2013
1417 Vik Sogn og Fjordane Q4 2016
1426 Luster Sogn og Fjordane Q3 2014
1516 Ulstein Møre og Romsdal Q2 2015
1535 Vestnes Møre og Romsdal Q4 2016
1551 Eide Møre og Romsdal Q2 2014
1822 Leirfjord Nordland Q3 2016
1828 Nesna Nordland Q4 2016
1850 Tysfjord Nordland Q4 2016
1860 Vestvågøy Nordland Q3 2016
1871 Andøy Nordland Q1 2015
1913 Skånland Troms Q4 2016
2017 Kvalsund Finnmark Q3 2015
2019 Nordkapp Finnmark Q2 2014
5014 Frøya Trøndelag Q2 2015
5015 Ørland Trøndelag Q3 2012
5022 Rennebu Trøndelag Q1 2015
5025 Røros Trøndelag Q1 2015
5026 Holtålen Trøndelag Q1 2013

Notes: This table lists all municipalities included in the group of one-station municipalities.
These have initially no charging infrastructure, until they installed a single charging station
during the treatment quarter. After that, no more charging infrastructure is installed.
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Table A2: Group of multi-station municipalities

Municipality code Municipality name County Treatment quarter

429 Åmot Hedmark Q1 2016
432 Rendalen Hedmark Q4 2016
515 Vågå Oppland Q1 2017
540 Sør-Aurdal Oppland Q4 2016
716 Re Vestfold Q2 2015
830 Nissedal Telemark Q1 2017
938 Bygland Aust-Agder Q2 2015

1211 Etne Hordaland Q4 2013
1228 Odda Hordaland Q3 2014
1422 Lærdal Sogn og Fjordane Q3 2016
1515 Herøy Møre og Romsdal Q3 2016
1524 Norddal Møre og Romsdal Q2 2014
1865 Vågan Nordland Q3 2014
1920 Lavangen Troms Q1 2017
1924 Målselv Troms Q1 2017
1931 Lenvik Troms Q1 2015
5011 Hemne Trøndelag Q4 2016

Notes: This table lists all municipalities included in the group of multi-station munici-
palities. These have initially no charging infrastructure, until they installed two or more
charging station over a period of four consecutive quarters. In the table, treatment quar-
ter refers to the first of the up to four consecutive quarters where charging stations are
installed.
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Table A3: Municipalities included in the donor pool

Municipality code Municipality name County

121 Rømskog Østfold
234 Gjerdrum Akershus
434 Engerdal Hedmark
441 Os Hedmark
541 Etnedal Oppland
621 Sigdal Buskerud
628 Hurum Buskerud
632 Rollag Buskerud
711 Svelvik Vestfold
811 Siljan Telemark
822 Sauherad Telemark
827 Hjartdal Telemark
912 Vegårshei Aust-Agder
919 Froland Aust-Agder
928 Birkenes Aust-Agder
935 Iveland Aust-Agder
1027 Audnedal Vest-Agder
1029 Lindesnes Vest-Agder
1034 Hægebostad Vest-Agder
1111 Sokndal Rogaland
1119 Hå Rogaland
1129 Forsand Rogaland
1130 Strand Rogaland
1133 Hjelmeland Rogaland
1144 Kvitsøy Rogaland
1145 Bokn Rogaland
1151 Utsira Rogaland
1234 Granvin Hordaland
1265 Fedje Hordaland
1418 Balestrand Sogn og Fjordane
1424 Årdal Sogn og Fjordane
1428 Askvoll Sogn og Fjordane
1438 Bremanger Sogn og Fjordane
1441 Selje Sogn og Fjordane
1511 Vanylven Møre og Romsdal
1514 Sande Møre og Romsdal
1526 Stordal Møre og Romsdal
1529 Skodje Møre og Romsdal
1531 Sula Møre og Romsdal
1534 Haram Møre og Romsdal
1543 Nesset Møre og Romsdal
1545 Midsund Møre og Romsdal
1546 Sandøy Møre og Romsdal
1547 Aukra Møre og Romsdal
1548 Fræna Møre og Romsdal
1567 Rindal Møre og Romsdal
1576 Aure Møre og Romsdal
1811 Bindal Nordland
1812 Sømna Nordland
1815 Vega Nordland
1816 Vevelstad Nordland
1818 Herøy Nordland
1827 Dønna Nordland
1834 Lurøy Nordland
1835 Træna Nordland
1836 Rødøy Nordland
1837 Meløy Nordland

Continued on next page

32



Table A3 – Continued from previous page
Municipality code Municipality name County

1838 Gildeskål Nordland
1839 Beiarn Nordland
1848 Steigen Nordland
1851 Lødingen Nordland
1852 Tjeldsund Nordland
1856 Røst Nordland
1857 Værøy Nordland
1859 Flakstad Nordland
1866 Hadsel Nordland
1867 Bø Nordland
1868 Øksnes Nordland
1874 Moskenes Nordland
1911 Kvæfjord Troms
1917 Ibestad Troms
1919 Gratangen Troms
1923 Salangen Troms
1925 Sørreisa Troms
1926 Dyrøy Troms
1927 Tranøy Troms
1928 Torsken Troms
1929 Berg Troms
1936 Karlsøy Troms
1938 Lyngen Troms
1940 Gáivuotna Kåfjord Troms
1941 Skjervøy Troms
1943 Kvænangen Troms
2002 Vardø Finnmark
2003 Vadsø Finnmark
2011 Guovdageaidnu Kautokeino Finnmark
2014 Loppa Finnmark
2015 Hasvik Finnmark
2021 Karasjohka Karasjok Finnmark
2022 Lebesby Finnmark
2023 Gamvik Finnmark
2024 Berlevåg Finnmark
2025 Deatnu Tana Finnmark
2027 Unjargga Nesseby Finnmark
2028 Båtsfjord Finnmark
5012 Snillfjord Trøndelag
5013 Hitra Trøndelag
5019 Roan Trøndelag
5020 Osen Trøndelag
5029 Skaun Trøndelag
5032 Selbu Trøndelag
5038 Verdal Trøndelag
5039 Verran Trøndelag
5040 Namdalseid Trøndelag
5043 Røyrvik Trøndelag
5046 Høylandet Trøndelag
5048 Fosnes Trøndelag
5049 Flatanger Trøndelag
5050 Vikna Trøndelag
5052 Leka Trøndelag

Notes: This table lists all municipalities included in the donor pool. These
have no charging infrastructure over the entire observation period.
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Appendix B Control function estimation supplements

Table B1: First-stage results for charging stations and charging points

Charging stations Charging points
(1) (2)

IV 0.058*** 0.111***
(0.013) (0.022)

ln(car price) -3.01E-12 -9.54E-13
(9.06E-12) (1.58E-11)

ln(income) 0.196 0.189
(0.388) (0.643)

ln(income) x Time -0.004 0.001
(0.016) (0.027)

ln(hybrids) x Time 0.003** -0.0003
(0.001) (0.002)

Constant -2.206 -5.958
(4.575) (8.603)

N 366, 296 366, 296
Adjusted within-R2 0.393 0.355

Notes: This table reports first stage regression results for 2SLS
and CF procedures. In column (1), the dependent variable is
ln(charging stations)mit. In column (2), the dependent variable is
ln(charging points)mit. See equation (2) for the definition of the
instrumental variable (IV). All specifications include quarter and
municipality-model fixed effects. Standard errors clustered at the
municipality level reported in parentheses. ∗, ∗∗ and ∗∗∗ respec-
tively denote significance at 10%, 5% and 1% levels.
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Table B2: Polynomial forms of robustness checks – charging stations

No price 2015 parking No neighbours Chargers x BEV Additional controls Chargers x time
(1) (2) (3) (4) (5) (6)

ln(charging stations) 0.131*** 0.155*** 0.146*** 0.133** 0.130*** −
(0.045) (0.041) (0.050) (0.053) (0.050)

ln(charging stations)2 -0.036 -0.037 -0.036 -0.050 -0.036 −
(0.032) (0.032) (0.032) (0.038) (0.031)

ln(charging stations)3 0.018** 0.019** 0.018** 0.023** 0.018** −
(0.009) (0.009) (0.009) (0.011) (0.009)

ln(charging stations) x BEV − − − -0.004 − −
(0.026)

ln(charging stations)2 x − − − 0.031 − −
BEV (0.029)
ln(charging stations)3 x − − − -0.010 − −
BEV (0.007)
ln(charging stations) x early − − − − − 0.194***

(0.049)
ln(charging stations)2 x − − − − − -0.055**
early (0.025)
ln(charging stations)3 x − − − − − 0.023***
early) (0.008)
ln(charging stations) x late − − − − − 0.144***

(0.054)
ln(charging stations)2 x − − − − − -0.034
late (0.032)
ln(charging stations)3 x − − − − − 0.019**
late (0.009)
ln(car price) − 0.110*** 0.110*** 0.109*** 0.110*** 0.110***

(0.008) (0.009) (0.009) (0.009) (0.008)
ln(income) -0.130 -0.136* -0.134 -0.130 -0.122 -0.136*

(0.077) (0.092) (0.078) (0.084) (0.073) (0.075)
ln(income) x Time 0.003 0.003 0.003 0.003 0.002 0.003

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
ln(hybrids) x Time 0.006*** 0.006*** 0.006*** 0.006*** 0.006*** 0.006***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ln(population) − − − − -0.082 −

(0.096)
Proportion of detached and − − − − 0.001 −
duplex dwellings (0.002)
First stage residual -0.136*** -0.158*** -0.150*** -0.135*** -0.134*** -0.160***

(0.033) (0.037) (0.038) (0.035) (0.041) (0.047)
Constant 0.360 -1.081 -1.075 -1.044 -1.775 -1.238

(1.052) (1.067) (0.902) (0.965) (1.184) (1.150)

N 366, 296 366, 296 366, 296 366, 296 366, 296 366, 296
Adjusted within-R2 0.0806 0.0817 0.0817 0.0820 0.0817 0.0821
1st-stage partial F-stat. 18.32 11.29 16.80 19.01 19.51 19.01

Notes: In all columns, the dependent variable is the log of new electric vehicle registrations (ln(EV)mit). Column (1) omits the car price variable.
Column (2) uses the number of parking spaces in 2015 to construct the instrument. Column (3) excludes neighboring municipalities to construct the
instrument. In column (4), we interact the treatment variable with a dummy for battery-only EVs. Column (5) includes further control variables. In
column (6), we estimate separate elasticities for observations in 2010-2013 and 2014-2017. All specifications are estimated with a control function
approach and include quarter and municipality-model fixed effects. The 1st stage partial F-statistic for the instrumental variable is derived from first-
stage regression results. Standard errors bootstrapped with 500 replications and clustered at the municipality level reported in parentheses. ∗, ∗∗ and
∗∗∗ respectively denote significance at 10%, 5% and 1% levels.
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Table B3: Polynomial forms of robustness checks – charging points

No price 2015 parking No neighbours Chargers x BEV Additional controls Chargers x time
(1) (2) (3) (4) (5) (6)

ln(charging points) 0.132*** 0.153*** 0.136*** 0.152*** 0.131*** −
(0.020) (0.023) (0.021) (0.017) (0.020)

ln(charging points)2 -0.055*** -0.056*** -0.055*** -0.073*** -0.055*** −
(0.008) (0.009) (0.009) (0.009) (0.008)

ln(charging points)3 0.012*** 0.012*** 0.012*** 0.015*** 0.012*** −
(0.002) (0.002) (0.002) (0.002) (0.002)

ln(charging points) x BEV − − − -0.048*** − −
(0.016)

ln(charging points)2 x BEV − − − 0.041*** − −
(0.011)

ln(charging points)3 x BEV − − − -0.007*** − −
(0.002)

ln(charging points) x early − − − − − 0.147***
(0.026)

ln(charging points)2 x − − − − − -0.053***
early (0.018)
ln(charging points)3 x − − − − − 0.012***
early (0.003)
ln(charging points) x late − − − − − 0.134***

(0.019)
ln(charging points)2 x − − − − − -0.054***
late (0.011)
ln(charging points)3 x − − − − − 0.012***
late (0.002)
ln(car price) − 0.110*** 0.110*** 0.109*** 0.110*** 0.110***

(0.008) (0.008) (0.006) (0.008) (0.010)
ln(income) -0.108 -0.113 -0.109 -0.107 -0.105 -0.112

(0.070) (0.066) (0.069) (0.099) (0.067) (0.082)
ln(income) x Time 0.002 0.002 0.002 0.002 0.002 0.003

(0.004) (0.003) (0.004) (0.004) (0.004) (0.004)
ln(hybrids) x Time 0.006*** 0.006*** 0.006*** 0.006*** 0.006*** 0.006***

(0.0005) (0.001) (0.0004) (0.0004) (0.001) (0.0004)
ln(population) − − − − 0.057 −

(0.098)
Proportion of detached and − − − − 0.001 −
duplex dwellings (0.002)
First stage residual -0.079*** -0.099*** -0.083*** -0.079*** -0.079*** -0.088***

(0.018) (0.023) (0.018) (0.017) (0.015) (0.017)
Constant 0.303 -1.142 -1.123 -1.112 -1.651 -1.347

(1.017) (0.811) (1.145) (0.946) (1.411) (1.014)

N 366, 296 366, 296 366, 296 366, 296 366, 296 366, 296
Adjusted within-R2 0.0815 0.0826 0.0826 0.0830 0.0826 0.0828
1st-stage partial F-stat. 24.57 14.17 23.73 25.54 23.04 25.54

Notes: In all columns, the dependent variable is the log of new electric vehicle registrations (ln(EV)mit). Column (1) omits the car price variable.
Column (2) uses the number of parking spaces in 2015 to construct the instrument. Column (3) excludes neighboring municipalities to construct the
instrument. In column (4), we interact the treatment variable with a dummy for battery-only EVs. Column (5) includes further control variables. In
column (6), we estimate separate elasticities for observations in 2010-2013 and 2014-2017. All specifications are estimated with a control function
approach and include quarter and municipality-model fixed effects. The 1st stage partial F-statistic for the instrumental variable is derived from first-
stage regression results. Standard errors bootstrapped with 500 replications and clustered at the municipality level reported in parentheses. ∗, ∗∗ and
∗∗∗ respectively denote significance at 10%, 5% and 1% levels.
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Table B4: First-stage results for robustness checks – charging stations

No price 2015 parking No neighbours Chargers x BEV Additional controls Chargers x time
(1) (2) (3) (4) (5) (6)

IV 0.058*** − − 0.058*** 0.057*** 0.058***
(0.014) (0.013) (0.013) (0.013)

IV-parking 2015 − 0.049*** − − − −
(0.015)

IV-no neighbors − − 0.055*** − − −
(0.014)

ln(car price) − -2.05E-12 -3.17E-12 -3.01E-12 -5.64E-12 -3.01E-12
(8.76E-12) (8.75E-12) (9.06E-12) (9.09E-12) (9.06E-12)

ln(income) 0.196 0.170 0.205 0.196 0.307 0.196
(0.374) (0.396) (0.373) (0.388) (0.402) (0.388)

ln(income) x Time -0.004 -0.002 -0.004 -0.004 -0.008 -0.004
(0.016) (0.015) (0.015) (0.016) (0.016) (0.016)

ln(hybrids) x Time 0.003** 0.003** 0.003** 0.003** 0.003** 0.003**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ln(population) − − − − 0.446*** −
(0.586)

Proportion of − − − − -0.003 −
detached and duplex dwellings (0.009)
Constant -2.206 -2.231 -2.076 -2.206 -5.280 -2.206

(4.270) (4.398) (4.263) (4.575) (6.324) (4.575)

N 366, 296 366, 296 366, 296 366, 296 366, 296 366, 296
Adjusted within-R2 0.393 0.390 0.392 0.393 0.394 0.393

Notes: This table reports first stage regression results for robustness checks. In all columns, the dependent variable is ln(charging stations)mit. See
equation (2) for the definition of the instrumental variable (IV). All specifications include quarter and municipality-model fixed effects. Standard errors
clustered at the municipality level reported in parentheses. ∗, ∗∗ and ∗∗∗ respectively denote significance at 10%, 5% and 1% levels.

Table B5: First-stage results for robustness checks – charging points

No price 2015 parking No neighbours Chargers x BEV Additional controls Chargers x time
(1) (2) (3) (4) (5) (6)

IV 0.111*** − − 0.110*** 0.108*** 0.110***
(0.022) (0.022) (0.023) (0.022)

IV-parking 2015 − 0.089*** − − − −
(0.024)

IV-no neighbours − − 0.109*** − − −
(0.020)

ln(car price) − 5.70E-13 -1.53E-12 1.18E-12 -6.45E-12 1.18E-12
(1.67E-11) (1.60E-11) (1.03E-11) (1.73e-11) (1.03E-11)

ln(income) 0.189 0.135 0.208 0.134 0.425 0.134
(0.688) (0.729) (0.671) (0.646) (0.775) (0.646)

ln(income) x Time 0.001 0.004 0.0004 0.006 -0.008 0.006
(0.029) (0.029) (0.028) (0.028) (0.030) (0.028)

ln(hybrids) x Time -0.0003 0.0004 -0.0003 -0.001 -0.001 -0.001
(0.002) (0.002) (0.028) (0.002) (0.002) (0.002)

ln(population) − − − − 0.882* −
(0.1.074)

Proportion of − − − − -0.008 −
detached and duplex dwellings (0.030)
Constant -5.958 -5.494 -5.731 -5.438 -11.824 -5.438

(8.391) (9.238) (8.567) (7.620) (12.546) (7.620)

N 366, 296 366, 296 366, 296 366, 296 366, 296 366, 296
Adjusted within-R2 0.355 0.349 0.354 0.355 0.355 0.355

Notes: This table reports first stage regression results for robustness checks. In all columns, the dependent variable is ln(charging points)mit. See equation
(2) for the definition of the instrumental variable (IV). All specifications include quarter and municipality-model fixed effects. Standard errors clustered
at the municipality level reported in parentheses. ∗, ∗∗ and ∗∗∗ respectively denote significance at 10%, 5% and 1% levels.
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Appendix C Synthetic control method supplements

As outlined in section 2.3, the ridge-augmented SCM from Ben-Michael et al. (2018) offers an

improvement in SCM case study analysis by allowing for a more precise matching and hence lower

MSPE. In Figure C1, we compare a traditional SCM matching algorithm (Abadie and Gardeazabal,

2003; Abadie et al., 2010) to the ridge-augmented SCM results presented in the main text.

Results suggest that the pre-treatment residuals (panels C1a and C1b) are significantly larger

and display more variability as compared to our main results. This lower fit of the synthetic mu-

nicipalities confirms that the ridge-augmented SCM approach provides a more accurate estimate

of the counterfactual, and in turn the treatment effects.

Nevertheless, Figure C1 panels C1c and C1d show that the estimated post-treatment differ-

ences are qualitatively similar using both approach. As expected, larger MPSE implies additional

variability in early post-treatment quarters. However, overall, the average treatment effect is very

similar with both approaches. This is also illustrated in Table C1, which provides the mean and

median treatment effect for each quarter associated with a traditional SCM.
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Figure C1: Results from the traditional synthetic control method

(a) One-station municipalities: matching periods
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(b) Multi-station municipalities: matching periods
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(c) One-station municipalities: treatment effect

0
10

0
20

0
30

0
40

0

Quarter after treatment

D
iff

er
en

ce
s

  0  2  4  6  8  10  12  14  16  18  20  22  24  26

(d) Multi-station municipalities: treatment effect
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Notes: The solid gray lines represent the SCM estimated differences between each treated municipality and its synthetic counterpart.

The dashed-dotted lines present the mean differences across treated units. The dashed lines provide the mean difference estimated

from the ridge-augmented SCM approach reported in Figure 4.
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Table C1: Summary results for the traditional synthetic control method

Quarter
post-
treatment

One-station municipalities Multi-station municipalities

Obs. Mean Median Obs. Mean Median

1 47 0.87 -0.06 17 0.04 -0.08
2 47 0.84 0.04 17 0.28 -0.27
3 47 1.14 0.50 17 0.35 -0.10
4 47 1.89 0.52 17 1.19 -0.58
5 46 3.68 0.86 13 1.08 -0.93
6 38 5.42 2.64 10 6.28 6.44
7 36 7.19 4.16 8 6.76 10.05
8 35 8.14 4.02 8 11.17 10.52
9 33 9.24 5.64 7 16.68 16.70

10 30 12.79 7.07 7 21.71 22.60
11 26 15.96 6.61 7 26.52 24.80
12 24 19.67 7.40 5 55.52 65.40
13 20 27.57 8.55 4 62.39 58.27
14 18 24.88 6.26 4 69.67 63.25
15 17 28.89 4.98 2 34.80 34.80
16 14 45.15 18.62 1 65.60 65.60
17 13 55.89 29.49 1 74.20 74.20
18 8 23.84 20.11
19 7 18.28 11.76
20 6 15.28 5.88
21 4 32.51 30.62
22 3 47.48 52.23
23 1 123.00 123.00
24 1 141.00 141.00
25 1 162.00 162.00
26 1 202.00 202.00

Notes: This table summarizes results for the post-treatment gap in cumulative
EV stock between treated municipalities and synthetic controls. Mean and
median reported refer to the distribution of treatment effects estimated from
the traditional SCM.
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Table C2: Summary results for the temporal placebo tests

Quarter
post-
treatment

One-station municipalities Multi-station municipalities

Obs. Mean Median Obs. Mean Median

1 46 0.61 -0.06 16 0.47 0.10
2 46 0.69 -0.04 16 0.17 -0.18
3 46 0.54 -0.10 16 0.99 1.03
4 46 0.78 -0.13 16 1.08 1.31
5 46 0.83 0.18 16 1.31 1.67
6 46 0.68 0.52 16 2.03 1.81
7 46 1.50 0.48 16 2.85 1.93
8 46 2.22 0.48 16 4.69 2.59
9 45 4.09 0.89 12 4.59 2.65
10 37 8.69 2.34 9 11.94 8.86
11 35 11.18 7.57 7 14.19 16.22
12 34 12.83 6.55 7 19.18 16.10
13 32 15.40 9.18 6 24.80 19.32
14 29 18.88 4.50 6 29.81 28.98
15 25 20.64 13.05 6 36.77 36.16
16 23 28.24 21.22 5 54.30 63.63
17 19 31.63 21.89 4 60.49 59.13
18 17 29.05 4.67 4 66.55 63.09
19 16 32.85 4.63 2 30.39 30.39
20 13 45.06 10.50 1 65.80 65.80
21 12 53.21 8.97 1 74.45 74.45
22 7 20.05 5.67
23 6 8.88 2.18
24 5 2.36 -6.30
25 3 16.17 13.58
26 2 22.11 22.11

Notes: This table summarizes results for the post-treatment gap in cumu-
lative EV stock for non-treated municipalities subject to placebo treatments
4-quarter before treatment, and synthetic controls. We report mean and me-
dian placebo treatment effects.
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