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Abstract

When voting takes place in democratic institutions, we find (either explicitly or im-

plicitly) that there is an agenda setter or a formateur. Such players are uniquely able

to make substantive proposals for given topics. Their statuses remain intact even af-

ter rejections of proposals, but they must revise rejected proposals constructively (e.g.

towards a compromise). We model this in a general environment, show that the equi-

librium outcome is generically unique, and characterize it explicitly. The equilibrium

outcome is robust to (partially) binding communication between the formateur and

the voters. As illustrations, we consider majority bargaining about a cake (leaned on

Baron and Ferejohn, 1989), where the formateur ends up being a perfect dictator, and

a model of legislative voting (leaned on Jackson and Moselle, 2002), where he is a

dictator if his ideological position is within the quartiles of the parliament. In these

cases, our model implements (reversed) McKelvey majority paths. Depending on the

valuations, the formateur’s power may be weakened when parliamentary decisions

can be revised, as this may facilitate tacit collusion amongst the voters.
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1 Introduction

When majorities are sufficient to implement decisions, then coalitions form; either implicitly, by

players that vote in the same way, or explicitly, by players that sign coalition contracts. Models of

coalitional bargaining help us to understand which decisions are made and which coalitions form. In

this paper, we define a general framework to analyze coalitional bargaining games and we character-

ize the perfect equilibrium outcomes for bargaining rules that apply to a wide range of democratic

voting institutions. We prove existence of equilibria, uniqueness of the outcomes, and provide a uni-

fied characterization of the outcomes. Based on that, specific assumptions concerning the option sets,

the preference functions, and the voting rules allow us to derive specific predictions.

Our model has the following three cornerstones. First, the formateur remains in his position even

after rejections of proposals (the formateur is the player with the right to make proposals that would

be voted upon). Secondly, when the formateur revises a previously rejected proposal, then he has

to do so in a constructive way (to avoid “blame game” politics, as discussed below). Thirdly, there

maybe communication between the formateur and the other players that differs from cheap talk (e.g.

when misleading communication can be retaliated within existing hierarchies). These cornerstones

have predecessors in the literature, but typically, they have been studied in isolation and in restrictive

circumstances. Our analysis generalizes these studies and unifies the respective classes of model.

The assumption that formateurs stay in their positions even after rejections applies to both major

strings of political bargaining: government formation and parliamentary legislation. It applies to gov-

ernment formation when the head of state appoints the formateur in the beginning of the bargaining

phase (as in the Netherlands, Belgium, Finland). The formateur would then ask the other players to

sign coalition contracts, to partially fix the portfolio allocation and the political programme (Cheibub

et al., 2004). Coalition contracts are offered behind the scenes, and thus, the formateur remains in his

position even if such an offer should be rejected.

In the second case (parliamentary legislation), there typically are unique players with the ability

to make substantive proposals (agenda setters). Their time horizons are large, as proposals can be

revised quickly and as they can be made informally (e.g. at a cabinet table), and thus agenda setters

are formateurs in our sense. Their proposal ranges may be restricted (thematically), which we take

as given. Depending on the context, agenda setters can be ministers (Laver and Shepsle, 1990),

presidents (Persson et al., 1997, 2000, and Primo, 2002), chairmen or board members within parties

(Cox and McCubbins, 1993), or majority parties (coalitions) in parliaments (e.g. in the UK and

in Ireland, Döring, 1995, in the US House of Representatives, Cox and McCubbins, 2005, and in

the German Bundestag, Loewenberg, 2003). Apparently, the required voting shares depend on the

context of the game, but as we show, there is a common intuition behind the bargaining games that is

independent of the voting rules.

By assuming that the formateur is not replaced after rejections of proposals, we depart from the

branch of literature that followed Baron and Ferejohn (1989); for instance Baron (1991), Chatterjee
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et al. (1993), Okada (1996), Seidmann and Winter (1998), and Ray and Vohra (1999). This literature

describes coalitional bargaining in non–institutional circumstances, e.g. cartel formation and govern-

ment formation when the Head of State does not appoint a formateur before a coalition has formed

(as in Italy). In another related branch of models, it is assumed that the formateur commits to a coali-

tion before any distributive or programmatic aspects are negotiated (in particular, in Diermeier et al.,

2002, 2003, but see also Bloch, 1996, and Baron and Diermeier, 2001). Our model generalizes this

branch in that the formateur can require potential coalition partners to commit to some distributive

and programmatic aspects (via coalition contracts) before he commits to a coalition. The results of

the multilateral negotiation concerning any remaining aspects are taken as given in our model.

Our second main assumption is that rejected proposals have to be revised constructively. This

is related to the literature on blame game politics (Rohde and Simon, 1985; Smith, 1988; Woolley,

1991). A formateur who is unwilling to compromise can be blamed as being “unconstructive” by

the players that have to vote on his proposals, and following such blames, his reputation may suf-

fer significantly (see Groseclose and McCarty, 2001). In turn, a formateur who revises a rejected

proposal towards a compromise can not be blamed of being unconstructive. Additionally, we say

that formateurs can not be blamed of being unconstructive when they come up with entirely new

proposals. Implicitly, we show that the equilibrium outcome does not depend on whether the latter

applies or not. To simplify the notation, we assume that the formateur would have to leave office

after hisfirst unconstructive proposal, i.e. after his first proposal that is no compromise and not new

(but any other finite limit leads to the same equilibrium outcome). Then, an outside option would

apply. The resulting bargaining model, where the formateur can revise rejected proposals but must be

constructive, is calledconstructive proposals game. We show that the solution is generically unique

under perfectness and characterize it.

The model of constructive proposals does not allow for communication between the formateur

and other players. In particular, the formateur could be informed by the voters about the proposals

they would accept (or, he could ask them). Such communication becomes relevant if it is not cheap

talk. As it appears, it is not cheap talk in our circumstances. For, the structures of parties and

coalitions are hierarchical and resemble legal partnerships (Cox and McCubbins, 1993). As a result,

formateurs would be able to observe misleading communication, and they have a number of measures

to retaliate it: lack of promotion, demotion, and expulsion from the coalition (Cox and McCubbins,

1994). To investigate the robustness of our predictions to such communication, we first analyze

a case of perfectly binding communication: when players signaled that they would accept a given

proposal, then they would indeed accept it. In the correspondingsealed offers game, the formateur

asks the players which options they would accept, and of the emerging possibilities, he chooses

the one that he prefers most. We prove outcome equivalence to the non–communication model,

and further below, we extend this equivalence to a game where communication is not binding, but

misleading communication is associated with positive costs.

The predictions of our model are illustrated in Section 3. On one hand, we consider a parliament
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that decides on how to allocate a cake (following Baron and Ferejohn, 1989). On the other hand,

we derive the decision when there is both, a distributive dimension (cake allocation) and an ideo-

logical dimension (a political programme is chosen from the real line). The second model follows

Jackson and Moselle (2002). In any of the respective equilibria, the formateur approximately gets

the whole cake. Furthermore, in the Jackson–Moselle model, he can implement his ideal programme

if his position is within the quartiles of the parliament, and otherwise he can at least implement the

programme at the preferred quartile. This does not depend on the “size” of the cake to be allocated.

Thus, the formateurs get close to become dictators in these model families, and as we illustrate be-

low, our model provides an implementation of McKelvey (1976, 1979) majority paths in these cases.

In general, however, the formateur is not able to implement his most favorite option; an example is

given below.

Given the existing literature, these results are somewhat surprising. First, median voters are

irrelevant in the considered cases; limiting members of the parliaments are quartile voters (if at all).

Secondly, interpreting the sealed offers game, one may be surprised that the voters would reply (when

asked) that they accept proposals as extreme as the above ones; but let us note that our results require

a high order of iterative reasoning. Thirdly, the extremity is surprising even if we concentrate on the

constructive proposals game. Clearly, there is only one player who can make proposals, but this does

generally not imply uniqueness of the equilibrium outcomes (least of all in discrete option spaces).

Additionally, the formateur can not make take–it–or–leave–it offers, as in one–round games, which

suggests that his bargaining power is less here than in one–round games. His bargaining power

appears to be weakened further as he must be constructive—if the voters reject a given proposal,

they know that a new proposal or a compromise proposal would follow. As a result, if the voters are

sufficiently patient, then they could wait until the formateur proposes an appropriate compromise.

Regardless of their patience, however, they do not wait; they compete for pieces of the cake.

In Section 4, we examine a variation of this model where previous parliamentary decisions are

canceled when new decisions are made (this is loosely related to Dixit et al., 2000). Here, the possi-

bility of revisions is acknowledged by the voters when they evaluate the implications of supporting

a given proposals. This may lead to “tacit collusion” amongst the voters. They do not generally

compete anymore, but they can induce that decisions may trigger later revisions, following which all

players would be worse off. As a result, they would not support extreme proposals anymore. There

are several further explanations for less extreme predictions than this one, and we discuss some of

them in the concluding Section 5. A formal analysis of the case with revisable decisions and some

proofs are relegated to the appendix.
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2 Sealed Offers vs. Constructive Proposals

The exposition of the results is simplest if we start with defining and analyzing the sealed offers

game. We then show that the sealed offers game is outcome equivalent to a “descending proposals”

game. This game is dynamic and the formateur proposes the options in descending order (based on

his preferences) until an option is accepted. We say that two games areoutcome equivalentif the sets

of outcomes sustained in equilibrium are equivalent. In our cases, these sets will be singletons. At

the end of this section, we extend the outcome equivalence to the constructive proposals game, which

is a generalization of the descending proposals game. Given the nature of these games, we find it

most convenient to define them on discrete option spaces. For instance, if the players make offers to

the formateur, then we say that they choose a set of offers from a discrete set. Likewise, discreteness

simplifies the definition of “constructive revisions” of proposals (without discreteness, some param-

eters would be required). Finally, the solution concepts would have to be significantly more complex

in continuous games. Nonetheless, it appears that the basic intuition behind our arguments extends

to games defined on continuous option spaces.

Technically, the sealed offers game resembles sealed–bid auctions, and in particular, it resembles

menu auctions (Bernheim and Whinston, 1986) and team selection (Bolle, 1995). In menu auctions,

the players can contingent their bids on the eventual object allocation. In the sealed offers game that

we analyze, the valuation functions are more general, and if objects were to be auctioned off, the bids

could be contingent not only on the resulting allocation but also on the winning bids. Because of the

latter, the uniqueness of the equilibrium outcome based on (perfect) equilibrium refinement does not

extend to menu auctions (generally, equilibrium selection concepts are required). The descending

proposals game resembles a Dutch auction, and thus, the outcome equivalence that we establish

relates to the revenue equivalence of first–price, sealed–bid auctions and Dutch auctions.

2.1 Options and Preferences

Player 0 is the formateur and tries to form a winning coalition with a subset of the playersN =
{1, . . . ,n}. The set of possibleprogrammes(political platforms) is denotedS. The set of coalitions

that can implement at least one programmes∈ S is denotedC⊆ P (N), whereP denotes the power

set. The set of feasible programme–coalition combinations(s,c) is denotedQ0 ⊆ S×C; generally,

it would not be equal toS×C, as not all coalitions need be able to implement all programmes.

Moreover, our definitionC applies equally to unicameral legislatures, bicameral legislatures, and

presidential democracies, i.e. we analyze these differing institutional settings in a unified framework.

We refer to each elementq ∈ Q0 as anoption; s(q) denotes the programme andc(q) denotes the

set of players whose agreement player 0 requires to implement optionq. The valuation functions

vi : Q0 → IR map the set of options to the reals (for all players, including the formateur).

Player 0 has at least one outside option (the status quo), i.e. an optionq∈ Q0 : c(q) = /0 where 0
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does not require the support of anyi ∈ N. In equilibrium, player 0 would only choose optionsr ′ for

which there is no preferred outside option. Thus, only an option in the following set would be chosen

along an equilibrium path.

Q = {q∈ Q | ∀q′ : v0(q′) > v0(q) ⇒ c(q′) 6= /0}. (1)

To simplify the notation, we restrict our attention toQ . By using the above notation, we implicitly

assume (following Romer and Rosenthal, 1978) that the valuation of the outside option would be

independent of the strategies played under formateur 0. In this way, we can not model that there is

a possibly infinite sequence (protocol) of formateurs, which would end only if a formateur is able

to implement an option other than the outside option. If the protocol is finite (e.g. if the term of

legislature is finite), then the equilibrium play can be backward induced to satisfy our assumption (as

illustrated, e.g., in Austen-Smith and Banks, 1988). Infinite models are considered explicitly below,

in the “Applications” section, and there we show how to generalize the above simplification.

The valuation of some playeri may depend on the programmes as well as on the coalition

implementings. This may apply equally to parties inside the coalition as well as to those outside the

coalition, since their roles in the opposition (or, in the party hierarchy, or in any other “after–market”)

would be different. We assume that, for any pair of options, if one player is not indifferent between

the options, then no player is indifferent. Formally,

∀q,q′ ∈ Q : ∃i : vi(q) 6= vi(q′) ⇒ ∀i : vi(q) 6= vi(q′). (2)

We refer to this assumption asgeneric valuations. Our main motivation of it is the after–market of

a parliamentary decision, which is payoff–relevant as the set of players is rather small. For instance,

if the players are parties and one party is affected by a decision, then the other parties would be

affected indirectly as well. This assumption is somewhat relevant for our uniqueness result, but note

that related assumptions are generally made in the literature (for instance, in cases of indifference

between accepting and rejecting a given proposal it is assumed that the players would accept it, see

Eraslan, 2002).

In the following, we shall not distinguish options that all players find equivalent. We therefore

define a derived set of optionsR , where each of the derived optionsr ∈ R actually comprises a class

of payoff equivalent optionsq∈ Q . Let Q⊆ Q denote a class of payoff equivalent options, and let

r ∈ R denote the corresponding derived option. In the following,C(r) denotes the set of coalitions

that are required to implement at least one of the options inQ, andS(r) denotes the set of programmes

that are supported inQ. Note that we do not requireQ = S(r)×C(r). Finally, letc(r) = ∪c∈C(r) c

denote the set of players that are required for at least one option inQ.

The domain of the valuation functionsvi is extended toR . We will refer to the elements of

R simply as options, though they are (by construction) sets of equivalent options. Thanks to the

construction ofR , we know for all playersi (including the formateur) and all option pairsr 6= r ′ that

vi(r) 6= vi(r ′). Based on the valuations of player 0, we finally define an ordering≥ over the set of
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(derived) optionsR .

∀r1, r2 ∈ R : r1 ≥ r2 ⇔ v0(r1)≥ v0(r2) (3)

Apparently, the ordering≥ is complete, reflexive, and transitive. We also definer1 = r2 as being

equivalent tor1 ≥ r2 andr2 ≥ r1, andr1 > r2 as being equivalent tor1 ≥ r2 andr1 6= r2.

2.2 The sealed offers game

The formateur asks the other players which optionsr ∈ R they would support. That is, for each class

of payoff equivalent options, the formateur asks the players whether they would support an option

in this class. He would have to choose the option (out of this class) that he actually implements

only later, since the supporting players are indifferent with respect to the result of this choice. Each

non–formateur playeri ∈N offers to implement a subset ofRi = {r ∈R | i ∈ c(r)}, i.e. of the options

where i ∈ c(r). Subsets ofRi are denotedRi , and the strategy set ofi is P (Ri). All players are

completely informed.

Fix a strategy profileR = (Ri). The indicatorA(r|R) ∈ {0,1} describes whether optionr can

be implemented by the formateur, i.e.A(r|R) = 1 iff ∃c∈C(r) ∀i ∈ c : r ∈ Ri . Thus, player 0 will

implementr∗(R) = max{r ∈ R | A(r|R) = 1} in any perfect equilibrium. As this choice is unique for

each offer profile(Ri), we can take it as given. Thus, only the moves of the non–formateur players

i ∈ N are strategically relevant, and we restrict our attention to a game of the playersi ∈ N. The

payoff of playeri is πi(R) = vi
(
r∗(R)

)
. The strategy profileR= (R1, . . . ,Rn) is a Nash equilibrium if

no player would be better off deviating unilaterally, i.e. if

∀i ∀R′i ⊆ Ri : πi(R)≥ πi
(
R′i ,R−i

)
. (4)

A mixed strategy of playeri mapsRi to [0,1]. It is a collection of independent probability measures,

each indicating the probability of the event thati will offer his participation under a givenr ∈ Ri .

Note that we understand the acts of accepting different options as independent tasks. We denote the

probability thati offersr asmi(r). The probability thati plays the pure strategyRi ⊆ Ri undermi is

µ(Ri |mi) = ∏
r∈Ri

mi(r)∗ ∏
r∈Ri\Ri

(
1−mi(r)

)
. (5)

The expected payoff ofi under the mixed strategy profilem= (mi) is

πi(m) = ∑
(R1,...,Rn)∈R1×···×Rn

vi(R1, . . . ,Rn)∗∏
i∈N

µ(Ri |mi). (6)

The definition of Nash equilibria in mixed strategy applies as above. Letεεε denote a profile(εi,r)
defining a real number for alli ∈ N, r ∈ Ri . We say that(mi) is anεεε–equilibrium when it is a Nash

equilibrium in the strategy space restricted to mixed strategies satisfyingmi(r)≥ εi,r ∀i ∈ N∀r ∈ Ri .
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The profile(mi) is called trembling–hand perfect equilibrium (TPE) if it is a limit ofεεε–equilibria for

some sequence of profiles(εεε) approaching 000.

We will iteratively eliminate strategies until a unique strategy profile remains. The strategies that

we eliminate are (strictly) dominated under full support, and thus, the unique undominated strategy

profile is the unique perfect equilibrium. The idea underlying our arguments is that we can induce

whether a player accepts optionr without requiring knowledge of which optionsr ′ > r would be

accepted by any of the players (under full support). Formally, for anyr, anyi ∈ c(r), and any pair of

completely mixed strategiesm1
i ,m

2
i that differ only in the probability assigned to acceptingr, we can

show thatm1
i is better thanm2

i in response to somem−i iff a condition is satisfied that does not depend

on any of the probabilities assigned to optionsr ′ > r. As a result, when the arguments of iterative

dominance have lead to unique acceptance probabilities for all optionsr ′ < r, we know everything

that is required to induce whetheri would acceptr.

Thus, the induction proceeds as follows. The outside option is denotedr0. We can first induce

which players would accept the optionr1 = min{r ′|r ′ > r0}, as this would depend only on whether

the outside option would be accepted (which is trivially true). Based on this, we can induce which

players would acceptr2 = min{r ′|r ′ > r1}, then which players would acceptr3 = min{r ′|r ′ > r2}, and

so on. Technically, we would require only a concept of rationalizability under full support to derive

the solution, e.g. cautious rationalizability (Pearce, 1984), but under perfectness, some notation is

simplified.

Fix r ∈ R . Assume that the equilibrium strategies have already been induced for allr ′ < r and

assume that the induced equilibrium probabilities would be degenerate. LetAi(r ′) ∈ {0,1} denote

the probability thati offersr ′, for all r ′ < r wherei ∈ c(r ′). If restricted to optionsr ′ < r, then player

0 would chooseg(r) as defined next.

g(r) = max{r ′ < r | ∃c∈C(r ′) ∀i ∈ c : Ai(r ′) = 1} (7)

We will show that it is dominated to offerr for a playeri who prefersg(r) over r, and that it is

dominant to offerr when it is preferred tog(r). Thus, the probabilities thatr is offered would be

∀i ∈ c(r) : Ai(r) =

{
1 , if vi(r) > vi(g(r))
0 , else.

(8)

Note that Eq. (7), (8) provide a recursive definition ofAi(r) for all r and alli ∈ c(r). Let R ∗ denote

the set of TPEs.

Lemma 2.1. Fix r ∈ R . Assume that for all r′ < r, the following holds.

∀R∗ ∈ R ∗ ∀i ∈ c(r ′) : Ai(r ′) = 1 ⇔ r ′ ∈ R∗i (9)

Then, the equilibrium probabilities of accepting r are degenerate for all i∈ c(r) and Eq.(9) holds

for r ′ = r.
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Example 1

(s,c) v0 v1 v2

(x,{1}) 3 2 3

(y,{2}) 2 1 1

(z, /0) 1 3 2

Example 2

(s,c) v0 v1 v2

(x,{1}) 3 2 1

(y,{2}) 2 1 3

(z, /0) 1 3 2

The proof of Lemma 2.1 and selected further proofs are relegated to the appendix. By an in-

ductive argument, we can now show that the above definedAi(r) completely characterize the unique

perfect equilibrium. As a result, the set of options for which all required players offer their participa-

tion in equilibrium is

F = {r ∈Ω | ∃c∈C(r ′) ∀i ∈ c : Ai(r) = 1} (10)

Player 0 will choose the one that he prefers most, maxF .

Theorem 1. The trembling–hand perfect equilibrium of a generic sealed offers game is unique. It

implies thatmaxF results, based on F defined through Eq.(7), (8), and(10).

Proof. Eq. (9) holds forr ′ = r0 = minR , sincec(r0) = /0. Moreover, we know that if it holds for all

r ′ < r, then it also holds forr ′ = r (Lemma 2.1). Hence, we can induce that (9) holds for allr ′ ∈ R .

As a result, the setF ⊆ R , as defined in (10), contains the (unique) set of options that player 0 can

implement in equilibrium, and maxF is chosen.

Example1. The (perfect) equilibrium of the sealed offers game implies(z, /0). It is weakly dominated

for player 2 to offer participation under(y,{2}), and strictly so under full support. Hence, player

1 would not offer his participation under(x,{1}). In this example, we can find a second Nash

equilibrium. In this equilibrium, both players offer their respective options. Player 2 can offer(y,{2})
as he would be outbid, and the strategy of 1, to offer(x,{1}), is his best response. This equilibrium

is weak, as player 2 can deviate without costs, and under full support, he would deviate.

Example2. Option (x,{1}) results in the sealed offers game. It is dominant for player 2 to offer

participation under(y,{2}), implying that 1 would offer(x,{1}).

2.3 Equivalence to the Descending Proposals Scenario

We now show that the sealed offers game is outcome equivalent to a “Dutch auction” as defined in the

following. The formateur proposes options fromR to the players until one is accepted by a sufficient

number of players, or until he runs out of options. Since the elementsr ∈ R are actually “classes” of

equivalent options, the formateur would propose an appropriate instance of this class (i.e. if there is

an instance that would be accepted, then he would choose it). The optionsr are (to be) proposed in

descending order, i.e. the formateur does not act strategically here; he starts with the the option that

8



he prefers most, he would end with the one that he prefers least, and he does not skip options. The

most recent proposal of the formateur defines the state of the game. The set of states isΩ = R , it

inheres all characteristics ofR . In each stateω ∈ Ω, the players inc(ω) vote “yes” (1) or “no” (0).

If all relevant players vote yes, the game ends, and each playeri realizes the payoffvi(ω).

The set of states where playeri has to vote isΩi = {ω|i ∈ c(ω)} and i’s strategy is a function

σi : Ωi → {0,1}. By this definition, the strategies are Markov; they depend only on the payoff–

relevant details of the history of play (and not on who was rejecting which proposal). The assumption

of Markov strategies is not restrictive and will be discussed below. The game starts in state maxΩ.

Under the strategy profileσ = (σi), and given the current state isω, player i realizes the payoff

(defined recursively)

π′i(ω|σ) =

{
vi(ω) , if ∃c∈C(ω) ∀ j ∈ c : σ j(ω) = 1

π′i (max{ω′|ω′ < ω}|σ) , otherwise.
(11)

Note that this payoff function is denotedπ′, while the payoff function of the sealed offers game was

denoted asπ. Note also that inω0 = minΩ, which is the outside–option of the formateur, no player

can vote, and thusσ j(ω0) = 1∀ j ∈ c(ω0) is satisfied for all strategy profiles. The strategy profileσ
induces a Nash equilibrium in stateω if no player is better off deviating unilaterally, i.e. if

∀i ∀σ′i : πi(ω|σ)≥ πi(ω|σ′i ,σ−i), (12)

and it induces a Markov perfect equilibrium (MPE) if it induces Nash equilibria in all statesω.

Mixed strategies are functionsmi : Ωi → [0,1] that describe for each state the probability thati votes

yes. The sets of mixed strategies are equivalent to those of the sealed offers game, and apart from

a conditional probability calculation, this applies to the payoff function as well. In stateω, the

formateur would propose the option (out of classω) that is most likely to be accepted; let Pr(ω|m)
denote the probability that it is accepted. The expected payoff under strategy profilem in stateω is

π′i(ω|m) = ∑
ω′≤ω

vi(ω′)∗Pr(ω′|m)∗ ∏
ω′′:ω≥ω′′>ω′

(
1−Pr(ω′′|m)

)
. (13)

Thus, we assume patient players; the results hold equivalently under discounting for discount factors

near 1. A strategy profile is a TPE if it induces a perfect Nash equilibrium in state maxΩ (as per-

fectness is defined above). Implicitly, a TPE induces perfect Nash equilibria in all statesω ∈ Ω, and

thus, any TPE is an MPE (see also Selten, 1975).

Proposition 2.2. There is a unique TPE in any generic descending proposals game, and the equilib-

rium is outcome equivalent to that of the sealed offers game. Formally, let R∗ denote the TPE of the

sealed offers game andσ∗ any TPE of the descending proposals game, then

∀r ∈ R ∀i ∈ c(r) : σ∗i (r) = 1 ⇔ r ∈ R∗i . (14)

Proof. Fix a mixed strategy profilem of the descending proposals game. It can also be understood

as a mixed strategy profile of the sealed offers game. In the initial state maxΩ, the expected payoff
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underm is equivalent to the expected payoff of the sealed offers game underm(as the payoff functions

are equivalent then). Hence, for each perfect equilibrium of the sealed offers game, there must be

a corresponding strategy profile that induces a perfect (Nash) equilibrium in state maxΩ, and vice

versa. Since the perfect equilibrium of the sealed offers game is unique, there also is a unique perfect

equilibrium in state maxΩ, and thus, a unique TPE.

Above, we concentrated on Markov strategies, and as a result of that, the (mixed) strategy space

of the descending proposals game is equivalent to that of the sealed offers game. The restriction to

Markov strategies is not necessary for the derived outcome equivalence, however. We show next that

the unrestricted perfect equilibrium (UPE) is unique, too, i.e. there is a unique perfect equilibrium

in the game where the strategies may depend on the complete history of play (i.e. on who rejected

which proposals).

Consider an arbitrary stateω and letRω = {ω′|ω′ ≤ ω} denote the set of options that still can

result in stateω. As shown above, for allω there are unique TPEs in the (descending proposals or

sealed offers) game restricted toRω. Now consider the final stateω0 = minΩ. There is a unique

strategy profile that induces a perfect Nash equilibrium in the game restricted toRω0, and thus, all

UPEs must induce it in all subgames implying stateω0—regardless of the history of play. Next,

consider the stateω1 = min{ω|ω > ω0}. Since the UPE payoffs in stateω0 are unique, they can not

depend on the history of play in stateω1. Hence, the restriction to Markov strategies is strategically

irrelevant in the descending proposals game starting in stateω1, and the uniqueness of the TPEs

extends to UPEs in the descending proposals game restricted toRω1. In this way, we can next induce

the uniqueness for stateω2 = min{ω|ω > ω1}, and iteratively for all other states.

2.4 Equivalence to the Constructive Proposals Scenario

The outcome equivalence extends to games where the options can be proposed in a rather loose or-

der. The order is restricted only by a requirement of constructiveness (to avoid “blame game” politics,

see Groseclose and McCarty, 2001). This rules out a number of subgame–perfect equilibria where

the formateur threatens to repeat a single proposal (or, some set of proposals) until it is (or, one is)

accepted. Basically, we assume that the reputation of unconstructive formateurs would suffer pro-

hibitively (sooner or later), as a result of which threats of perpetual unconstructive behavior become

incredible. We say that a proposal isconstructiveif it has never been proposed before or if it consti-

tutes a compromise with respect to the previous proposal (i.e. if it is less preferred by the formateur).

We assume that a formateur can not make a single unconstructive proposal (without being blamed

significantly), but this assumption could be relaxed to allowing for any finite number of unconstruc-

tive proposals. Also, the formateur needs not be always able to come up with new proposals; the only

important feature is that he is always able to make compromise proposals (of his choice) without

being blamed of being unconstructive. We say that the assumption induces strategies inconstructive

proposals.
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In a technical sense, the assumption of constructiveness relates to the assumption ofstationary

strategies in majority bargaining games (e.g. Baron and Ferejohn, 1989, and Eraslan, 2002). Both

assumptions imply uniqueness of the equilibrium outcomes, only the motivations differ (a reference

to the bargaining audience in our case, and simplicity in the case of stationarity). To underline this,

let us otherwise align the following model to those assumed in the literature. On one hand, we

assume (here) that the players respondsequentiallyto the proposal of the formateur (note, though,

that simultaneous responses plus trembling–hand perfectness would lead to the same predictions).

The formateur makes a new proposal after the first rejection of the standing proposal by any of the

required players. On the other hand, we explicitly assume impatience in the sense of discount factors

δi less than but close to 1 (we skip a formalization of the lower bound; our results also hold for patient

players). Under more significant discounting, the equilibrium outcome would still be unique, but the

outcome equivalence to sealed offers games can not be guaranteed (typically, the formateur would be

better off).

A history of proposals is denotedht =
(
ht

1,h
t
2, . . . ,h

t
t

)
∈R t . Fort ′ ≤ t, the termht

1...t ′ denotes the

respective sub–history of proposals. We useHt to denote the set oft–round histories that are feasible

under constructiveneness. By definition,H1 = R . For all t ≥ 2, ht ∈ Ht iff ht
1...t−1 ∈ Ht−1 and

ht
t < ht

t−1 or ∀t ′ < t : ht
t ′ 6= ht

t . (15)

The set of all feasible histories isH =∪tHt . The formateur’s strategy describes a feasible proposal for

the initial node( /0) and for any history that does not end with the outside option. Let us denote these

histories asH0, and the respectivet–round histories asHt
0. The strategy is a functionσ0 : H0 → R

subject to∀h ∈ H0 : (h,σ0(h)) ∈ H. Similarly, let Hi denote the histories that end with an option

requiring the support of playeri ∈ N. The strategy ofi ∈ N is a functionσi : Hi →{0,1}, describing

whetheri accepts that finally proposed option. Here, we allow that the decision depends on the

history of proposals, but without restricting the generality (as above), we assume that the decision is

independent of who was rejecting which of the previous proposals. For a given strategy profileσ,

let a(ht |σ) ∈ {0,1} indicate whether all required players support optionht
t . Formally,a(ht |σ) = 1 iff

∃c∈C(ht
t) ∀i ∈ c : σi(ht) = 1. Recursively defined, the payoff ofi underσ after historyht ∈ Ht

0 is

(∀t)

π′′i (h
t |σ) =

{
vi(ht

t) , if a(σ0(ht)|σ) = 1,

δi ∗π′′i
(
(ht ,σ0(ht))|σ

)
, otherwise.

(16)

The definitions of Nash and subgame–perfect equilibria (SPEs) apply as usually.

Theorem 2. Along the path of play, any SPEσ∗ of a generic constructive proposals game induces

the unique TPE outcome of the corresponding descending proposals game.
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3 Applications

We now analyze variants of coalitional bargaining models proposed in the literature. The models

that we cover are (originally) models of several formateurs; i.e. if the proposal of one formateur is

rejected, then a new formateur is recognized randomly. We vary these models only with respect to

the assumed communication of the formateur with the other players. Formally, we assume that each

formateur conducts thesealed offers game, but as shown above, the results extend to the constructive

proposals scenario. According to the latter, the formateur would be replaced only if he steps down

(by choosing the outside option) or if he becomes unconstructive. We assumed throughout that the

value of the outside option would not be subject to strategic considerations. The following shows

that this assumption is comparably unrestrictive in our cases.

The following analysis relies on a corollary of Theorem 1: an option can not result in equilibrium

if there is another option that the formateur and all required voters prefer (anything else can easily

be led to a contradiction). We concentrate on this (negative) part of the equilibrium induction (ruling

out options that can not result); we skip the explicit construction of an equilibrium.

3.1 Division of Cakes with Majority Decisions

Baron and Ferejohn (1989), Eraslan (2002), and others model the division of cakes (size 1) through

majority decisions.

Definition 3.1 (Baron–Ferejohn Model).The bargaining proceeds in rounds, until a majority agrees

to a proposal of how to allocate the cake. In each round, a player is stochastically recognized to

propose an allocation, and in response to this proposal, the players voteyesor no. The set of players

is N such that|N| > 2, the agreement ofq < |N| players is required to allocate the cake (including

the formateur), and the probability thati is recognized as formateur ispi ∈ (0,1). The recognition

probabilities are independent of the roundt.

In the original model, the equilibrium outcome depends on the recognition probabilities (which

does not extend to our variant of it). In the case of uniform recognition probabilities, the player

recognized as formateur gets 1− δ(q−1)
n , whereδ is a discount factor,q−1 further players getδn, and

the remaining players get zero. Ifn is odd andq = 1
2(n−1), then the formateur’s payoff is in

(1
2, 2

3

)
.

In our variant of this model, there is a smallest monetary unitε > 0 and all cake shares have to be

integral multiples ofε. Thus, the option set is finite. We are interested in the equilibrium allocations

whenε is close to 0; the analysis applies, however, wheneverε < pi
nq ∀i. In this model, the players are

indifferent with respect to the coalition that supports a given proposal. Thus, the various classes of

payoff–equivalent options differ only with respect to the induced allocation, any majority coalition

can implement any option. We skip a formalization of the sets of feasible majority coalitions in the
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option set, and the accordingly simplified set of options is

R =
{

x∈ INN
0 | ε∗∑ j∈N x j ≤ 1

}
. (17)

Let C denote the set of majority coalitions. Under optionr ∈ R , player j is allocatedx j(r) monetary

units. As above, we assume that all players have generic valuation functionsvi , i.e. no player is

indifferent with respect to any pair of options. We do not have to specify how the preferences are

refined, though, as our results apply to any refinement that preserves the original order. Thus, they

apply to all valuation functions satisfying

∀r1, r2 ∈ R , ∀ j : x j(r1) > x j(r2) ⇒ v j(r1) > v j(r2). (18)

Let ρ denote the current formateur. Fix any equilibrium. First, we show that no option can result

where a player other than the formateur getsqε or more. This is equivalent to showing, for any other

r ∈ R , that there is an alternative optionr ′ that a majority (including the formateur) prefers. That is,

for all r,

∃i 6= ρ : vi(r)≥ qε ⇒ ∃r ′ > r ∃c∈C ∀ j ∈ c : v j(r ′) > v j(r) (19)

Option r ′ can be constructed in the following way. The coalition is made up of theq− 1 players

getting the smallest shares underr, plus the formateur. Thus, there is a player who gets at leastqε
underr but is not in the new coalition. Inr ′, his share is zero, while his share is allocated such

that all players of the new coalition get at least anε more than before (including the formateur).

Consequently, all players of the coalitionc(r ′) preferr ′ to r, including the formateur, and thus,r may

not result in any (perfect) equilibrium of the sealed offers game.

Now, let πi denotei’s expected payoff ex ante (before the formateur is recognized), and letπi|ρ
denotei’s expected payoff whenρ is the formateur. The above implies that

∀i 6= ρ : πi,ρ < qε. (20)

This limits the expected payoff ex ante of playeri. If i is the formateur, then his maximal payoff is 1;

if he is not the formateur, then his maximal payoff is less thanqε. Thus, his expected payoff satisfies

(under the assumed bounds ofpi)

πi < pi ∗1+(1− pi)∗qε < 1−2nqε+2nqε∗qε = 1−2nqε(1−qε) < 1−nqε. (21)

That is,∀i : πi < 1−nqε. Now, let ρ be appointed as the formateur. We know thatπρ < 1−nqε,

and therefore,∃i 6= ρ : πi > qε. Consequently, the outside option can not result in equilibrium (see

above). This holds for eachρ: he reaches agreement and gets more than 1−nqε. Forε approaching

zero, this is the whole cake.

Proposition 3.2. Fix an equilibrium of the Baron–Ferejohn model with sealed offers and assume

ε ≈ 0. The proposal of the first formateur is accepted and he gets (approximately) the whole cake.

The expected payoffs before the formateur is chosen approximate the recognition probabilities.
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Thus, any formateur is a dictator in this case. McKelvey (1976, 1979) has shown in a rather

general framework that any agenda setter can become a dictator. His findings are somewhat related

to this result, even though his voters are not acting strategically (farsightedly). Namely, McKelvey

has shown that (almost) any two points in the space of options can be connected by consecutive

majority votes. There is such a path in our model, too; it starts at the outside option and it ends at the

equilibrium outcome (in the above case, it approximately ends at the dictator outcome). This path is

made up by all proposals that the formateur can implement following the other players’ offers. In our

model, however, the path characterizes the equilibrium of a game, and thus, only specific paths can

result. Therefore, the existence of paths that are compatible with our model and lead to the dictator

outcome is not implied by McKelvey’s results. The path restrictions imposed through our model are

that the formateur’s valuations must be monotonically increasing along the path and that the path

must imply the smallest possible steps that lead to improvements for the formateur. One can say,

though, that our modelimplementsa McKelvey path in the above game (note that it is implemented

in reverse order, we start with the dictator outcome and it is accepted as a majority prefers it to the

next proposal).

3.2 A Legislative Voting Game

Jackson and Moselle (2002) discuss a model where the players vote on two–dimensional proposals.

Definition 3.3 (Jackson–Moselle Model).In each round a formateur is chosen randomly (using

constant recognition probabilitiespi), he makes a proposal, and all players vote on it. To implement

an option, more than 50% of the players have to agree to it, including the formateur. The number

of players is odd and satisfiesn≥ 3. The proposal has a distributive dimension, describing how to

allocate a cake of size 1, and it has an ideological dimension, describing a one–parametric definition

of a political programme. The set of possible cake allocations is denotedX. The set of political

programmes isY = [0,Y].

For their most general results, Jackson and Moselle (2002) assume that the valuationsvi would

be separable in the following sense. For all pairs of options,(x,y) and(x′,y′), and for alli ∈ N,

vi(x,y) > vi(x,y′) ⇔ vi(x′,y) > vi(x′,y′). (22)

In addition, the valuations are single–peaked iny, i.e. for all i,x, the maximum ofvi(x,y) in y is

attained aty = ŷi . Let ŷ denote the median of ˆyi over all i. We can not directly compare the results of

our model to those of Jackson and Moselle (2002), as their findings mainly concern existence of and

randomization in equilibrium. Nonetheless, we obtain a rather illustrative result if we assume linear

valuations (also defined in Jackson and Moselle, 2002).

vi(r) = xi(r)+α∗ |y(r)− ŷi | (23)
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The value ofα is positive, but not otherwise restrict. The restriction to symmetric scaling termsα is

not necessary, but it simplifies the notation.

If Y = 0, then the Baron–Ferejohn model results. We assume a smallest monetary unitεx and

smallest possible steps for political programmesεy. Thus,X =
{

x∈ INn
0 | ∑i∈N xi εx ≤ 1

}
, andY ={

y∈ [0,Y] | ∃i ∈ IN : y = i ∗ εy
}

. LetC denote the set of majority coalitions. Again, the players do not

care about the resulting coalition, which allows us to simplify the option set by leaving the possible

coalitions out. As above, we assume perfectly refined preferences (genericity), but do not require a

specific formalization; our results hold when the original preferences are not reversed.

Fix any equilibrium. Letxi denote the mean cake share of playeri and lety denote the mean

programme (both ex ante, before the formateur is recognized). Then, the expected payoff ofi satisfies

the following inequality.

πi ≤ xi +α∗ |y− ŷi | (24)

It is an equality only if all political programmesy that might be accepted along the path of play are

on the same side of ˆyi , i.e. either all are on the left or all are on the right of playeri. Based on this, we

can argue similarly to above. On one hand, there can not be an equilibrium where the formateur (ex

post) realizes a cake sharexρ that is less than 1−nqεx. For any such option, there is another option

that all required players prefer; it can be constructed as above, keeping the programmey constant.

In particular, there generally is an option that all required players prefer to the outside option: it

implies the mean programme and besides the formateur, it involves then−1
2 players with the smallest

expected cake shares. All other players realize a cake share of 0 in this option; their expected cake

sharesxi are allocated to the participating players. There is enough cake to redistribute (such that all

participating players can be offered more than they realize under the outside option) whenεx is small

enough, i.e. whenεx < 1
n.

On the other hand, we can limit the programmey resulting under a given formateur. First, we

show that it would be between the median programme ˆy and the formateur’s ideal programme ˆyi .

Without loss of generality, assume that the formateur is to the right of the median, ˆy < ŷi . Suppose

there would be an equilibrium implying optionr such that the resulting programme isy(r) > ŷi . Then,

we can construct an optionr ′ > r where all required players are better off. The supporting coalition

is made up of the playersj with ŷ j < ŷ, the cake allocation is the same as inr, and the political

programme is ˆyi . Hence, the initially assumedr can not result in equilibrium. Similarly, there can

not be an equilibrium implying an optionr with y(r) < ŷ. Here, the coalition supporting a deviation

is made up of the playersj such that ˆy j > ŷ, who are better off under programmey = ŷ.

Finally, we show that if the formateuri is within the quartiles of the distribution of ideological

positions, then he approximately attains a dictatorship. Again, let us assume ˆy < ŷi . There aren1

players to his right, withn1 > n−1
4 . In order to implement an option, he requiresn2 = n−1

2 − n1

further votes, implyingn1 > n2. Assume that there is an equilibrium where he would propose (and

implement) an optionr that is to the left of him,y(r) < ŷi . This can be led to a contradiction ifεx is
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sufficiently small. For, there is an optionr ′, supported by a majority, that all required players prefer.

The programmey(r ′) is one step to the right ofy(r), i.e. y(r ′) = y(r)+ εy. The cake share ofρ is

constant. Then1 players to the right ofρ each losek1 =
⌈

εy
α∗εx

−1
⌉

pieces of cake, and thus, they

are still better off underr ′. These cake pieces are allocated ton2 other players (whose identities are

irrelevant), and ifεx is small enough, then these other players supportr ′, too. This is possible if

εx ≤
n1−n2

n1 +n2
∗
(

1
α

εy

)
. (25)

Note that this is positive, asn1 > n2. If εx satisfies this condition, then the requiredn2 players can

each be allocatedk2 =
⌊

εy
α∗εx

+1
⌋

pieces of cake, implying that they indeed preferr ′ even though the

programme shifted to their disadvantage. Since there is a preferable option, the initially assumedr

can not be supported in equilibrium. As a result, only anr is sustained wherey(r) = ŷρ. A similar

argument shows that, if the formateur is outside the quartiles, then he can implement approximately

the quartile that he prefers.

Proposition 3.4. Consider an equilibrium of the Jackson–Moselle model with sealed offers, linear

valuations, and a small monetary unitεx ≈ 0. Any player recognized as the formateur reaches

agreement (without delay) and realizes a cake share of approximately 1. If the formateur’s position

is within the quartiles of the distribution of ideological positions, then he will be able implement his

most preferred political programme, otherwise he is able to implement the preferred quartile.

4 Variations of the Model

4.1 Constructive Proposal Bargaining with Imperfect Commitments

The first model variation that we discuss unifies the above models: the formateur can revise rejected

proposals (when he is constructive in the above sense), and before each round, he can ask the voters

which options they would support. Their offers are not necessarily perfectly binding in this model,

misleading communication is only costly: when playeri rejects offerr after having announced that

he would accept it, then he has to bear costski,r > 0. It is not costly to accept a proposal without

having signaled the agreement. The formateur can define the set of voters that he asks for offers

himself. Following the offers of these players, he makes a proposal, and if it is accepted, then it

is implemented. Otherwise, he may ask for new offers (the previous offers are canceled) and make

a revised proposal. We will derive an outcome equivalence to the above games. We skip a formal

definition of the game, as the argument is comparably straightforward (given the definitions and

arguments from Section 2).

In particular, we can concentrate on proving the equivalence for the following simplified game:

when proposalr was rejected, then the formateur has to make a proposalr ′ < r in the next round.

We refer to this game as the generalized descending proposals game (in the following, abbreviated
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Table 1: The space of models
misleading communicat.

is prohibitively costly

misleading communicat.

is costly

no communication

formateur can revise re-

jected proposals

equiv. to sealed–offers equiv. to sealed–offers equiv. to sealed–offers

new formateur is drawn

after rejected proposal

equiv. to sealed–offers (unmodeled) Austen-Smith and Banks

(1988) model family

game ends after rejected

proposal

equiv. to sealed–offers (unmodeled) ultimatum majority bar-

gaining

to generalized DPG). The extension to the “generalized constructive proposals game” is equivalent

to the proof of Theorem 2 (which is in the appendix), it only requires an induction in the space of

games.

We prove an outcome equivalence of the generalized DPG to the descending proposals game

(DPG). To do so, we also make an induction in the space of games. We start with the game restricted

to the lowest optionr0 = minR , i.e. with the game that has the option setR 0 = {r0}. The next

game will be the one restricted to optionsR 1 = R 0∪
{

min(R \R 0)
}

, and generallyR i+1 = R i ∪{
min(R \R i)

}
. The outcome equivalence is immediate for the game restricted toR 0, as this game

only has one option (the outside option).

We now consider the game restricted toR i+1, under the assumption that the equivalence holds

for R j 6= R ∀ j ≤ i. Let r denote the outcome of the DPG restricted toR i+1, and letr ′ denote the

respective outcome in the subgame following a rejection ofr. A majority prefersr over r ′. Under

the induction assumption, ifr is offered in the generalized DPG, and if it were to be rejected, thenr ′

would result. A majority prefersr, and thus, regardless of the players’ offers, a majority accepts it

when it is proposed. In particular, this holds even if no majority had offered it; the remaining players

did not commit to accept it, but they find themselves better off accepting it rather than rejecting it

once it is proposed. As a result, in any equilibrium,r results or an option that the formateur prefers.

The latter can be led to a contradiction. Assume an optionr ′′ > r would result. In the DPG, no

majority would accept it, implying that no majority prefers it. It would result in the generalized DPG

if and only if a majority offersr ′′ and all playersi in the majority havevi(r ′′) > vi(r)−ki,r ′′ (they are

better off accepting it than rejecting it plus bearing the costs of misleading communication). Under

full support, any such playeri with vi(r ′′) < vi(r) is strictly better off not offering it. Such players

exist in any majority, and hence, no appropriate majority would offer it in equilibrium.

This argument extends the outcome equivalence to a rather large space of models, as depicted in

Table 1. In this table, we understand “ultimatum majority bargaining” as the corresponding extension

of ultimatum bargaining (see Güth et al., 1982). Moreover, we understand “newformateur is drawn

after rejected proposal” to indicate that the protocol of formateurs implies that no formateur can be

chosen a second time when a proposal of him was rejected.
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4.2 Parliamentary Decisions can be Revised

We now discuss a model where the formateur can revise accepted proposals (the formal treatment is

relegated to the appendix). There are two ways of thinking about this case. On one hand, there is

an agenda setter who can make proposals that would (if accepted) cancel previous decisions of the

parliament. On the other hand, the revisions might take place behind the scenes. The formateur asks

for offers, announces his current choice, and then he is made further offers from players who see that

their payoffs would improve thus. The game ends when the formateur can not improve his current

choice anymore. We refer to this model as theascending proposals game; it is related to English

auctions.

To illustrate its relevance, let us assume that decisions can be revised but the formateur threatens

that he would not attempt such revisions. Apparently, the formateur can only benefit from a revision,

and if a profitable revision is possible, then the initial threat of not attempting revisions would be

incredible (imperfect). The same applies to the other players: they could threaten not to participate

in revision rounds, but then, they would forego opportunities to improve on their expected payoffs.

These threats would be incredible, too. Consequently, the ascending proposals game is the natural

extension of the above model when revisions are merelypossible. In reality, this extension may be

weakened when decision making is costly, but if it is not prohibitively costly, then the main arguments

would still apply (qualitatively).

Our model is stylized in that early decisions can be revised perfectly, they do not restrict later

decisions. In a more general model, where only partial revisions are possible, similar results would be

obtained, but some details of the argument would depend on the structure of possible revisions. We

also assume that the players care only about the final decision (i.e. patience), but the results extend

equivalently to discount factors close to 1. Finally, we assume that the players do not care about

the end of the term of the formateur (i.e. the current formateur has an infinite time horizon). This

is sufficient to show that the formateur may be worse off than above; if there would additionally be

government changes, then this tendency would be even more significant (see, e.g. Baron, 1996, and

Dixit et al., 2000).

In our formalization of this model, in each round a “sealed offers game” is played. The last

successful proposal (or, the formateur’s current favorite) defines thestateof the game and serves as

the status quo in the current round. Equivalently, we could assume that a constructive proposals game

is played in each state (i.e. in each state, the formateur makes a sequence of proposals until one is

accepted, then a new state is entered). The equilibrium play can be induced backwards in the space

of possible statesω ∈Ω. The induction starts in the state that is most preferable to player 0(maxΩ)
and ends with the least preferable one(minΩ). For each state, we can induce the equilibrium actions

as we did in the sealed offers game: starting with the state actions least preferable for player 0,

ending with the actions most preferable for him. The equilibrium strategies are not generally unique

(if the players are patient, then delay is possible), but the equilibrium outcome is generally unique.
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The actual induction is in the appendix; here, we want to illustrate the relevance of the possibility of

revisions. In particular, we want to answer the following two questions: Can an outcome equivalence

be established between ascending offers and sealed offers games? And, is the ascending offers game

always preferable for player 0? We do so based on the Examples 1 and 2.

Example3 (Example 1 revisited).The (perfect) equilibrium of the sealed offers game implies(z, /0),
as discussed above, while the equilibria of the ascending offers game imply(x,{1}). Thus, the

predictions differ. In the ascending offers game, offering(y,{2}) leads to a state resulting in the

endpoint(x,{1}). As player 2 prefers(x,{1}) to the outside option, it is weakly dominant for him

to offer (y,{2}) (strictly under full support). In response, player 1 is best off offering participation

under(x,{1}).

Example4 (Example 2 revisited).This provides the opposite case, thereby showing that ascending

offers games are not generally favorable for player 0. Option(x,{1}) results in the sealed offers

game, see above, and(z, /0) results in the ascending offers game. Here, it is dominant for player 2

to offer participation under(y,{2}) in the sealed offers game, while it is dominated in the ascending

offers game. For, in the ascending offers game,(y,{2}) leads to a subgame where(x,{1}) results

and player 2 would be worse off than in the outside option. Thus, 2 is better off avoiding the state

where(y,{2}) is the standing proposal.

In Example 2, the non–formateur players are better off in the outcome of the ascending offers

game than in the outcome of the sealed offers game. They manage to reach this outcome by bidding

strategically (farsightedly). Player 2 actually prefers(y,{2}) to the outside option, and if he would

bid sincerely, he would offer it in the initial state. This deviation from sincere bidding is an instance

of tacit collusion, and can be expected in a large number of such (multiple–round) voting games,

depending on the preferences.

5 Discussion and Conclusive Remarks

We analyzed models of coalitional bargaining that were constructed to represent the processes in

democratic voting institutions. Our framework allows that coalitions constitute majorities not simply

if they control given voting shares. Thus, we unify models of single parliaments, bicameral democ-

racies, and presidential democracies. We also allow that the veto rules and the required voting shares

may depend on the proposal at hand. There is no restriction of the structure of the proposals (as a

separability into distributive and ideological dimensions), nor of the preference functions (apart from

genericity). The games that we analyzed are defined on discrete option spaces, which appears to be

the most convenient choice in this case. The equilibrium outcomes are unique and are character-

ized through a simple program. In two well–known applications (the Baron–Ferejohn model and the

Jackson–Moselle model), our model implies dictator outcomes along (reversed) McKelvey majority

paths, but in general, the formateur can be far away from attaining dictatorship.
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Given the discreteness of our option spaces, the outcome uniqueness may appear particularly

surprising. In most other bargaining models (e.g. Rubinstein, 1982), discreteness of the option spaces

leads to a plethora of equilibria. Our model differs from typical bargaining models, however, in that

the formateur has to revise rejected proposals constructively. When we apply this to the Rubinstein

model, assuming a constant formateur, then we can see that the corresponding outcome is unique,

too. Interestingly enough, the resulting equilibrium does not favor the formateur at all. When the

non–formateur player is sufficiently patient, then he would reject all proposals but the penultimate

one (the last option where the formateur is still better off than in the outside option). For, he can

induce that this proposal would be made (sooner or later) in any subgame. Hence, it is not immediate

that a formateur as we modeled him is generally close to being a dictator. Nonetheless, it results in the

examples of majority bargaining that we discussed above. In the following, we discuss the robustness

of these results. We skip arguments that we touched already. This concerns, in particular, cases where

parliamentary decisions can be revised (and extensions of this to possibly varying governments, as

modeled in Dixit et al., 2000) and the rather obvious relevance of veto rights.

In our variant of the Rubinstein model, the formateur suffers from the lack of competition be-

tween the voters. In models of majority bargaining, i.e. when unanimous decisions are explicitly not

required, competition arises rather naturally: the players can not demand higher cake shares, as the

formateur would coalesce with other players then. This presumes, however, that a sufficient variety

of coalitions exists. In the models of the literature, the player’s valuations do not depend (signifi-

cantly) on the resulting coalition; thus, the players are equally willing to participate in all coalitions.

It is easy to think of circumstances, however, where the players care about their reputation and would

therefore demand high compensations for participating in certain coalitions. In these case, the com-

petition between the players may be obstructed severely, leading to more moderate results. Note that

the generality of our framework allows for such effects.

Another objection to extreme results is related to observations in laboratory implementations of

“ultimatum bargaining” games (for a survey, see Camerer, 2003). There, it is observed that players

prefer outside options (zero payoffs for all) to payoff allocations extremely favoring the “proposer”

(formateur). This may apply similarly to our model of coalitional bargaining, e.g. if certain ideolog-

ical positions would never be given up for increased cake shares. Or, as it is modeled in ultimatum

games, players do not accept extreme proposals because of equity concerns—all players should ben-

efit comparably from a given proposal. Again, this can be modeled within our framework.

A similar argument applies if the formateur has no cake to allocate, e.g. if his proposals would

be purely ideological (as in Primo, 2002, for instance). Apparently, competition as observed above

can not arise then. For instance, one might argue, this applies to ministers. In reply, we would argue

that ministers stay in office for rather lengthy periods of time, and in the corresponding supergame

(with other cabinet members or coalition members), they might contingent their compromises in

future debates on the support in the current one. In the behavioral literature, such contingencies are

known as reciprocity (e.g. Rabin, 1993). Following this literature, we would say that the preferences
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for (or against) given coalitions can become significant in later stages of the game, depending on the

coalitions’ votes in earlier stages. As a result, the formateur (minister) has got something to allocate,

implying that extreme results may be observed.

Finally, let us note that the formateurs and agenda setters are typically appointed by some prin-

cipal (e.g. by prime ministers, presidents, chairmen, or even the people). The principal appoints a

player as formateur because of this player’s preferences, and only persons with specific preferences

would be appointed as formateurs. If it can be induced that the formateur attains dictatorship follow-

ing his appointment (as in the above models), then the players voting for his appointment can vote

sincerely—they could simply vote for the candidate closest to their own preferences. More generally,

the more powerful the formateur would be, the more sincerely the appointing players can vote for

their favorites, and the less they have to vote strategically (as in Buchholz et al., 2005; for strategic

delegation in general, see e.g. Fershtman and Judd, 1987). As a result, the formateur’s power does

not generally obstruct democratic processes, it may even simplify them. Models of complete election

cycles (e.g. following Austen-Smith and Banks, 1988, and Diermeier et al., 2003) may shed more

light on this issue.
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A Decisions can be Revised (Formal Treatment)

The players’ strategies depend on the proposal that was accepted most recently (the status quo).

Payoff–irrelevant aspects of the history of play are neglected, without loss of generality (as in the

descending proposals game). The set of states is denotedΩ = R , while ω ∈ Ω denotes the most

recently accepted proposal. The option setR has the same characteristics as the one used above. Fix

a stateω ∈Ω. For notational reasons, we assume that the players may not submit offers that concern

options that player 0 does not prefer toω. Thus, the set of offers thati can make in stateω is

Ri(ω) = Ri ∩{r|r > ω}. (26)

The set ofi’s strategies in stateω is P (Ri(ω)). A Markov strategy ofi is a functionσi : Ω → P (Ri),
subject toσi(ω) ⊆ Ri(ω) ∀ω. The set ofi’s Markov strategies is denotedΣi . In response to a given

action profileσ(ω) = (σi(ω)), player 0 implements the most preferable option and a transition to

state

τ(σ,ω) = max({ω}∪{r ∈ R | ∃c∈C(r) ∀i ∈ c : r ∈ σi(ω)}) (27)

occurs. Ifω = τ(σ,ω), the game ends. We refer to all states satisfyingω = τ(σ,ω) asendpoints

underσ. The endpoint that results (underσ) once stateω is reached is denotedE(ω|σ). Recursively

defined, it is

E(ω|σ) =

{
E (τ(σ,ω)|σ) , if τ(σ,ω) 6= ω,

ω , otherwise.
(28)

The payoff of i underσ = (σi), once stateω is reached, isπi(σ|ω) = vi
(
E(ω|σ)

)
. Thus, we as-

sume patient players. The equilibrium outcome is robust to discounting when the discount factors

δi are close to 1 (only possible delay is reduced). A profileσ of Markov strategies induces a Nash

equilibrium in stateω if (∀i) no unilateral deviation would be profitable.

∀i ∈ N∀σ′i ∈ Σi : πi(σ|ω)≥ πi(σ′i ,σ−i |ω). (29)

The profileσ is a Markov perfect equilibrium if it induces Nash equilibria in all statesω ∈Ω.
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In stateω, a mixed strategy ofi defines for eachr ∈ Ri(ω) a probability thati will offer r.

Notably, Ri(ω) may be an empty set; then, playeri would only have the strategy of doing nothing

(and can not randomize). The set ofi’s mixed strategies in stateω is denotedMi(ω). It is the set of

functionsmi(ω) : Ri(ω)→ [0,1]. The set ofi’s mixed strategies for the whole game is×ω Mi(ω) =:

Mi 3mi . A profile of mixed strategies ism∈M.

As defined above, let Pr(r|m,ω) denote the probability thatr can be implemented underm in

stateω (i.e. that it would be offered by all required players). Then, the probability that stateω′

immediately follows stateω is

µ(ω′|m,ω) = Pr(ω′|m,ω)∗ ∏
r>ω′

(1−Pr(r|m,ω)) . (30)

The probability thatω′ will be the resulting endpoint, given the current stateω, is (defined recur-

sively)

PE(ω′|m,ω) =


0 , if ω′ < ω
∑ω′′>ω µ(ω′′|m,ω)∗PE(ω′|m,ω′′) , if ω′ > ω
µ(ω|m,ω) , else.

(31)

The expected payoff ofi underm= (mi) in stateω is

πi(m|ω) = ∑
ω′∈Ω

PE(ω′|m,ω)∗vi(ω′). (32)

The definition of trembling–hand perfect Markov equilibria (TPEs) applies as above. In the follow-

ing, Σ∗ denotes the set of pure TPEs. For the formal exposition, we restrict our attention to pure

equilibria, but the outcome’s uniqueness extends to mixed equilibria (while the equilibrium path

leading to this outcome may be stochastic).

Fix a stateω ∈Ω and assume, for allω′ > ω, that the endpoint following a transition to stateω′

would be unique (for all TPEs). Then, a function as the following exists.

∃E′ : {ω′|ω′ > ω}→Ω such that ∀ω′ > ω, ∀σ∗ ∈ Σ∗ : E′(ω′) = E(ω′|σ∗) (A1)

This function, describing the play in later states, allows us to induce the equilibrium strategies for

stateω. The equilibrium strategies will be characterized through “upper” and “lower” bounds (strate-

gies within these bounds differ only with respect to whether there is delay).A1,i(r|ω) denotes the

minimal probability of the event that playeri offers optionr when the current state isω. It is based

on a termg1(r|ω) describing which optionr ′ < r would be implemented otherwise (conditional on

the event that none of the optionsr ′′ ≥ r could be implemented). We show that playeri offers his

participation underr if (but not only if) he is better off inE′(r) than inE′(g1(r|ω)).

∀r > ω,∀i ∈ c(r) : A1,i(r|ω) =

{
1 , if vi(E′(r)) > vi(E′(g1(r|ω)))
0 , else.

(33)

∀r > ω : g1(r|ω) = max
(
{ω}∪{r ′ < r | ∃c∈C(r ′) ∀i ∈ c : A1,i(r ′|ω) = 1}

)
(34)
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A2,i(r|ω) denotes the respective maximal probability: playeri offers participation only if (but not if)

he is not worse off inr ′ than under the next–best option implementable for 0, i.e. underE′(g2(r|ω)).
Note that we will show thatg1(r|ω) andg2(r|ω) as constructed here are equivalent.

∀r > ω,∀i ∈ c(r) : A2,i(r|ω) =

{
1 , if vi(E′(r))≥ vi(E′(g1(r|ω)))
0 , else.

(35)

∀r > ω : g2(r|ω) = max
(
{ω}∪{r ′ < r | ∃c∈C(r ′) ∀i ∈ c : A2,i(r ′|ω) = 1}

)
(36)

This limits the sets of options that the formateur will be able to implement in stateω. To formalize

the following arguments, letAσ,i(r|ω) denote the actual offer probabilities for a given strategy profile

σ ∈ Σ.

∀r > ω : Aσ,i(r|ω) =

{
1 , if i ∈ c(r) andr ∈ σi(ω)
0 , else

(37)

Derived from the above,Fk(r|ω) denotes a set of options that are implementable and elements of

{r ′|ω≤ r ′ ≤ r}, for all k∈ {1,2,σ}. Fork = 1 it is the minimal set, fork = σ it is the actual set, and

for k = 2 it is the maximal one.

∀r ≥ ω : Fk(r|ω) = {ω}∪{r ′ ≤ r | ∃c∈C(r ′) ∀i ∈ c : Ak,i(r ′|ω) = 1} (38)

The following lemmas comprise the main parts of the induction. Lemmas A.1 and A.2 state that all

strategy profiles that are within the above bounds(A1,A2) induce the same endpoint function (hence,

the bounds are equivalent with respect to the induced endpoints, too). Lemma A.3 states that the

equilibrium strategies must be within these bounds.

Lemma A.1. Fix ω and assume(A1) applies. Next, fix r≥ ω and a set F⊆ R . Then,

F1(r|ω)⊆ F ⊆ F2(r|ω) ⇒ E′(maxF1(r|ω)) = E′(maxF) = E′(maxF2(r|ω)). (39)

Lemma A.2. Fix ω and assume(A1) applies. Fix r> ω and an arbitrary A3,i such that

∀r ′,∀i ∈ c(r ′) : ω < r ′ ≤ r ⇒ A1,i(r ′|ω)≤ A3,i(r ′|ω)≤ A2,i(r ′|ω). (40)

Construct Fk(r|ω) for k∈ {1,2,3} according to Eq.(38). Then, F1(r|ω)⊆ F3(r|ω)⊆ F2(r|ω).

Lemma A.3. Fix ω and assume(A1) applies. Ifσ∗ ∈ Σ∗, then

∀r > ω : A1,i(r|ω)≤ Aσ∗,i(r|ω)≤ A2,i(r|ω). (41)

As a result, we can define a functionE∗ : Ω→Ω that equates with the (unique) endpoint function

induced in all TPEs. Fix anyω and assumeE∗ is defined for allω′ > ω. Iteratively (increasingr), this

allows to definef (r|ω) for all r ≥ ω. First, definef (ω|ω) = ω, and usingpr = f (max{r ′|r ′ < r}|ω),

∀r > ω : f (r|ω) =

{
E∗(r) , if ∃c∈C(r) ∀i ∈ c : vi(E∗(r)) > vi(pr),
pr , else.

(42)

This allows to defineE∗(ω) as

E∗(ω) = f (maxΩ|ω). (43)
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Theorem 3. Fix a generic ascending offers game. For allω ∈ Ω, each TPEσ∗ induces the (unique)

endpoint E(ω|σ∗) = E∗(ω) in stateω, using E∗ as defined in Equations(43), (42).

Proof. The claim holds in the stateω1 = maxΩ. For, in the eyes of 0, maxΩ is the most profitable

option, and in this state, the game ends as the players can not offer more preferred ones. Hence, the

resulting option is unique in this state. Thus, (A1) holds forω = ω2 = max{ω′|ω′ < ω1}, based on

which Lemmas A.1, A.2, A.3 show that the endpoint resulting inω2 is unique (under perfectness),

and that it is equivalent toE∗(ω2). Thus, (A1) holds forω = ω3 = max{ω′|ω′ < ω2}, and iteratively,

we can thus show that the above claim holds for allω ∈Ω.

B Relegated Proofs

Proof of Lemma 2.1.Fix an arbitrary completely mixed strategy profilem satisfying

∀r ′ < r ∀i ∈ c(r ′) :
mi(r ′) > 1− ε , if Ai(r ′) = 1

mi(r ′) < ε , else
(44)

for someε > 0. Fix i ∈ c(r). First, we show that ifAi(r) = 1, thenAR∗,i = 1 holds for any TPER∗ (by

an argument of dominance). Fix ani ∈ c(r) and consider the following two strategy profilesm1,m2.

• strategym1
k(r

′) = mk(r ′) for all r ′,k∈ c(r ′) exceptm1
i (r) = 1

• strategym2
k(r

′) = mk(r ′) for all r ′,k∈ c(r ′) exceptm2
i (r) = 0

Let Pr(r|m) denote the probability thatr can be implemented underm. Defineπ1 := πi(m1) and

π2 := πi(m2). Then, there exists aπ ∈ IR such that

π1 = π+πA∗∏
r ′>r

(
1−Pr

(
r ′|m1)) (45)

π2 = π+πB∗∏
r ′>r

(
1−Pr

(
r ′|m2)) (46)

for appropriately defined conditional payoffsπA,πB. Thus,π1 > π2 is equivalent toπA > πB for all

ε > 0. These conditional payoffs are

πA = Pr
(
r|m1)∗vi(r)+

(
1−Pr

(
r|m1))πB (47)

πB = ∑
r ′<r

vi(r ′)∗Pr
(
r ′|m2)∗ ∏

r ′′:r>r ′′>r ′

(
1−Pr

(
r ′′|m2)) . (48)

Let ε′ denote the conditional probability that a strategy profile leading tog(r) is drawn. Then, there

exists aπ′ such that

πB = (1− ε′)∗vi(g(r))+ ε′ ∗π′. (49)
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For eachε′ > 0 there exists anε > 0 such that all mixed strategies constructed as above induce an

ε′ < ε′. Hence, ifε is sufficiently close to zero, then the impliedε′ is sufficiently close to zero such

thatπA > πB is equivalent tovi(r) > vi(g(r)). This, in turn, is satisfied ifAi(r) = 1. Consequently,

player i is best off putting the maximal probability weight on offeringr in this case. To conclude,

whenε approaches 0, then all limits of completely mixed best responses (under the initial assumption,

Eq. 9) imply thati offersr with probability 1 ifAi(r) = 1, i.e.Ai(r) = 1 impliesAR∗,i(r) = 1.

Similarly, we can argue in the second case to show thatAi(r) = 0 impliesAR∗,i(r) = 0, given Eq.

(9) applies. In this case,πA < πB is equivalent tovi(r) < vi(g(r)) for sufficiently smallε, which is

satisfied ifAi(r) = 0. Finally, note that either maximal or minimal probability weight for offeringr

is dominant, which implies that all equilibrium probabilities are degenerate.

Proof of Theorem 2.The claim holds for the game restricted to the option setR0 = {minR }, as there

is only the outside option in this game. We show inductively that the claim also holds for games with

increasing option sets, leading to the game with option setR . The sequence of option sets is denoted

Ri , for increasingi, and for eachi ≥ 1, it satisfies

Ri = Ri−1∪{min(R \Ri−1)}. (50)

Fix i ≥ 1 and assume that the claim holds for allj < i. Thus, if 0’s most preferred option in the game

with option setRi is rejected, then the resulting subgame is outcome equivalent to the descending

proposals game with option setRi−1. Hence, the decision of whether to reject maxRi is equivalent

to the respective decision in the descending proposals game. If it is accepted in the descending

proposals game, then the formateur offers it here, and it would be accepted, too. If it is not accepted in

the descending proposals game, then two cases have to be distinguished. First, assume that there are

differing equilibrium outcomes and the formateur prefers the descending proposals game equilibrium

to the one implied underσ∗. Then, he can propose maxRi , which is rejected, in order to realize the

descending proposals game outcome. If he is sufficiently patient, he is better off thus, implying that

σ∗ is not an SPE. Secondly, if there are differing equilibria and the formateur is better off under

σ∗ than in the descending proposals game outcome, then there is a playeri ∈ N who can deviate

profitably (and unilaterally) fromσ∗. Let r denote the outcome of the descending proposals game,

andr ′ the outcome underσ∗. Sincer ′ does not result in the descending proposals game, there must

be playersi ∈ c(r ′) that do not preferr ′ to r. If any of them would reject all offers ofr ′, then some

r ′′ results. Ifr ′′ equalsr, then the deviation to rejectingr ′ was profitable. Similarly, he is better off

in any subgame where anr ′′ < r should result; then, formateur would deviate to proposing maxRi ,

to collect r. Finally, in a subgame where anr ′′ > r results, there would be another player better

off deviating such thatr results. In any case, and given he is sufficiently patient, the first player is

better off deviating from acceptingr ′. Thus, the assumedσ∗ is not an equilibrium, implying that any

equilibrium leads to the descending proposals game outcome.

Proof of Lemma A.1.The claim obviously holds forr = ω; in this case,E′(max{ω}) = ω results in

all three cases. Now, fix an arbitraryr > ω and, to carry out the induction, assume that the claim
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holds for allr ′ : ω≤ r ′ < r. It would not hold forr only if r /∈ F1(ω) andr ∈ F2(ω). By construction,

this case implies

vi(E′(r)) = vi
(
E′ (max{r ′ ∈ F1(ω)|r ′ < r}

))
(51)

and by the induction’s assumption, the right–hand side is equal to

= vi
(
E′ (max{r ′ ∈ F2(ω)|r ′ < r}

))
. (52)

When the payoffs are equal, then the endpoints must be equal, too, i.e.

E′(r) = E′ (max{r ′ ∈ F1(ω)|r ′ < r}
)

= E′ (max{r ′ ∈ F2(ω)|r ′ < r}
)
. (53)

Hence, the claimed relation holds forr, as well. Iteratively, we can thus show that the claim holds for

all r ≥ ω.

Proof of Lemma A.2.For all k ∈ {1,2,3}, we haveω ∈ Fk(r|ω) by construction. We have to show

that, for allr ′ satisfyingω < r ′ ≤ r,

F1(r|ω)∩{r ′} ⊆ F3(r|ω)∩{r ′} ⊆ F2(r|ω)∩{r ′}. (54)

Assume that this does not hold for somer ′. There are two possible cases to be distinguished; first, we

considerF1(r|ω)∩{r ′} 6⊆ F3(r|ω)∩{r ′}. In this case, there exists ani ∈ c(r ′) such thatA1,i(r ′|ω) = 1

andA3,i(r ′|ω) = 0. This impliesA1,i(r ′|ω) 6≤ A3,i(r ′|ω), which contradicts the lemma’s assumption.

Similarly, F3(r|ω)∩{r ′} 6⊆ F2(r|ω)∩{r ′} contradicts the lemma’s assumption, and by transitivity,

(54) results. This holds for allr ′, and thus, the lemma results.

Proof of Lemma A.3.This can be proved similarly to Lemma 2.1, and is therefore abbreviated. The

only differences are that we can construct mere bounds of the equilibrium strategies, and that in

the definitions ofπ1|A andπ2|A, the termsvi(r) andvi(r ′) have to be substituted withvi(E′(r)) and

vi(E′(r ′)), respectively. As above, we have to proceed iteratively. We can show that the claim holds

for any r > ω if it holds for all r ′ satisfyingω < r ′ < r, and it trivially holds inr = ω. Define

ro := E′(g1(r|ω)).

On one hand, ifA1,i(r|ω) = 1, thenAσ∗,i(r|ω) = 1 is claimed to be implied. As above, under full

support we can show that playeri would be best off putting maximal probability weight on offering

r if vi(E′(r)) > vi(ro). This holds ifA1,i(r|ω) = 1. As above, we can conclude thatA1,i(r|ω) = 1

implies thatr will be offered by i in all TPEs for stateω. On the other hand, ifA2,i(r|ω) = 0,

then Aσ∗,i(r|ω) = 0 is claimed to be implied. Playeri will offer his participation inr only with

minimal probability (under full support) ifvi(E′(r)) < vi(ro), which applies ifA2,i(r|ω) = 0. Hence,

if A2,i(r|ω) = 0, then he will not offer his participation in any TPE. This holds for alli, and thus

completes the proof.
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